
RAJIB MALL
Professor
Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

Delhi-110 092
2014

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

FUNDAMENTALS OF SOFTWARE ENGINEERING, Fourth Edition
Rajib Mall

© 2014 by PHI Learning Private Limited, Delhi. All rights reserved. No part of this book may be reproduced in
any form, by mimeograph or any other means, without permission in writing from the publisher.

ISBN-978-81-203-4898-1

The export rights of this book are vested solely with the publisher.

Thirty-first Printing (Fourth Edition)........................April, 2014

Published by Asoke K. Ghosh, PHI Learning Private Limited, Rimjhim House, 111, Patparganj Industrial
Estate, Delhi-110092 and Printed by Rajkamal Electric Press, Plot No. 2, Phase IV, HSIDC, Kundli-131028,
Sonepat, Haryana.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

To
Bapa, Maa,

and
my beloved wife Prabina

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

CONTENTS

List of Figures....xv
Preface....xix
Preface to the First Edition....xxi

1.....INTRODUCTION1–32

1.1....Evolution—From an Art Form to an Engineering Discipline....3
1.1.1....Evolution of an Art into an Engineering Discipline....3
1.1.2....Evolution Pattern for Engineering Disciplines....4
1.1.3....A Solution to the Software Crisis....5

1.2....Software Development Projects....6
1.2.1....Types of Software Development Projects....7
1.2.2....Software Projects Being Undertaken by Indian Companies....8

1.3....Exploratory Style of Software Development....9
1.3.1....Perceived Problem Complexity: An Interpretation Based on
Human Cognition Mechanism....11
1.3.2....Principles Deployed by Software Engineering to Overcome
Human Cognitive Limitations....14

1.4....Emergence of Software Engineering....17
1.4.1....Early Computer Programming....17
1.4.2....High-level Language Programming....18
1.4.3....Control Flow-based Design....18
1.4.4....Data Structure-oriented Design....22
1.4.5....Data Flow-oriented Design....22
1.4.6....Object-oriented Design....23
1.4.7....What Next?....24
1.4.8....Other Developments....25

1.5....Notable Changes in Software Development Practices....25
1.6....Computer Systems Engineering....27
Summary....28
Exercises....29

2.....Software Life Cycle Models....33–84
2.1....A Few Basic Concepts....34

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

2.2....Waterfall Model and its Extensions....38
2.2.1....Classical Waterfall Model....38
2.2.2....Iterative Waterfall Model....46
2.2.3....V-Model....50
2.2.4....Prototyping Model....52
2.2.5....Incremental Development Model....55
2.2.6....Evolutionary Model....57

2.3....Rapid Application Development (RAD)....59
2.3.1....Working of RAD....60
2.3.2....Applicability of RAD Model....60
2.3.3....Comparison of RAD with Other Models....62

2.4....Agile Development Models....62
2.4.1....Essential Idea behind Agile Models....64
2.4.2....Agile versus Other Models....65
2.4.3....Extreme Programming Model....66
2.4.4....Scrum Model....69

2.5....Spiral Model....69
2.5.1....Phases of the Spiral Model....71
2.6....A Comparison of Different Life Cycle Models....72
2.6.1....Selecting an Appropriate Life cycle Model for a Project....73

Summary....74

Exercises....75
3.....SOFTWARE PROJECT MANAGEMENT....85–153

3.1....Software Project Management Complexities....86
3.2....Responsibilities of a Software Project Manager....87

3.2.1....Job Responsibilities for Managing Software Projects....87
3.2.2....Skills Necessary for Managing Software Projects....88

3.3....Project Planning....89
3.3.1....Sliding Window Planning....90
3.3.2....The SPMP Document of Project Planning....90

3.4....Metrics for Project Size Estimation....92
3.4.1....Lines of Code (LOC)....92
3.4.2....Function Point (FP) Metric....94

3.5....Project Estimation Techniques....99
3.5.1.... Empirical Estimation Techniques....99
3.5.2.... Heuristic Techniques....99
3.5.3.... Analytical Estimation Techniques....100

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

3.6....Empirical Estimation Techniques....100
3.6.1....Expert Judgement....100
3.6.2....Delphi Cost Estimation....101

3.7....COCOMO—A Heuristic Estimation Technique....101
3.7.1....Basic COCOMO Model....102
3.7.2....Intermediate COCOMO....107
3.7.3....Complete COCOMO....108
3.7.4....COCOMO 2....109

3.8....Halstead’s Software Science—An Analytical Technique....112
3.8.1....Length and Vocabulary....113
3.8.2....Program Volume....113
3.8.3....Potential Minimum Volume....113
3.8.4....Effort and Time....114
3.8.5....Length Estimation....114

3.9....Staffing Level Estimation....116
3.9.1....Norden’s Work....116
3.9.2....Putnam’s Work....117
3.9.3....Jensen’s Model....119

3.10....Scheduling....119
3.10.1....Work Breakdown Structure....121
3.10.2....Activity Networks....122
3.10.3....Critical Path Method (CPM)....124
3.10.4....PERT Charts....126
3.10.5....Gantt Charts....128

3.11....Organisation and Team Structures....129
3.11.1....Organisation Structure....129
3.11.2....Team Structure....132

3.12....Staffing....135
3.13....Risk Management....136

3.13.1....Risk Identification....137
3.13.2....Risk Assessment....138
3.13.3....Risk Mitigation....138

3.14....Software Configuration Management....140
3.14.1....Necessity of Software Configuration Management....140
3.14.2....Configuration Management Activities....142

3.15....Miscellaneous Plans....144

Summary144

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Exercises....145

4.....REQUIREMENTS ANALYSIS AND SPECIFICATION....154–200
4.1....Requirements Gathering and Analysis....155

4.1.1....Requirements Gathering....156
4.1.2....Requirements Analysis159

4.2....Software Requirements Specification (SRS)....161
4.2.1....Users of SRS Document....161
4.2.2....Why Spend Time and Resource to Develop an SRS
Document?....162
4.2.3....Characteristics of a Good SRS Document....163
4.2.4....Attributes of Bad SRS Documents....164
4.2.5....Important Categories of Customer Requirements....165
4.2.6....Functional Requirements....167
4.2.7....How to Identify the Functional Requirements?....170
4.2.8....How to Document the Functional Requirements?....170
4.2.9....Traceability....173
4.2.10....Organisation of the SRS Document....173
4.2.11....Techniques for Representing Complex Logic....180

4.3....Formal System Specification....182
4.3.1....What is a Formal Technique?....183
4.3.2....Operational Semantics....184

4.4....Axiomatic Specification....186
4.5....Algebraic Specification....188

4.5.1....Auxiliary Functions....191
4.5.2....Structured Specification....192

4.6....Executable Specification and 4GL....193

Summary....193

Exercises....193

5.....SOFTWARE DESIGN....201–222
5.1....Overview of the Design Process....201

5.1.1....Outcome of the Design Process....201
5.1.2....Classification of Design Activities....202
5.1.3....Classification of Design Methodologies....203

5.2....How to Characterise a Good Software Design?....204
5.2.1....Understandability of a Design: A Major Concern....205

5.3....Cohesion and Coupling....208

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

5.3.1....Classification of Cohesiveness....209
5.3.2....Classification of Coupling....211

5.4....Layered Arrangement of Modules....212
5.5....Approaches to Software Design....214

5.5.1....Function-oriented Design....214
5.5.2....Object-oriented Design....215

Summary....219

Exercises....219

6.....FUNCTION-ORIENTED SOFTWARE DESIGN....223–275
6.1....Overview of SA/SD Methodology....224
6.2....Structured Analysis....225

6.2.1....Data Flow Diagrams (DFDs)....225
6.3....Developing the DFD Model of a System....229

6.3.1....Context Diagram....229
6.3.2....Level 1 DFD....231
6.3.3....Extending DFD Technique to Make it Applicable to Real-Time
....Systems....246

6.4....Structured Design....247
6.4.1....Transformation of a DFD Model into Structure Chart....248

6.5....Detailed Design....253
6.6....Design Review....253

Summary....254

Exercises....254

7.....Object Modelling Using UML....276–334
7.1....Basic Object-Orientation Concepts....277
7.1.1....Basic Concepts....277
7.1.2....Class Relationships....281
7.1.3....How to Identify Class Relationships?....288
7.1.4....Other Key Concepts....289

7.1.5....Related Technical Terms....294
7.1.6....Advantages and Disadvantages of OOD....295

7.2....Unified Modelling Language (UML)....296
7.2.1....Origin of UML....296
7.2.2....Evolution of UML....298

7.3....UML Diagrams....300

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

7.4....Use Case Model....302
7.4.1....Representation of Use Cases....303
7.4.2....Why Develop the Use Case Diagram?....307
7.4.3....How to Identify the Use Cases of a System?....307
7.4.4....Essential Use Case versus Real Use Case....307
7.4.5....Factoring of Commonality among Use Cases....308
7.4.6....Use Case Packaging....310

7.5....Class Diagrams....311
7.6....Interaction Diagrams....318
7.7....Activity Diagram....320
7.8....State Chart Diagram....322
7.9....Postscript....323

7.9.1....Package, Component, and Deployment Diagrams....323
7.9.2....UML 2.0....325

Summary....327

Exercises....328

8.....Object-Oriented Software Development....335–372
8.1....Patterns....337

8.1.1....Basic Pattern Concepts....337
8.1.2....Types of Patterns....338
8.1.3....More Pattern Concepts....340

8.2....Some Common Design Patterns....341
8.3....An Object-Oriented Analysis and Design (OOAD) Methodology....349

8.3.1....Unified Process....349
8.3.2....Overview of The OOAD Methodology....350
8.3.3....Use Case Model Development....351
8.3.4....Domain Modelling....353
8.3.5....Identification of Entity Objects....357
8.3.6....Booch’s Object Identification Method....357
8.3.7....Interaction Modelling....360
8.3.8....Class-Responsibility-Collaborator (CRC) Cards....360

8.4....Applications of the Analysis and Design Process....361
8.5....OOD Goodness Criteria....364

Summary....369

Exercises....369

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

9.....USER INTERFACE DESIGN....373–396
9.1....Characteristics of a Good User Interface....374
9.2....Basic Concepts....376

9.2.1....User Guidance and On-line Help....376
9.2.2....Mode-based versus Modeless Interface....377
9.2.3....Graphical User Interface (GUI) versus Text-based User
Interface....377

9.3....Types of User Interfaces....378
9.3.1....Command Language-based Interface....378
9.3.2....Menu-based Interface....379
9.3.3....Direct Manipulation Interfaces....381

9.4....Fundamentals of Component-based GUI Development....381
9.4.1....Window System....382
9.4.2....Types of Widgets....385
9.4.3....An Overview of X-Window/MOTIF....386
9.4.4....X Architecture....387
9.4.5....Size Measurement of a Component-based GUI....388

9.5....A User Interface Design Methodology....388
9.5.1....Implications of Human Cognition Capabilities on User Interface
Design....389
9.5.2....A GUI Design Methodology....389

Summary....393

Exercises....394

10.....Coding and Testing....397–456
10.1....Coding....398

10.1.1....Coding Standards and Guidelines....399
10.2....Code Review....400

10.2.1....Code Walkthrough....401
10.2.2....Code Inspection....402
10.2.3....Clean Room Testing....403

10.3....Software Documentation....403
10.3.1....Internal Documentation....404
10.3.2....External Documentation....404

10.4....Testing....405
10.4.1....Basic Concepts and Terminologies....406
10.4.2....Testing Activities....410

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

10.4.3....Why Design Test Cases?....411
10.4.4....Testing in the Large versus Testing in the Small....412

10.5....Unit Testing....413
10.6....Black-box Testing....413

10.6.1....Equivalence Class Partitioning....414
10.6.2....Boundary Value Analysis....415
10.6.3....Summary of the Black-box Test Suite Design Approach....417

10.7....White-Box Testing....417
10.7.1....Basic Concepts....417
10.7.2....Statement Coverage....419
10.7.3....Branch Coverage....419
10.7.4....Multiple Condition Coverage....420
10.7.5....Path Coverage....421
10.7.6....McCabe’s Cyclomatic Complexity Metric423
10.7.7....Data Flow-based Testing....425
10.7.8....Mutation Testing....426

10.8....Debugging....427
10.8.1....Debugging Approaches....427
10.8.2....Debugging Guidelines....428

10.9....Program Analysis Tools....428
10.9.1....Static Analysis Tools....428
10.9.2....Dynamic Analysis Tools....429

10.10....Integration Testing....430
10.10.1....Phased versus Incremental Integration Testing....431

10.11....Testing Object-Oriented Programs....432
10.11.1....What is a Suitable Unit for Testing Object-Oriented
Programs?....432
10.11.2....Do Various Object-Orientation Features Make Testing
Easy?....433
10.11.3....Why are Traditional Techniques Considered Not Satisfactory
....for Testing Object-Oriented Programs?....434
10.11.4....Grey-Box Testing of Object-Oriented Programs....434
10.11.5....Integration Testing of Object-oriented Programs....435
10.12....System Testing....435

10.12.1....Smoke Testing....436
10.12.2....Performance Testing....436
10.12.3....Error Seeding....438

10.13....Some General Issues Associated with Testing....439

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Summary....440

Exercises....440

11.....Software Reliability and Quality Management....457–484
11.1....Software Reliability....458

11.1.1....Hardware versus Software Reliability....459
11.1.2....Reliability Metrics of Software Products....460
11.1.3....Reliability Growth Modelling....462

11.2....Statistical Testing....463
11.2.1....Steps in Statistical Testing....463

11.3....Software Quality....464
11.4....Software Quality Management System....465

11.4.1....Evolution of Quality Systems....466
11.4.2....Product Metrics versus Process Metrics....467

11.5....ISO 9000....467
11.5.1....What is ISO 9000 Certification?....467
11.5.2....ISO 9000 for Software Industry....468
11.5.3....Why Get ISO 9000 Certification?....469
11.5.4....How to Get ISO 9000 Certification?....469
11.5.5....Summary of ISO 9001 Requirements....470
11.5.6....Salient Features of ISO 9001 Requirements....472
11.5.7....ISO 9000-2000....472
11.5.8....Shortcomings of ISO 9000 Certification....472

11.6....SEI Capability Maturity Model473
11.6.1....Comparison between ISO 9000 Certification and SEI/CMM
....476
11.6.2....Is SEI CMM Applicable to Small Organisations?....476
11.6.3....Capability Maturity Model Integration (CMMI)....477
11.7....Few Other Important Quality Standards....477
11.7.1....Software Process Improvement and Capability
....Determination (SPICE)....477
11.7.2....Personal Software Process (PSP)....477

11.8....Six Sigma....479

Summary....480

Exercises....481

12.....Computer Aided Software Engineering....485–493

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

12.1....Case and its Scope....485
12.2....Case Environment....485

12.2.1....Benefits of CASE....487
12.3....CASE Support in Software Life Cycle....487

12.3.1....Prototyping Support....487
12.3.2....Structured Analysis and Design....488
12.3.3....Code Generation....488
12.3.4....Test Case Generator....489

12.4....Other Characteristics of Case Tools....489
12.4.1....Hardware and Environmental Requirements....489
12.4.2....Documentation Support....489
12.4.3....Project Management....490
12.4.4....External Interface....490
12.4.5....Reverse Engineering Support....490
12.4.6....Data Dictionary Interface....490
12.4.7....Tutorial and Help....490

12.5....Towards Second Generation CASE Tool....490
12.6....Architecture of a Case Environment....491
Summary....492
Exercises....492

13.....Software Maintenance....494–502
13.1....Characteristics of Software Maintenance....494

13.1.1....Characteristics of Software Evolution....495
13.1.2....Special Problems Associated with Software Maintenance....496

13.2....Software Reverse Engineering....496
13.3....Software Maintenance Process Models....497
13.4....Estimation of Maintenance Cost....500
Summary....501
Exercises....501

14.....SOFTWARE REUSE....503–512
14.1....What can be Reused?....503
14.2....Why Almost No Reuse So Far?....504
14.3....Basic Issues in any Reuse Program....504
14.4....A Reuse Approach....505

14.4.1....Domain Analysis....505
14.4.2....Component Classification....506
14.4.3....Searching....507

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

14.4.4....Repository Maintenance....507
14.4.5....Reuse without Modifications....508

14.5....Reuse at Organisation Level....508
14.5.1....Current State of Reuse....510

Summary....510
Exercises....511

15.....EMERGING TRENDS....513–525
15.1....Client-Server Software....514
15.2....Client-server Architectures....516
15.3....CORBA....518

15.3.1....CORBA Reference Model....518
15.3.2....CORBA ORB Architecture....519
15.3.3....CORBA Implementations....521
15.3.4....Software Development in CORBA....521

15.4....COM/DCOM....522
15.4.1....COM....522
15.4.2....DCOM....522

15.5....Service-Oriented Architecture (SOA)....522
15.5.1....Service-oriented Architecture (SOA): Mitty Gritty....523

15.6....Software as a Service (SaaS)....524
Summary....524
Exercises....525
ReferenWces.... 527–530
Index....531–534

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

LIST OF FIGURES

1.1....Evolution of technology with time....4
1.2....Relative changes of hardware and software costs over time....5
1.3....Exploratory program development....9
1.4....Increase in development time and effort with problem size....10
1.5....Human cognition mechanism model....12
1.6....Schematic representation....14
1.7....An abstraction hierarchy classifying living organisms....16
1.8....An example of (a) Unstructured program (b) Corresponding structured

program....19
1.9....Control flow graphs of the programs in Figures 1.8(a) and (b)....19
1.10....CFG of a program having too many GO TO statements....20
1.11....Data flow model of a car assembly plant....23
1.12....Evolution of software design techniques....24
1.13....Computer systems engineering....28

2.1....Classical waterfall model....39
2.2....Relative effort distribution among different phases of a typical

product....40
2.3....Iterative waterfall model....46
2.4....Distribution of effort for various phases in the iterative waterfall

model....48
2.5....V-model....51
2.6....Prototyping model of software development....54
2.7....Incremental software development....55
2.8....Incremental model of software development....56
2.9....Evolutionary model of software development....58
2.10....Spiral model of software development....70

3.1....Precedence ordering among planning activities....90
3.2....System function as a mapping of input data to output data....95
3.3....Person-month curve....104
3.4....Effort versus product size....105
3.5....Development time versus size....106
3.6....Rayleigh curve....116

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

3.7....Work breakdown structure of an MIS problem....121
3.8....Activity network representation of the MIS problem....123
3.9....AoN for MIS problem with (ES,EF)....125
3.10....AoN of MIS problem with (LS,LF)....126
3.11....PERT chart representation of the MIS problem....127
3.12....Gantt chart representation of the MIS problem....128
3.13....Schematic representation of the functional and project

organisation....130
3.14....Matrix organisation....132
3.15....Chief programmer team structure....133
3.16....Democratic team structure....134
3.17....Mixed team structure....135
3.18....Reserve and restore operation in configuration control....143

4.1....The black-box view of a system as performing a set of functions....164
4.2....User and system interactions in high-level functional requirement.

....169
4.3....Decision Tree for LMS....181

5.1....The design process201
5.2....Two design solutions to the same problem....207
5.3....Classification of cohesion....209
5.4....Examples of cohesion....210
5.5....Classification of coupling....212
5.6....Examples of good and poor control abstraction....214

6.1....Structured analysis and structured design methodology....224
6.2....Symbols used for designing DFDs....226
6.3....Synchronous and asynchronous data flow....227
6.4....DFD model of a system consists of a hierarchy of DFDs and a single
....data dictionary....230
6.5....An example showing balanced decomposition....233
6.6....It is incorrect to show control information on a DFD....234
6.7....Illustration of how to avoid data cluttering....235
6.8....Context diagram, level 1, and level 2 DFDs for Example 6.1....236
6.9....Context diagram and level 1 DFDs for Example 6.2....238
6.10....Context diagram for Example 6.3....239
6.11....Level 1 diagram for Example 6.3....240
6.12....Level 2 diagram for Example 6.3....240
6.13....Context diagram for Example 6.4....242
6.14....Level 1 DFD for Example 6.4....242

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

6.15....Context diagram for Example 6.5....244
6.16....Level 1 DFD for Example 6.5....245
6.17....Level 2 DFD for Example 6.5....245
6.18....Examples of properly and poorly layered designs....248
6.19....Structure chart for Example 6.6....250
6.20....Structure chart for Example 6.7....251
6.21....Structure chart for Example 6.8....252
6.22....Structure chart for Example 6.9....252
6.23....Structure chart for Example 6.10....253

7.1....Important concepts used in the object-oriented approach....277
7.2....A model of an object....279
7.3....Library information system example....282
7.4....An example of multiple inheritance....284
7.5....Example of (a) binary (b) ternary (c) unary association....285
7.6....Example of aggregation relationship....287
7.7....An example of an abstract class....288
7.8....Schematic representation of the concept of encapsulation....290
7.9....Circle class with overloaded create method....292
7.10....Class hierarchy of geometric objects....293
7.11....Traditional code versus object-oriented code incorporating the

dynamic
....binding feature....293
7.12....Schematic representation of the impact of different object modelling
....techniques on UML....297
7.13....Evolution of UML....298
7.14....Different types of diagrams and views supported in UML....301
7.15....Use case model for Example 7.2....305
7.16....Use case model for Example 7.3....306
7.17....Representation of use case generalisation....308
7.18....Representation of use case inclusion....309
7.19....Example of use case inclusion....309
7.20....Example of use case extension....310
7.21....Hierarchical organisation of use cases....311
7.22....Use case packaging....312
7.23....Different representations of the LibraryMember class....313
7.24....Association between two classes....314
7.25....Representation of aggregation....315
7.26....Representation of composition....315

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

7.27....Representation of the inheritance relationship....316
7.28....Representation of dependence between classes....317
7.29....Different representations of a LibraryMember object....317
7.30....Sequence diagram for the renew book use case....319
7.31....Collaboration diagram for the renew book use case....320
7.32....Activity diagram for student admission procedure at IIT....321
7.33....State chart diagram for an order object....323
7.34....An example package diagram....324
7.35....Anatomy of a combined fragment in UML 2.0....326
7.36....An example sequence diagram showing a combined fragment in UML

2.0....327
8.1....Expert pattern: (a) Class diagram (b) Collaboration diagram342

8.2....Service invocation with and without using a facade class....344
8.3....Interaction diagram for the observer pattern....345
8.4....Class structure for the MVC pattern....346
8.5....Interaction model for the MVC pattern....346
8.6....Interaction model of the publish-subscribe pattern....347
8.7....A schematic representation of the publish-subscribe pattern....348
8.8....Unified process model....350
8.9....An object-oriented analysis and design process....351
8.10....A typical realisation of a use case through the collaboration of
....boundary, controller, and entity objects....355
8.11....CRC card for the BookRegister class....361
8.12....Use case model for Example 8.2....362
8.13....(a) Initial domain model (b) Refined domain model for Example

8.2....362
8.14....Sequence diagram for the play move use case of Example 8.2....363
8.15....Class diagram for Example 8.2....364
8.16....Use case model for Example 8.3....364
8.17....(a) Initial domain model (b) Refined domain model for Example

8.3....365
8.18....Sequence diagram for the select winner list use case of Example

8.3....366
8.19....Sequence diagram for the register customer use case of Example

8.3....366
8.20....Sequence diagram for the register sales use case of Example

8.3....367
8.21....Refined sequence diagram for the register sales use case of Example

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

8.3....367
8.22....Class diagram for Example 8.3....368

9.1....Font size selection using scrolling menu....380
9.2....Example of walking menu....380
9.3....Window with client and user areas marked....382
9.4....Window management system....384
9.5....Network-independent GUI....386
9.6....Architecture of the X system....387
9.7....Decomposition of a task into subtasks....391
9.8....State chart diagram for an order object....391

10.1....A simplified view of program testing....406
10.2....Testing process....411
10.3....Unit testing with the help of driver and stub modules....413
10.4....Equivalence classes for Example 10.6....415
10.5....CFG for (a) sequence, (b) selection, and (c) iteration type of

constructs....416
10.6....Illustration of stronger, weaker, and complementary testing

strategies....418
10.7....Control flow diagram of an example program....422
10.8....Module C Sequentially Integrates Modules A and B....455

11.1....Change in failure rate of a product....460
11.2....Step function model of reliability growth....462
11.3....Evolution of quality system and corresponding shift in the quality

paradigm....466
11.4....A schematic representation of PSP....478
11.5....Levels of PSP....479

12.1....A CASE environment....486
12.2....Architecture of a modern CASE environment....491

13.1....A process model for reverse engineering....497
13.2....Cosmetic changes carried out before reverse engineering....497
13.3....Maintenance process model 1....499
13.4....Maintenance process model 2....499
13.5....Empirical estimation of maintenance cost versus percentage

rework....500
14.1....Improving reusability of a component by using a portability
interface....510

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

15.1....Two-tier and three-tier client-server architectures....517
15.2....CORBA reference model....518
15.3....CORBA ORB architecture....520

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

PREFACE

The revision to this book had become necessary on account of the rapid
advancements that have taken place in software engineering
techniques and practices since the last edition was written. In this book,
almost all the chapters have been enhanced. Also, many objective type

questions have been included in almost every chapter. This book has
taken shape over the two decades decades while teaching the
Software Engineering subject to the undergraduate and
postgraduate students at IIT, Kharagpur.

While teaching to the students, I had acutely felt the necessity of a book
that treats all the important topics in software engineering, including
the important recent advancements in a coherent framework and at the
same time deals the topics from the perspective of the practising
engineer. A large portion of the text is based on my own practical
experience which I gained while working on software development
projects in several organizations.

This book is designed to serve as a text book for one semester course on
software engineering for undergraduate students by excluding the star
marked sections in different chapters. The topics on Halsteads software
science, Software reuse, and Formal specification can be omitted for a
basic study of the subject, if so desired by the teacher. However, these
topics should be included in a post-graduate level course. For
postgraduate students, this text book may be supplemented with some
additional topics.

The students intending to go through this book must be familiar with at
least one high level programming and one low level programming
language. They are also expected to possess basic ideas about
operating systems, systems programming, compiler writing, and
computer architecture issues. Experience in writing large-sized
programs would be very helpful in grasping some of the important
concepts discussed in this book. The emphasis of this book is to
illustrate the important concepts through small examples rather than
through a single large running example. I have intentionally selected

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

the former approach as I believe that this would make it easier to
illustrate several subtle and important concepts through appropriate
small examples. It would have been very difficult to illustrate all these
concepts through a single running example.

The layout of the chapters has been guided by the sequence of activities
undertaken during the life of a software product. However, since the
project management activity is spread over all phases, I thought that it
is necessary to discuss these as early in the book

book as possible. Software project management has been discussed in
Chapter 3. However,

while teaching from this book, I prefer to teach the project management
topic after the Chapter 11, since that way I am able to give the design
assignments to the students early and they get sufficient time to
complete them.

In the text, I have taken the liberty to use he/his to actually mean both
the genders.

This has been done only to increase the readability of the writing rather
than with intent of

any bias.
The power-point slides to teach the book as well as the solution manual
can be obtained

either from the publisher or by sending me an e-mail.
Typographical and other errors and comments should be reported to me
at:

rajib@cse.iitkgp.ernet.in
or at my following postal address.

RAJIB MALL
Professor

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

PREFACE TO THE FIRST EDITION

This book is designed as a textbook on software engineering for undergraduate students
in computer science. Software engineering is a fast developing field. While teaching the
subject at the Indian Institute of Technology Kharagpur, I felt the need for organizing a
textbook that gives a coherent account of all the state-of-the-art topics and at the same
time presents these topics from the viewpoint of practising engineers. A portion of the
text is, therefore, based on my own practical experience, gained while working on
software development projects in several industries.

The book starts with a comprehensive introduction to software engineering, including
some important life cycle models. Chapter 2 presents and discusses techniques and
concepts of software project management. This chapter encompasses all phases of
software development that are considered crucial to the success of software projects.
Chapter 3 focuses on requirements analysis and specification. In this chapter, different
approaches to formal requirements specification and essential features of algebraic
specifications as a formal specification technique are explored. Chapter 4 highlights
some important facets of software design. In Chapter 5, the methodology of Structured
Analysis/Structured Design (SA/SD) in relation to traditional function-oriented design.
Chapter 7 brings out some basic aspects, techniques and methods pertaining to user
interface design. Significant progress has been made in this field and it is important for
students to know the various issues involved in a good user interface design. Chapter 8
discusses coding and unit testing techniques. Integration and system testing techniques
are elaborately described in Chapter 9. These are the main quality control activities.
Chapter 10 is, therefore, exclusively devoted to software quality assurance aspects, ISO
9000 and software reliability models, as these are considered necessary to expose
students to basic quality concepts as part of a software engineering course. Finally, in
Chapter 11, the student has been introduced to general concepts to CASE tools, without
going into specifics of any particular CASE tool.

The students using this textbook should be proficient at least in one high level and
low level programming language each. They should also possess basic knowledge of
operating systems, systems programming, compiler writing, and computer architecture.

The emphasis in this book is to illustrate the important concepts through several
small examples rather than a single large running example. The book also contains many
exercises at the end of each chapter aimed at reinforcing the knowledge of principles

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

and techniques of software engineering.
I do hope fervently that the students will find this text both stimulating and useful.

ACKNOWLEDGEMENTS

Many persons have contributed to make this book a reality. I would especially like to
express my appreciation to Prof. L.M. Patnaik for his unstinted support and
encouragement. I would also like to thank Prof. Sunil Sarangi, Dean (CEP) for his
guidance throughout the preparation of the manuscript. Thanks are also due to Prof. Ajit
Pal, the present Head of the Department, and all my colleagues at the Computer Science
and Engineering Department of IIT Kharagpur for their helpful comments and
suggestions. I express my special thanks to Prof. P.K.J. Mahapatra of IEM Department
for his help during the final preparation of the manuscript.

I acknowledge the help and cooperation received from all the staff members of the
Computer Science and Engineering Department of IIT Kharagpur.

I would like to acknowledge the financial assistance provided by IIT Kharagpur for
the preparation of the manuscript and I wish to thank the numerous B.Tech and M.Tech
students whose enthusiastic participation in classroom discussions helped me to present
many ideas and concepts, as discussed in this book, with greater clarity.

Finally, I wish to express my sincere thanks to all my family members for their moral
support. In particular, I thank my parents, Sanjib, Kanika Bhabhi, Sudip, Shivani, Sonali
and Amitabha, my parents-in-law and GUGLOO. I am grateful to my wife Prabina for
her constant encouragement.

RAJIB MALL
Preface to the First Edition

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Chapter
1

INTRODUCTION

Commercial usage of computers now spans the last sixty years.
Computers were very slow in the initial years and lacked sophistication.
Since then, their computational power and sophistication increased
rapidly, while their prices dropped dramatically. To get an idea of the
kind of improvements that have occurred to computers, consider the
following analogy. If similar improvements could have occurred to
aircrafts, now personal mini-airplanes should have become available,
costing as much as a bicycle, and flying at over 1000 times the speed of
the supersonic jets. To say it in other words, the rapid strides in
computing technologies are unparalleled in any other field of human
endeavour.

Let us now reflect the impact of the astounding progress made to the
hardware technologies on the software. The more powerful a computer is,
the more sophisticated programs can it run. Therefore, with every increase in
the raw computing capabilities of computers, software engineers have been
called upon to solve increasingly larger and complex problems, and that too
in cost-effective and efficient ways. Software engineers have coped up with
this challenge by innovating and building upon their past programming
experiences.

The innovations and past experiences towards writing good quality programs cost-
effectively, have contributed to the emergence of the software engineering discipline.

Let us now examine the scope of the software engineering discipline more
closely.

What is software engineering?
A popular definition of software engineering is: “A systematic collection of
good program development practices and techniques”. Good program

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

development techniques have resulted from research innovations as well as
from the lessons learnt by programmers through years of programming
experiences. An alternative definition of software engineering is: “An
engineering approach to develop software”. Based on these two point of views,
we can define software engineering as follows:

Software engineering discusses systematic and cost-effective techniques for software
development. These techniques help develop software using an engineering
approach.

Let us now try t o figure out what exactly is meant by an engineering
approach to develop software. We explain this using an analogy. Suppose you
have asked a petty contractor to build a small house for you. Petty
contractors are not really experts in house building.

They normally carry out minor repair works and at most undertake very
small building works such as the construction of boundary walls. Now faced
with the task of building a complete house, your petty contractor would draw
upon all his knowledge regarding house building. Yet, he may often be
clueless regarding what to do. For example, he might not know the optimal
proportion in which cement and sand should be mixed to realise sufficient
strength for supporting the roof. In such situations, he would have to fall back
upon his intuitions. He would normally succeed in his work, if the house you
asked him to construct is sufficiently small. Of course, the house constructed
by him may not look as good as one constructed by a professional, may lack
proper planning, and display several defects and imperfections. It may even
cost more and take longer to build.

Now, suppose you entrust your petty contractor to build a large 50-storeyed
commercial complex for you. He might exercise prudence, and politely refuse
to undertake your request. On the other hand, he might be ambitious and
agree to undertake the task. In the later case, he is sure to fail. The failure
might come in several forms—the building might collapse during the
construction stage itself due to his ignorance of the basic theories concerning
the strengths of materials; the construction might get unduly delayed, since
he may not prepare proper estimates and detailed plans regarding the types
and quantities of raw materials required, the times at which these are
required, etc. In short, to be successful in constructing a building of large
magnitude, one needs a good understanding of various civil and architectural
engineering techniques such as analysis, estimation, prototyping, planning,
designing, and testing. Similar is the case with the software development

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

projects. For sufficiently small-sized problems, one might proceed according
to one’s intuition and succeed; though the solution may have several
imperfections, cost more, take longer to complete, etc. But, failure is almost
certain, if one without a sound understanding of the software engineering
principles undertakes a large-scale software development work.

Is software engineering a science or an art?
Several people hold the opinion that writing good quality programs is an
art. In this context, let us examine whether software engineering is
really a form of art or is it akin to other engineering disciplines. There
exist several fundamental issues that set engineering disciplines such as
software engineering and civil engineering apart from both science and
arts disciplines. Let us now examine where software engineering stands
based on an investigation into these issues:

Just as any other engineering discipline, software engineering makes
heavy use of the knowledge that has accrued from the experiences of a
larges number o f practitioners. These past experiences have been
systematically organised and wherever possible theoretical basis to the
empirical observations have been provided. Whenever no reasonable
theoretical justification could be provided, the past experiences have
been adopted as rule of thumb. In contrast, all scientific solutions are
constructed through rigorous application of provable principles.
As is usual in all engineering disciplines, in software engineering
several conflicting goals are encountered while solving a problem. In
such situations, several alternate solutions are first proposed. An
appropriate solution is chosen out of the candidate solutions based on
various trade-offs that need to be made on account of issues of cost,
maintainability, and usability. Therefore, while arriving at the final
solution, several iterations and are possible.
Engineering disciplines such as software engineering make use of only
well-understood and well-documented principles. Art, on the other
hand, is often based on making subjective judgement based on
qualitative attributes and using ill-understood principles.

From the above, we can easily infer that software engineering is in many
ways similar to other engineering disciplines such as civil engineering or
electronics engineering.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

1.1 EVOLUTION—FROM AN ART FORM TO A N ENGINEERING
DISCIPLINE

In this section, we review how starting from an esoteric art form, the
software engineering discipline has evolved over the years.

1.1.1 Evolution of an Art into an Engineering Discipline
Software engineering principles have evolved over the last sixty years
with contributions from numerous researchers and software
professionals. Over the years, it has emerged from a pure art to a craft,
and finally to an engineering discipline.

The early programmers used an ad hoc programming style. This style of
program development is now variously being referred to as exploratory, build
and fix, and code and fix styles.

In a build and fix style, a program is quickly developed without making any
specification, plan, or design. The different imperfections that are
subsequently noticed are fixed.

The exploratory programming style is an informal style in the sense that
there are no set rules or recommendations that a programmer has to adhere
to—every programmer himself evolves his own software development
techniques solely guided by his own intuition, experience, whims, and fancies.
The exploratory style comes naturally to all first time programmers. Later in
this chapter we point out that except for trivial problems, the exploratory
style usually yields poor quality and unmaintainable code and also makes
program development very expensive as well as time-consuming.

As we have already pointed out, the build and fix style was widely adopted
by the programmers in the early years of computing history. We can consider
the exploratory program development style as an art—since this style, as is
the case with any art, is mostly guided by intuition. There are many stories
about programmers in the past who were like proficient artists and could
write good programs using an essentially build and fix model and some
esoteric knowledge. The bad programmers were left to wonder how could
some programmers effortlessly write elegant and correct programs each time.
In contrast, the programmers working in modern software industry rarely
make use of any esoteric knowledge and develop software by applying some
well-understood principles.

1.1.2 Evolution Pattern for Engineering Disciplines

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

If we analyse the evolution of the software development styles over the last
sixty years, we can easily notice that it has evolved from an esoteric art form
to a craft form, and then has slowly emerged as an engineering discipline. As
a matter of fact, this pattern of evolution is not very different from that seen
in other engineering disciplines. Irrespective of whether it is iron making,
paper making, software development, or building construction; evolution of
technology has followed strikingly similar patterns. This pattern of technology
development has schematically been shown in Figure 1.1. It can be seen from
Figure 1.1 that every technology in the initial years starts as a form of art.
Over time, it graduates to a craft and finally emerges as an engineering
discipline. Let us illustrate this fact using an example. Consider the evolution
of the iron making technology. In ancient times, only a few people knew how
to make iron. Those who knew iron making, kept it a closely-guarded secret.
This esoteric knowledge got transferred from generation to generation as a
family secret. Slowly, over time technology graduated from an art to a craft
form where tradesmen shared their knowledge with their apprentices and the
knowledge pool continued to grow. Much later, through a systematic
organisation and documentation of knowledge, and incorporation of scientific
basis, modern steel making technology emerged. The story of the evolution
of the software engineering discipline is not much different. As we have
already pointed out, in the early days of programming, there were good
programmers and bad programmers. The good programmers knew certain
principles (or tricks) that helped them write good programs, which they
seldom shared with the bad programmers. Program writing in later years was
akin to a craft. Over the next several years, all good principles (or tricks) that
were organised into a body of knowledge that forms the discipline of software
engineering.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 1.1: Evolution of technology with time.

Software engineering principles are now being widely used in industry, and
new principles are still continuing to emerge at a very rapid rate—making this
discipline highly dynamic. In spite of its wide acceptance, critics point out that
many of the methodologies and guidelines provided by the software
engineering discipline lack scientific basis, are subjective, and often
inadequate. Yet, there is no denying the fact that adopting software
engineering techniques facilitates development of high quality software in a
cost-effective and timely manner. Software engineering practices have proven
to be indispensable to the development of large software products—though
exploratory styles are often used successfully to develop small programs such
as those written by students as classroom assignments.

1.1.3 A Solution to the Software Crisis
At present, software engineering appears to be among the few options
that are available to tackle the present software crisis. But, what
exactly is the present software crisis? What are its symptoms, causes,
and possible solutions? To understand the present software crisis,
consider the following facts. The expenses that organisations all over
the world are incurring on software purchases as compared t o the
expenses incurred on hardware purchases have been showing an
worrying trend over the years (see Figure 1.2). As can be seen in the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

figure, organisations are spending increasingly larger portions o f their
budget on software as compared to that o n hardware. Among all the
symptoms of the present software crisis, the trend of increasing
software costs is probably the most vexing.

Figure 1.2: Relative changes of hardware and software costs over time.

Not only are the software products becoming progressively more expensive than
hardware, but they also present a host of other problems to the customers—software
products are difficult to alter, debug, and enhance; use resources non-optimally;
often fail to meet the user requirements; are far from being reliable; frequently crash;
and are often delivered late.

At present, many organisations are actually spending much more on
software than on hardware. If this trend continues, we might soon have a
rather amusing scenario. No t long ago, when you bought any hardware
product, the essential software that ran on it came free with it. But, unless
some sort of revolution happens, in not very distant future, hardware prices
would become insignificant compared to software prices—when you buy any
software product the hardware on which the software runs would come free
with the software!!!

The symptoms of software crisis are not hard to observe. But, what are the
factors that have contributed to the present software crisis? Apparently, there
are many factors, the important ones being—rapidly increasing problem size,
lack of adequate training in software engineering techniques, increasing skill

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

shortage, and low productivity improvements. What is the remedy? It is
believed that a satisfactory solution to the present software crisis can
possibly come from a spread of software engineering practices among the
developers, coupled with further advancements to the software engineering
discipline itself.

With this brief discussion on the evolution and impact of the discipline of
software engineering, we now examine some basic concepts pertaining to the
different types of software development projects that are undertaken by
software companies.

1.2 SOFTWARE DEVELOPMENT PROJECTS
Before discussing about the various types of development projects that
are being undertaken by software development companies, let us first
understand the important ways in which professional software differs
from toy software such as those written by a student in his first
programming assignment.

Programs versus Products
Many toy software are being developed by individuals such as students
for their classroom assignments and hobbyists for their personal use.
These are usually small in size and support limited functionalities.
Further, the author of a program is usually the sole user of the software
and himself maintains the code. These toy software therefore usually
lack good user-interface and proper documentation. Besides these may
have poor maintainability, e fficiency, and reliability. Since these toy
software do not have any supporting documents such as users’ manual,
maintenance manual, design document, test documents, etc., we call
these toy software as programs.

In contrast, professional software usually have multiple users and,
therefore, have good user-interface, proper users’ manuals, and good
documentation support. Since, a software product has a large number of
users, it is systematically designed, carefully implemented, and thoroughly
tested. In addition, a professionally written software usually consists not only
of the program code but also of all associated documents such as
requirements specification document, design document, test document, users’
manuals, etc. A further difference is that professional software are often too
large and complex to be developed by any single individual. It is usually
developed by a group of developers working in a team.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

A professional software is developed by a group of software developers
working together in a team. It is therefore necessary for them to use some
systematic development methodology. Otherwise, they would find it very
difficult to interface and understand each other’s work, and produce a
coherent set of documents.

Even though software engineering principles are primarily intended for use
in development of professional software, many results of software
engineering can effectively be used for development of small programs as
well. However, when developing small programs for personal use, rigid
adherence to software engineering principles is often not worthwhile. An ant
can be killed using a gun, but it would be ridiculously inefficient and
inappropriate. CAR Hoare [1994] observed that rigorously using software
engineering principles to develop toy programs is very much like employing
civil and architectural engineering principles to build sand castles for children
to play.

1.2.1 Types of Software Development Projects
A software development company is typically structured into a large
number of teams that handle various types of software development
projects. These software deve lopment projects concern the
development of either software product or some software service. In
the following subsections, we distinguish between these two types of
software development projects.

Software products
We all know of a variety of software such as Microsoft’s Windows and the
Office suite, Oracle DBMS, software accompanying a camcorder or a
laser printer, etc. These software are available off-the-shelf for
purchase and are used by a diverse range of customers. These are
called generic software products since many users essentially use the
same software. These can be purchased off-the-shelf by the customers.
When a software development company wishes to develop a generic
product, it first determines the features or functionalities that would be
useful to a large cross section of users. Based on these, the
development team draws up the product specification on its own. Of
course, it may base its design discretion on feedbacks collected from a
large number of users. Typically, eac h software product is targetted to
some market segment (set of users). Many companies fin d it

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

advantageous to develop product lines that target slightly different
market segments based on variations of essentially the same software.
For example, Microsoft targets desktops and laptops through its
Windows 8 operating system, while it targets high-end mobile handsets
through i t s Windows mobile operating system, and targets servers
through its Windows server operating system.

Software services
A software service usually involves either development of a customised
software or development of some specific part of a software in an
outsourced mode. A customised software is developed according to the
specification drawn up by one or at most a few customers. These need
to be developed in a short time frame (typically a couple of months),
and at the same time the development cost must be low. Usually, a
developing company develops customised software by tailoring some of
its existing software. For example, when an academic institution wishes
to have a software that would automate its important activities such as
student registration, grading, and fee collection; companies would
normally develop such a software as a customised product. This means
that for developing a customised software, the developing company
would normally tailor one of its existing software products that it might
have developed in the past for some other academic institution.

In a customised software development project, a large part of the software
is reused from the code of related software that the company might have
already developed. Usually, only a small part of the software that is specific
to some client is developed. For example, suppose a software development
organisation has developed an academic automation software that
automates the student registration, grading, Establishment, hostel and other
aspects of an academic institution. When a new educational institution
requests for developing a software for automation of its activities, a large
part of the existing software would be reused. However, a small part of the
existing code may be modified to take into account small variations in the
required features. For example, a software might have been developed for an
academic institute that offers only regular residential programs, the
educational institute that has now requested for a software to automate its
activities also offers a distance mode post graduate program where the
teaching and sessional evaluations are done by the local centres.

Another type of software service i s outsourced software. Sometimes, it can

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

make good commercial sense for a company developing a large project to
outsource some parts of its development work to other companies. The
reasons behind such a decision may be many. For example, a company might
consider the outsourcing option, if it feels that it does not have sufficient
expertise to develop some specific parts of the software; or if it determines
that some parts can be developed cost-effectively by another company. Since
an outsourced project i s a small part of some larger project, outsourced
projects are usually small in size and need to be completed within a few
months or a few weeks of time.

The types of development projects that are being undertaken by a
company can have an impact on its profitability. For example, a company that
has developed a generic software product usually gets an uninterrupted
stream of revenue that is spread over several years. However, this entails
substantial upfront investment in developing the software and any return on
this investment is subject to the risk of customer acceptance. On the other
hand, outsourced projects are usually less risky, but fetch only one time
revenue to the developing company.

1.2.2 Software Projects Being Undertaken by Indian Companies
Indian software companies have excelled in executing software services
projects and have made a name for themselves all over the world. Of
late, the Indian companies have slowly started to focus on product
development as well. Can you recall the names of a few software
products developed by Indian software companies? Let us try to
hypothesise the reason for this situation. Generic product development
entails certain amount of business risk. A company needs t o invest
upfront and there is substantial risks concerning whether the
investments would turn profitable. Possibly, the Indian companies were
risk averse.

Till recently, the world-wide sales revenue o f software products and
services were evenly matched. But, of late the services segment has been
growing at a faster pace due to the advent of application service provisioning
and cloud computing. We discuss these issues in Chapter 15.

1.3 EXPLORATORY STYLE OF SOFTWARE DEVELOPMENT
We have already discussed that the exploratory program development style
refers to an informal development style where the programmer makes
use of his own intuition to develop a program rather than making use of

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

the systematic body of knowledge categorized under the software
engineering discipline. The exploratory development style gives
complete freedom to the programmer to choose the activities using
which to develop software. Though the exploratory style imposes no
rules a typical development starts after an initial briefing from the
customer. Based on this briefing, the developers start coding to develop
a working program. The software is tested and the bugs found are
fixed. This cycle of testing and bug fixing continues till the software
works satisfactorily for the customer. A schematic of this work sequence
in a build and fix style has been shown graphically in Figure 1.3.
Observe that coding starts after an initial customer briefing about what
is required. After the program development is complete, a test and fix
cycle continues till the program becomes acceptable to the customer.

Figure 1.3: Exploratory program development.

An exploratory development style can be successful when used for
developing very small programs, and not for professional software. We had
examined this issue with the help of the petty contractor analogy. Now let us
examine this issue more carefully.

What is wrong with the exploratory style of software development?
Though the exploratory software development style is intuitively obvious, no
software team can remain competitive if it uses this style of software
development. Let us investigate the reasons behind this. In an exploratory
development scenario, let us examine how do the effort and time required to
develop a professional software increases with the increase in program size.
Let us first consider that exploratory style is being used to develop a
professional software. The increase in development effort and time with
problem size has been indicated in Figure 1.4. Observe the thick line plot that
represents the case in which the exploratory style i s used to develop a
program. It can be seen that as the program size increases, the required
effort and time increases almost exponentially. For large problems, it would

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

take too long and cost too much to be practically meaningful to develop the
program using the exploratory style of development. The exploratory
development approach is said to break down after the size of the program to
be developed increases beyond certain value. For example, using the
exploratory style, you may easily solve a problem that requires writing only
1000 or 2000 lines of source code. But, if you are asked to solve a problem
that would require writing one million lines of source code, you may never be
able to complete it using the exploratory style; irrespective of the amount
time or effort you might invest to solve it. Now observe the thin solid line plot
in Figure 1.4 which represents the case when development is carried out
using software engineering principles. In this case, it becomes possible to
solve a problem with effort and time that is almost linear in program size. On
the other hand, if programs could be written automatically by machines, then
the increase in effort and time with size would be even closer to a linear
(dotted line plot) increase with size.

Figure 1.4: Increase in development time and effort with problem size.

Now let us try to understand why does the effort required to develop a
program grow exponentially with program size when the exploratory style is
used and then this approach to develop a program completely breaks down
when the program size becomes large? To get an insight into the answer to
this question, we need to have some knowledge of the human cognitive
limitations (see the discussion on human psychology in subsection 1.3.1). As
we shall see, the perceived (or psychological) complexity of a problem grows
exponentially with its size. Please note that the perceived complexity of a
problem is not related to the time or space complexity issues with which you
are likely to be familiar with from a basic course on algorithms.

The psychological or perceived complexity of a problem concerns the difficulty level

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

experienced by a programmer while solving the problem using the exploratory
development style.

Even if the exploratory style causes the perceived difficulty of a problem to
grow exponentially due to human cognitive limitations, how do the software
engineering principles help to contain this exponential rise in complexity with
problem size and hold it down to almost a linear increase? We will discuss in
subsection 1.3.2 that software engineering principle help achieve this by
profusely making use of the abstraction and decomposition techniques to
overcome the human cognitive limitations. You may still wonder that when
software engineering principles are used, why does the curve not become
completely linear? The answer is that i t is very difficult to apply the
decomposition and abstraction principles to completely overcome the
problem complexity.

Summary of the shortcomings of the exploratory style of software
development:

We briefly summarise the important shortcomings of using the
exploratory development style to develop a professional software:

The foremost difficulty is the exponential growth of development time
and effort with problem size and large-sized software becomes almost
impossible using this style of development.
The exploratory style usually results in unmaintainable code. The
reason for this is that any code developed without proper design would
result in highly unstructured and poor quality code.
It becomes very difficult to use the exploratory style in a team
development environment. In the exploratory style, the development
work is undertaken without any proper design and documentation.
Therefore it becomes very difficult to meaningfully partition the work
among a set of developers who can work concurrently. On the other
hand, team development is indispensable for developing modern
software—most software mandate huge development efforts,
necessitating team effort for developing these. Besides poor quality
code, lack of proper documentation makes any later maintenance of
the code very difficult.

1.3.1 Perceived Problem Complexity: An Interpretation Based on

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Human Cognition Mechanism
The rapid increase of the perceived complexity of a problem with
increase in problem size can be explained from an interpretation of the
human cognition mechanism. A simple understanding of the human
cognitive mechanism would also give us an insight into why the
exploratory style of development leads to an undue increase in the time
and effort required to develop a programming solution. It can also
explain why it becomes practically infeasible to solve problems larger
than a certain size while using an exploratory style; whereas using
software engineering principles, the required effort grows almost
linearly with size (as indicated by the thin solid line in Figure 1.4).

Psychologists say that the human memory can be thought to consist of two
distinct parts[Miller 56]: short-term and long-term memories. A schematic
representation of these two types of memories and their roles in human
cognition mechanism has been shown in Figure 1.5. In Figure 1.5, the block
labelled sensory organs represents the five human senses sight, hearing,
touch, smell, and taste. The block labelled actuator represents neuromotor
organs such as hand, finger, feet, etc. We now elaborate this human
cognition model in the following subsection.

Figure 1.5: Human cognition mechanism model.

Short-term memory: The short-term memory, as the name itself suggests, can
store information for a short while—usually up to a few seconds, and at most
for a few minutes. The short-term memory is also sometimes referred to as

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

the working memory. The information stored in the short-term memory is
immediately accessible for processing by the brain. The short-term memory
of an average person can store up to seven items; but in extreme cases it can
vary anywhere from five to nine items (7 ± 2). As shown in Figure 1.5, the
short-term memory participates in all interactions of the human mind with its
environment.

It should be clear that the short-term memory plays a very crucial part in
the human cognition mechanism. All information collected through the
sensory organs are first stored in the short-term memory. The short-term
memory is also used by the brain to drive the neuromotor organs. The mental
manipulation unit also gets its inputs from the short-term memory and stores
back any output it produces. Further, information retrieved from the long-
term memory first gets stored in the short-term memory. For example, if you
are asked the question: “If it is 10AM now, how many hours are remaining
today?” First, 10AM would be stored in the short-term memory. Next, the
information that a day is 24 hours long would be fetched from the long-term
memory into the short-term memory. The mental manipulation unit would
compute the difference (24–10), and 14 hours would get stored in the short-
term memory. As you can notice, this model is very similar to the
organisation of a computer in terms of cache, main memory, and processor.

An item stored in the short-term memory can get lost either due to decay
with time or displacement by newer information. This restricts the duration
for which an item is stored in the short-term memory to few tens of seconds.
However, a n item can be retained longer in the short-term memory by
recycling. That is, when we repeat or refresh a n item consciously, we can
remember it for a much longer duration. Certain information stored in the
short-term memory, under certain circumstances gets stored in the long-term
memory.
Long-term memory: Unlike the short-term memory, the size of the long-term
memory is not known to have a definite upper bound. The size of the long-
term memory can vary from several million items to several billion items,
largely depending on how actively a person exercises his mental faculty. An
item once stored in the long-term memory, is usually retained for several
years. But, how do items get stored in the long-term memory? Items present
in the short-term memory can get stored in the long-term memory either
through large number of refreshments (repetitions) or by forming links with
already existing items in the long-term memory. For example, you possibly
remember your own telephone number because you might have repeated

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(refreshed) it for a large number of times in your short-term memory. Let us
now take an example of a situation where you may form links to existing
items in the long- term memory to remember certain information. Suppose
y o u want to remember the 10 digit mobile number 9433795369. To
remember it by rote may be intimidating. But, suppose you consider the
number as split into 9433 7953 69 and notice that 94 is the code for BSNL, 33
is the code for Kolkata, suppose 79 is your year of birth, and 53 is your roll
number, and the rest of the two numbers are each one less than the
corresponding digits of the previous number; you have effectively established
links with already stored items, making it easier to remember the number.
Item: We have so far only mentioned the number of items that the long-term
and the short-term memories can store. But, what exactly is an item? An item
is any set of related information. According to this definition, a character such
a s a or a digit such as ‘5’ can each be considered as an item. A word, a
sentence, a story, or even a picture can each be a single item. Each item
normally occupies one place in memory. The definition of an item as any set
of related information implies that when you are able to establish some
simple relationship between several different items, the information that
should normally occupy several places can be stored using only one place in
the memory. This phenomenon of forming one item from several items is
referred to as chunking by psychologists. For example, if you are given the
binary number 110010101001—it may prove very hard for you to understand
and remember. But, the octal form of the number 6251 (i.e., the
representation (110)(010)(101)(001)) may be much easier to understand and
remember since we have managed to create chunks of three items each.
Evidence of short-term memory: Evidences of short-term memory manifest
themselves in many of our day-to-day experiences. As an example of the
short-term memory, consider the following situation. Suppose, you look up a
number from the telephone directory and start dialling it. If you fin d the
number to be busy, you would dial the number again after a few seconds—in
this case, you would be able to do so almost effortlessly without having to
look up the directory. But, after several hours or days since you dialled the
number last, you may not remember the number at all, and would need to
consult the directory again.
The magical number 7: Miller called the number seven as the magical number
[Miller 56] since if a person deals with seven or less number of unrelated
information at a time these would be easily accommodated in the short-term

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

memory. So, he can easily understand it. As the number of items that one
has to deal with increases beyond seven, it becomes exceedingly difficult to
understand it. This observation can easily be extended to writing programs.

When the number of details (or variables) that one has to track to solve a problem
increases beyond seven, it exceeds the capacity of the short-term memory and it
becomes exceedingly more difficult for a human mind to grasp the problem.

A small program having just a few variables is within the easy grasp of an
individual. As the number of independent variables in the program increases,
it quickly exceeds the grasping power of an individual and would require an
unduly large effort to master the problem. This outlines a possible reason
behind the exponential nature of the effort-size plot (thick line) shown in
Figure 1.4. Please note that the situation depicted in Figure 1.4 arises mostly
due to the human cognitive limitations. Instead of a human, if a machine
could be writing (generating) a program, the slope of the curve would be
linear, as the cache size (short-term memory) of a computer is quite large.
But, why does the effort-size curve become almost linear when software
engineering principles are deployed? This is because software engineering
principles extensively use the techniques that are designed specifically to
overcome the human cognitive limitations. We discuss this issue in the next
subsection.

1.3.2 Principles Deployed by Software Engineering to Overcome
Human Cognitive Limitations
We shall see throughout this book that a central theme of most of software
engineering principles is the use of techniques to effectively tackle the
problems that arise due to human cognitive limitations.

Two important principles that are deployed by software engineering to overcome the
problems arising due to human cognitive limitations are—abstraction and
decomposition.

In the following subsections, with the help of Figure 1.6(a) and (b), we
explain the essence of these two important principles and how they help to
overcome the human cognitive limitations. In the rest of this book, we shall
time and again encounter the use of these two fundamental principles in
various forms and flavours in the different software development activities. A
thorough understanding of these two principles is therefore needed.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 1.6: Schematic representation.

Abstraction
Abstraction refers to construction of a simpler version of a problem by
ignoring the details. The principle of constructing an abstraction is popularly
known as modelling (or model construction).

Abstraction is the simplification of a problem by focusing on only one aspect o f the
problem while omitting all other aspects.

When using the principle of abstraction to understand a complex problem,
we focus our attention on only one or two specific aspects of the problem and
ignore the rest. Whenever we omit some details of a problem to construct an
abstraction, we construct a model of the problem. In every day life, we use
the principle of abstraction frequently to understand a problem or to assess a
situation. Consider the following two examples.

Suppose you are asked to develop an overall understanding of some
country. No one in his right mind would start this task by meeting all
the citizens of the country, visiting every house, and examining every
tree of the country, etc. You would probably take the help of several
types of abstractions to do this. You would possibly start by referring to
and understanding various types of maps for that country. A map, in
fact, is an abstract representation of a country. It ignores detailed
information such as the specific persons who inhabit it, houses,
schools, play grounds, trees, etc. Again, there are two important types
of maps—physical and political maps. A physical map shows the physical
features of an area; such as mountains, lakes, rivers, coastlines, and so

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

on. On the other hand, the political map shows states, capitals, and
national boundaries, etc. The physical map is an abstract model of the
country and ignores the state and district boundaries. The political
map, on the other hand, is another abstraction of the country that
ignores the physical characteristics such as elevation of lands,
vegetation, etc. It can be seen that, for the same object (e.g. country),
several abstractions are possible. In each abstraction, some aspects of
the object is ignored. We understand a problem by abstracting out
different aspects of a problem (constructing different types of models)
and understanding them. It is not very difficult to realise that proper
use of the principle of abstraction can be a very effective help to
master even intimidating problems.
Consider the following situation. Suppose you are asked to develop an
understanding of all the living beings inhabiting the earth. If you use
the naive approach, you would start taking up one living being after
another who inhabit the earth and start understanding them. Even
after putting in tremendous effort, you would make little progress and
left confused since there are billions of living things on earth and the
information would be just too much for any one to handle. Instead,
what can be done is to build and understand an abstraction hierarchy
of all living beings as shown in Figure 1.7. At the top level, we
understand that there are essentially three fundamentally different
types of living beings—plants, animals, and fungi. Slowly more details
are added about each type at each successive level, until we reach the
level of the different species at the leaf level of the abstraction tree.

Figure 1.7: An abstraction hierarchy classifying living organisms.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

A single level of abstraction can be sufficient for rather simple problems.
However, more complex problems would need to be modelled as a hierarchy
of abstractions. A schematic representation of an abstraction hierarchy has
been shown in Figure 1.6(a). The most abstract representation would have
only a few items and would be the easiest to understand. After one
understands the simplest representation, one would try to understand the
next level of abstraction where at most five or seven new information are
added and so on until the lowest level is understood. By the time, one
reaches the lowest level, he would have mastered the entire problem.

Decomposition
Decomposition is another important principle that is available in the
repertoire of a software engineer to handle problem complexity. This principle
is profusely made use by several software engineering techniques to contain
the exponential growth of the perceived problem complexity. The
decomposition principle is popularly known as the divide and conquer principle.

The decomposition principle advocates decomposing the problem into many small
independent parts. The small parts are then taken up one by one and solved
separately. The idea is that each small part would be easy to grasp and understand
and can be easily solved. The full problem is solved when all the parts are solved.

A popular way to demonstrate the decomposition principle is by trying to
break a large bunch of sticks tied together and then breaking them
individually. Figure 1.6(b) shows the decomposition o f a large problem into
many small parts. However, it is very important to understand that any
arbitrary decomposition of a problem into small parts would not help. The
different parts after decomposition should be more or less independent of
each other. That is, to solve one part you should not have to refer and
understand other parts. If to solve one part you would have to understand
other parts, then this would boil down to understanding all the parts
together. This would effectively reduce the problem to the original problem
before decomposition (the case when all the sticks tied together). Therefore,
it is not sufficient to just decompose the problem in any way, but the
decomposition should be such that the different decomposed parts must be
more or less independent of each other.

As an example o f a use of the principle of decomposition, consider the
following. You would understand a book better when the contents are
decomposed (organised) into more or less independent chapters. That is,

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

each chapter focuses on a separate topic, rather than when the book mixes
up all topics together throughout all the pages. Similarly, each chapter should
be decomposed into sections such that each section discusses a different
issue. Each section should be decomposed into subsections and so on. If
various subsections are nearly independent of each other, the subsections
can be understood one by one rather than keeping on cross referencing to
various subsections across the book to understand one.

Why study software engineering?
Let us examine the skills that you could acquire from a study of the
software engineering principles. The following two are possibly the
most important skill you could be acquiring after completing a study of
software engineering:

The skill to participate in development of large software. You can
meaningfully participate in a team effort to develop a large software
only after learning the systematic techniques that are being used in the
industry.
You would learn how to effectively handle complexity in a software
development problem. In particular, you would learn how to apply the
principles of abstraction and decomposition to handle complexity
during various stages in software development such as specification,
design, construction, and testing.

Besides the above two important skills, you would also be learning the
techniques of software requirements specification user interface
development, quality assurance, testing, project management, maintenance,
etc.

As we had already mentioned, small programs can also be written without
using software engineering principles. However even if you intend to write
small programs, the software engineering principles could help you to achieve
higher productivity and at the same time enable you to produce better quality
programs.

1.4 EMERGENCE OF SOFTWARE ENGINEERING
We have already pointed out that software engineering techniques have
evolved over many years in the past. This evolution is the result of a
series of innovations and accumulation of experience about writing

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

good quality programs. Since these innovations and programming
experiences are too numerous, let us briefly examine only a few of
these innovations and programming experiences which have
contributed to the development of the software engineering discipline.

1.4.1 Early Computer Programming
Early commercial computers were very slow and too elementary as
compared to today’s standards. Even simple processing tasks took
considerable computation time on those computers. No wonder that
programs at that time were very small in size and lacked sophistication.
Those programs were usually written in assembly languages. Program
lengths were typically limited to about a few hundreds of lines of
monolithic assembly code. Every programmer developed his own
individualistic style of writing programs according to his intuition and
used this style ad hoc while writing different programs. In simple words,
programmers wrote programs without formulating any proper solution
strategy, plan, or design a jump to the terminal and start coding
immediately on hearing out the problem. They then went on fixing any
problems that they observed until they had a program that worked
reasonably well. We have already designated this style of programming
as the build and fix (or the exploratory programming) style.

1.4.2 High-level Language Programming
Computers became faster with the introduction of the semiconductor
technology in the early 1960s. Faster semiconductor transistors
replaced the prevalent vacuum tube-based circuits in a computer. With
the availability of more powerful computers, it became possible to solve
larger and more complex problems. At this time, high-level languages
such as FORTRAN, ALGOL, and COBOL were introduced. This
considerably reduced the effort required to develop software and helped
programmers to write larger programs (why?). Writing each high-level
programming construct in effect enables the programmer to write
several machine instructions. Also, the machine details (registers, flags,
etc.) are abstracted from the programmer. However, programmers
were still using the exploratory style of software development. Typical
programs were limited t o sizes of around a few thousands of lines of
source code.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

1.4.3 Control Flow-based Design
A s the size and complexity of programs kept on increasing, the
exploratory programming style proved to be insufficient. Programmers
found it increasingly difficult not only to write cost-effective and correct
programs, but also to understand and maintain programs written by
others. To cope up with this problem, experienced programmers
advised other programmers to pay particular attention to the design of
a program’s control flow structure.

A program’s control flow structure indicates the sequence in which the
program’s instructions are executed.

In order to help develop programs having good control flow structures, the
flow charting technique was developed. E v e n today, t h e flow charting
technique is being used to represent and design algorithms; though the
popularity of flow charting represent and design programs has want to a
great extent due to the emergence of more advanced techniques.

Figure 1.8 illustrates two alternate ways of writing program code for the
same problem. The flow chart representations for the two program segments
of Figure 1.8 are drawn in Figure 1.9. Observe that the control flow structure
of the program segment in Figure 1.9(b) is much more simpler than that of
Figure 1.9(a). By examining the code, it can be seen that Figure 1.9(a) is
much harder to understand as compared to Figure 1.9(b). This example
corroborates the fact that if the flow chart representation is simple, then the
corresponding code should be simple. You can draw t h e flow chart
representations of several other problems to convince yourself that a program
with complex flow chart representation is indeed more difficult to understand
and maintain.

Figure 1.8: An example of (a) Unstructured program (b) Corresponding structured program.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 1.9: Control flow graphs of the programs of Figures 1.8(a) and (b).

Let us now try to understand why a program having good control flow
structure would be easier to develop and understand. In other words, let us
understand why a program with a complex flow chart representation is
difficult to understand? The main reason behind this situation is that normally
one understands a program by mentally tracing its execution sequence (i.e.
statement sequences) to understand how the output is produced from the
input values. That is, we can start from a statement producing an output, and
trace back the statements in the program and understand how they produce
the output by transforming the input data. Alternatively, we may start with
the input data and check by running through the program how each
statement processes (transforms) the input data until the output is produced.
For example, for the program of Fig 1.9(a) you would have to understand the
execution of the program along the paths 1-2-3-7-8-10, 1-4-5-6-9-10, and 1-
4-5-2-3-7-8-10. A program having a messy control flo w (i.e. flow chart)
structure, would have a large number of execution paths (see Figure 1.10).
Consequently, it would become extremely difficult to determine all the
execution paths, and tracing the execution sequence along all the paths
trying to understand them can be nightmarish. It is therefore evident that a
program having a messy flow chart representation would indeed be difficult
to understand and debug.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 1.10: CFG of a program having too many GO TO statements.

Are GO TO statements the culprits?
In a landmark paper, Dijkstra [1968] published his (now famous) article
“GO TO Statements Considered Harmful”. He pointed out that unbridled
use of GO TO statements is the main culprit in making the control
structure of a program messy. To understand his argument, examine
Figure 1.10 which shows the flow chart representation of a program in
which the programmer has used rather too many GO TO statements.
GO TO statements alter the flow of control arbitrarily, resulting in too
many paths. But, then why does use of too many GO TO statements
makes a program hard to understand?

A programmer trying to understand a program would have to mentally
trace and understand the processing that take place along all the paths of the
program making program understanding and debugging extremely
complicated.

Soon it became widely accepted that good programs should have very
simple control structures. It is possible to distinguish good programs from bad
programs by just visually examining their flow chart representations. The use
o f flow charts to design good control flow structures of programs became
wide spread.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Structured programming—a logical extension
The need to restrict the use of GO TO statements was recognised by
everybody. However, many programmers were still using assembly
languages. JUMP instructions are frequently used for program branching in
assembly languages. Therefore, programmers with assembly language
programming background considered the use of GO TO statements in
programs inevitable. However, it was conclusiv ely proved by Bohm and
Jacopini that only three programming constructs—sequence, selection, and
iteration—were sufficient to express any programming logic. This was an
important result—it is considered important even today. An example of a
sequence statement is an assignment statement of the form a=b;. Examples
of selection and iteration statements are the if-then-else and the do-while
statements respectively. Gradually, everyone accepted that it is indeed
possible to solve any programming problem without using GO TO statements
and that indiscriminate use of GO TO statements should be avoided. This
formed the basis of the structured programming methodology.

A program is called structured when it uses only the sequence, selection, and iteration
types of constructs and is modular.

Structured programs avoid unstructured control flows by restricting the use
of GO TO statements. Structured programming is facilitated, if the
programming language being used supports single-entry, single-exit program
constructs such as if-then-else, do-while, etc. Thus, an important feature of
structured programs is the design of good control structures. An example
illustrating this key difference between structured and unstructured programs
is shown in Figure 1.8. The program in Figure 1.8(a) makes use of too many
GO TO statements, whereas the program in Figure 1.8(b) makes use of none.
The flow chart of the program making use of GO TO statements is obviously
much more complex as can be seen in Figure 1.9.

Besides the control structure aspects, the term structured program is being
used to denote a couple of other program features as well. A structured
program should be modular. A modular program is one which is decomposed
into a set of modules1 such that the modules should have low
interdependency among each other. We discuss the concept of modular
programs in Chapter 5.

But, what are the main advantages of writing structured programs
compared to the unstructured ones? Research experiences have shown that

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

programmers commit less number of errors while using structured if-then-else
and do-while statements than when using test-and-branch code constructs.
Besides being less error-prone, structured programs are normally more
readable, easier to maintain, and require less effort to develop compared to
unstructured programs. The virtues of structured programming became
widely accepted and the structured programming concepts are being used
even today. However, violations to the structured programming feature is
usually permitted in certain specific programming situations, such as
exception handling, etc.

Very soon several languages such as PASCAL, MODULA, C, etc., became
available which were specifically designed to support structured
programming. These programming languages facilitated writing modular
programs and programs having good control structures. Therefore, messy
control structure was no longer a big problem. So, the focus shifted from
designing good control structures to designing good data structures for
programs.

1.4.4 Data Structure-oriented Design
Computers became even more powerful with the advent o f integrated
circuits (ICs) in the early seventies. These could now be used to solve
more complex problems. Software developers were tasked to develop
larger and more complicated software. which often required writing in
excess of several tens of thousands of lines of source code. The control
flow-based program development techniques could not be used
satisfactorily any more to write those programs, and more effective
program development techniques were needed.

It was soon discovered that while developing a program, it is much more
important to pay attention to the design of the important data structures of
the program than to the design of its control structure. Design techniques
based on this principle are called data structure- oriented design techniques.

Using data structure-oriented design techniques, first a program’s data structures are
designed. The code structure is designed based on the data structure.

In the next step, the program design is derived from the data structure. An
example of a data structure-oriented design technique is the Jackson’s
Structured Programming (JSP) technique developed by Michael Jackson
[1975]. In JSP methodology, a program’s data structure is first designed using
the notations for sequence, selection, and iteration. The JSP methodology

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

provides an interesting technique to derive the program structure from its
data structure representation. Several other data structure-based design
techniques were also developed. Some of these techniques became very
popular and were extensively used. Another technique that needs special
mention is the Warnier-Orr Methodology [1977, 1981]. However, we will not
discuss these techniques in this text because now-a-days these techniques
are rarely used in the industry and have been replaced by the data flow-
based and the object-oriented techniques.

1.4.5 Data Flow-oriented Design
As computers became still faster and more powerful with the introduction of
very large scale integrated (VLSI) Circuits and some new architectural concepts,
more complex and sophisticated software were needed to solve further
challenging problems. Therefore, software developers looked out for more
effective techniques for designing software and soon d a t a flow-oriented
techniques were proposed.

The data flow-oriented techniques advocate that the major data items handled by a
system must be identified and the processing required on these data items to
produce the desired outputs should be determined.

The functions (also called as processes) and the data items that are
exchanged between the different functions are represented in a diagram
known as a data flow diagram (DFD). The program structure can be designed
from the DFD representation of the problem.

DFDs: A crucial program representation for procedural program design
DFD has proven to be a generic technique which is being used to model all
types of systems, and not just software systems. For example, Figure 1.11
shows the data-flow representation of an automated car assembly plant. If
you have never visited an automated car assembly plant, a brief description
of an automated car assembly plant would be necessary. In an automated car
assembly plant, there are several processing stations (also called workstations
) which are located along side of a conveyor belt (also called an assembly line
). Each workstation is specialised to do jobs such as fitting of wheels, fitting
the engine, spray painting the car, etc. A s the partially assembled program
moves along the assembly line, different workstations perform their
respective jobs on the partially assembled software. Each circle in the DFD

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

model of Figure 1.11 represents a workstation (called a process o r bubble).
Each workstation consumes certain input items and produces certain output
items. As a car under assembly arrives at a workstation, it fetches the
necessary items to be fitted from the corresponding stores (represented by
two parallel horizontal lines), and as soon as the fitting work is complete
passes on to the next workstation. It is easy to understand the DFD model of
the car assembly plant shown in Figure 1.11 even without knowing anything
regarding DFDs. In this regard, we can say that a major advantage of the
DFDs is their simplicity. In Chapter 6, we shall study how to construct the
DFD model of a software system. Once you develop the DFD model of a
problem, data flow-oriented design techniques provide a rather straight
forward methodology to transform the DFD representation of a problem into
an appropriate software design. We shall study the data flow-based design
techniques in Chapter 6.

Figure 1.11: Data flow model of a car assembly plant.

1.4.6 Object-oriented Design
Data flow-oriented techniques evolved into object-oriented design (OOD)
techniques in the late seventies. Object-oriented design technique is an
intuitively appealing approach, where the natural objects (such as
employees, pay-roll-register, etc.) relevant to a problem a r e first
identified and then the relationships among the objects such as
composition, reference, and inheritance are determined. Each object
essentially acts as a data hiding (also known as data abstraction) entity.
Object-oriented techniques have gained wide spread acceptance
because of their simplicity, the scope for code and design reuse,
promise of lower development time, lower development cost, more
robust code, and easier maintenance. OOD techniques are discussed in
Chapters 7 and 8.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

1.4.7 What Next?
In this section, we have so far discussed how software design techniques
have evolved since the early days of programming. We pictorially
summarise this evolution of the software design techniques in Figure
1.12. It can be observed that in almost every passing decade,
revolutionary ideas were put forward to design larger and more
sophisticated programs, and at the same time the quality of the design
solutions improved. But, what would the next improvement to the
design techniques be? It is very difficult to speculate about the
developments that may occur in the future. However, we have already
seen that in the past, the design techniques have evolved each time to
meet the challenges faced in developing contemporary software.
Therefore, the next development would most probably occur to help
meet the challenges being faced by the modern software designers. To
get an indication of the techniques that are likely to emerge, let us first
examine what are the current challenges in designing software. First,
program sizes are further increasing as compared to what was being
developed a decade back. Second, many of the present day software
are required to work in a client-server environment through a web
browser-based access (called web-based software). At the same time,
embedded devices are experiencing an unprecedented growth and rapid
customer acceptance in the last decade. It is there for necessary for
developing applications for small hand held devices and embedded
processors. We examine later in this text how aspect-oriented
programming, client- server based design, and embedded software
design techniques have emerged rapidly. In the current decade, service-
orientation has emerged as a recent direction of software engineering
due to the popularity of web-based applications and public clouds.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 1.12: Evolution of software design techniques.

1.4.8 Other Developments

It can be seen that remarkable improvements to the prevalent software
design technique occurred almost every passing decade. The
improvements to the software design methodologies over the last five
decades have indeed been remarkable. In addition to the
advancements made to the software design techniques, several other
new concepts and techniques for effective software development were
also introduced. These new techniques include life cycle models,
specification techniques, project management techniques, testing
techniques, debugging techniques, quality assurance techniques,
software measurement techniques, computer aided software engineering
(CASE) tools, etc. The development of these techniques accelerated the
growth of software engineering as a discipline. We shall discuss these
techniques in the later chapters.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

1.5 NOTABLE CHANGES IN SOFTWARE DEVELOPMENT PRACTICES
Before we discuss the details of various software engineering principles, it

is worthwhile to examine the glaring differences that you would notice when
you observe an exploratory style of software development and another
development effort based on modern software engineering practices. The
following noteworthy differences between these two software development
approaches would be immediately observable.

An important difference is that the exploratory software development
style is based on erro r correction (build and f i x) while the software
engineering techniques are based on the principles of error prevention.
Inherent in the software engineering principles is the realisation that it
is much more cost-effective to prevent errors from occurring than to
correct them as and when they are detected. Even when mistakes are
committed during development, software engineering principles
emphasize detection of errors as detected only during the final product
testing. In contrast, the modern practice of software development is to
develop the software through several well-defined stages such as
requirements specification, design, coding, testing, etc., and attempts
are made to detect and fix as many errors as possible in the same
phase in which they are made.
I n t h e exploratory style, coding wa s considered synonymous with
software development. For instance, this naive way of developing a
software believed in developing a working system as quickly as
possible and then successively modifying it until i t performed
satisfactorily. Exploratory programmers literally dive at the computer to
get started with their programs even before they fully learn about the
problem!!! It was recognised that exploratory programming not only
turns out to be prohibitively costly for non-trivial problems, but also
produces hard-to-maintain programs. Even minor modifications to such
programs later can become nightmarish. In the modern software
development style, coding is regarded as only a small part of the
overall software development act iv i t i es. There are several
development activities such as design and testing which may demand
much more effort than coding.
A lot of attention is now being paid to requirements specification.
Significant effort is being devoted to develop a clear and correct

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

specification of the problem before any development activity starts.
Unless the requirements specification is able to correctly capture the
exact customer requirements, large number of rework would be
necessary at a later stage. Such rework would result in higher cost of
development and customer dissatisfaction.
Now there is a distinct design phase where standard design techniques
are employed to yield coherent and complete design models.
Periodic reviews are being carried out during all stages of the
development process. The main objective of carrying out reviews is
phase containment of errors, i.e. detect and correct errors as soon as
possible. Phase containment of errors is an important software
engineering principle. We will discuss this technique in Chapter 2.
Today, software testing ha s become very systematic and standard
testing techniques are available. Testing activity has also become all
encompassing, as test cases are being developed right from the
requirements specification stage.
There is better visibility of the software through various developmental
activities.

By visibility we mean production of good quality, consistent and peer reviewed documents at
the end of every software development activity.

In the past, very little attention was being paid to producing good
quality and consistent documents. In the exploratory style, the design
and test activities, even if carried out (in whatever way), were not
documented satisfactorily. Today, consciously good quality documents
are being developed during software development. This has made fault
diagnosis and maintenance far more smoother. We will see in Chapter
3 that i n addition to facilitating product maintenance, increased
visibility makes management of a software project easier.
Now, projects are being thoroughly planned. The primary objective of
project planning is to ensure that the various development activities
take place at the correct time and no activity is halted due to the want
of some resource. Project planning normally includes preparation of
various types of estimates, resource scheduling, and development of
project tracking plans. Several techniques and automation tools for
tasks such as configuration management, cost estimation, scheduling,

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

etc., are being used for effective software project management.
Several metrics (quantitative measurements) of the products and the
product development activities are being collected to help in software
project management and software quality assurance.

1.6 COMPUTER SYSTEMS ENGINEERING
In all the discussions so far, we assumed that the software being
developed would run on some general-purpose hardware platform such
as a desktop computer or a server. But, in several situations it may be
necessary to develop special hardware on which the software would
run. Examples of such systems are numerous, and include a robot, a
factory automation system, and a cell phone. In a cell phone, there is a
special processor and other specialised devices such as a speaker and a
microphone. I t can run only the programs written specifically for it.
Development of such systems entails development of both software and
specific hardware that would run the software. Computer systems
engineering addresses development of such systems requiring
development of both software and specific hardware to run the
software. Thus, systems engineering encompasses software
engineering.

The general model of systems engineering is shown schematically in Figure
1.13. One of the important stages in systems engineering i s the stage in
which decision is made regarding the parts of the problems that are to be
implemented in hardware and the ones that would be implemented in
software. This has been represented by the box captioned hardware-software
partitioning in Figure 1.13. While partitioning the functions between hardware
and software, several trade-offs such as flexibility, cost, speed of operation,
etc., need to be considered. The functionality implemented in hardware run
faster. On the other had, functionalities implemented in software is easier to
extend. Further, it is difficult to implement complex functions in hardware.
Also, functions implemented in hardware incur extra space, weight,
manufacturing cost, and power overhead.

After the hardware-software partitioning stage, development of hardware
and software are carried out concurrently (shown as concurrent branches in
Figure 1.13). In system engineering, testing the software during development
becomes a tricky issue, the hardware on which the software would run and
tested would still be under development—remember that the hardware and
the software are being developed at the same time. To test the software

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

during development, it usually becomes necessary to develop simulators that
mimic the features of the hardware being developed. The software is tested
using these simulators. Once both hardware and software development are
complete, these are integrated and tested. The project management activity
is required through out the duration of system development as shown in
Figure 1.13. In this text, we have confined our attention to software
engineering only.

Figure 1.13: Computer systems engineering.

SUMMARY

We first defined the scope of software engineering. We came up with
two alternate but equivalent definitions:

– T h e systematic collection of decades of programming experience
together with the innovations made by researchers towards developing
high quality software in a cost- effective manner.

– The engineering approach to develop software.

The exploratory (also called build and fix) style of program
development is used by novice programmers. The exploratory style is
characterized by quickly developing the program code and then
modifying it successively till the program works. This approach turns
out not only to be a very costly and inefficient way of developing

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

software, but yields a product that is unreliable and difficult to
maintain. Also, the exploratory style is very difficult to use when
software is developed through team effort. A still larger handicap of
the exploratory style of programming is that it breaks down when used
to develop large programs.
Unless one makes use of software engineering principles, the increase
in effort and time with size o f the program would be exponential—
making it virtually impossible for a person to develop large programs.
To handle complexity in a problem, all software engineering principles
make extensive use of the following two techniques:

– Abstraction (modelling), and
– Decomposition (Divide and conquer).

Software engineering techniques are essential for development of large
software products where a group of engineers work in a team to
develop the product. However, most of the principles of software
engineering are useful even while developing small programs.
A program is called structured, when it is decomposed into a set of
modules and each module in turn is decomposed into functions.
Additionally, structured programs avoid the use of GO TO statements
and use only structured programming constructs.
Computer systems engineering deals with the development of
complete systems, necessitating integrated development of both
software and hardware parts. Computer systems engineering
encompasses software engineering.
We shall delve into various software engineering principles starting
from the next chapter. But, before that here is a word of caution.
Those who have written large-sized programs, can better appreciate
many of the principles of software engineering. Students with less or
no programming experience would have to take our words for it and
work harder with the topics. However, it is a fact that unless somebody
has seen an elephant (read problems encountered during program
development) at least once, any amount of describing and explaining
would not result in the kind of understanding that somebody who has
previously seen an elephant (developed a program) would get.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

EXERCISES
1. Choose the correct option:

(a) Which of the following is not a symptom of the present software
crisis:

(i) Software is expensive.
(ii) It takes too long to build a software product.
(iii) Software is delivered late.
(iv) Software products are required to perform very complex tasks.

(b) The goal of structured programming is which one of the following:
(i) To have well indented programs.
(ii) To be able to infer the flow of control from the compiled code.
(iii) To be able to infer the flow of control from the program text.
(iv) To avoid the use of GO TO statements.

(c) Unrestricted use of GO TO statements is normally avoided while
writing a program, since:

(i) It increases the running time of programs.
(ii) It increases memory requirements of programs.
(iii) It results in larger executable code sizes.
(iv) It makes debugging difficult.

(d) Why is writing easily modifiable code important?
(i) Easily modifiable code results in quicker run time.
(ii) Most real world programs require change at some point of time or
other.
(iii) Most text editors make it mandatory to write modifiable code.
(iv) Several people may be writing different parts of code at the same
time.

2. What is the principal aim of the software engineering discipline? What
does the discipline of software engineering discuss?

3. Why do you think systematic software development using the software
engineering principle is any different than art or craft?

4. Distinguish between a program and a professionally developed software.
5. Distinguish among a program, a software product and a software service.

Give one example of each. Discuss the difference of the characteristics of
development projects for each of these.

6. What is a software product line? Give an example of a software product
line. How is a software product line development any different from a
software product development.

7. What are the main types of projects that are undertaken by software

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

development companies? Give examples of these types of projects and
point out the important characteristic differences between these types of
projects.

8. Do you agree with the following statement—The focus of exploratory
programming is error correction while the software engineering principles
emphasise error prevention”? Give the reasonings behind your answer.

9. What difficulties would a software development company face, if it tries
to use the exploratory (build and fix) program development style in its
development projects? Explain your answer.

10. What are the symptoms of the present software crisis? What factors
have contributed to the making of the present software crisis? What are
the possible solutions to the present software crisis?

11. Explain why the effort, time, and cost required to develop a program
using the build and fix style increase exponentially with the size of the
program? How do software engineering principles help tackle this rapid
rise in development time and cost?

12. Distinguish between software products and services. Give examples of
each.

13. What are the different types of projects that are being undertaken by
software development houses? Which of these type of projects is the
forte of Indian software development organisations? Identify any possible
reasons as to why the other has not been focused by the Indian software
development organisations.

14. Name the basic techniques used by the software engineering
techniques to handle complexity in a problem.

15. What do you understand by the exploratory (also known as the build
and fix) style of software development? Graphically depict the activities
that a programmer typically carries out while developing a programming
solution using the exploratory style. In your diagram also show the order
in which the activities are carried out. What are the shortcomings of this
style of program development?

16. List the major differences between the exploratory and modern
software development practices.

17. What is the difference between the actual complexity of solving a
problem and its perceived complexity? What causes t h e difference
between the two to arise?

18. What do you understand by the term perceived complexity of a
problem? How is it different from computational complexity? How can the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

perceived complexity of a problem be reduced?
19. Why is the number 7 considered as a magic number in software

engineering? How is it useful software engineering?
20. What do you understand by the principles of abstraction and

decomposition? Why are these two principles considered important in
software engineering? Explain the problems that these two principles
target to solve? Support your answer using suitable examples.

21. What do you understand by control flow structure of a program? Why is
it difficult to understand a program having a messy control flow structure?
How can a good control flow structure for a program be designed?

22. What is a flow chart? How is the flow charting technique useful during
software development?

23. What do you understand by visibility of design and code? How does
increased visibility help in systematic software development? (We shall
revisit this question in Chapter 3)

24. What do you understand by the term—structured programming? How
do modern programming languages such as PASCAL and C facilitate
writing structured programs? What are the advantages of writing
structured programs vis-a-vis unstructured programs?

25. What is a high-level programming language? Why does a programmer
using a high-level programming language have a higher productivity as
compared to when using machine language for application development?

26. What are the three basic types of program constructs necessary to
develop the program for any given problem? Give examples of these
three constructs from any high-level language you know.

27. What do you understand by a program module? What are the important
characteristics of a program module?

28. Explain how do the use of software engineering principles help to
develop software products cost-effectively and timely. Elaborate your
answer by using suitable examples.

29. What is the basic difference between a control flow-oriented and a data
flow-oriented design technique? Can you think of any reason as to why a
data flow-oriented design technique is likely to produce better designs
than a control flow-oriented design technique? (We shall revisit this
question while discussing the design techniques in Chapter 6.)

30. Name the two fundamental principles that are used extensively in
software engineering to tackle the complexity in developing large
programs? Explain these two principles. By using suitable examples

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

explain how these two principles help tackle the complexity associated
with developing large programs.

31. What does the control flow graph (CFG) of a program represent? Draw
the CFG of the following program:

main(){
int y=1;
if(y<0)
if(y>0) y=3;
else y=0;

printf(“%d\n”,y);
}

32. Discuss the possible reasons behind supersession of the data structure-
oriented design methods by the control flow-oriented design methods.

33. What is a data structure-oriented software design methodology? How is
it different from the data flow-oriented design methodology?

34. Discuss the major advantages of the object-oriented design (OOD)
methodologies over the data flow-oriented design methodologies.

35. Explain how the software design techniques have evolved in the past.
How do you think shall the software design techniques evolve in the near
future?

36. What is computer systems engineering? How is it different from
software engineering?
Give examples of some types of product development projects for which
systems engineering is appropriate.

37. What do you mean by software service? Explain the important
differences between the characteristics of a software service
development project and a software product development project.

1 In this text, we shall use the terms module and module structure to loosely mean the following—A module is a
collection of procedures and data structures. The data structures in a module are accessible only to the procedures
defined inside the module. A module forms an independently compilable unit and may be linked to other modules to
form a complete application. The term module structure will be used to denote the way in which different modules
invoke each other’s procedures.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Chapter
2

SOFTWARE LIFE CYCLE MODELS

In Chapter 1, we discussed a few basic issues in software engineering.
We pointed out a few important differences between the exploratory
program development style and the software engineering approach.
Please recollect from our discussions in Chapter 1 that the exploratory
style is also known as the build and fix programming. In build and fix
programming, a programmer typically starts to write the program
immediately after he has formed an informal understanding of the
requirements. Once program writing is complete, he gets down to fix
anything that does not meet the user’s expectations. Usually, a large
number of code fixes are required even for toy programs. This pushes
up the development costs and pulls down the quality of the program.
Further, this approach usually turns out to be a recipe for project failure
when used to develop non-trivial programs requiring team effort. In
contrast to the build and fix style, the software engineering approaches
emphasise software development through a well-defined and ordered
set of activities. These activities are graphically modelled (represented)
as well as textually described and are variously called a s software life
cycle model, software development life cycle (SDLC) model, and software
development process model. Several life cycle models have so far been
proposed. However, in this Chapter we confine our attention to only a
few important and commonly used ones.

In this chapter, w e first discuss a few basic concepts associated with life
cycle models. Subsequently, we discuss the important activities that have
been prescribed to be carried out in the classical waterfall model. This is
intended to provide an insight into the activities that are carried out as part
of every life cycle model. In fact, the classical waterfall model can be
considered as a basic model and all other life cycle models as extensions of
this model to cater to specific project situations. After discussing the waterfall

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

model, we discuss a few derivatives of this model. Subsequently we discuss
the spiral model that generalises various life cycle models. Finally, we discuss
a few recently proposed life cycle models that are categorized under the
umbrella term agile model. Of late, agile models are finding increasing
acceptance among developers and researchers.

The genesis of the agile model can be traced to the radical changes to the types of
project that are being undertaken at present, rather than to any radical innovations to
the life cycle models themselves. The projects have changed from large multi-year
product development projects to small services projects now

.

2.1 A FEW BASIC CONCEPTS
In this section, we present a few basic concepts concerning the life cycle
models.

Software life cycle
It is well known that all living organisms undergo a life cycle. For
example when a seed is planted, it germinates, grows into a full tree,
and finally dies. Based on this concept of a biological life cycle, the term
software life cycle has been defined to imply the different stages (or
phases) over which a software evolves from an initial customer request
for it, to a fully developed software, and finally to a stage where it is no
longer useful to any user, and then it is discarded.

As we have already pointed out, the life cycle of every software starts with
a request for it by one or more customers. At this stage, the customers are
usually not clear about all the features that would be needed, neither can
they completely describe the identified features in concrete terms, and can
only vaguely describe what is needed. This stage where the customer feels a
need for the software and forms rough ideas about the required features is
known as the inception stage. Starting with the inception stage, a software
evolves through a series of identifiable stages (also called phases) on account
of the development activities carried out by the developers, until it is fully
developed and is released to the customers.

Once installed and made available for use, the users start to use the
software. This signals the start of the operation (also called maintenance)
phase. As the users use the software, not only do they request for fixing any
failures that they might encounter, but they also continually suggest several

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

improvements and modifications to the software. Thus, the maintenance
phase usually involves continually making changes to the software to
accommodate the bug-fix and change requests from the user. The operation
phase is usually the longest of all phases and constitutes the useful life of a
software. Finally the software is retired, when the users do not find it any
longer useful due to reasons such as changed business scenario, availability
of a new software having improved features and working, changed computing
platforms, etc. This forms the essence of the life cycle of every software.
Based on this description, we can define the software life cycle as follows:

The life cycle of a software represents the series of identifiable stages through which
it evolves during its life time.

With this knowledge of a software life cycle, we discuss the concept of a
software life cycle model and explore why it is necessary to follow a life cycle
model in professional software development environments.

Software development life cycle (SDLC) model
In any systematic software development scenario, certain well-defined
activities need to be performed by the development team and possibly
by the customers as well, for the software to evolve from one stage in
its life cycle to the next. For example, for a software to evolve from the
requirements specification stage to the design stage, the developers
n e e d to elicit requirements from the customers, analyse those
requirements, and formally document the requirements in the form of
an SRS document.

A software development life cycle (SDLC) model (also called software life cycle
model and software development process model) describes the different activities
that need to be carried out for the software to evolve in its life cycle.
Throughout our discussion, we shall use the terms software development life
cycle (SDLC) and software development proce s s interchangeably. However,
some authors distinguish an SDLC from a software development process. In
their usage, a software development process describes the life cycle activities
more precisely and elaborately, as compared to an SDLC. Also, a
development process may not only describe various activities that are carried
out over the life cycle, but also prescribe a specific methodologies to carry out
the activities, and also recommends the the specific documents and other
artifacts that should be produced at the end of each phase. In this sense, the
term SDLC can be considered to be a more generic term, as compared to the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

development process and several development processes may fit the same
SDLC.

An SDLC is represented graphically by drawing various stages of the life
cycle and showing the transitions among the phases. This graphical model is
usually accompanied by a textual description of various activities that need to
be carried out during a phase before that phase can be considered to be
complete. In simple words, we can define an SDLC as follows:

An SDLC graphically depicts the different phases through which a software evolves. It
is usually accompanied by a textual description of the different activities that need to
be carried out during each phase.

Process versus methodology
Though the terms process a n d methodology are at time used
interchangeably, there is a subtle di fference between the two. First, the
term process has a broader scope and addresses either all the activities
taking place during software development, or certain coarse grained
activities such as design (e.g. design process), testing (test process),
etc. Further, a software process not only identifies the specific activities
that need to be carried out, but may also prescribe certain methodology
for carrying out each activity. For example, a design process may
recommend that in the design stage, the high-level design activity be
carried out using Hatley and Pirbhai’s structured analysis and design
methodology. A methodology, on the other hand, prescribes a set of
steps for carrying out a specific life cycle activity. It may also include
the rationale and philosophical assumptions behind the set of steps
through which the activity is accomplished.

A software development process has a much broader scope as compared to a
software development methodology. A process usually describes all the activities
starting from the inception of a software to its maintenance and retirement stages, or
at least a chunk of activities in the life cycle. It also recommends specific
methodologies for carrying out each activity. A methodology, in contrast, describes
the steps to carry out only a single or at best a few individual activities.

Why use a development process?
The primary advantage of using a development process is that it encourages
development of software in a systematic and disciplined manner. Adhering to
a process is especially important to the development of professional software
needing team effort. When software is developed by a team rather than by

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

an individual programmer, use of a life cycle model becomes indispensable
for successful completion of the project.

Software development organisations have realised that adherence to a suitable life
cycle model helps to produce good quality software and that helps minimise the
chances of time and cost overruns.

Suppose a single programmer is developing a small program. For example,
a student may be developing code for a class room assignment. The student
might succeed even when he does not strictly follow a specific development
process and adopts a build and fix style of development. However, it is a
different ball game when a professional software is being developed by a
team of programmers. Let us now understand the difficulties that may arise if
a team does not use any development process, and the team members are
given complete freedom to develop their assigned part of the software as per
their own discretion. Several types of problems may arise. We illustrate one
of the problems using an example. Suppose, a software development
problem has been divided into several parts and these parts are assigned to
the team members. From then on, suppose the team members are allowed
the freedom to develop the parts assigned to them in whatever way they like.
It is possible that one member might start writing the code for his part while
making assumptions about the input results required from the other parts,
another might decide to prepare the test documents first, and some other
developer might start to carry out the design for the part assigned to him. In
this case, severe problems can arise in interfacing the different parts and in
managing the overall development. Therefore, ad hoc development turns out
to be is a sure way to have a failed project. Believe it or not, this is exactly
what has caused many project failures in the past!

When a software is developed by a team, it is necessary to have a precise
understanding among the team members as to—when to do what. In the
absence of such an understanding, if each member at any time would do
whatever activity he feels like doing. This would be an open invitation to
developmental chaos and project failure. The use of a suitable life cycle
model is crucial to the successful completion of a team-based development
project. But, do we need an SDLC model for developing a small program. In
this context, we need to distinguish between programming-in-the-small and
programming-in-the-large.

Programming-in-the-small refers to development of a toy program by a single
programmer. Whereas programming-in-the-large refers to development of a

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

professional software through team effort. While development of a software of the
former type could succeed even while an individual programmer uses a build and fix
style of development, use of a suitable SDLC is essential for a professional software
development project involving team effort to succeed.

Why document a development process?
It is not enough for an organisation to just have a well-defined
development process, but t h e development process needs to be
properly documented. To understand the reason for this, let us consider
that a development organisation does not document its development
process. In this case, its developers develop o n l y an informal
understanding of the development process. An informal understanding
of the development process among the team members can create
several problems during development. We have identified a few
important problems that may crop up when a development process is
not adequately documented. Those problems are as follows:

A documented process model ensures that every activity in the life
cycle is accurately defined. Also, wherever necessary the
methodologies for carrying out the respective activities are described.
Without documentation, the activities and their ordering tend to be
loosely defined, leading to confusion and misinterpretation by different
teams in the organisation. For example, code reviews may informally
and inadequately be carried out since there is no documented
methodology as to how the code review should be done. Another
difficulty is that for loosely defined activities, the developers tend to
use their subjective judgments. As an example, unless it is explicitly
prescribed, the team members would subjectively decide as to whether
the test cases should be designed just after the requirements phase,
after the design phase, or after the coding phase. Also, they would
debate whether the test cases should be documented at all and the
rigour with it should be documented.
An undocumented process gives a clear indication to the members of
the development teams about the lack of seriousness on the part of
the management of the organisation about following the process.
Therefore, an undocumented process serves as a hint to the
developers to loosely follow the process. The symptoms of an
undocumented process are easily visible—designs are shabbily done,
reviews are not carried out rigorously, etc.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

A project team might often have to tailor a standard process model for
use in a specific project. It is easier to tailor a documented process
model, when it is required to modify certain activities or phases of the
life cycle. For example, consider a project situation that requires the
testing activities to be outsourced to another organisation. In this case,
A documented process model would help to identify where exactly the
required tailoring should occur.
A documented process model, as we discuss later, is a mandatory
requirement of the modern quality assurance standards such as ISO
9000 and SEI CMM. This means that unless a software organisation has
a documented process, it would not qualify for accreditation with any
of the quality standards. In the absence of a quality certification for the
organisation, the customers would be suspicious of its capability of
developing quality software and the organisation might find it difficult
to win tenders for software development.

A documented development process forms a common understanding of the activities
to be carried out among the software developers and helps them to develop software
in a systematic and disciplined manner. A documented development process model,
besides preventing the misinterpretations that might occur when the development
process is not adequately documented, also helps to identify inconsistencies,
redundancies, and omissions in the development process.

Nowadays, good software development organisations normally document
their development process in the form of a booklet. The y expect the
developers recruited fresh to their organisation to first master their software
development process during a short induction training that they are made to
undergo.

Phase entry and exit criteria
A good SDLC besides clearly identifying the different phases in the life
cycle, should unambiguously define the entry and exit criteria for each
phase. The phase entry (or exit) criteria is usually expressed as a set of
conditions that needs to be be satisfied for the phase to start (or to
complete). As an example, the phase exit criteria for the software
requirements specification phase, can be that the software requirements
specification (SRS) document is ready, has been reviewed internally, and
also has been reviewed and approved by the customer. Only after these
criteria are satisfied, the next phase can start.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

If the entry and exit criteria for various phases are not well-defined, then
that would leave enough scope for ambiguity in starting and ending various
phases, and cause lot of confusion among the developers. Sometimes they
might prematurely stop the activities in a phase, and some other times they
might continue working on a phase much after when the phase should have
been over. The decision regarding whether a phase is complete or not
becomes subjective and i t becomes difficult for the project manager to
accurately tell how much has the development progressed. When the phase
entry and exit criteria are not well-defined, the developers might close the
activities of a phase much before they are actually complete, giving a false
impression of rapid progress. In this case, it becomes very difficult for the
project manager to determine the exact status of development and track the
progress of the project. This usually leads to a problem that is usually
identified as the 99 per cent complete syndrome. This syndrome appears when
there the software project manager has no definite way of assessing the
progress of a project, the optimistic team members feel that their work is 99
per cent complete even when their work is far from completion—making all
projections made by the project manager about the project completion time
to be highly inaccurate.

2.2 WATERFALL MODEL AND ITS EXTENSIONS
The waterfall model and its derivatives were extremely popular in the
1970s and still are heavily being used across many development
projects. The waterfall model is possibly the most obvious and intuitive
way in which software can be developed through team effort. We can
think of the waterfall model as a generic model that has been extended
in many ways for catering to certain specific software development
situations to realise all other software life cycle models. For this reason,
after discussing the classical and iterative waterfall models, we discuss
its various extensions.

2.2.1 Classical Waterfall Model
Classical waterfall model is intuitively the most obvious way to develop
software. It is simple but idealistic. In fact, it is hard to put this model
into use in any non-trivial software development project. One might
wonder if this model is hard to use in practical development projects,
then why study it at all? The reason is that all other life cycle models
can be thought of as being extensions of the classical waterfall model.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Therefore, it makes sense to first understand the classical waterfall
model, in order to be able to develop a proper understanding of other
life cycle models. Besides, we shall see later in this text that this model
though not used for software development; is implicitly used while
documenting software.

The classical waterfall model divides the life cycle into a set of phases as
shown in Figure 2.1. It can be easily observed from this figure that the
diagrammatic representation of the classical waterfall model resembles a
multi-level waterfall. This resemblance justifies the name of the model.

Figure 2.1: Classical waterfall model.

Phases of the classical waterfall model
The different phases of the classical waterfall model have been shown in
Figure 2.1. As shown in Figure 2.1, the different phases are—feasibility
study, requirements analysis and specification, design, coding and unit
testing, integration and system testing, and maintenance. The phases
starting from the feasibility study to the integration and system testing
phase are known as the development phases. A software is developed
during the development phases, and at the completion of the
development phases, the software is delivered to the customer. After
the delivery of software, customers start to use the software signalling
the commencement of the operation phase. As the customers start to
use the software, changes to it become necessary on account of bug
fixes and feature extensions, causing maintenance works to be
undertaken. Therefore, the last phase is also known as the maintenance
phase of the life cycle. It needs to be kept in mind that some of the text

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

books have different number and names of the phases.
An activity that spans all phases of software development is project

management. Since it spans the entire project duration, no specific phase is
named after it. Project management, nevertheless, is an important activity in
the life cycle and deals with managing t h e software development and
maintenance activities.

In the waterfall model, different life cycle phases typically require relatively
different amounts of efforts to be put in by the development team. The
relative amounts of effort spent on different phases for a typical software has
been shown in Figure 2.2. Observe from Figure 2.2 that among all the life
cycle phases, the maintenance phase normally requires the maximum effort.
On the average, about 60 per cent of the total effort put in by the
development team in the entire life cycle is spent on the maintenance
activities alone.

Figure 2.2: Relative effort distribution among different phases of a typical product.

However, among the development phases, the integration and system
testing phase requires the maximum effort in a typical development project.
In the following subsection, we briefly describe the activities that are carried
out in the different phases of the classical waterfall model.

Feasibility study
The main focus of the feasibility study stage is to determine whether it
would be financially and technically feasible to develop the software. The

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

feasibility study involves carrying out several activities such as
collection of basic information relating to the software such as the
different data items that would be input to the system, the processing
required to be carried out on these data, the output data required to be
produced by the system, as well as various constraints on the
development. These collected data are analysed to perform at the
following:

Development of an overall understanding of the problem: It is
necessary to first develop an overall understanding of what the customer
requires to be developed. For this, only the the important requirements of the
customer need to be understood and the details of various requirements such
as the screen layouts required in the graphical user interface (GUI), specific
formulas or algorithms required for producing the required results, and the
databases schema to be used are ignored.

Formulation of the various possible strategies for solving the
problem: In this activity, various possible high-level solution schemes to the
problem are determined. For example, solution in a client-server framework
and a standalone application framework may be explored.

Evaluation of the different solution strategies: The different identified
solution schemes are analysed to evaluate their benefits and shortcomings.
Such evaluation often requires making approximate estimates of the
resources required, cost of development, and development time required.
The different solutions are compared based on the estimations that have
been worked out. Once the best solution is identified, all activities in the later
phases are carried out as per this solution. At this stage, it may also be
determined that none of the solutions is feasible due to high cost, resource
constraints, or some technical reasons. This scenario would, of course,
require the project to be abandoned.

We can summarise the outcome of the feasibility study phase by noting
that other than deciding whether to take up a project or not, at this stage
very high-level decisions regarding the solution strategy is defined. Therefore,
feasibility study is a very crucial stage in software development. The
following is a case study of the feasibility study undertaken by an
organisation. It is intended to give a feel of the activities and issues involved
in the feasibility study phase of a typical software project.

Case study 2.1

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

A mining company named Galaxy Mining Company Ltd. (GMC Ltd.) has mines located
at various places in India. It has about fifty different mine sites spread across eight
states. The company employs a large number of miners at each mine site. Mining
being a risky profession, the company intends to operate a special provident fund,
which would exist in addition to the standard provident fund that the miners already
enjoy. The main objective of having the special provident fund (SPF) would be to
quickly distribute some compensation before the PF amount is paid.
According to this scheme, each mine site would deduct SPF installments from each
miner every month and deposit the same to the central special provident fund
commissioner (CSPFC). The CSPFC will maintain all details regarding the SPF
installments collected from the miners.
GMC Ltd. requested a reputed software vendor Adventure Software Inc. to undertake
the task of developing the software for automating the maintenance of SPF records
of all employees. GMC Ltd. has realised that besides saving manpower on book-
keeping work, the software would help in speedy settlement of claim cases. GMC Ltd.
indicated that the amount it can at best afford Rs. 1 million for this software to be
developed and installed.
Adventure Software Inc. deputed their project manager to carry out the feasibility
study. The project manager discussed with the top managers of GMC Ltd. to get an
overview of the project. He also discussed with the field PF officers at various mine
sites to determine the exact details of the project. The project manager identified two
broad approaches to solve the problem. One is to have a central database which
would be accessed and updated via a satellite connection to various mine sites. The
other approach is to have local databases at each mine site and to update the central
database periodically through a dial-up connection. This periodic updates can be done
on a daily or hourly basis depending on the delay acceptable to GMC Ltd. in invoking
various functions of the software. H e found that the second approach is very
affordable and more fault-tolerant as the local mine sites can operate even when the
communication link temporarily fails. In this approach, when a link fails, only the
update of the central database gets delayed. Whereas in the first approach, all SPF
work gets stalled at a mine site for the entire duration of link failure. The project
manager quickly analysed the overall database functionalities required, the user-
interface issues, and the software handling communication with the mine sites. From
this analysis, he estimated the approximate cost to develop the software. He found
that a solution involving maintaining local databases at the mine sites and periodically
updating a central database is financially and technically feasible. The project
manager discussed this solution with the president of GMC Ltd., who indicated that
the proposed solution would be acceptable to them.

Requirements analysis and specification
The aim of the requirements analysis and specification phase is to
understand the exact requirements of the customer and to document

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

them properly. This phase consists of two distinct activities, namely
requirements gathering and analysis, and requirements specification. In
the following subsections, we give an overview of these two activities:

Requirements gathering and analysis: The goal of the
requirements gathering activity is to collect all relevant information
regarding the software to be developed from the customer with a view
to clearly understand the requirements. For this, first requirements are
gathered from the customer and then the gathered requirements are
analysed. The goal of the requirements analysis activity is to weed out
the incompleteness and inconsistencies in these gathered
requirements. Note that a n inconsistent requirement is one in which
some part of the requirement contradicts with some other part. On the
other hand, a n incomplete requirement is one in which some parts of
the actual requirements have been omitted.
Requirements specification: After the requirement gathering and
analysis activities are complete, the identified requirements are
documented. This is called a software requirements specification (SRS)
document. The SRS document is written using end-user terminology.
This makes the SRS document understandable to the customer.
Therefore, understandability of the SRS document is an important
issue. The SRS document normally serves as a contract between the
development team and the customer. Any future dispute between the
customer and the developers can be settled by examining the SRS
document. The SRS document is therefore an important document
which must be thoroughly understood by the development team, and
reviewed jointly with the customer. The SRS document not only forms
the basis for carrying out all the development activities, but several
documents such as users’ manuals, system test plan, etc. are prepared
directly based on it. In Chapter 4, we examine the requirements
analysis activity and various issues involved in developing a good SRS
document in more detail.

Design
The goal of the design phase is to transform the requirements specified
in the SRS document into a structure that is suitable for implementation
in some programming language. In technical terms, during the design
phase the software architecture is derived from the SRS document. Two

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

distinctly different design approaches are popularly being used at
present—the procedural and object-oriented design approaches. In the
following, we briefly discuss the essence of these two approaches.
These two approaches are discussed in detail in Chapters 6, 7, and 8.

Procedural design approach: The traditional design approach is in
use in many software development projects at the present time. This
traditional design technique is based on the data flow-oriented design
approach. It consists of two important activities; first structured analysis
of the requirements specification is carried out where the detailed
structure of the problem is examined. This is followed by a structured
design step where the results of structured analysis are transformed
into the software design.

During structured analysis, the functional requirements specified in the
SRS document are decomposed into subfunctions and the data-flow among
these subfunctions is analysed and represented diagrammatically in the
form of DFDs. The DFD technique is discussed in Chapter 6. Structured
design is undertaken once the structured analysis activity is complete.
Structured design consists of two main activities—architectural design (also
called high-level design) and detailed design (also called Low-level design).
High-level design involves decomposing the system i nto modules, and
representing the interfaces and the invocation relationships among the
modules. A high-level software design is some times referred to as the
software architecture. During the detailed design activity, internals of the
individual modules such as the data structures and algorithms of the
modules are designed and documented.

Object-oriented design approach: In this technique, various
objects that occur in the problem domain and the solution domain are
first identified and the different relationships that exist among these
objects are identified. The object structure is further refined to obtain
the detailed design. The OOD approach is credited to have several
benefits such as lower development time and effort, and better
maintainability of the software. The object-oriented design technique is
discussed in Chapters 7 and 8.

Coding and unit testing

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The purpose of the coding and unit testing phase is to translate a
software design into source code and to ensure that individually each
function is working correctly. The coding phase is also sometimes called
t h e implementation phase, since the design is implemented into a
workable solution in this phase. Each component of the design is
implemented as a program module. The end-product of this phase is a
set of program modules that have been individually unit tested. The
main objective of unit testing is to determine the correct working of the
individual modules. The specific activities carried out during unit testing
include designing test cases, testing, debugging to fix problems, and
management of test cases. We shall discuss the coding and unit testing
techniques in Chapter 10.

Integration and system testing
Integration of different modules is undertaken soon after they have been
coded and unit tested. During the integration and system testing phase, the
different modules are integrated in a planned manner. Various modules
making up a software are almost never integrated in one shot (can you guess
the reason for this?). Integration of various modules are normally carried out
incrementally over a number of steps. During each integration step,
previously planned modules are added to the partially integrated system and
the resultant system is tested. Finally, after all the modules have been
successfully integrated and tested, the full working system is obtained.
System testing is carried out on this fully working system.

Integration testing is carried out to verify that the interfaces among different units are
working satisfactorily. On the other hand, the goal of system testing is to ensure that
the developed system conforms to the requirements that have been laid out in the
SRS document.

System testing usually consists of three different kinds of testing activities:

-testing: testing is the system testing performed by the development
team.
-testing: This is the system testing performed by a friendly set of
customers.
Acceptance testing: After the software has been delivered, the
customer performs system testing to determine whether to accept the
delivered software or to reject it.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

We discuss various integration and system testing techniques in more detail
in Chapter 10.

Maintenance
The total effort spent on maintenance of a typical software during its
operation phase is much more than that required for developing the
software itself. Many studies carried out in the past confirm this and
indicate that the ratio of relative effort of developing a typical software
product and the total effort spent on its maintenance is roughly 40:60.
Maintenance is required in the following three types of situations:

Corrective maintenance: This type of maintenance is carried out to
correct errors that were not discovered during the product
development phase.
Perfective maintenance: This type of maintenance is carried out to
improve the performance of the system, or to enhance the
functionalities of the system based on customer’s requests.
Adaptive maintenance: Adaptive maintenance is usually required for
porting the software to work in a new environment. For example,
porting may be required to get the software to work on a new
computer platform or with a new operating system.

Various maintenance activities have been discussed in more detail in
Chapter 13.

Shortcomings of the classical waterfall model
The classical waterfall model is a very simple and intuitive model.
However, it suffers from several shortcomings. Let us identify some of
the important shortcomings of the classical waterfall model:

No feedback paths: In classical waterfall model, the evolution of a software
from one phase to the next is analogous to a waterfall. Just as water in a
waterfall after having flowed down cannot flow back, once a phase is
complete, the activities carried out in it and any artifacts produced in this
phase are considered to be final and are closed for any rework. This requires
that all activities during a phase are flawlessly carried out.

The classical waterfall model is idealistic in the sense that it assumes that
no error is ever committed by the developers during any of the life cycle
phases, and therefore, incorporates no mechanism for error correction.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Contrary to a fundamental assumption made by the classical waterfall
model, in practical development environments, the developers do commit a
large number of errors in almost every activity they carry out during various
phases of the life cycle. After all, programmers are humans and as the old
adage says to err is humane. The cause for errors can be many—oversight,
wrong interpretations, use of incorrect solution scheme, communication gap,
etc. These defects usually get detected much later in the life cycle. For
example, a design defect might go unnoticed till the coding or testing phase.
Once a defect is detected at a later time, the developers need to redo some
of the work done during that phase and also redo the work of later phases
that are affected by the rework. Therefore, in any non-trivial software
development project, it becomes nearly impossible to strictly follow the
classical waterfall model of software development.
Difficult to accommodate change requests: This model assumes that all
customer requirements can be completely and correctly defined at the
beginning of the project. There is much emphasis on creating an
unambiguous and complete set of requirements. But, it is hard to achieve this
even in ideal project scenarios. The customers’ requirements usually keep on
changing with time. But, in this model it becomes difficult to accommodate
any requirement change requests made by the customer after the
requirements specification phase is complete, and this often becomes a
source of customer discontent.
Inefficient error corrections: This model defers integration of code and
testing tasks until it is very late when the problems are harder to resolve.
No overlapping of phases: This model recommends that the phases be
carried out sequentially—new phase can start only after the previous one
completes. However, it is rarely possible to adhere to this recommendation
and it leads to a large number of team members to idle for extended periods.
For example, for efficient utilisation of manpower, the testing team might
need to design the system test cases immediately after requirements
specification is complete. (We shall discuss in Chapter 10 that the system test
cases are designed solely based on the SRS document). In this case, the
activities of the design and testing phases overlap. Consequently, it is safe to
say that in a practical software development scenario, rather than having a
precise point in time at which a phase transition occurs, the different phases
need to overlap for cost and efficiency reasons.

Is the classical waterfall model useful at all?

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

We have already pointed out that it is hard to use the classical waterfall
model in real projects. In any practical development environment, as the
software takes shape, several iterations through the different waterfall stages
become necessary for correction of errors committed during various phases.
Therefore, the classical waterfall model is hardly usable for software
development. But, as suggested by Parnas [1972] the final documents for the
product should be written as if the product was developed using a pure
classical waterfall.

Irrespective of the life cycle model that is actually followed for a product
development, the final documents are always written to reflect a classical waterfall
model of development, so that comprehension of the documents becomes easier for
any one reading the document.

The rationale behind preparation of documents based on the classical
waterfall model can be explained using Hoare’s metaphor of mathematical
theorem [1994] proving—A mathematician presents a proof as a single chain
of deductions, even though the proof might have come from a convoluted set
of partial attempts, blind alleys and backtracks. Imagine how difficult it would
be to understand, if a mathematician presents a proof by retaining all the
backtracking, mistake corrections, and solution refinements he made while
working out the proof.

2.2.2 Iterative Waterfall Model
We had pointed out in the previous section that in a practical software
development project, the classical waterfall model is hard to use. We had
branded the classical waterfall model as an idealistic model. In this context,
the iterative waterfall model can be thought of as incorporating the necessary
changes to the classical waterfall model to make it usable in practical
software development projects.

The main change brought about by the iterative waterfall model to the classical
waterfall model is in the form of providing feedback paths from every phase to its
preceding phases.

The feedback paths introduced by the iterative waterfall model are shown
in Figure 2.3. The feedback paths allow for correcting errors committed by a
programmer during some phase, as and when these are detected in a later
phase. For example, if during the testing phase a design error is identified,
then the feedback path allows the design to be reworked and the changes to

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

be reflected in the design documents and all other subsequent documents.
Please notice that in Figure 2.3 there is no feedback path to the feasibility
stage. This is because once a team having accepted to take up a project,
does not give up the project easily due to legal and moral reasons.

Figure 2.3: Iterative waterfall model.

Almost every life cycle model that we discuss are iterative in nature, except
the classical waterfall model and the V-model—which are sequential in
nature. In a sequential model, once a phase is complete, no work product of
that phase are changed later.

Phase containment of errors
No matter how careful a programmer may be, he might end up committing
some mistake or other while carrying out a life cycle activity. These mistakes
result in errors (also called faults o r bugs) in the work product. It is
advantageous to detect these errors in the same phase in which they take
place, since early detection of bugs reduces the effort and time required for
correcting those. For example, if a design problem i s detected in the design
phase itself, then the problem can be taken care of much more easily than if
the error is identified, say, at the end of the testing phase. In the later case,
it would be necessary not only to rework the design, but also to appropriately
redo the relevant coding as well as the testing activities, thereby incurring
higher cost. It may not always be possible to detect all the errors in the same
phase in which they are made. Nevertheless, the errors should be detected as

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

early as possible.

The principle of detecting errors as close to their points of commitment as possible is
known as phase containment of errors.

For achieving phase containment of errors, how can the developers detect
almost all error that they commit in the same phase? After all, the end
product of many phases are text or graphical documents, e.g. SRS document,
design document, test plan document, etc. A popular technique is to
rigorously review the documents produced at the end of a phase.

Phase overlap
Even though the strict waterfall model envisages sharp transitions to
occur from one phase to the next (see Figure 2.3), in practice the
activities of different phases overlap (as shown in Figure 2.4) due to
two main reasons:

In spite of the best effort to detect errors in the same phase in which
they are committed, some errors escape detection and are detected in
a later phase. These subsequently detected errors cause the activities
of some already completed phases to be reworked. If we consider such
rework after a phase is complete, we can say that the activities
pertaining to a phase do not end at the completion of the phase, but
overlap with other phases as shown in Figure 2.4.
An important reason for phase overlap is that usually the work required
to be carried out in a phase is divided among the team members.
Some members may complete their part of the work earlier than other
members. If strict phase transitions are maintained, then the team
members who complete their work early would idle waiting for the
phase to be complete, and are said to be in a blocking state. Thus the
developers who complete early would idle while waiting for their team
mates to complete their assigned work. Clearly this is a cause for
wastage of resources and a source of cost escalation and inefficiency.
As a result, in real projects, the phases are allowed to overlap. That is,
once a developer completes his work assignment for a phase, proceeds
to start the work for the next phase, without waiting for all his team
members to complete their respective work allocations.

Considering these situations, the effort distribution for different phases with

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

time would be as shown in Figure 2.4.

Figure 2.4: Distribution of effort for various phases in the iterative waterfall model.

Shortcomings of the iterative waterfall model
The iterative waterfall model is a simple and intuitive software
development model. It was used satisfactorily during 1970s and 1980s.
However, the characteristics of software development projects have
changed drastically over years. In the 1970s and 1960s, software
development projects spanned several years and mostly involved
generic software product development. The projects are now shorter,
and involve Customised software development. Further, software was
earlier developed from scratch. Now the emphasis is on as much reuse
of code and other project artifacts as possible. Waterfall-based models
have worked satisfactorily over last many years in the past. The
situation has changed substantially now. As pointed out in the first
chapter several decades back, every software was developed from
scratch. Now, not only software has become very large and complex,
very few (if at all any) software project is being developed from scratch.
The software services (customised software) are poised to become the
dominant types of projects. In the present software development
projects, use of waterfall model causes several problems. In this

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

context, the agile models have been proposed about a decade back
that attempt to overcome the important shortcomings of the waterfall
model by suggesting certain radical modification to the waterfall style of
software development. In Section 2.4, we discuss the agile model.
Some of the glaring shortcomings of the waterfall model when used in
the present-day software development projects are as following:

Difficult to accommodate change requests: A major problem with the
waterfall model is that the requirements need to be frozen before the
development starts. Based on the frozen requirements, detailed plans are
made for the activities to be carried out during the design, coding, and
testing phases. Since activities are planned for the entire duration,
substantial effort and resources are invested in the activities as developing
the complete requirements specification, design for the complete functionality
and so on. Therefore, accommodating even small change requests after the
development activities are underway not only requires overhauling the plan,
but also the artifacts that have already been developed.

Once requirements have been frozen, the waterfall model provides no scope for any
modifications to the requirements.

While the waterfall model is inflexible to later changes to the requirements,
evidence gathered from several projects points to the fact that later changes
to requirements are almost inevitable. Even f o r projects with highly
experienced professionals at all levels, as well as computer savvy customers,
requirements are often missed as well as misinterpreted. Unless change
requests are encouraged, the developed functionalities would be misfit to the
true customer requirements. Requirement changes can arise due to a variety
of reasons including the following—requirements were not clear to the
customer, requirements were misunderstood, business process o f the
customer may have changed after the SRS document was signed off, etc. In
fact, customers get clearer understanding of their requirements only after
working on a fully developed and installed system.

The basic assumption made in the iterative waterfall model that methodical
requirements gathering and analysis alone would comprehensively and
correctly identify all the requirements by the end of the requirements phase is
flawed.
Incremental delivery not supported: In the iterative waterfall model, the
full software is completely developed and tested before it is delivered to the
customer. There is no provision for any intermediate deliveries to occur. This

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

is problematic because the complete application may take several months or
years to be completed and delivered to the customer. By the time the
software is delivered, installed, and becomes ready for use, the customer’s
business process might have changed substantially. This makes the
developed application a poor fit to the customer’s requirements.
Phase overlap not supported: For most real life projects, i t becomes
difficult to follow the rigid phase sequence prescribed by the waterfall model.
By the term a rigid phase sequence, we mean that a phase can start only after
the previous phase is complete in all respects. As already discussed, strict
adherence to the waterfall model creates blocking states. The waterfall model
is usually adapted for use in real-life projects by allowing overlapping of
various phases as shown in Figure 2.4.
Error correction unduly expensive: In waterfall model, validation is
delayed till the complete development of the software. As a result, the
defects that are noticed at the time of validation incur expensive rework and
result in cost escalation and delayed delivery.
Limited customer interactions: This model supports very limited customer
interactions. It is generally accepted that software developed in isolation
from the customer is the cause of many problems. In fact, interactions occur
only at the start of the project and at project completion. As a result, the
developed software usually turns out to be a misfit to the customer’s actual
requirements.
Heavy weight: The waterfall model overemphasises documentation. A
significant portion of the time of the developers is spent in preparing
documents, and revising them as changes occur over the life cycle. Heavy
documentation though useful during maintenance and for carrying out review,
is a source of team inefficiency.
No support for risk handling and code reuse: It becomes difficult to use
the waterfall model in projects that are susceptible to various types of risks,
or those involving significant reuse of existing development artifacts. Please
recollect that software services types of projects usually involve significant
reuse.

2.2.3 V-Model
A popular development process model, V-model is a variant of the waterfall
model. As is the case with the waterfall model, this model gets its name from
its visual appearance (see Figure 2.5). In this model verification and

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

validation activities are carried out throughout the development life cycle,
and therefore the chances bugs in the work products considerably reduce.
This model is therefore generally considered to be suitable for use in projects
concerned with development of safety-critical software that are required to
have high reliability.

Figure 2.5: V-model.

As shown in Figure 2.5, there are two main phases—development and
validation phases. The left half of the model comprises the development
phases and the right half comprises the validation phases.

In each development phase, along with the development of a work
product, test case design and the plan for testing the work product are
carried out, whereas the actual testing is carried out in the validation
phase. This validation plan created during the development phases is
carried out in the corresponding validation phase which have been
shown by dotted arcs in Figure 2.5.
In the validation phase, testing is carried out in three steps—unit,
integration, and system testing. The purpose of these three different
steps of testing during the validation phase is to detect defects that
arise in the corresponding phases of software development—

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

requirements analysis and specification, design, and coding
respectively.

V-model versus waterfall model
We have already pointed out that the V-model can be considered to be
an extension of the waterfall model. However, there are major
differences between the two. As already mentioned, in contrast to the
iterative waterfall model where testing activities are confined to the
testing phase only, in the V-model testing activities are spread over the
entire life cycle. As shown in Figure 2.5, during the requirements
specification phase, the system test suite design activity takes place.
During the design phase, the integration test cases are designed.
During coding, the unit test cases are designed. Thus, we can say that
in this model, development and validation activities proceed hand in
hand.

Advantages of V-model
The important advantages of the V-model over the iterative waterfall
model are as following:

In the V-model, much o f the testing activities (test case design, test
planning, etc.) are carried out in parallel with the development
activities. Therefore, before testing phase starts significant part of the
testing activities, including test case design and test planning, is
already complete. Therefore, this model usually leads to a shorter
testing phase and an overall faster product development as compared
to the iterative model.
Since test cases are designed when the schedule pressure has not built
up, the quality of the test cases are usually better.
The test team is reasonably kept occupied throughout the
development cycle in contrast to the waterfall model where the testers
are active only during the testing phase. This leads to more efficient
manpower utilisation.
In the V-model, the test team is associated with the project from the
beginning. Therefore they build up a good understanding of the
development artifacts, and this in turn, helps them to carry out
effective testing of the software. In contrast, in the waterfall model
often the test team comes on board late in the development cycle,

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

since no testing activities are carried out before the start of the
implementation and testing phase.

Disadvantages of V-model
Being a derivative of the classical waterfall model, this model inherits
most of the weaknesses of the waterfall model.

2.2.4 Prototyping Model
The prototype model is also a popular life cycle model. The prototyping
model can be considered to be an extension of the waterfall model.
This model suggests building a working prototype of the system, before
development of the actual software. A prototype is a toy and crude
implementation of a system. It has limited functional capabilities, low
reliability, o r inefficient performance as compared to the actual
software. A prototype can be built very quickly by using several
shortcuts. The shortcuts usually involve developing inefficient,
inaccurate, or dummy functions. The shortcut implementation of a
function, for example, may produce the desired results by using a table
look-up rather than by performing the actual computations. Normally
the term rapid prototyping is used when software tools are used for
prototype construction. For example, tools based on fourth generation
languages (4GL) may be used to construct the prototype for the GUI
parts.

Necessity of the prototyping model
The prototyping model is advantageous to use for specific types of
projects. In the following, we identify three types of projects for which
the prototyping model can be followed to advantage:

It is advantageous to use the prototyping model for development of
the graphical user interface (GUI) part of an application. Through the
use of a prototype, it becomes easier to illustrate the input data
formats, messages, reports, and the interactive dialogs to the
customer. This is a valuable mechanism for gaining better
understanding of the customers’ needs. In this regard, the prototype
model turns out to be especially useful in developing the graphical user
interface (GUI) part of a system. For the user, it becomes much easier

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

to form an opinion regarding what would be more suitable by
experimenting with a working user interface, rather than trying to
imagine the working of a hypothetical user interface.

The GUI part of a software system is almost always developed using the prototyping
model.

The prototyping model is especially useful when the exact technical
solutions are unclear to the development team. A prototype can help
them to critically examine the technical issues associated with product
development. For example, consider a situation where the
development team has to write a command language interpreter as
part of a graphical user interface development. Suppose none of the
team members has ever written a compiler before. Then, this lack of
familiarity with a required development technology is a technical risk.
This risk can be resolved by developing a prototype compiler for a very
small language to understand the issues associated with writing a
compiler for a command language. Once they feel confident in writing
compiler for the small language, they can use this knowledge to
develop the compiler for the command language. Often, major design
decisions depend on issues such as the response time of a hardware
controller, or the efficiency of a sorting algorithm, etc. In such
circumstances, a prototype is often the best way to resolve the
technical issues.
An important reason for developing a prototype is that it is impossible
to “get it right” the first time. As advocated by Brooks [1975], one
must plan to throw away the software in order to develop a good
software later. Thus, the prototyping model can be deployed when
development of highly optimised and efficient software is required.

From the above discussions, we can conclude the following:

The prototyping model is considered to be useful for the development of not only the
GUI parts of a software, but also for a software project for which certain technical
issues are not clear to the development team.

Life cycle activities of prototyping model
The prototyping model of software development is graphically shown in

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 2.6. As shown in Figure 2.6, software is developed through two
major activities—prototype construction and iterative waterfall-based
software development.

Prototype development: Prototype development starts with an initial
requirements gathering phase. A quick design is carried out and a prototype
is built. The developed prototype is submitted to the customer for evaluation.
Based on the customer feedback, the requirements are refined and the
prototype is suitably modified. This cycle of obtaining customer feedback and
modifying the prototype continues till the customer approves the prototype.
Iterative development: Once the customer approves the prototype, the
actual software is developed using the iterative waterfall approach. In spite
of the availability of a working prototype, the SRS document is usually
needed to be developed since the SRS document is invaluable for carrying out
traceability analysis, verification, and test case design during later phases.
However, for GUI parts, the requirements analysis and specification phase
becomes redundant since the working prototype that has been approved by
the customer serves as an animated requirements specification.

T h e code for the prototype is usually thrown away. However, the
experience gathered from developing the prototype helps a great deal in
developing the actual system.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 2.6: Prototyping model of software development.

Even though the construction o f a throwaway prototype might involve incurring
additional cost, for systems with unclear customer requirements and for systems with
unresolved technical issues, the overall development cost usually turns out to be
lower compared to an equivalent system developed using the iterative waterfall
model.

By constructing the prototype and submitting it for user evaluation, many
customer requirements get properly defined and technical issues get resolved
by experimenting with the prototype. This minimises later change requests

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

from the customer and the associated redesign costs.

Strengths of the prototyping model
This model is the most appropriate for projects that suffer from technical
and requirements risks. A constructed prototype helps overcome these
risks.

Weaknesses of the prototyping model
The prototype model can increase the cost of development for projects
that are routine development work and do not suffer from any
significant risks. Even when a project is susceptible to risks, the
prototyping model is effective only for those projects for which the risks
can be identified upfront before the development starts. Since the
prototype is constructed only at the start of the project, the prototyping
model is ineffective for risks identified later during the development
cycle. The prototyping model would not be appropriate for projects for
which the risks can only be identified after the development is
underway.

2.2.5 Incremental Development Model
This life cycle model is sometimes referred to as the successive versions model
and sometimes as the incremental model. In this life cycle model, first a
simple working system implementing only a few basic features is built and
delivered to the customer. Over many successive iterations successive
versions are implemented and delivered to the customer until the desired
system is realised. The incremental development model has been shown in
Figure 2.7.

Figure 2.7: Incremental software development.

Life cycle activities of incremental development model

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

In the incremental life cycle model, the requirements of the software are
first broken down into several modules or features that can be
incrementally constructed and delivered. This has been pictorially
depicted i n Figure 2.7. At any time, plan is made only for the next
increment and no long-term plans a re made. Therefore, it becomes
easier to accommodate change requests from the customers.

The development team first undertakes to develop the core features of the
system. The core or basic features are those that do not need to invoke any
services from the other features. On the other hand, non-core features need
services from the core features. Once the initial core features are developed,
these are refined into increasing levels of capability by adding new
functionalities in successive versions. Each incremental version is usually
developed using an iterative waterfall model of development. The
incremental model is schematically shown in Figure 2.8. As each successive
version of the software is constructed and delivered to the customer, the
customer feedback is obtained on the delivered version and these feedbacks
are incorporated in the next version. Each delivered version of the software
incorporates additional features over the previous version and also refines the
features that were already delivered to the customer.

The incremental model has schematically been shown in Figure 2.8. After
the requirements gathering and specification, the requirements are split into
several versions. Starting with the core (version 1), in each successive
increment, the next version is constructed using an iterative waterfall model
of development and deployed at the customer site. After the last (shown as
version n) has been developed and deployed at the client site, the full
software is deployed.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 2.8: Incremental model of software development.

Advantages
The incremental development model offers several advantages. Two
important ones are the following:

Error reduction: The core modules are used by the customer from
the beginning and therefore these get tested thoroughly. This reduces
chances of errors in the core modules of the final product, leading to
greater reliability of the software.
Incremental resource deployment: This model obviates the need
for the customer to commit large resources at one go for development
of the system. It also saves the developing organisation from deploying
large resources and manpower for a project in one go.

2.2.6 Evolutionary Model
This model has many of the features of the incremental model. As in
case of the incremental model, the software is developed over a
number of increments. At each increment, a concept (feature) is
implemented and is deployed at the client site. The software is

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

successively refined and feature-enriched until the full software is
realised. The principal idea behind the evolutionary life cycle model is
conveyed by its name. In the incremental development model,
complete requirements are first developed and the SRS document
prepared. In contrast, in the evolutionary model, the requirements,
plan, estimates, and solution evolve over the iterations, rather than
fully defined and frozen in a major up-front specification effort before
the development iterations begin. Such evolution is consistent with the
pattern of unpredictable feature discovery and feature changes that
take place in new product development.

Though the evolutionary model can also be viewed as an extension of the
waterfall model, but it incorporates a major paradigm shift that has been
widely adopted in many recent life cycle models. Due to obvious reasons, the
evolutionary software development process is sometimes referred to as
design a little, build a little, test a little, deploy a little model. This means that
after the requirements have been specified, the design, build, test, and
deployment activities are iterated. A schematic representation of the
evolutionary model of development has been shown in Figure 2.9.

Advantages
The evolutionary model of development has several advantages. Two
important advantages of using this model are the following:

Effective elicitation of actual customer requirements: In this
model, the user gets a chance to experiment with a partially developed
software much before the complete requirements are developed.
Therefore, the evolutionary model helps to accurately elicit user
requirements with the help of feedback obtained on the delivery of
different versions of the software. As a result, the change requests
after delivery of the complete software gets substantially reduced.
Easy handling change requests: In this model, handling change
requests is easier as no long term plans are made. Consequently,
reworks required due to change requests are normally much smaller
compared to the sequential models.

Disadvantages
The main disadvantages of the successive versions model are as follows:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 2.9: Evolutionary model of software development.

Feature division into incremental parts can be non-trivial: For
many development projects, especially for small-sized projects, it is
difficult to divide the required features into several parts that can be
incrementally implemented and delivered. Further, even for larger
problems, often the features are so interwined and dependent on each
other that even an expert would need considerable effort to plan the
incremental deliveries.
Ad hoc design: Since at a time design for only the current increment is
done, the design can become ad hoc without specific attention being
paid to maintainability and optimality. Obviously, for moderate sized
problems and for those for which the customer requirements are clear,
the iterative waterfall model can yield a better solution.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Applicability of the evolutionary model
The evolutionary model is normally useful for very large products, where it is
easier t o find modules for incremental implementation. Often evolutionary
model is used when the customer prefers to receive the product in increments
so that he can start using the different features as and when they are
delivered rather than waiting all the time for the full product to be developed
and delivered. Another important category of projects for which the
evolutionary model is suitable, is projects using object-oriented development.

The evolutionary model is well-suited to use in object-oriented software development
projects.

Evolutionary model is appropriate for object-oriented development project,
since it is easy to partition the software into stand alone units in terms of the
classes. Also, classes are more or less self contained units that can be
developed independently.

2.3 RAPID APPLICATION DEVELOPMENT (RAD)
The rapid application development (RAD) model was proposed in the early
nineties in an attempt to overcome the rigidity of the waterfall model
(and its derivatives) that makes it difficult to accommodate any change
requests from the customer. It proposed a few radical extensions to the
waterfall model. This model has the features of both prototyping and
evolutionary models. It deploys an evolutionary delivery mode l to
obtain and incorporate the customer feedbacks on incrementally
delivered versions.

In this model prototypes are constructed, and incrementally the features
are developed and delivered to the customer. But unlike the prototyping
model, the prototypes are not thrown away but are enhanced and used in the
software construction

The major goals of the RAD model are as follows:

To decrease the time taken and the cost incurred to develop software
systems.
To limit the costs of accommodating change requests.
T o reduce the communication gap between the customer and the
developers.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Main motivation
In the iterative waterfall model, the customer requirements need to be
gathered, analysed, documented, and signed off upfront, before any
development could start. However, often clients do not know what they
exactly wanted until they saw a working system. It has now become
well accepted among the practitioners that only through the process
commenting on an installed application that the exact requirements can
be brought out. But in the iterative waterfall model, the customers do
not get to see the software, until the development is complete in all
respects and the software has been delivered and installed. Naturally,
the delivered software often does not meet the customer expectations
and many change request are generated by the customer. The changes
are incorporated through subsequent maintenance efforts. This made
the cost of accommodating the changes extremely high and it usually
took a long time to have a good solution in place that could reasonably
meet the requirements of the customers. The RAD model tries to
overcome this problem by inviting and incorporating customer feedback
on successively developed and refined prototypes.

2.3.1 Working of RAD
In the RAD model, development takes place in a series of short cycles or
iterations. At any time, the development team focuses on the present iteration
only, and therefore plans are made for one increment at a time. The time planned
for each iteration is called a time box. Each iteration is planned to enhance the
implemented functionality of the application by only a small amount. During each
time box, a quick-and-dirty prototype-style software for some functionality is
developed. The customer evaluates the prototype and gives feedback on the
specific improvements that may be necessary. The prototype is refined based on
the customer feedback. Please note that the prototype is not meant to be released
to the customer for regular use though.

The development team almost always includes a customer representative
to clarify the requirements. This is intended to make the system tuned to the
exact customer requirements and also to bridge the communication gap
between the customer and the development team. The development team
usually consists of about five to six members, including a customer
representative.

How does RAD facilitate accommodation of change requests?

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The customers usually suggest changes to a specific feature only after
they have used it. Since the features are delivered in small increments,
the customers are able to give their change requests pertaining to a
feature already delivered. Incorporation of such change requests just
after the delivery of an incremental feature saves cost as this is carried
out before large investments have been made in development and
testing of a large number of features.

How does RAD facilitate faster development?
The decrease in development time and cost, and at the same time an
increased flexibility to incorporate changes are achieved in the RAD
model in two main ways—minimal use of planning and heavy reuse of
any existing code through rapid prototyping. The lack of long-term and
detailed planning gives the flexibility to accommodate later
requirements changes. Reuse of existing code has been adopted as an
important mechanism of reducing the development cost.

RAD model emphasises code reuse as an important means for completing a
project faster. In fact, the adopters of the RAD model were the earliest to
embrace object-oriented languages and practices. Further, RAD advocates
use of specialised tools to facilitate fast creation of working prototypes. These
specialised tools usually support the following features:

Visual style of development.
Use of reusable components.

2.3.2 Applicability of RAD Model
The following are some of the characteristics of an application that
indicate its suitability to RAD style of development:

Customised software: As already pointed out a customised software is
developed for one or two customers only by adapting an existing software. In
customised software development projects, substantial reuse is usually made of
code from pre-existing software. For example, a company might have
developed a software for automating the data processing activities at
one or more educational institutes. When any other institute requests
for an automation package to be developed, typically only a few
aspects needs to be tailored—since among different educational

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

institutes, most of the data processing activities such as student
registration, grading, fee collection, estate management, accounting,
maintenance of staff service records etc. are similar to a large extent.
Projects involving such tailoring can be carried out speedily and cost-
effectively using the RAD model.
Non-critical software: The RAD model suggests that a quick and
dirty software should first be developed and later this should be refined
into the final software for delivery. Therefore, the developed product is
usually far from being optimal in performance and reliability. In this
regard, for well understood development projects and where the scope
of reuse is rather restricted, the Iiterative waterfall model may provide
a better solution.
Highly constrained pro ject schedule: RAD aims to reduce
development time at the expense of good documentation,
performance, and reliability. Naturally, for projects with very
aggressive time schedules, RAD model should be preferred.
Large software: Only for software supporting many features (large
software) can incremental development and delivery be meaningfully
carried out.

Application characteristics that render RAD unsuitable
The RAD style of development is not advisable if a development project
has one or more of the following characteristics:

Generic products (wide distribution): As we have already pointed
out in Chapter 1, software products are generic in nature and usually
have wide distribution. For such systems, optimal performance and
reliability are imperative in a competitive market. As it has already
been discussed, the RAD model of development may not yield systems
having optimal performance and reliability.
Requirement of optimal performance and/or reliability: For
certain categories of products, optimal performance or reliability is
required. Examples of such systems include an operating system (high
reliability required) and a flight simulator software (high performance
required). If such systems are to be developed using the RAD model,
the desired product performance and reliability may not be realised.
Lack of similar products: If a company has not developed similar

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

software, then it would hardly be able to reuse much of the existing
artifacts. In the absence of sufficient plug-in components, it becomes
difficult to develop rapid prototypes through reuse, and use of RAD
model becomes meaningless.
Monolithic entity: For certain software, especially small-sized
software, it may be hard to divide the required features into parts that
can be incrementally developed and delivered. In this case, it becomes
difficult to develop a software incrementally.

2.3.3 Comparison of RAD with Other Models
In this section, we compare the relative advantages and disadvantages
of RAD with other life cycle models.

RAD versus prototyping model
In the prototyping model, the developed prototype is primarily used by the
development team to gain insights into the problem, choose between
alternatives, and elicit customer feedback. The code developed during
prototype construction is usually thrown away. In contrast, in RAD it is the
developed prototype that evolves into the deliverable software.

Though RAD is expected to lead to faster software development compared to the
traditional models (such as the prototyping model), though the quality and reliability
would be inferior.

RAD versus iterative waterfall model
In the iterative waterfall model, all the functionalities of a software are
developed together. On the other hand, in the RAD model the product
functionalities are developed incrementally through heavy code and
design reuse. Further, in the RAD model customer feedback is obtained
on the developed prototype after each iteration and based on this the
prototype is refined. Thus, it becomes easy to accommodate any
request for requirements changes. However, the iterative waterfall
model does not support any mechanism to accommodate any
requirement change requests. The iterative waterfall model does have
some important advantages that include the following. Use of the
iterative waterfall model leads to production of good quality
documentation which can help during software maintenance. Also, the
developed software usually has better quality and reliability than that

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

developed using RAD.

RAD versus evolutionary model
Incremental development is the hallmark of both evolutionary and RAD
models. However, in RAD each increment results in essentially a quick
and dirty prototype, whereas in the evolutionary model each increment
is systematically developed using the iterative waterfall model. Also in
the RAD model, software is developed in much shorter increments
compared the evolutionary model. In other words, the incremental
functionalities that are developed are of fairly larger granularity in the
evolutionary model.

2.4 AGILE DEVELOPMENT MODELS
As already pointed out, though the iterative waterfall model has been very
popular during the 1970s and 1980s, developers face several problems while
using it on present day software projects. The main difficulties included
handling change requests from customers during product development, and
the unreasonably high cost and time that is incurred while developing
customised applications. Capers Jones carried out research involving 800 real-
life software development projects, and concluded that on the average 40 per
cent of the requirements is arrived after the development has already begun.
In this context, over the last two decade or so, several life cycle models have
been proposed to overcome the important shortcomings o f the waterfall-
based models that become conspicuous when used in modern software
development projects.

Over the last two decades or so, projects using iterative waterfall-based life cycle
models are becoming rare due to the rapid shift in the characteristics of the software
development projects over time. Two changes that are becoming noticeable are rapid
shift from development of software products to development of customised software
and the increased emphasis and scope for reuse.

In the following, a few reasons why the waterfall-based development was
becoming difficult to use in project in recent times:

In the traditional iterative waterfall-based software development
models, the requirements for the system are determined at the start of
a development project and are assumed to be fixed from that point on.
Later changes to the requirements after the SRS document has been

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

completed are discouraged. If at all any later requirement changes
becomes unavoidable, then the cost of accommodating it becomes
prohibitively high. On the other hand, accumulated experience
indicates that customers frequently change their requirements during
the development period due to a variety of reasons.
As pointed out in Chapter 1, over the last two decades or so,
customised applications (services) has become common place and the
sales revenue generated world wide from services already exceeds
that of the software products. Clearly, iterative waterfall model is not
suitable for development of such software. Since customization
essentially involves reusing most of the parts of an existing application
and consists of only carrying out minor modifications by writing
minimal amounts of code. For such development projects, the need for
more appropriate development models was deeply felt, and many
researchers started to investigate in this direction.
Waterfall model is called a heavy weight model, since there is too much
emphasis on producing documentation and usage of tools. This is often
a source of inefficiency and causes the project completion time to be
much longer in comparison to the customer expectations.
Waterfall model prescribes almost no customer interactions after the
requirements have been specified. In fact, in the waterfall model of
software development, customer interactions are largely confined to
the project initiation and project completion stages.

The agile software development model was proposed in the mid-1990s to
overcome the serious shortcomings of the waterfall model of development
identified above. The agile model was primarily designed to help a project to
adapt to change requests quickly.1Thus, a major aim of the agile models is to
facilitate quick project completion. But, how is agility achieved in these
models? Agility is achieved by fitting the process to the project, i.e. removing
activities that may not be necessary for a specific project. Also, anything that
that wastes time and effort is avoided.

Please note that agile model is being used as an umbrella term to refer to a
group of development processes. These processes share certain common
characteristics, but do have certain subtle differences among themselves. A
few popular agile SDLC models are the following:

Crystal

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Atern (formerly DSDM)
Feature-driven development
Scrum
Extreme programming (XP)
Lean development
Unified process

In the agile model, the requirements are decomposed into many small
parts that can be incrementally developed. The agile model adopts an
iterative approach. Each incremental part is developed over an iteration. Each
iteration is intended to be small and easily manageable and lasting fo r a
couple of weeks only. At a time, only one increment is planned, developed,
and then deployed at the customer site. No long-term plans are made. The
time to complete an iteration is called a time box. The implication of the term
time box is that the end date for an iteration does not change. That is, the
delivery date is considered sacrosanct. The development team can, however,
decide to reduce the delivered functionality during a time box if necessary.

A central principle of the agile model is the delivery of an increment to the
customer after each time box. A few other principles that are central to the
agile model are discussed below.

2.4.1 Essential Idea behind Agile Models
For establishing close contact with the customer during development and
to gain a clear understanding of the domain-specific issues, each agile
project usually includes a customer representative in the team. At the
end of each iteration, stakeholders and the customer representative
review the progress made and re-evaluate the requirements. A
distinguishing characteristics of the agile models is frequent delivery of
software increments to the customer.

Agile model emphasise face-to-face communication over written
documents. It is recommended that the development team size be
deliberately kept small (5–9 people) to help the team members meaningfully
engage in face-to-face communication and have collaborative work
environment. It is implicit then that the agile model is suited to the
development of small projects. However, if a large project is required to be
developed using the agile model, it is likely that the collaborating teams
might work at different locations. In this case, the different teams are needed
to maintain as much daily contact as possible through video conferencing,

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

telephone, e-mail, etc.

The agile model emphasises incremental release of working software as the primary
measure of progress.

The following important principles behind the agile model were publicised
in the agile manifesto in 2001:

Working software over comprehensive documentation.
Frequent delivery of incremental versions of the software to the
customer in intervals of few weeks.
Requirement change requests from the customer are encouraged and
are efficiently incorporated.
Having competent team members and enhancing interactions among
them is considered much more important than issues such as usage of
sophisticated tools or strict adherence to a documented process. It is
advocated that enhanced communication among the development
team members can be realised through face-to-face communication
rather than through exchange of formal documents.
Continuous interaction with the customer is considered much more
important rather than effective contract negotiation. A customer
representatives is required to be a part of the development team, thus
facilitating close, daily co-operation between customers and
developers.

Agile development projects usually deploy pair programming.

In pair programming, two programmers work together at one work station. One types
in code while the other reviews the code as it is typed in. The two programmers
switch their roles every hour or so.

Several studies indicate that programmers working in pairs produce
compact well-written programs and commit fewer errors as compared to
programmers working alone.

Advantages and disadvantages of agile methods
The agile methods derive much of their agility by relying on the tacit
knowledge of the team members about the development project and
informal communications to clarify issues, rather than spending
significant amounts of time in preparing formal documents and

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

reviewing them. Though this eliminates some overhead, but lack of
adequate documentation may lead to several types of problems, which
are as follows:

Lack of formal documents leaves scope for confusion and important
decisions taken during different phases can be misinterpreted at later
points of time by different team members.
In the absence of any formal documents, it becomes difficult to get
important project decisions such as design decisions to be reviewed by
external experts.
When the project completes and the developers disperse, maintenance
can become a problem.

2.4.2 Agile versus Other Models
In the following subsections, we compare the characteristics of the agile
model with other models of development.

Agile model versus iterative waterfall model
The waterfall model is highly structured and systematically steps through
requirements-capture, analysis, specification, design, coding, and
testing stages in a planned sequence. Progress is generally measured in
terms of the number of completed and reviewed artifacts such as
requirement specifications, design documents, test plans, code reviews,
etc. for which review is complete. In contrast, while using an agile
model, progress is measured in terms of the developed and delivered
functionalities. In agile model, delivery of working versions of a
software is made in several increments. However, as regards to
similarity it can be said that agile teams use the waterfall model on a
small scale, repeating the entire waterfall cycle in every iteration.

If a project being developed using waterfall model is cancelled mid-way
during development, then there i s nothing to show from the abandoned
project beyond several documents. With agile model, even if a project is
cancelled midway, it still leaves the customer with some worthwhile code,
that might possibly have already been put into live operation.

Agile versus exploratory programming
Though a few similarities do exist between the agile and exploratory
programming styles, there are vast differences between the two as

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

well. Agile development model’s frequent re- evaluation of plans,
emphasis on face-to-face communication, and relatively sparse use of
documentation are similar to that of the exploratory style. Agile teams,
however, do follow defined and disciplined processes and carry out
systematic requirements capture, rigorous designs, compared to chaotic
coding in exploratory programming.

Agile model versus RAD model
The important differences between the agile and the RAD models are
the following:

Agile model does not recommend developing prototypes, but
emphasises systematic development of each incremental feature. In
contrast, the central theme of RAD is based on designing quick-and-
dirty prototypes, which are then refined into production quality code.
Agile projects logically break down the solution into features that are
incrementally developed and delivered. The RAD approach does not
recommend this. Instead, developers using the RAD model focus on
developing all the features of an application by first doing it badly and
then successively improving the code over time.
Agile teams only demonstrate completed work to the customer. In
contrast, RAD teams demonstrate to customers screen mock ups, and
prototypes, that may be based on simplifications such as table look-ups
rather than actual computations.

2.4.3 Extreme Programming Model
Extreme programming (XP) is an important process model under the
agile umbrella and was proposed by Kent Beck in 1999. The name of
this model reflects the fact that it recommends taking these best
practices that have worked well in the past in program development
projects to extreme levels. This model is based on a rather simple
philosophy: ”If something is known to be beneficial, why not put it to
constant use?” Based on this principle, it puts forward several key
practices that need to be practised to the extreme. Please note that
most of the key practices that it emphasises were already recognised as
good practices for some time.

Good practices that need to be practised to the extreme

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

In the following subsections, we mention some of the good practices that
have been recognised in the extreme programming model and the
suggested way to maximise their use:

Code review: It is good since it helps detect and correct problems most
efficiently. It suggests pair programming as the way to achieve continuous
review. In pair programming, coding is carried out by pairs of programmers.
The programmers take turn in writing programs and while one writes the
other reviews code that is being written.
Testing: Testing code helps to remove bugs and improves its reliability. XP
suggests test-driven development (TDD) to continually write and execute test
cases. In the TDD approach, test cases are written even before any code is
written.
Incremental development: Incremental development is good, since it
helps to get customer feedback, and extent of features delivered is a reliable
indicator of progress. It suggests that the team should come up with new
increments every few days.
Simplicity: Simplicity makes it easier to develop good quality code, as well
as to test and debug it. Therefore, one should try to create the simplest code
that makes the basic functionality being written to work. For creating the
simplest code, one can ignore the aspects such as efficiency, reliability,
maintainability, etc. Once the simplest thing works, other aspects can be
introduced through refactoring.
Design: Since having a good quality design is important to develop a good
quality solution, everybody should design daily. This can be achieved through
refactoring, whereby a working code is improved for efficiency and
maintainability.
Integration testing: It is important since it helps identify the bugs at the
interfaces of different functionalities. To this end, extreme programming
suggests that the developers should achieve continuous integration, by
building and performing integration testing several times a day.

Basic idea of extreme programming model
XP is based on frequent releases (called iteration), during which the
developers implement “user stories”. User stories are similar to use
cases, but are more informal and are simpler. A user story is the
conversational description by the user about a feature of the required

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

system. For example, a user story about a library software can be:

A library member can issue a book.
A library member can query about the availability of a book.
A library member should be able to return a borrowed book.

A user story is a simplistic statement of a customer about a functionality he needs, it
does not mention about finer details such as the different scenarios that can occur,
the precondition (state at which the system) to be satisfied before the feature can be
invoked, etc.

On the basis o f user stories, the project team proposes “metaphors”—a
common vision of how the system would work. The development team may
decide to construct a spike for some feature. A spike, is a very simple program
that is constructed to explore the suitability of a solution being proposed. A
spike can be considered to be similar to a prototype.

X P prescribes several basic activities to be part of the software
development process. We discuss these activities in the following
subsections:
Coding: XP argues that code is the crucial part of any system development
process, since without code it is not possible to have a working system.
Therefore, utmost care and attention need to be placed on coding activity.
However, the concept of code as used in XP has a slightly different meaning
from what is traditionally understood. For example, coding activity includes
drawing diagrams (modelling) that will be transformed to code, scripting a
web-based system, and choosing among several alternative solutions.
Testing: XP places high importance on testing and considers it be the
primary means for developing a fault-free software.
Listening: The developers need to carefully listen to the customers if they
have to develop a good quality software. Programmers may not necessarily
be having an in-depth knowledge of the the specific domain of the system
under development. On the other hand, customers usually have this domain
knowledge. Therefore, for the programmers to properly understand what the
functionality of the system should be, they have to listen to the customer.
Designing: Without proper design, a system implementation becomes too
complex and the dependencies within the system become too numerous and
it becomes very difficult to comprehend the solution, and thereby making
maintenance prohibitively expensive. A good design should result in

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

elimination of complex dependencies within a system. Thus, effective use of a
suitable design technique is emphasised.
Feedback: It espouses the wisdom: “A system staying out of users is trouble
waiting to happen”. It recognises the importance of user feedback in
understanding the exact customer requirements. The time that elapses
between the development of a version and collection of feedback on it is
critical to learning and making changes. It argues that frequent contact with
the customer makes the development effective.
Simplicity: A corner-stone of XP is based on the principle: “build something
simple that will work today, rather than trying to build something that would
take time and yet may never be used”. This in essence means that attention
should be focused on specific features that are immediately needed and
making them work, rather than devoting time and energy on speculations
about future requirements.

XP is in favour of making the solution to a problem as simple as possible. In contrast,
the traditional system development methods recommend planning for reusability and
future extensibility of code and design at the expense of higher code and design
complexity.

Applicability of extreme programming model
The following are some of the project characteristics that indicate the
suitability of a project for development using extreme programming
model:

Projects involving new technology or research pro jects: In this case,
the requirements change rapidly and unforeseen technical problems need to
be resolved.
Small projects: Extreme programming was proposed in the context of small
teams as face to face meeting is easier to achieve.

Project characteristics not suited to development using
agile models

The following are some of the project characteristics that indicate
unsuitability of agile development model for use in a development
project:

Stable requirements: Conventional development models are more
suited to use in projects characterised by stable requirements. For such

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

projects, it is known that few changes, if at all, will occur. Therefore,
process models such as iterative waterfall model that involve making
long-term plans during project initiation can meaningfully be used.
Mission critical or safety critical systems: In the development of
such systems, the traditional SDLC models are usually preferred to
ensure reliability.

2.4.4 Scrum Model
In the scrum model, a project is divided into small parts of work that can
be incrementally developed and delivered over time boxes that are
called sprints. The software therefore gets developed over a series of
manageable chunks. Each sprint typically takes only a couple of weeks
to complete. At the end of each sprint, stakeholders and team members
meet to assess the progress made and the stakeholders suggest to the
development team any changes needed to features that have already
been developed and any overall improvements that they might feel
necessary.

In the scrum model, the team members assume three fundamental roles—
software owner, scrum master, and team member. The software owner is
responsible for communicating the customers vision of the software to the
development team. The scrum master acts as a liaison between the software
owner and the team, thereby facilitating the development work.

2.5 SPIRAL MODEL
This model gets its name from the appearance of its diagrammatic
representation that looks like a spiral with many loops (see Figure
2.10). The exact number of loops of the spiral is not fixed and can vary
from project to project. The number of loops shown in Figure 2.10 is
just an example. Each loop of the spiral is called a phase of the software
process. The exact number of phases through which the product is
developed can be varied by the project manager depending upon the
project risks. A prominent feature of the spiral model is handling
unforeseen risks that can show up much after the project has started. In
this context, please recollect that the prototyping model can be used
effectively only when the risks in a project can be identified upfront
before the development work starts. As we shall discuss, this model
achieves this by incorporating much more flexibility compared to SDLC

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

other models.
While the prototyping model does provide explicit support for risk handling,

the risks are assumed to have been identified completely before the project
start. This is required since the prototype is constructed only at the start of
the project. In contrast, in the spiral model prototypes are built at the start of
every phase. Each phase of the model is represented as a loop in its
diagrammatic representation. Over each loop, one or more features of the
product are elaborated and analysed and the risks at that point of time are
identified and are resolved through prototyping. Based on this, the identified
features are implemented.

Figure 2.10: Spiral model of software development.

Risk handling in spiral model
A risk is essentially any adverse circumstance that might hamper the
successful completion of a software project. As an example, consider a
project for which a risk can be that data access from a remote database
might be too slow to be acceptable by the customer. This risk can be
resolved by building a prototype of the data access subsystem and
experimenting with the exact access rate. If the data access rate is too
slow, possibly a caching scheme can be implemented or a faster

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

communication scheme can be deployed to overcome the slow data
access rate. Such risk resolutions are easier done by using a prototype
as the pros and cons of an alternate solution scheme can evaluated
faster and inexpensively, as compared to experimenting using the
actual software application being developed. The spiral model supports
coping up with risks by providing the scope to build a prototype at every
phase of software development.

2.5.1 Phases of the Spiral Model
Each phase in this model is split into four sectors (or quadrants) as
shown in Figure 2.10. In the first quadrant, a few features of the
software are identified to be taken u p for immediate development
based on how crucial it is to the overall software development. With
each iteration around the spiral (beginning at the center and moving
outwards), progressively more complete versions of the software get
built. In other words, implementation of the identified features forms a
phase.

Quadrant 1: The objectives are investigated, elaborated, and analysed.
Based on this, the risks involved in meeting the phase objectives are
identified. In this quadrant, alternative solutions possible for the phase under
consideration are proposed.
Quadrant 2: During the second quadrant, the alternative solutions are
evaluated to select the best possible solution. To be able to do this, the
solutions are evaluated by developing an appropriate prototype.
Quadrant 3: Activities during the third quadrant consist of developing and
verifying the next level of the software. At the end of the third quadrant, the
identified features have been implemented and the next version of the
software is available.
Quadrant 4: Activities during the fourth quadrant concern reviewing the
results of the stages traversed so far (i.e. the developed version of the
software) with the customer and planning the next iteration of the spiral.

The radius of the spiral at any point represents the cost incurred in the
project so far, and the angular dimension represents the progress made so
far in the current phase.

In the spiral model of development, the project manager dynamically
determines the number of phases as the project progresses. Therefore, in this
model, the project manager plays the crucial role of tuning the model to

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

specific projects.
To make the model more efficient, the different features of the software

that can be developed simultaneously through parallel cycles are identified.
To keep our discussion simple, we shall not delve into parallel cycles in the
spiral model.

Advantages/pros and disadvantages/cons of the spiral
model

There are a few disadvantages of the spiral model that restrict its use to
a only a few types of projects. To the developers of a project, the spiral
model usually appears as a complex model to follow, since it is risk-
driven and is more complicated phase structure than the other models
we discussed. It would therefore be counterproductive to use, unless
there are knowledgeable and experienced staff in the project. Also, it is
not very suitable for use in the development of outsourced projects,
since the software risks need to be continually assessed as it is
developed.

In spite of the disadvantages of the spiral model that we pointed out, for
certain categories of projects, the advantages of the spiral model can
outweigh its disadvantages.

For projects having many unknown risks that might show up as the development
proceeds, the spiral model would be the most appropriate development model to
follow.

In this regard, it is much more powerful than the prototyping model.
Prototyping model can meaningfully be used when all the risks associated
with a project are known beforehand. All these risks are resolved by building
a prototype before the actual software development starts.

Spiral model as a meta model
As compared to the previously discussed models, the spiral model can be
viewed as a meta model, since it subsumes all the discussed models. For
example, a single loop spiral actually represents the waterfall model. The
spiral model uses the approach of the prototyping model by first building a
prototype in each phase before the actual development starts. This
prototypes are used as a risk reduction mechanism. The spiral model
incorporates the systematic step- wise approach of the waterfall model. Also,
the spiral model can be considered as supporting the evolutionary model—the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

iterations along the spiral can be considered as evolutionary levels through
which the complete system is built. This enables the developer to understand
and resolve the risks at each evolutionary level (i.e. iteration along the
spiral).

Case study 2.2
Galaxy Inc. undertook the development of a satellite-based communication between
mobile handsets that can be anywhere on the earth. In contrast to the traditional cell
phones, by using a satellite-based mobile phone a call can be established as long as
both the source and destination phones are in the coverage areas of some base
stations. The system would function through about six dozens of satellites orbiting
the earth. The satellites would directly pick up the signals from a handset and beam
signal to the destination handset. Since the foot prints of the revolving satellites
would cover the entire earth, communication between any two points on the earth,
even between remote places such as those in the Arctic ocean and Antarctica, would
also be possible. However, the risks in the project are many, including determining
how the calls among the satellites can be handed-off when they are themselves
revolving at a very high speed. In the absence of any published material and
availability of staff with experience in development of similar products, many of the
risks cannot be identified at the start of the project and are likely to crop up as the
project progresses. The software would require several million lines of code to be
written. Galaxy Inc. decided to deploy the spiral model for software development
after hiring highly qualified staff. To speed up the software development,
independent parts of the software were developed through parallel cycles on the
spiral. The cost and delivery schedule were refined many times, as the project
progressed. The project was successfully completed after five years from start date

2.6 A COMPARISON OF DIFFERENT LIFE CYCLE MODELS
The classical waterfall model can be considered as the basic model and
all other life cycle models as embellishments of this model. However,
the classical waterfall model cannot be used in practical development
projects, since this model supports no mechanism to correct the errors
that are committed during any of the phases but detected at a later
phase. This problem is overcome by the iterative waterfall model
through the provision of feedback paths.

The iterative waterfall model is probably the most widely used software
development model so far. This model is simple to understand and use.
However, this model is suitable only for well-understood problems, and is not
suitable for development of very large projects and projects that suffer from
large number of risks.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The prototyping model is suitable for projects for which either the user
requirements or the underlying technical aspects are not well understood,
however all the risks can be identified before the project starts. This model is
especially popular for development of the user interface part of projects.

The evolutionary approach is suitable for large problems which can be
decomposed into a set of modules for incremental development and delivery.
This model is also used widely for object-oriented development projects. Of
course, this model can only be used if incremental delivery of the system is
acceptable to the customer.

The spiral model is considered a meta model and encompasses all other life
cycle models. Flexibility and risk handling are inherently built into this model.
The spiral model is suitable for development of technically challenging and
large software that are prone to several kinds of risks that are difficult to
anticipate at the start of the project. However, this model is much more
complex than the other models—this is probably a factor deterring its use in
ordinary projects.

Let us now compare the prototyping model with the spiral model. The
prototyping model can be used if the risks are few and can be determined at
the start of the project. The spiral model, on the other hand, is useful when
the risks are difficult to anticipate at the beginning of the project, but are
likely to crop up as the development proceeds.

Let us compare the different life cycle models from the viewpoint of the
customer. Initially, customer confidence is usually high on the development
team irrespective of the development model followed. During the lengthy
development process, customer confidence normally drops off, as no working
software is yet visible. Developers answer customer queries using technical
slang, and delays are announced. This gives rise to customer resentment. On
the other hand, an evolutionary approach lets the customer experiment with
a working software much earlier than the monolithic approaches. Another
important advantage of the incremental model is that it reduces the
customer’s trauma of getting used to an entirely new system. The gradual
introduction of the software via incremental phases provides time to the
customer to adjust to the new software. Also, from the customer’s financial
view point, incremental development does not require a large upfront capital
outlay. The customer can order the incremental versions as and when he can
afford them.

2.6.1 Selecting an Appropriate Life Cycle Model for a Pro ject

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

We have discussed the advantages and disadvantages of the various life
cycle models. However, how to select a suitable life cycle model for a
specific project? The answer to this question would depend on several
factors. A suitable life cycle model can possibly be selected based on an
analysis of issues such as the following:

Characteristics of the software to be developed: The choice of the life
cycle model to a large extent depends on the nature of the software that is
being developed. For small services projects, the agile model is favoured. On
the other hand, for product and embedded software development, the
iterative waterfall model can be preferred. An evolutionary model is a
suitable model for object-oriented development projects.
Characteristics of the development team: The skill-level of the team
members is a significant factor in deciding about the life cycle model to use.
If the development team is experienced in developing similar software, then
even an embedded software can be developed using an iterative waterfall
model. If the development team is entirely novice, then even a simple data
processing application may require a prototyping model to be adopted.
Characteristics of the customer: If the customer is not quite familiar with
computers, then the requirements are likely to change frequently as it would
be difficult to form complete, consistent, and unambiguous requirements.
Thus, a prototyping model may be necessary to reduce later change requests
from the customers.

SUMMARY

During the development of any type of software, adherence to a
suitable process model has become universally accepted by software
development organisations. Adoption of a suitable life cycle model is
now accepted as a primary necessity for successful completion of
projects.
We discussed only the central ideas behind some important process
models. Good software development organisations carefully and
elaborately document the precise process model they follow and
typically include the following in the document:

– Identification of the different phases.
– Identification of the different activities in each phase and the order in
which they are carried out.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

– The phase entry and exit criteria for different phases.
– The methodology followed to carry out the different activities.

Adherence to a software life cycle model encourages the team
members to perform various development activities in a systematic
and disciplined manner. It also makes management of software
development projects easier.
The principle of detecting errors as close to their point of introduction
as possible is known as phase containment of errors. Phase
containment minimises the cost to fix errors.
The classical waterfall model can be considered as the basic model and
all other life cycle models are embellishments of this model. Iterative
waterfall model has been the most widely used life cycle model so far,
though the usage of RAD and agile models have been increasing.
Different life cycle models have their own advantages and
disadvantages. Therefore, an appropriate life cycle model should be
chosen for the problem at hand. After choosing a basic life cycle model,
software development organisations usually tailor the standard life
cycle models according to their needs.
Even though an organisation may follow whichever life cycle model is
appropriate to a project, the final document should reflect as if the
software was developed using the classical waterfall model. This
makes it easier for the maintainers to understand the software
documents.

EXERCISES
1. Choose the correct option for each of the following questions:

(a) Which one of the following disadvantages may be experienced when
a systematic development process model is adopted in preference over
a build-and-fix style of development?
(i) Increased documentation overhead
(ii) Increased development cost
(iii) Decreased maintainability
(iv) Increased development time

(b) A software process model represents which one of the following:
(i) The way in which software is developed (ii) The way in which
software processes data (iii) The way in which software is used
(iv) The way in which software may fail

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(c) In the waterfall SDLC model, unit testing is carried out during which
one of the following phases?
(i) Coding (ii) Testing (iii) Design
(iv) Maintenance

(d) Which of the following activity spans all stages of a software
development life cycle (SDLC)?
(i) Coding
(ii) Testing
(iii) Project management
(iv) Design

(e) The operation phase in the waterfall model is a synonym for which
one of the following phases:
(i) Coding and unit testing phase
(ii) Integration and system testing phase
(iii) Maintenance phase
(iv) Design phase

(f) The implementation phase in the waterfall model is a synonym for
which one of the following phases:
(i) Coding and unit testing phase
(ii) Integration and system testing phase
(iii) Maintenance phase
(iv) Design phase

(f) Unit testing is carried out in which phase of the waterfall model:
(i) Implementation phase
(ii) Testing phase
(iii) Maintenance phase
(iv) Design phase

(h) Which one of the following phases accounts for the the maximum
effort during development of a typical software?
(i) Coding
(ii) Testing
(iii) Designing
(iv) Specification

(i) Which of the following is not a standard software development
process model?
(i) Waterfall Model
(ii) Watershed Model
(iii) RAD Model

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(iv) V-Model
(j) Which one of the following feedback paths is not present in an

iterative waterfall model?
(i) Design phase to feasibility study phase
(ii) Implementation phase to design phase
(iii) Implementation phase to requirements specification phase
(iv) Design phase to requirements specification phase

(k) Which one of the following is a suitable SDLC model for developing a
moderate- sized software for which the customer is not clear about his
exact requirements?
(i) RAD model
(ii) V-model
(iii) Iterative waterfall model
(iv) Classical waterfall model

(l) Which one of the following SDLC models would be suitable for use in a
project involving customisation of a computer communication package?
Assume that the project would be manned by experience personnel.
The schedule for the project has been very aggressively set?
(i) Spiral model
(ii) Iterative waterfall model
(iii) RAD model
(iv) Agile model

(m) Which one of the following life cycle models lacks the characteristics
of iterative software development?
(i) Spiral model
(ii) Prototyping model
(iii) Classical waterfall model
(iv) Evolutionary model

(n) Which one of the following life cycle models does not involve
constructing a prototype any time during software development?
(i) Spiral model
(ii) Prototyping model
(iii) RAD model
(iv) Evolutionary model

(o) GUI part of an application software is typically developed using which
life cycle model?
(i) Iterative waterfall model
(ii) Spiral model

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(iii) Prototyping model
(iv) Evolutionary model

(p) Which of the following is not a characteristic of the agile model of
software development?
(i) Prototype construction
(ii) Evolutionary development
(iii) Iterative development
(iv) Periodic delivery of working software

(q) Which one of the following SDLC models can be considered to be
more effective for determination of the exact customer requirements?
(i) Iterative waterfall model
(ii) V-model
(iii) Prototyping model
(iv) Classical waterfall model

(r) Change requests from customers later in the development cycle are
easiest to handle in which of the following life cycle models?
(i) Iterative waterfall model
(ii) Prototyping model
(iii) V-model
(iv) Evolutionary model

(s) Assume that you are the project manager of a development project
for a data processing application in which the user requirements for the
GUI part are not very clear. Which life cycle model would you use to
develop the GUI part?
(i) Classical waterfall model
(ii) Iterative waterfall model
(iii) Prototyping model
(iv) Spiral model

(t) The angular dimension of the spiral model does not represent which
one of the followings?
(i) Cost incurred so far
(ii) Number of features implemented so far
(iii) Progress in the implementation of the current feature
(iv) Number of risks that have been resolved so far

(u) The radial dimension of the spiral model represents which one of the
followings?
(i) Cost incurred so far
(ii) Number of features implemented so far

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(iii) Progress in the implementation of the current feature
(iv) Number of risks that have been resolved so far

2. What do you understand by the term software life cycle? Why is it
necessary to model software life cycle and to document it?

3. What do you understand by the term software development life cycle
model (SDLC)?
What problems might a software development organisation face if it is
not following any SDLC for development of a large-sized software?

4. What problems would a software development organisation face if it
does not have a documented process model, and therefore follows only
an informal one?

5. Are the terms SDLC and software development process synonymous?
Explain your answer.

6. Why is it important for an organisation to properly document its
development process?

7. (a) Mention the major activities that are undertaken during the
development of a software software.
(b) Name an activity that spans all the development phases.

8. What do you mean by a software development process? What is the
difference between a methodology and a process? Explain your answer
using a suitable example.

9. Which are the major phases in the waterfall model of software
development? Which phase consumes the maximum effort for developing
a typical software?

10. Why is the classical waterfall model called an idealistic development
model? Does this model of development has any practical use at all?

11. Consider the following assertion: “The classical waterfall model is an
idealistic model”.
Based on this assertion, answer the following:
(a) Justify why the above assertion is true.
(b) Even if the classical waterfall model is an idealistic model, is there

any practical use of this model at all? Explain your answer.
12. What is the difference between programming-in-the-small and

programming-in- the-large? Is using waterfall SDLC model a good idea for
programming-in-the-small? Explain your answer.

13. Draw a schematic diagram to represent the iterative waterfall model of
software development. On your diagram represent the following:
(a) The phase entry and exit criteria for each phase.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(b) The deliverables that need to be produced at the end of each phase.
14. What are the objectives of the feasibility study phase of software

development? Explain the important activities that are carried out during
the feasibility study phase of a software development project. Who
carries out these activities? Mention suitable phase entry and exit criteria
for this phase.

15. Give an example of a software development project for which the
iterative waterfall model is not suitable. Briefly justify your answer.

16. In practical software development projects using iterative waterfall
SDLC, why do different phases overlap? Explain the effort distribution
over different phases.

17. Identify five reasons as to why the customer requirements may change
after the requirements phase is complete and the SRS document has
been signed off.

18. Identify the criteria based on which a suitable life cycle model can be
chosen for a given project development. Illustrate your answer using
suitable examples.

19. Briefly explain the important differences and similarities between the
incremental and evolutionary models of SDLCs.

20. What do you understand by “build-and-fix” style of software
development? Diagra- mmatically depict the typical activities in this style
of development and their ordering. Identify at least four major problems
that would arise, if a large professional software development project is
undertaken using a “build-and-fix” style of software development.

21. State whether the following statements are TRUE o r FALSE. Give
reasons behind your answers.
(a) If the phase containment of errors principle is not followed during

software development, then development cost would increase.
(b) Evolutionary life cycle model would be appropriate to develop a

software that appears to be beset with a large number of risks.
(c) The number of phases in the spiral life cycle model is not fixed and is

normally determined by the project managers as the project
progresses.

(d) The primary purpose of phase containment of errors is to develop an
error-free software.

(e) Development of a software using the prototyping life cycle model is
always more expensive than development of the same software using
the iterative waterfall model due to the additional cost incurred to

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

construct a throw-away prototype.
(f) When a large software is developed by a commercial software

development house using the iterative waterfall model, there do not
exist precise points of time at which transitions from one phase to
another take place.

(g) Among all phases of software development, an undetected error from
the design phase that ultimately gets detected during the system
acceptance test costs the maximum.

(h) If a team developing a moderate sized software product does not
care about phase containment of errors, it can still produce a reliable
software, al beit at a higher cost compared to the case where it
attempts phase containment of errors.

(i) The angular dimension in a spiral model of software development
indicates the total cost incurred in the project till that time.

(j) When the spiral model is used in a software development project, the
number of loops in the spiral is fixed by the project manager during the
project planning stage.

(k) RAD would be a suitable life cycle model for developing a commercial
operating system.

(l) RAD is a suitable process model to use for developing a safety-critical
application such as a controller for a nuclear reactor.

22. What do you understand by the “99 per cent complete” syndrome that
software project managers sometimes face? What are its underlying
causes? What problems does it create for project management? What are
its remedies?

23. While using the iterative waterfall model to develop a commercial
software for an industrial application, discuss how the effort spent on the
different phases is spread over time.

24. Which life cycle model would you follow for developing software for
each of the following applications? Mention the reasons behind your
choice of a particular life cycle model.
(a) A well-understood data processing application.
(b) A new software that would connect computers through satellite

communication.
Assume that your team has no previous experience in developing
satellite communication software.

(c) A software that would function as the controller of a telephone
switching system.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(d) A new library automation software that would link various libraries in
the city.

(e) An extremely large software that would provide, monitor, and control
cellular communication among its subscribers using a set of revolving
satellites.

(f) A new text editor.
(g) A compiler for a new language.
(h) An object-oriented software development effort.
(i) The graphical user interface part of a large software.

25. Briefly explain the V SDLC model and answer the following specific
questions pertaining to the V SDLC.
(a) What are the strengths and weaknesses of the V-model?
(b) Outline the similarities and differences of the V-model with the

iterative waterfall model.
(c) Give an example of a development project for which V-model can be

considered appropriate and also give an example of a project for which
it would be clearly inappropriate.

26. Briefly explain the V SDLC model. Identify why for developing safety-
critical software, the V SDLC model is usually considered suitable.

27. With respect to the prototyping model for software development,
answer the following: (a) What is a prototype?
(b) Is it necessary to develop a prototype for all types of projects?
(c) If you answer to part (b) of the question is no, then mention under

what circumstances is it beneficial to construct a prototype.
(d) If your answer to part (b) of the question is yes, then explain does

construction of a prototype always increase the overall cost of software
development.

28. If the prototyping model is being used in a development project of
moderate size, is it necessary to develop an SRS document? Justify your
answer.

29. Consider that a software development project that is beset with many
risks. But, assume that it is not possible to anticipate all the risks in the
project at the start of the project and some of the risks can only be
identified much after the development is underway. As the project
manager recommend the use of the prototyping or the spiral model?
Explain your answer.

30. What are the major advantages of first constructing a working
prototype before starting to develop the actual software? What are the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

disadvantages of this approach?
31. Explain how a software development effo r t is initiated a n d finally

terminated in the spiral model.
32. Suppose a travel agency needs a software for automating its book-

keeping activities. The set of activities to be automated are rather simple
and are at present being carried out manually. The travel agency has
indicated that it is unsure about the type of user interface which would be
suitable for its employees and its customers. Would it be proper for a
development team to use the spiral model for developing this software?

33. Explain why the spiral life cycle model is considered to be a meta
model.

34. Both the prototyping model as well as the spiral model have been
designed to handle risks. Identify how exactly risk is handled in each.
How do these two models can be compared with respect to their risk
handling capabilities?

35. Explain with suitable examples, the types of software development for
which the spiral model is suitable. Is the number of loops of the spiral
fixed for different development projects? If not, explain how the number
of loops in the spiral is determined.

36. Discuss the relative merits of developing a throw-away prototype to
resolve risks versus refining a developed prototype into the final software.

37. Answer the following questions, using one sentence for each:
(a) How are the risks associated with a project handled in the spiral

model of software development?
(b) Which types of risks are be better handled using the spiral model

compared to the prototyping model?
(c) Give an example of a project where the spiral model can be

meaningfully be deployed.
38. Compare the relative advantages of using the iterative waterfall model

and t he spiral model of software development for developing an MIS
application. Explain with the help of one suitable example each, the type
of project for which you would use the waterfall model of software
development, and the type of project for which you would use the spiral
model.

39. Briefly discuss the evolutionary process model. Explain using suitable
examples the types of software development projects for which the
evolutionary life cycle model is suitable. Compare the advantages and
disadvantages of this model with the iterative waterfall model.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

40. Assume that a software development company is already experienced
in developing payroll software and has developed similar software for
several customers (organisations). Assume that the software
development company has received a request from a certain customer
(organisation), which was still using manually processing of its pay rolls.
For developing a payroll software for this organisation, which life cycle
model should be used? Justify your answer.

41. Explain why it may not be prudent to use the spiral model in the
development of any large software.

42. Instead of having a one time testing of a software at the end of its
development, why are three different levels of testing—unit testing,
integration testing, and system testing—are necessary? What is the main
purpose of each of these different levels of testing?

43. What do you understand by the term phase containment of errors? Why
is phase containment of errors is considered to be important? How can
phase containment of errors be achieved in a software development
project?

44. Irrespective of whichever life cycle model is followed for developing a
software, why is it necessary for the final documents to describe the
software as if it were developed using the classical waterfall model?

45. What are the major shortcomings o f the iterative waterfall model?
Name the life cycle models that overcome any of the specific
shortcomings. How are the shortcomings overcome in those models?

46. For which types o f development projects is the V-model appropriate?
Briefly explain the V-model and point out its strengths and weaknesses.

47. Identify the main motivation and goals behind the development of the
RAD model. How does the model help achieve the identified goals?

48. Explain the following aspects of rapid application development (RAD)
SDLC model:
](a) What is a time box in a RAD model?
(b) How does RAD facilitate faster development?
(c) Identify the key differences between the RAD model and the

prototyping model.
(d) Identify the types of projects for which RAD model is suitable and the

types for which it is not suitable.
49. Suggest a suitable life-cycle model for a software project which your

organisation has undertaken on behalf of certain customer who is unsure
of his requirements and is likely to change his requirements frequently,

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

since the business process of the customer (organisation) is of late
changing rapidly. Give the reasonings behind your answer.

50. Draw a labelled schematic diagram to represent the spiral model of
software development.

Is the number of loops of the spiral fixed? If your answer is affirmative,
write down the number of the loops that the spiral has. If your answer is
negative, explain how and on what basis the number of loops of the spiral
can be determined.

51. Assume that you are the project manager of a development team that
is using the iterative waterfall model for developing a certain software.
Would you recommend that the development team should start a
development phase only after the previous phase is fully complete?
Explain your answer.

52. Identify the major differences between the iterative and evolutionary
SDLCs.

53. Explain how the characteristics of the product, the development team,
and the customer influence the selection of an appropriate SDLC for a
project.

54. With respect to the rapid application development (RAD) model,
answer the following:
(a) Explain the different life cycle activities that are carried out in the

RAD model.
(b) How does RAD model help accommodate change requests late in the

development.
(c) How does RAD help in faster software development.
(d) Give examples of two projects for which RAD would be a suitable

model for development.
(e) Point out the advantages and disadvantages of the RAD model as

compared to (i) prototyping model and (ii) evolutionary model.
(f) Point a disadvantage of the RAD model as compared to iterative

waterfall model.
(g) Identify the characteristics that make a project suited to RAD style of

development.
(h) Identify the characteristics that make a project unsuited to RAD style

of development.
55. Identified the important factors that influence the choice of a suitable

SDLC model for a software development project.
56. Explain the important features of the agile software development

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

model.
(a) Compare the advantages and disadvantages of the agile model with

iterative waterfall and the exploratory programming model.
(b) Is the agile life cycle model suitable for development of embedded

software? Briefly justify your answer.
57. Briefly explain the agile software development model. Give an example

of a project for which the agile model would be suitable and one project
project for which the agile model would not be appropriate.

58. Explain the similarities in the objectives and practices of the RAD, agile,
and extreme programming (XP) models of software development. Also
explain the dissimilarities among these three models.

59. Briefly discuss the RAD model. Identify the main advantages of RAD
model as compared to the iterative waterfall model. How does RAD
model achieve faster development as compared to iterative waterfall
model?

60. Compare the relative advantages of RAD, iterative waterfall, and the
evolutionary models of software development.

61. Identify and explain the important best practices that have been
incorporated in the extreme programming model.

62. Using one or two sentences explain the important shortcomings of the
classical waterfall model that RAD, agile, and extreme programming (XP)
models of software development address.

63. Briefly explain the extreme programming (XP) SDLC model. Identify the
key principles that need to be practised to the extreme in XP. What is a
spike in XP? Why is it required?

64. Identify how the agile SDLCs achieve reductions to the development
time and cost. Are there any pitfalls of achieving cost and time reductions
this way?

65. Suppose a development project has been undertaken by a company for
customising one of its existing software on behalf of a specific customer.
Identify two major advantages of using an agile model over the iterative
waterfall model.

66. Which life cycle model would you recommend for developing an object-
oriented software?
Justify your answer.

67. What do you understand by pairwise programming? What are its
advantages over traditional programming?

68. Graphically represent the activities that are undertaken in a typical

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

build and fix style of software development and show the ordering among
the activities.

69. Analyse and graphically represent the life cycle model of an open
source software such as Linux or Apache.

1 Dictionary meaning of agile: To move quickly

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Chapter
3

SOFTWARE PROJECT
MANAGEMENT

Effective project management is crucial to the success of any software
development project. In the past, several projects have failed not for
want of competent technical professionals neither for lack of resources,
but due to the use of faulty project management practices. Therefore, it
is important to carefully learn the latest software project management
techniques.

Software project management is a very vast topic. In fact, a full semester
teaching can be conducted on effective techniques for software project
management. However, in this chapter, we shall restrict ourselves to only
some basic issues. Let us first understand what exactly is the principal goal of
software project management.

The main goal of software project management is to enable a group of developers to
work effectively towards the successful completion of a project.

As can be inferred from the above definition, project management involves
use of a set of techniques and skills to steer a project to success. Before
focusing on these project management techniques, let us first figure out who
should be responsible for managing a project. A project manager is usually an
experienced member of the team who essentially works as the administrative
leader of the team. For small software development projects, a single
member of the team assumes the responsibilities for both project
management and technical management. For large projects, a different
member of the team (other than the project manager) assumes the
responsibility of technical leadership. The responsibilities of the technical
leader includes addressing issues such as which tools and techniques to use
in the project, high-level solution to the problem, specific algorithms to use,
etc.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

In this chapter, we first investigate why management of software projects
is much more complex than managing many other types of projects.
Subsequently, we outline the main responsibilities and activities of a software
project manager. Next, we provide an overview of the project planning
activity. We then discuss estimation and scheduling techniques. Finally, we
provide an overview of the risk and configuration management activities.

3.1 SOFTWARE PROJECT MANAGEMENT COMPLEXITIES
Management of software projects is much more complex than
management of many other types of projects. The main factors
contributing to the complexity of managing a software project, as
identified by [Brooks75], are the following:

Invisibility: Software remains invisible, until its development is complete
and it is operational. Anything that is invisible, is difficult to manage and
control. Consider a house building project. For this project, the project
manger can very easily assess the progress of the project through a visual
examination of the building under construction. Therefore, the manager can
closely monitor the progress of the project, and take remedial actions
whenever he finds that the progress is not as per plan. In contrast, it
becomes very difficult for the manager of a software project to assess the
progress of the project due to the invisibility of software. The best that he
can do perhaps is to monitor the milestones that have been completed by the
development team and the documents that have been produced—which are
rough indicators of the progress achieved.

Invisibility of software makes it difficult to assess the progress of a project and is a
major cause for the complexity of managing a software project.

Changeability: Because the software part of any system is easier to change
as compared to the hardware part, the software part is the one that gets
most frequently changed. This is especially true in the later stages of a
project. As far as hardware development is concerned, any late changes to
the specification of the hardware system under development usually amounts
to redoing the entire project. This makes late changes to a hardware project
prohibitively expensive to carry out. This possibly is a reason why
requirement changes are frequent in software projects. These changes
usually arise from changes to the business practices, changes to the
hardware or underlying software (e.g. operating system, other applications),
or just because the client changes his mind.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Frequent changes to the requirements and the invisibility of software are possibly the
two major factors making software project management a complex task.

Complexity: Even a moderate sized software has millions of parts
(functions) that interact with each other in many ways—data coupling, serial
and concurrent runs, state transitions, control dependency, file sharing, etc.
Due to the inherent complexity of the functioning of a software product in
terms of the basic parts making up the software, many types of risks are
associated with its development. This makes managing these projects much
more difficult as compared to many other kinds of projects.
Uniqueness: Every software project is usually associated with many unique
features or situations. This makes every project much different from the
others. This is unlike projects in other domains, such as car manufacturing or
steel manufacturing where the projects are more predictable. Due to the
uniqueness of the software projects, a project manager in the course of a
project faces many issues that are quite unlike the others he had
encountered in the past. As a result, a software project manager has to
confront many unanticipated issues in almost every project that he manages.
Exactness of the solution: Mechanical components such as nuts and bolts
typically work satisfactorily as long as they are within a tolerance of 1 per
cent or so of their specified sizes. However, the parameters of a function call
in a program are required to be in complete conformity with the function
definition. This requirement not only makes it difficult to get a software
product up and working, but also makes reusing parts of one software
product in another difficult. This requirement of exact conformity of the
parameters of a function introduces additional risks and contributes to the
complexity of managing software projects.
Team-oriented and intellect-intensive work: Software development
projects are akin to research projects in the sense that they both involve
team-oriented, intellect-intensive work. In contrast, projects in many domains
are labour-intensive and each member works in a high degree of autonomy.
Examples of such projects are planting rice, laying roads, assembly-line
manufacturing, constructing a multi-storeyed building, etc. In a software
development project, the life cycle activities not only highly intellect-
intensive, but each member has to typically interact, review, and interface
with several other members, constituting another dimension of complexity of
software projects.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

3 . 2 RESPONSIBILITIES OF A SOFTWARE PROJECT
MANAGER

In this section, we examine the principal job responsibilities of a project
manager and the skills necessary to accomplish those.

3.2.1 Job Responsibilities for Managing Software Projects
A software project manager takes the overall responsibility of steering a
project to success. This surely is a very hazy job description. In fact, it is very
difficult to objectively describe the precise job responsibilities of a project
manager. The job responsibilities of a project manager ranges from invisible
activities like building up of team morale to highly visible customer
presentations. Most managers take the responsibilities for project proposal
writing, project cost estimation, scheduling, project staffing, software process
tailoring, project monitoring and control, software configuration management,
risk management, managerial report writing and presentation, and interfacing
with clients. These activities are certainly numerous and varied. We can still
broadly classify these activities into two major types—project planning and
project monitoring and control.

We can broadly classify a project manager’s varied responsibilities into the following
two major categories:
• Project planning, and
• Project monitoring and control.

In the following subsections, we give an overview of these two classes of
responsibilities. Later on, we shall discuss them in more detail.
Project planning: Project planning is undertaken immediately after the
feasibility study phase and before the starting of the requirements analysis
and specification phase.

Project planning involves estimating several characteristics of a project and then
planning the project activities based on these estimates made.

The initial project plans are revised from time to time as the project
progresses and more project data become available.
Project monitoring and control: Project monitoring and control activities
are undertaken once the development activities start.

The focus of project monitoring and control activities is to ensure that the software
development proceeds as per plan.

While carrying out project monitoring and control activities, a project

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

While carrying out project monitoring and control activities, a project
manager may sometimes find it necessary to change the plan to cope up with
specific situations at hand.

3.2.2 Skills Necessary for Managing Software Projects
A theoretical knowledge of various project management techniques is
certainly important to become a successful project manager. However, a
purely theoretical knowledge of various project management techniques
would hardly make one a successful project manager. Effective software
project management calls for good qualitative judgment and decision taking
capabilities. In addition to having a good grasp of the latest software project
management techniques such as cost estimation, risk management, and
configuration management, etc., project managers need good communication
skills and the ability to get work done. Some skills such as tracking and
controlling the progress of the project, customer interaction, managerial
presentations, and team building are largely acquired through experience.
Never the less, the importance of a sound knowledge of the prevalent project
management techniques cannot be overemphasized. The objective of the rest
of this chapter is to introduce the reader to the same.

Three skills that are most critical to successful project management are the following:
• Knowledge of project management techniques.
• Decision taking capabilities.
• Previous experience in managing similar projects.

With this brief discussion on the overall responsibilities of a software
project manager and the skills necessary to accomplish these, in the next
section we examine some important issues in project planning.

3.3 PROJECT PLANNING
Once a project has been found to be feasible, software project managers
undertake project planning.

Project planning is undertaken and completed before any development activity starts.

Project planning requires utmost care and attention since commitment to
unrealistic time and resource estimates result in schedule slippage. Schedule
delays can cause customer dissatisfaction and adversely affect team morale.
It can even cause project failure. For this reason, project planning is
undertaken by the project managers with utmost care and attention.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

However, for effective project planning, in addition to a thorough knowledge
of the various estimation techniques, past experience is crucial.

During project planning, the project manager performs the following
activities. Note that we have given only a very brief description of the
activities. We discuss these in the later section in more detail.
Estimation: The following project attributes are estimated.

• Cost: How much is it going to cost to develop the software product?
• Duration: How long is it going to take to develop the product?
• Effort: How much effort would be necessary to develop the product?
The effectiveness of all later planning activities such as scheduling and

staffing are dependent on the accuracy with which these three estimations
have been made.
Scheduling: After all the necessary project parameters have been
estimated, the schedules for manpower and other resources are developed.
Staffing: Staff organisation and staffing plans are made.
Risk management : This includes risk identification, analysis, and
abatement planning.
Miscellaneous plans: This includes making several other plans such as
quality assurance plan, and configuration management plan, etc.

Figure 3.1 shows the order in which the planning activities are undertaken.
Observe that size estimation is the first activity that a project manager
undertakes during project planning.

Size is the most fundamental parameter based on which all other estimations and
project plans are made.

As can be seen from Figure 3.1, based on the size estimation, the effort
required to complete a project and the duration over which the development
is to be carried out are estimated. Based on the effort estimation, the cost of
the project is computed. The estimated cost forms the basis on which price
negotiations with the customer is carried out. Other planning activities such
as staffing, scheduling etc. are undertaken based on the effort and duration
estimates made. In Section 3.7, w e shall discuss a popular technique for
estimating the project parameters. Subsequently, we shall discuss the
staffing and scheduling issues.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 3.1: Precedence ordering among planning activities.

3.3.1 Sliding Window Planning
It is usually very difficult to make accurate plans for large projects at

project initiation. A part of the difficulty arises from the fact that large
projects may take several years to complete. As a result, during the span of
the project, the project parameters, scope of the project, project staff, etc.,
often change drastically resulting in the initial plans going haywire. In order
to overcome this problem, sometimes project managers undertake project
planning over several stages. That is, after the initial project plans have been
made, these are revised at frequent intervals. Planning a project over a
number of stages protects managers from making big commitments at the
start of the project. This technique of staggered planning is known as sliding
window planning.

In the sliding window planning technique, starting with an initial plan, the project is
planned more accurately over a number of stages.

At the start of a project, the project manager has incomplete knowledge
about the nitty-gritty of the project. His information base gradually improves
as the project progresses through different development phases. The
complexities of different project activities become clear, some of the
anticipated risks get resolved, and new risks appear. The project parameters
are re-estimated periodically as understanding grows and also aperiodically
as project parameters change. By taking these developments into account,
the project manager can plan the subsequent activities more accurately and
with increasing levels of confidence.

3.3.2 The SPMP Document of Project Planning

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Once project planning is complete, project managers document their
plans in a software project management plan (SPMP) document. Listed
below are the different items that the SPMP document should discuss.
This list can be used as a possible organisation of the SPMP document.

Organisation of the software project management plan
(SPMP) document

1. Introduction
(a) Objectives
(b) Major Functions
(c) Performance Issues
(d) Management and Technical Constraints

2. Project estimates
(a) Historical Data Used
(b) Estimation Techniques Used
(c) Effort, Resource, Cost, and Project Duration Estimates

3. Schedule
(a) Work Breakdown Structure
(b) Task Network Representation
(c) Gantt Chart Representation
(d) PERT Chart Representation

4. Project resources
(a) People
(b) Hardware and Software
(c) Special Resources

5. Staff organisation
(a) Team Structure
(b) Management Reporting

6. Risk management plan
(a) Risk Analysis
(b) Risk Identification
(c) Risk Estimation
(d) Risk Abatement Procedures

7. Project tracking and control plan
(a) Metrics to be tracked
(b) Tracking plan
(c) Control plan

8. Miscellaneous plans

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(a) Process Tailoring
(b) Quality Assurance Plan
(c) Configuration Management Plan
(d) Validation and Verification
(e) System Testing Plan
(f) Delivery, Installation, and Maintenance Plan

3.4 METRICS FOR PROJECT SIZE ESTIMATION
As already mentioned, accurate estimation of project size is central to
satisfactory estimation of all other project parameters such as effort,
completion time, and total project cost. Before discussing the available
metrics to estimate the size of a project, let us examine what does the
term “project size” exactly mean. The size of a project is obviously not
the number of bytes that the source code occupies, neither is it the size
of the executable code.

The project size is a measure of the problem complexity in terms of the
effort and time required to develop the product.

Currently, two metrics are popularly being used to measure size—lines of
code (LOC) and function point (FP). Each of these metrics has its own
advantages and disadvantages. These are discussed in the following
subsection. Based on their relative advantages, one metric may be more
appropriate than the other in a particular situation.

3.4.1 Lines of Code (LOC)
LOC is possibly the simplest among all metrics available to measure
project size. Consequently, this metric is extremely popular. This metric
measures the size of a project by counting the number of source
instructions in the developed program. Obviously, while counting the
number of source instructions, comment lines, and header lines are
ignored.

Determining the LOC count at the end of a project is very simple. However,
accurate estimation of LOC count at the beginning of a project is a very
difficult task. One can possibly estimate the LOC count at the starting of a
project, only by using some form of systematic guess work. Systematic
guessing typically involves the following. The project manager divides the
problem into modules, and each module into sub-modules and so on, until
the LOC of the leaf-level modules are small enough to be predicted. To be
able to predict the LOC count for the various leaf-level modules sufficiently

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

accurately, past experience in developing similar modules is very helpful. By
adding the estimates for all leaf level modules together, project managers
arrive at the total size estimation. In spite of its conceptual simplicity, LOC
metric has several shortcomings when used to measure problem size. We
discuss the important shortcomings of the LOC metric in the following
subsections:

LOC is a measure of coding activity alone. A good problem size
measure should consider the total effort needed to carry out various life cycle
activities (i.e. specification, design, code, test, etc.) and not just the coding
effort. LOC, however, focuses on the coding activity alone—it merely
computes the number of source lines in the final program. We have already
discussed in Chapter 2 that coding is only a small part of the overall software
development effort.

The implicit assumption made by the LOC metric is that the overall product
development effort is solely determined from the coding effort alone is flawed.

The presumption that the total effort needed to develop a project is
proportional to the coding effort is easily countered by noting the fact that
even when the design or testing issues are very complex, the code size might
be small and vice versa. Thus, the design and testing efforts can be grossly
disproportional to the coding effort. Code size, therefore, is obviously an
improper indicator of the problem size.
LOC count depends on the choice of specific instructions: LOC gives a
numerical value of problem size that can vary widely with coding styles of
individual programmers. By coding style, we mean the choice of code layout,
the choice of the instructions in writing the program, and the specific
algorithms used. Different programmers may lay out their code in very
different ways. For example, one programmer might write several source
instructions on a single line, whereas another might split a single instruction
across several lines. Unless this issue is handled satisfactorily, there is a
possibility of arriving at very different size measures for essentially identical
programs. This problem can, to a large extent, be overcome by counting the
language tokens in a program rather than the lines of code. However, a more
intricate problem arises due to the specific choices of instructions made in
writing the program. For example, one programmer may use a switch
statement in writing a C program and another may use a sequence of if ...
then ... else ... statements. Therefore, the following can easily be concluded.

Even for the same programming problem, different programmers might come up with

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

programs having very different LOC counts. This situation does not improve, even if
language tokens are counted instead of lines of code.

LOC measure correlates poorly with the quality and efficiency of the
code: Larger code size does not necessarily imply better quality of code or
higher efficiency. Some programmers produce lengthy and complicated code
as they do not make effective use of the available instruction set or use
improper algorithms. In fact, it is true that a piece of poor a nd sloppily
written piece of code can have larger number of source instructions than a
piece t h a t is efficient and has been thoughtfully written. Calculating
productivity as LOC generated per man-month may encourage programmers
to write lots of poor quality code rather than fewer lines of high quality code
achieve the same functionality.
LOC metric penalises use of higher-level programming languages
and code reuse: A paradox is that if a programmer consciously uses several
library routines, then the LOC count will be lower. This would show up as
smaller program size, and in turn, would indicate lower effort! Thus, if
managers use the LOC count to measure the effort put in by different
developers (that is, their productivity), they would be discouraging code
reuse by developers. Modern programming methods such as object-oriented
programming and reuse of components makes the relationships between LOC
and other project attributes even less precise.
LOC metric measures the lexical complexity of a program and does
not address the more important issues of logical and structural
complexities: Between two programs with equal LOC counts, a program
incorporating complex logic would require much more effort to develop than a
program with very simple logic. To realise why this is so, imagine the effort
that would be required to develop a program having multiple nested loops
and decision constructs and compare that with another program having only
sequential control flow.

It is very difficult to accurately estimate LOC of the final program
from problem specification: As already discussed, at the project initiation
time, it is a very difficult task to accurately estimate the number of lines of
code (LOC) that the program would have after development. The LOC count
can accurately be computed only after the code has fully been developed.
Since project planning is carried out even before any development activity
starts, the LOC metric is of little use to the project managers during project
planning.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

From the project managers perspective, the biggest shortcoming of the LOC metric is
that the LOC count is very difficult to estimate during project planning stage, and can
only be accurately computed after the software development is complete.

3.4.2 Function Point (FP) Metric
Function point metric was proposed by Albrecht in 1983. This metric
overcomes many of the shortcomings of the LOC metric. Since its
inception in late 1970s, function point metric has steadily gained
popularity. Function point metric has several advantages over LOC
metric. One of the important advantages of the function point metric
over the LOC metric is that it can easily be computed from the problem
specification itself. Using the LOC metric, on the other hand, the size
can accurately be determined only after the product has fully been
developed.

The conceptual idea behind the function point metric is the following. The
size of a software product is directly dependent on the number of different
high-level functions or features it supports. This assumption is reasonable,
since each feature would take additional effort to implement.

Conceptually, the function point metric is based on the idea that a software product
supporting many features would certainly be of larger size than a product with less
number of features.

Though each feature takes some effort to develop, different features may
take very different amounts of efforts to develop. For example, in a banking
software, a function to display a help message may be much easier to
develop compared to say the function that carries out the actual banking
transactions. This has been considered by the function point metric by
counting the number of input and output data items and the number of files
accessed by the function. The implicit assumption made is that the more the
number of data items that a function reads from the user and outputs and the
more the number of files accessed, the higher is the complexity of the
function. Now let us analyse why this assumption must be intuitively correct.
Each feature when invoked typically reads some input data and then
transforms those to the required output data. For example, the query book
feature (see Figure 3.2) of a Library Automation Software takes the name of
the book as input and displays its location in the library and the total number
of copies available. Similarly, the issue book and the return book features
produce their output based on the corresponding input data. It can therefore
be argued that the computation of the number of input and output data items

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

would give a more accurate indication of the code size compared to simply
counting the number of high-level functions supported by the system.

Figure 3.2: System function as a mapping of input data to output data.

Albrecht postulated that in addition to the number of basic functions that a
software performs, size also depends on the number of files and the number
of interfaces that are associated with the software. Here, interfaces refer to
the different mechanisms for data transfer with external systems including
the interfaces with the user, interfaces with external computers, etc.

Function point (FP) metric computation
The size of a software product (in units of function points or FPs) is
computed using different characteristics of the product identified in its
requirements specification. It is computed using the following three
steps:

Step 1: Compute the unadjusted function point (UFP) using a heuristic
expression.
Step 2: Refine UFP to reflect the actual complexities of the different
parameters used in UFP computation.
Step 3: Compute FP by further refining UFP to account for the specific
characteristics of the project that can influence the entire development
effort.

We discuss these three steps in more detail in the following.
Step 1: UFP computation

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The unadjusted function points (UFP) is computed as the weighted sum of
five characteristics of a product as shown in the following expression. The
weights associated with the five characteristics were determined empirically
by Albrecht through data gathered from many projects.

UFP = (Number of inputs)*4 + (Number of outputs)*5 +
(Number of inquiries)*4 + (Number of files)*10 +
(Number of interfaces)*10(3.1)

The meanings of the different parameters of Eq. 3.1 are as follows:

1. Number of inputs: Each data item input by the user is counted.
However, it should be noted that data inputs are considered different
from user inquiries. Inquiries are user commands such as print-
account-balance that require no data values to be input by the user.
Inquiries are counted separately (see the third point below). It needs
to be further noted that individual data items input by the user are
not simply added up to compute the number of inputs, but related
inputs are grouped and considered as a single input. For example,
while entering the data concerning an employee to an employee pay
roll software; the data items name, age, sex, address, phone number,
etc. are together considered as a single input. All these data items
can be considered to be related, since they describe a single
employee.

2. Number of outputs: The outputs considered include reports printed,
screen outputs, error messages produced, etc. While computing the
number of outputs, the individual data items within a report are not
considered; but a set of related data items is counted as just a single
output.

3. Number of inquiries: An inquiry is a user command (without any
data input) and only requires some actions to be performed by the
system. Thus, the total number of inquiries is essentially the number
of distinct interactive queries (without data input) which can be made
by the users. Examples of such inquiries are print account balance,
print all student grades, display rank holders’ names, etc.

4. Number of files: The files referred to here are logical files. A logical
file represents a group of logically related data. Logical files include
data structures as well as physical files.

5. Number of interfaces: Here the interfaces denote the different
mechanisms that are used to exchange information with other

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

systems. Examples of such interfaces are data files on tapes, disks,
communication links with other systems, etc.

Step 2: Refine parameters
UFP computed at the end of step 1 is a gross indicator of the problem size.
This UFP needs to be refined. This is possible, since each parameter (input,
output, etc.) has been implicitly assumed to be of average complexity.
However, this is rarely true. For example, some input values may be
extremely complex, some very simple, etc. In order to take this issue into
account, UFP is refined by taking into account the complexities of the
parameters of UFP computation (Eq. 3.1). The complexity of each parameter
is graded into three broad categories—simple, average, or complex. The
weights for the different parameters are determined based on the numerical
values shown in Table 3.1. Based on these weights of the parameters, the
parameter values in the UFP are refined. For example, rather than each input
being computed as four FPs, very simple inputs are computed as three FPs
and very complex inputs as six FPs.

Table 3.1: Refinement of Function Point Entities

Type Simple Average Complex

Input(I) 3 4 6

Output (O) 4 5 7

Inquiry (E) 3 4 6

Number of files (F) 7 10 15

Number of interfaces 5 7 10

Step 3: Refine UFP based on complexity of the overall project
In the final step, several factors that can impact the overall project size are
considered to refine the UFP computed in step 2. Examples of such project
parameters that can influence the project sizes include high transaction rates,
response time requirements, scope for reuse, etc. Albrecht identified 14
parameters that can influence the development effort. The list of these
parameters have been shown in Table 3.2. Each of these 14 parameters is
assigned a value from 0 (not present or no influence) to 6 (strong influence).
The resulting numbers are summed, yielding the total degree of influence
(DI). A technical complexity factor (TCF) for the project is computed and the
TCF is multiplied with UFP to yield FP. The TCF expresses the overall impact
of the corresponding project parameters on the development effort. TCF is
computed as (0.65+0.01*DI). As DI can vary from 0 to 84, TCF can vary from

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

0.65 to 1.49. Finally, FP is given as the product of UFP and TCF. That is,
FP=UFP*TCF.

Table 3.2: Function Point Relative Complexity Adjustment Factors
Requirement for reliable backup and recovery
Requirement for data communication
Extent of distributed processing
Performance requirements
Expected operational environment
Extent of online data entries
Extent of multi-screen or multi-operation online data input
Extent of online updating of master files
Extent of complex inputs, outputs, online queries and files
Extent of complex data processing
Extent that currently developed code can be designed for reuse
Extent of conversion and installation included in the design
Extent of multiple installations in an organisation and variety of customer organisations
Extent of change and focus on ease of use

Example 3.1 Determine the function point measure of the size of the
following supermarket software. A supermarket needs to develop the
following software to encourage regular customers. For this, the customer
needs to supply his/her residence address, telephone number, and the driving
license number. Ea ch customer who registers for this scheme is assigned a
unique customer number (CN) by the computer. Based on the generated CN,
a clerk manually prepares a customer identity card after getting the market
manager’s signature on it. A customer can present his customer identity card
to the check out staff when he makes any purchase. In this case, the value of
his purchase is credited against his CN. At the end of each year, the
supermarket intends to award surprise gifts to 10 customers who make the
highest total purchase over the year. Also, it intends to award a 22 caret gold
coin to every customer whose purchase exceeded Rs. 10,000. The entries
against the CN are reset on the last day of every year after the prize winners’
lists are generated. Assume that various project characteristics determining
the complexity of software development to be average.
Answer:

Step 1: From an examination of the problem description, we find that
there are two inputs, three outputs, two files, and no interfaces. Two
files would be required, one for storing the customer details and
another for storing the daily purchase records. Now, using equation 3.1,
we get:

UFP = 2 × 4 + 3 × 5 + 1 × 4 + 10 × 2 + 0 × 10 = 47
Step 2: A l l the parameters are of moderate complexity, except the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

output parameter of customer registration, in which the only output is
the CN value. Consequently, the complexity of the output parameter of
the customer registration function can be categorized as simple. By
consulting Table 3.1, we find that the value for simple output is given to
be 4. The UFP can be refined as follows:

UFP = 3 × 4 + 2 × 5 + 1 × 4 + 10 × 2 + 0 × 10 = 46
Therefore, the UFP will be 46.

Step 3: Since the complexity adjustment factors have average values,
therefore the total degrees of influence would be: DI = 14 × 4 = 56

TCF = 0.65 + 0.01 + 56 = 1.21
Therefore, the adjusted FP=46*1.21=55.66

Feature point metric shortcomings: A major shortcoming of the
function point measure is that it does not take into account the
algorithmic complexity of a function. That is, the function point metric
implicitly assumes that the effort required to design and develop any
two different functionalities of the system is the same. But, we know
that this is highly unlikely to be true. The effort required to develop any
two functionalities may vary widely. For example, in a library
automation software, the create-member feature would be much
simpler compared to the loan-from-remote-library feature. FP only
considers the number of functions that the system supports, without
distinguishing the difficulty levels of developing the various
functionalities. To overcome this problem, an extension to the function
point metric called feature point metric has been proposed.

Feature point metric incorporates algorithm complexity as an extra
parameter. This parameter ensures that the computed size using the feature
point metric reflects the fact that higher the complexity of a function, the
greater the effort required to develop it—therefore, it should have larger size
compared to a simpler function.

Critical comments on the function point and feature point
metrics

Proponents of function point and feature point metrics claim that these
two metrics are language-independent and can be easily computed
from the SRS document during project planning stage itself. On the
other hand, opponents claim that these metrics are subjective and
require a sleight of hand. An example of the subjective nature of the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

function point metric can be that the way one groups input and output
data items into logically related groups can be very subjective. For
example, consider that certain functionality requires the employee
name and employee address to be input. It is possible that one can
consider both these items as a single unit of data, since after all, these
describe a single employee. It is also possible for someone else to
consider an employee’s address as a single unit of input data and name
as another. Such ambiguities leav e sufficient scope for debate and keep
open the possibility for different project managers to arrive at different
function point measures for essentially the same problem.

3.5 PROJECT ESTIMATION TECHNIQUES
Estimation of various project parameters is an important project planning
activity. The different parameters of a project that need to be
estimated include—project size, effort required to complete the project,
project duration, and cost. Accurate estimation of these parameters is
important, since these not only help in quoting an appropriate project
cost to the customer, but also form the basis for resource planning and
scheduling. A large number of estimation techniques have been
proposed by researchers. These can broadly be classified into three
main categories:

• Empirical estimation techniques
• Heuristic techniques
• Analytical estimation techniques
In the following subsections, we provide an overview of the different

categories of estimation techniques.

3.5.1 Empirical Estimation Techniques
Empirical estimation techniques are essentially based on making an
educated guess of the project parameters. While using this technique,
prior experience with development of similar products is helpful.
Although empirical estimation techniques are based on common sense
and subjective decisions, over the years, the different activities involved
in estimation have been formalised to a large extent. We shall discuss
two such formalisations of the basic empirical estimation techniques
known as expert judgement and the Delphi techniques in Sections 3.6.1
and 3.6.2 respectively.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

3.5.2 Heuristic Techniques
Heuristic techniques assume that the relationships that exist among the
different project parameters can be satisfactorily modelled using
suitable mathematical expressions. Once the basic (independent)
parameters are known, the other (dependent) parameters can be easily
determined by substituting the values of the independent parameters in
the corresponding mathematical expression. Different heuristic
estimation models can be divided into the following two broad
categories—single variable and multivariable models.

S i n g l e variable estimation models assume that various project
characteristic can be predicted based on a single previously estimated basic
(independent) characteristic of the software such as its size. A single variable
estimation model assumes that the relationship between a parameter to be
estimated and the corresponding independent parameter can be
characterised by an expression of the following form:

Estimated Parameter = c1 � ed1

In the above expression, e represents a characteristic of the software that
has already been estimated (independent variable). Estimated P arameter is
the dependent parameter (to be estimated). The dependent parameter to be
estimated could be effort, project duration, staff size, etc., c1 and d1 are
constants. The values of the constants c1 and d1 a re usually determined
using data collected from past projects (historical data). The COCOMO model
discussed in Section 3.7.1, is an example of a single variable cost estimation
model.

A multivariable cost estimation model assumes that a parameter can be
predicted based on the values of more than one independent parameter. It
takes the following form:

Estimated Resource = c1 � p1d1 + c2 � p2d2 + ...

where, p1, p2, ... are the basic (independent) characteristics of the
software already estimated, and c1, c2, d1, d2, are constants.
Multivariable estimation models are expected to give more accurate
estimates compared to the single variable models, since a project
parameter is typically influenced by several independent parameters.
The independent parameters influence the dependent parameter to
different extents. This is modelled by the different sets of constants c1 ,

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

d1 , c2 , d2 , Values of these constants are usually determined from
an analysis of historical data. The intermediate COCOMO model
discussed in Section 3.7.2 can be considered to be an example of a
multivariable estimation model.

3.5.3 Analytical Estimation Techniques
Analytical estimation techniques derive the required results starting with
certain basic assumptions regarding a project. Unlike empirical and
heuristic techniques, analytical techniques do have certain scientific
basis. As an example of an analytical technique, we shall discuss the
Halstead’s software science in Section 3.8. We shall see that starting
with a few simple assumptions, Halstead’s software science derives
some interesting results. Halstead’s software science is especially useful
for estimating software maintenance efforts. In fact, it outperforms both
empirical and heuristic techniques as far as estimating software
maintenance efforts is concerned.

3.6 EMPIRICAL ESTIMATION TECHNIQUES
We have already pointed out that empirical estimation techniques have,
over the years, been formalised to a certain extent. Yet, these are still
essentially euphemisms for pure guess work. These techniques are easy
to use and give reasonably accurate estimates. Two popular empirical
estimation techniques are—Expert judgement and Delphi estimation
techniques. We discuss these two techniques in the following
subsection.

3.6.1 Expert Judgement
Expert judgement is a widely used size estimation technique. In this
technique, an expert makes an educated guess about the problem size
after analysing the problem thoroughly.

Usually, the expert estimates the cost of the different components (i.e.
modules or subsystems) that would make up the system and then combines
the estimates for the individual modules to arrive at the overall estimate.
However, this technique suffers from several shortcomings. The outcome of
the expert judgement technique is subject to human errors and individual
bias. Also, it is possible that an expert may overlook some factors
inadvertently. Further, an expert making an estimate may not have relevant

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

experience and knowledge of all aspects of a project. For example, he may
be conversant with the database and user interface parts, but may not be
very knowledgeable about the computer communication part. Due to these
factors, the size estimation arrived at by the judgement of a single expert
may be far from being accurate.

A more refined form of expert judgement is the estimation made by a
group of experts. Chances of errors arising out of issues such as individual
oversight, lack of familiarity with a particular aspect of a project, personal
bias, and the desire to win contract through overly optimistic estimates is
minimised when the estimation is done by a group of experts. However, the
estimate made by a group of experts may still exhibit bias. For example, on
certain issues the entire group of experts may be biased due to reasons such
as those arising out of political or social considerations. Another important
shortcoming of the expert judgement technique is that the decision made by
a group may be dominated by overly assertive members.

3.6.2 Delphi Cost Estimation
Delphi cost estimation technique tries to overcome some of the
shortcomings of the expert judgement approach. Delphi estimation is
carried out by a team comprising a group of experts and a co-ordinator.
In this approach, the co-ordinator provides each estimator with a copy
of the software requirements specification (SRS) document and a form
for recording his cost estimate. Estimators complete their individual
estimates anonymously and submit them to the co-ordinator. In their
estimates, the estimators mention any unusual characteristic of the
product which has influenced their estimations. The co-ordinator
prepares the summary of the responses of all the estimators, and also
includes any unusual rationale noted by any of the estimators. The
prepared summary information is distributed to the estimators. Based
on this summary, the estimators re-estimate. This process is iterated
for several rounds. However, no discussions among the estimators is
allowed during the entire estimation process. The purpose behind this
restriction is that if any discussion is allowed among the estimators,
then many estimators may easily get influenced by the rationale of an
estimator who may be more experienced or senior. After the completion
of several iterations of estimations, the co-ordinator takes the
responsibility of compiling the results and preparing the final estimate.
The Delphi estimation, though consumes more time and effort,

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

overcomes an important shortcoming of the expert judgement
technique in that the results can not unjustly be influenced by overly
assertive and senior members.

3.7 COCOMO—A HEURISTIC ESTIMATION TECHNIQUE
COnstructive COst estimation MOdel (COCOMO) was proposed by Boehm
[1981]. COCOMO prescribes a three stage process for project
estimation. In the first stage, an initial estimate is arrived at. Over the
next two stages, the initial estimate is refined to arrive at a more
accurate estimate. COCOMO uses both single and multivariable
estimation models at different stages of estimation.

The three stages of COCOMO estimation technique are—basic COCOMO,
intermediate COCOMO, and complete COCOMO. We discuss these three
stages of estimation in the following subsection.

3.7.1 Basic COCOMO Model
Boehm postulated that any software development project can be
classified into one of the following three categories based on the
development complexity—organic, semidetached, and embedded.
Based on the category of a software development project, he gave
different sets of formulas to estimate the effort and duration from the
size estimate.

Three basic classes of software development projects
In order to classify a project into the identified categories, Boehm
requires us to consider not only the characteristics of the product but
also those of the development team and development environment.
Roughly speaking, the three product development classes correspond to
development of application, utility and system software. Normally, data
processing programs1 are considered to be application programs.
Compilers, linkers, etc., are utility programs. Operating systems and
real-time system programs, etc. are system programs. System
programs interact directly with the hardware and programming
complexities also arise out of the requirement for meeting timing
constraints and concurrent processing of tasks.

Brooks [1975] states that utility programs are roughly three times as
difficult to write as application programs and system programs are roughly
three times as difficult as utility programs. Thus according to Brooks, the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

relative levels of product development complexity for the three categories
(application, utility and system programs) of products are 1:3:9.

Boehm’s [1981] definitions of organic, semidetached, and embedded
software are elaborated as follows:
Organic: We can classify a development project to be of organic type, if the
project deals with developing a well-understood application program, the size
of the development team is reasonably small, and the team members are
experienced in developing similar types of projects.
Semidetached: A development project can be classify to be of
semidetached type, if the development team consists of a mixture of
experienced and inexperienced staff. Team members may have limited
experience on related systems but may be unfamiliar with some aspects of
the system being developed.
Embedded: A development project is considered to be of embedded type, if
the software being developed is strongly coupled to hardware, or if stringent
regulations on the operational procedures exist. Team members may have
limited experience on related systems but may be unfamiliar with some
aspects of the system being developed.

Observe that in deciding the category of the development project, in
addition to considering the characteristics of the product being developed, we
need to consider the characteristics of the team members. Thus, a simple
data processing program may be classified as semidetached, if the team
members are inexperienced in the development of similar products.

For the three product categories, Boehm provides different sets of
expressions to predict the effort (in units of person-months) and development
time from the size estimation given in kilo lines of source code (KLSC). But,
how much effort is one person-month?

One person month is the effort an individual can typically put in a month. The
person-month estimate implicitly takes into account the productivity losses that
normally occur due to time lost in holidays, weekly offs, coffee breaks, etc.

What is a person-month?
Person-month (PM) is a popular unit for effort measurement.

Person-month (PM) is considered to be an appropriate unit for measuring effort,
because developers are typically assigned to a project for a certain number of
months.

It should be carefully noted that an effort estimation of 100 PM does not

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

It should be carefully noted that an effort estimation of 100 PM does not
imply that 100 persons should work for 1 month. Neither does it imply that 1
person should be employed for 100 months to complete the project. The
effort estimation simply denotes the area under the person-month curve (see
Figure 3.3) for the project. The plot in Figure 3.3 shows that different
number of personnel may work at different points in the project development.
The number of personnel working on the project usually increases or
decreases by an integral number, resulting in the sharp edges in the plot. We
shall elaborate in Section 3.9 how the exact number of persons to work at
any time on the product development can be determined from the effort and
duration estimates.

Figure 3.3: Person-month curve.

General form of the COCOMO expressions
The basic COCOMO model is a single variable heuristic model that
gives an approximate estimate of the project parameters. The basic
COCOMO estimation model is given by expressions of the following
forms:

Effort = a1 × (KLOC)a2 PM

Tdev = b1 × (Effort)b2 months
where,

KLOC is the estimated size of the software product expressed in Kilo
Lines Of Code.
a1, a2, b1, b2 are constants for each category of software product.
Tdev is the estimated time to develop the software, expressed in

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

months.
Effort is the total effort required to develop the software product,
expressed in person- months (PMs).

According to Boehm, every line of source text should be calculated as one
LOC irrespective of the actual number of instructions on that line. Thus, if a
single instruction spans several lines (say n lines), it is considered to be
nLOC. The values of a1, a2, b1, b2 for different categories of products as
given by Boehm [1981] are summarised below. He derived these values by
examining historical data collected from a large number of actual projects.
Estimation of development effort: For the three classes of software
products, the formulas for estimating the effort based on the code size are
shown below:
Organic : Effort = 2.4(KLOC)1.05 PM

Semi-detached : Effort = 3.0(KLOC)1.12 PM
Embedded : Effort = 3.6(KLOC)1.20 PM

Estimation of development time: For the three classes of software products,
the formulas for estimating the development time based on the effort are
given below:
Organic : Tdev = 2.5(Effort)0.38 Months

Semi-detached : Tdev = 2.5(Effort)0.35 Months
Embedded : Tdev = 2.5(Effort)0.32 Months

We can gain some insight into the basic COCOMO model, if we plot the
estimated effort and duration values for different software sizes. Figure 3.4
shows the plots of estimated effort versus product size for different categories
of software products.
Observations from the effort-size plot From Figure 3.4, we can observe
that the effort is some what superlinear (that is, slope of the curve>1) in the
size of the software product.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 3.4: Effort versus product size.

This is because the exponent in the effort expression is more than 1. Thus,
the effort required to develop a product increases rapidly with project size.
However, observe that the increase in effort with size is not as bad as that
was portrayed in Chapter 1. The reason for this is that COCOMO assumes that
projects are carefully designed and developed by using software engineering
principles.

Observations from the development time—size plot
The development time versus the product size in KLOC is plotted in
Figure 3.5. From

Figure 3.5, we can observe the following:

The development time is a sublinear function of the size of the product.
That is, when the size of the product increases by two times, the time
to develop the product does not double but rises moderately. For
example, to develop a product twice as large as a product of size
100KLOC, the increase in duration may only be 20 per cent. It may
appear surprising that the duration curve does not increase
superlinearly—one would normally expect the curves to behave similar
to those in the effort-size plots. This apparent anomaly can be
explained by the fact that COCOMO assumes that a project
development is carried out not by a single person but by a team of
developers.
From Figure 3.5 we can observe that for a project of any given size, the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

development time is roughly the same for all the three categories of
products. For example, a 60 KLOC program can be developed in
approximately 18 months, regardless of whether it is of organic, semi-
detached, or embedded type. (Please verify this using the basic
COCOMO formulas discussed in this section). However, according to
the COCOMO formulas, embedded programs require much higher effort
than either application or utility programs. We can interpret it to mean
that there is more scope for parallel activities for system programs
than those in utility or application programs.

Figure 3.5: Development time versus size.

Cost estimation
From the effort estimation, project cost can be obtained by multiplying
the estimated effort (in man-month) by the manpower cost per month.
Implicit in this project cost computation is the assumption that the
entire project cost is incurred on account of the manpower cost alone.
However, in addition to manpower cost, a project would incur several
other types of costs which we shall refer to as the overhead costs. The
overhead costs would include the costs due to hardware and software
required for the project and the company overheads for administration,
office space,electricity, etc. Depending on the expected values of the
overhead costs, the project manager has to suitably scale up the cost

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

arrived by using the COCOMO formula.

Implications of effort and duration estimate
An important implicit implication of the COCOMO estimates are that if you

try to complete the project in a time shorter than the estimated duration,
then the cost will increase drastically. But, if you complete the project over a
longer period of time than that estimated, then there is almost no decrease
in the estimated cost value. The reasons for this are discussed in Section 3.9.
Thus, we can consider that the COCOMO effort and duration values to
indicate the following.

The effort and duration values computed by COCOMO are the values for completing
the work in the shortest time without unduly increasing manpower cost.

Let us now elaborate the above statement. When a project team consists
of a single member, the member would never be idle for want of work, but
the project would take too long to complete. On the other hand, when there
are too many members, the project would be completed in much shorter
time, but often during the project duration some members would have to idle
for want of work.

The project duration is as computed by the COCOMO model, all the
developers remain busy with work during the entire development period.
Whenever a project is to be completed in a time shorter than the duration
estimated by using COCOMO, some idle time on the part of the developers
would exist. Such idle times would result in increased development cost. An
optimum sized team for a project is one in which any developer any time
during development does not sit idle waiting for work, but at the same time
consists of as many members as possible to reduce the development time.
We can think of the duration given by COCOMO is called the as the optimal
duration. It is called optimal duration, if the project is attempted to be
completed in any shorter time, then the effort required would rise rapidly.
This may appear as a paradox—after all, it is the same product that would be
developed, though over a shorter time, then why should the effort required
rise rapidly? This can be explained by the fact that for every product at any
point during the project development, there is a limit on the number of
parallel activities that can meaningfully be identified and carried out. Thus if
more number of developers are deployed than the optimal size, some of the
developers would have to idle, since at some point in development or other,
it would not be possible to assign them any work at all. These idle times

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

would show up as higher effort and larger cost.

Staff-size estimation
Given the estimations for the project development effort and the nominal
development time, can the required staffing level be determined by a
simple division of the effort estimation by the duration estimation? The
answer is “No”. It will be a perfect recipe for project delays and cost
overshoot. We examine the staffing problem in more detail in Section
3.9. From the discussions in Section 3.9, it would become clear that the
simple division approach to obtain the staff size would be highly
improper.

Example 3.2 Assume that the size of an organic type software product has
been estimated to be 32,000 lines of source code. Assume that the average
salary of a software developer is Rs. 15,000 per month. Determine the effort
required to develop the software product, the nominal development time, and
the cost to develop the product.

From the basic COCOMO estimation formula for organic software: Effort =
2.4 × (32)1.05 = 91 PM

Nominal development time = 2.5 × (91)0.38 = 14 months
Staff cost required to develop the product = 91 × Rs. 15, 000 = Rs.

1,465,000

3.7.2 Intermediate COCOMO
The basic COCOMO model assumes that effort and development time are
functions of the product size alone. However, a host of other project
parameters besides the product size affect the effort as well as the time
required to develop the product. For example the effort to develop a
product would vary depending upon the sophistication of the
development environment.

Therefore, in order to obtain an accurate estimation of the effort and
project duration, the effect of all relevant parameters must be taken into
account. The intermediate COCOMO model recognises this fact and refines
the initial estimates.

The intermediate COCOMO model refines the initial estimate obtained using the basic
COCOMO expressions by scaling the estimate up or down based on the evaluation of
a set of attributes of software development.

The intermediate COCOMO model uses a set of 15 cost drivers (multipliers)

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The intermediate COCOMO model uses a set of 15 cost drivers (multipliers)
that are determined based on various attributes of software development.
These cost drivers are multiplied with the initial cost and effort estimates
(obtained from the basic COCOMO) to appropriately scale those up or down.
For example, if modern programming practices are used, the initial estimates
are scaled downward by multiplication with a cost driver having a value less
than 1. If there are stringent reliability requirements on the software product,
the initial estimates are scaled upward. Boehm requires the project manager
to rate 15 different parameters for a particular project on a scale of one to
three. For each such grading of a project parameter, he has suggested
appropriate cost drivers (or multipliers) to refine the initial estimates.

In general, the cost drivers identified by Boehm can be classified as being
attributes of the following items:
Product: The characteristics of the product that are considered include the
inherent complexity of the product, reliability requirements of the product,
etc.
Computer: Characteristics of the computer that are considered include the
execution speed required, storage space required, etc.
Personnel: The attributes of development personnel that are considered
include the experience level of personnel, their programming capability,
analysis capability, etc.
Development environment: Development environment attributes capture
the development facilities available to the developers. An important
parameter that is considered is the sophistication of the automation (CASE)
tools used for software development.

We have discussed only the basic ideas behind the intermediate COCOMO
model. A detailed discussion on the intermediate COCOMO model are beyond
the scope of this book and the interested reader may refer [Boehm81].

3.7.3 Complete COCOMO
A major shortcoming of both the basic and the intermediate COCOMO
models is that they consider a software product as a single
homogeneous entity. However, most large systems are made up of
several smaller sub-systems. These sub-systems often have widely
different characteristics. For example, some sub-systems may be
considered as organic type, some semidetached, and some even
embedded. Not only may the inherent development complexity of the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

subsystems be different, but for some subsystem the reliability
requirements may be high, for some the development team might have
no previous experience of similar development, and so on.

The complete COCOMO model considers these differences in characteristics
of the subsystems and estimates the effort and development time as the sum
of the estimates for the individual sub-systems.

In other words, the cost to develop each sub-system is estimated
separately, and the complete system cost is determined as the subsystem
costs. This approach reduces the margin of error in the final estimate.

L e t us consider the following development project as an example
application of the complete COCOMO model. A distributed management
information system (MIS) product for an organisation having offices at several
places across the country can have the following sub-component:

• Database part
• Graphical user interface (GUI) part
• Communication part
Of these, the communication part can be considered as embedded

software. The database part could be semi-detached software, and the GUI
part organic software. The costs for these three components can be
estimated separately, and summed up to give the overall cost of the system.

To further improve the accuracy of the results, the different parameter
values of the model can be fine-tuned and validated against an organisation’s
historical project database to obtain more accurate estimations. Estimation
models such as COCOMO are not totally accurate and lack a full scientific
justification. Still, software cost estimation models such as COCOMO are
required for an engineering approach to software project management.
Companies consider computed cost estimates to be satisfactory, if these are
within about 80 per cent of the final cost. Although these estimates are gross
approximations—without such models, one has only subjective judgements to
rely on.

3.7.4 COCOMO 2
Since the time that COCOMO estimation model was proposed in the early
1980s, the software development paradigms as well as the
characteristics of development projects have undergone a sea change.
The present day software projects are much larger in size and reuse of
existing software to develop new products has become pervasive. For
example, component-based development and service-oriented

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

architectures (SoA) have become very popular (discussed in Chapter
15). New life cycle models and development paradigms are being
deployed for web-based and component-based software. During the
1980s rarely any program was interactive, and graphical user interfaces
were almost non-existent. On the other hand, the present day software
products are highly interactive and support elaborate graphical user
interface. Effort spent on developing the GUI part is often as much as
the effort spent on developing the actual functionality of the software.
To make COCOMO suitable in the changed scenario, Boehm proposed
COCOMO 2 [Boehm95] in 1995.

COCOMO 2 provides three models to arrive at increasingly accurate cost
estimations. These can be used to estimate project costs at different phases
of the software product. As the project progresses, these models can be
applied at the different stages of the same project.
Application composition model: This model as the name suggests, can be
used to estimate the cost for prototype development. We had already
discussed in Chapter 2 that a prototype is usually developed to resolve user
interface issues.
Early design model: This supports estimation of cost at the architectural
design stage.
Post-architecture model: This provides cost estimation during detailed
design and coding stages.

The post-architectural model can be considered as an update of the original
COCOMO. The other two models help consider the following two factors. Now
a days every software is interactive and GUI-driven. GUI development
constitutes a significant part of the overall development effort. The second
factor concerns several issues that affect productivity such as the extent of
reuse. We briefly discuss these three models in the following.

Application composition model
The application composition model is based on counting the number of
screens, reports, and modules (components). Each of these components
is considered to be an object (this has nothing to do with the concept of
objects in the object-oriented paradigm). These are used to compute
the object points of the application.

Effort is estimated in the application composition model as follows:

1. Estimate the number of screens, reports, and modules (components)

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

from an analysis of the SRS document.
2. Determine the complexity level of each screen and report, and rate

these as either simple, medium, or difficult. The complexity of a
screen or a report is determined by the number of tables and views it
contains.

3. Use the weight values in Table 3.3 to 3.5.

The weights have been designed to correspond to the amount of effort
required to implement an instance of an object at the assigned complexity
class.

Table 3.3: SCREEN Complexity Assignments for the Data Tables

Number of views Tables < 4 Tables < 8 Tables ≥ 8
< 3 Simple Simple Medium

3–7 Simple Medium Difficult

>8 Medium Difficult Difficult

.
Table 3.4: Report Complexity Assignments for the Data Tables

Number of views Tables < 4 Tables < 8 Tables ≥ 8

0 or 1 Simple Simple Medium

2 or 3 Simple Medium Difficult

4 or more Medium Difficult Difficult

4. Add all the assigned complexity values for the object instances together
to obtain the object points.

Table 3.5: Table of Complexity Weights for Each Class for Each Object Type
Object type Simple Medium Difficult

Screen 1 2 3

Report 2 5 8

3GL component — — 10

5. Estimate percentage of reuse expected in the system. Note that reuse
refers to the amount of pre-developed software that will be used within
the system. Then, evaluate New Object-Point count (NOP) as follows,

6. Determine the productivity using Table 3.6. The productivi ty depends on

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

the experience of the developers as well as the maturity of the CASE
environment used.

7. Finally, the estimated effort in person-months is computed as E =
NOP/PROD.

Table 3.6: Productivity Table

Developers’ experience Very low Low Nominal High Very high

CASE maturity Very low Low Nominal High Very high

PRODUCTIVITY 4 7 13 25 50

Early design model
The unadjusted function points (UFP) are counted and converted to
source lines of code (SLOP). In a typical programming environment,
each UFP would correspond to about 128 lines of C, 29 lines of C++, or
320 lines of assembly code. Of course, the conversion from UFP to LOC
is environment specific, and depends on factors such as extent of
reusable libraries supported. Seven cost drivers that characterise the
post-architecture model are used. These are rated on a seven points
scale. The cost drivers include product reliability and complexity, the
extent of reuse, platform sophistication, personnel experience, CASE
support, and schedule.

The effort is calculated using the following formula:
Effort = K SLOC × �i cost driveri

Post-architecture model
The effort is calculated using the following formula, which is similar to
the original COCOMO model.

Effort = a × K SLOCb × �i cost driveri

The post-architecture model differs from the original COCOMO model in the
choice of the set of cost drivers and the range of values of the exponent b.
The exponent b can take values in the range of 1.01 to 1.26. The details of
the COCOMO 2 model, and the exact values of b and the cost drivers can be
found in [Boehm 97].

3.8 HALSTEAD’S SOFTWARE SCIENCE—AN ANALYTICAL
TECHNIQUE

Halstead’s software science2 is an analytical technique to measure size,

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

development effort, and development cost of software products.
Halstead used a few primitive program parameters to develop the
expressions for over all program length, potential minimum volume,
actual volume, language level, effort, and development time.

For a given program, let:

h1 be the number of unique operators used in the program,

h2 be the number of unique operands used in the program,

N1 be the total number of operators used in the program,

N2 be the total number of operands used in the program.

Although the terms operators and operands have intuitive meanings, a
precise definition of these terms is needed to avoid ambiguities. But,
unfortunately we would not be able to provide a precise definition of these
two terms. There is no general agreement among researchers on what is the
most meaningful way to define the operators and operands for different
programming languages. However, a few general guidelines regarding
identification of operators and operands for any programming language can
be provided. For instance, assignment, arithmetic, and logical operators are
usually counted as operators. A pair of parentheses, as well as a block begin
—block end pair, are considered as single operators. A label is considered to
be an operator, if it is used as the target of a GOTO statement. The
constructs if ... then ... else ... endif and a while ... do
are considered as single operators. A sequence (statement termination)
operator ’;’ is considered as a single operator. Subroutine declarations and
variable declarations comprise the operands. Function name in a function call
statement is considered as an operator, and the arguments of the function
call are considered as operands. However, the parameter list of a function in
the function declaration statement is not considered as operands. We list
below what we consider to be the set of operators and operands for the ANSI
C language. However, it should be realised that there is considerable
disagreement among various researchers in this regard.

Operators and Operands for the ANSI C language
The following is a suggested list of operators for the ANSI C language:

([. , -> * + - ~ ! ++ -- * / % + - << >> < > <= >= !=
== & ^ | && || = *= /= %= += -= <<= >>= &= ^= |= : ? { ;

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

CASE DEFAULT IF ELSE SWITCH WHILE DO FOR GOTO CONTINUE
BREAK RETURN and a function name in a function call

Operands are those variables and constants which are being used with
operators in expressions. Note that variable names appearing in declarations
are not considered as operands.
Example 3.3 Consider the expression a = &b; a, b are the operands and =,
& are the operators.
Example 3.4 The function name in a function definition is not counted as an
operator.
int func (int a, int b)
{

. . .
}

For the above example code, the operators are: {}, () We do not consider
func, a, and b as operands, since these are part of the function definition.
Example 3.5 Consider the function call statement: func (a, b);. In this, func
‘ ,’ a nd ; are considered as operators and variables a, b are treated as
operands.

3.8.1 Length and Vocabulary
The length of a program as defined by Halstead, quantifies total usage
of all operators and operands in the program. Thus, length N = N1 +
N2. Halstead’s definition of the length of the program as the total
number of operators and operands roughly agrees with the intuitive
notion of the program length as the total number of tokens used in the
program.

The program vocabulary is the number of unique operators and operands
used in the program. Thus, program vocabulary h = h1 + h2.

3.8.2 Program Volume
The length of a program (i.e., the total number of operators and
operands used in the code) depends on the choice of the operators and
operands used. In other words, for the same programming problem, the
length would depend on the programming style. This type of
dependency would produce different measures of length for essentially
the same problem when different programming languages are used.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Thus, while expressing program size, the programming language used
must be taken into consideration:

V = N log2 h

Let us try to understand the important idea behind this expression.
Intuitively, the program volume V is the minimum number of bits
needed to encode the program. In fact, to represent h different
identifiers uniquely, we need at least log2 h bits (where h is the
program vocabulary). In this scheme, we need N log2 h bits to store a
program of length N. Therefore, the volume V represents the size of the
program by approximately compensating for the effect of the
programming language used.

3.8.3 Potential Minimum Volume
The potential minimum volume V* is defined as the volume of the most
succinct program in which a problem can be coded. The minimum
volume is obtained when the program can be expressed using a single
source code instruction, say a function call like foo();. In other words,
the volume is bound from below due to the fact that a program would
have at least two operators and no less than the requisite number of
operands. Note that the operands are the input and output data items.

Thus, if an algorithm operates on input and output data d1, d2, ... dn, the
most succinct program would be f(d1, d2 , ..., dn); for which, h1 = 2, h2 = n.
Therefore, V* = (2 + h2) log2 (2 + h2).

The program level L is given by L = V*/V. The concept of program level L
has been introduced in an attempt to measure the level of abstraction
provided by the programming language. Using this definition, languages can
be ranked into levels that also appear intuitively correct.

The above result implies that the higher the level of a language, the less
effort it takes to develop a program using that language. This result agrees
with the intuitive notion that it takes more effort to develop a program in
assembly language than to develop a program in a high-level language to
solve a problem.

3.8.4 Effort and Time
The effort required to develop a program can be obtained by dividing the
program volume with the level of the programming language used to

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

develop the code. Thus, effort E = V /L, where E is the number of
mental discriminations required to implement the program and also the
effort required to read and understand the program. Thus, the
programming effort E = V2/V* (since L = V*/V) varies as the square of
the volume. Experience shows that E is well correlated to the effort
needed for maintenance of an existing program.

The programmer’s time T = E/S, where S is the speed of mental
discriminations. The value of S has been empirically developed from
psychological reasoning, and its recommended value for programming
applications is 18.

3.8.5 Length Estimation
Even though the length of a program can be found by calculating the
tota l number of operators and operands in a program, Halstead
suggests a way to determine the length of a program using the number
of unique operators and operands used in the program. Using this
method, the program parameters such as length, volume, cost, effort,
etc., can be determined even before the start of any programming
activity. His method is summarised below.

Halstead assumed that it is quite unlikely that a program has several
identical parts— in formal language terminology identical substrings—of
length greater than h(h being the program vocabulary). In fact, once a piece
of code occurs identically at several places, it is usually made into a
procedure or a function. Thus, we can safely assume that any program of
length N consists of N/h unique strings of length h. Now, it is a standard

combinatorial result that for any given alphabet of size K, there are exactly Kr
different strings of length r. Thus,

Since operators and operands usually alternate in a program, we can
further refine the upper bound into N ≤ hh1h1 h2h3. Also, N must include not
only the ordered set of N elements, but it should also include all possible
subsets of that ordered set, i.e. the power set of N strings

(This particular reasoning of Halstead is hard to justify!).
Therefore,

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Experimental evidence gathered from the analysis of a large number of
programs suggests that the computed and actual lengths match very closely.
However, the results may be inaccurate when small programs are considered
individually.
Example 3.6 Let us consider the following C program:

main()
{
int a,b,c,avg;
scanf("%d %d %d",&a,&b,&c);
avg=(a+b+c)/3;
printf("avg= %d",avg);

}

The unique operators are: main, (), {}, int, scanf, &, “,”, “;”,
=, +, /, printf

The unique operands are: a,b,c,&a,&b,&c,a+b+c,avg,3,”%d %d
%d”, “avg=%d”

Therefore,

In conclusion, Halstead’s theory tries to provide a formal definition and
quantification of such qualitative attributes as program complexity, ease of
understanding, and the level of abstraction based on some low-level
parameters such as the number of operands, and operators appearing in the
program. Halstead’s software science provides gross estimates of properties

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

of a large collection of software, but extends to individual cases rather
inaccurately.

3.9 STAFFING LEVEL ESTIMATION
Once the effort required to complete a software project has been
estimated, the staffing requirement for the project can be determined.
Putnam was the first to study the problem of determining a proper
staffing pattern for software projects. He extended the classical work of
Norden who had earlier investigated the staffing pattern of general
research and development (R&D) type of projects. In order to
appreciate the uniqueness of the staffing pattern that is desirable for
software projects, we must first understand both Norden’s and Putnam’s
results.

3.9.1 Norden’s Work
Norden studied the staffing patterns of several R&D projects. He found that
the staffing pattern of R&D type of projects is very different from that of
manufacturing or sales. In a sales outlet, the number of sales staff does not
usually vary with time. For example, in a supermarket the number of sales
personnel would depend on the number of sales counters and would be
approximately constant over time. However, the sta ffing pattern of R&D type
of projects needs to change over time. At the start of an R&D project, the
activities of the project are planned and initial investigations are made.
During this time, the manpower requirements are low. As the project
progresses, the manpower requirement increases, until it reaches a peak.
Thereafter, the manpower requirement gradually diminishes.

Norden concluded that the staffing pattern for any R&D project starting from a low
level, increases until it reaches a peak value. It then starts to diminish. This pattern
can be approximated by the Rayleigh distribution curve (see Figure 3.6).

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 3.6: Rayleigh curve.

Norden represented the Rayleigh curve by the following equation:

where, E is the effort required at time t. E is an indication of the number
of developers (or the staffing level) at any particular time during the
duration of the project, K is the area under the curve, and td is the time
at which the curve attains its maximum value. It must be remembered
that the results of Norden are applicable to general R&D projects and
were not meant to model the staffing pattern of software development
projects.

3.9.2 Putnam’s Work
Putnam studied the problem of staffing of software projects and found
that the staffing pattern for software development projects has
characteristics very similar to any other R&D projects. Only a small
number of developers are needed at the beginning of a project to carry
out the planning and specification tasks. As the project progresses and
more detailed work is performed, the number of developers increases
and reaches a peak during product testing. After implementation and
unit testing, the number of project staff falls.

Putnam found that the Rayleigh-Norden curve can be adapted to relate the
number of delivered lines of code to the effort and the time required to
develop the product. By analysing a large number of defence projects,
Putnam derived the following expression:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

where the different terms are as follows:
• K is the total effort expended (in PM) in the product development and L is

the product size in KLOC.
• t d corresponds to the time of system and integration and testing.

Therefore, t d can be approximately considered as the time required to
develop the software.

• Ck is the state of technology constant and reflects constraints that impede
the progress of the programmer. Typical values of C k =2 for poor
development environment (no methodology, poor documentation, and
review, etc.), C k =8 for good software development environment
(software engineering principles are adhered to), Ck =11 for an excellent
environment (in addition to following software engineering principles,
automated tools and techniques are used). The exact value of C k for a
specific project can be computed from historical data of the organisation
developing it.

Putnam suggested that optimal staff build-up on a project should follow the Rayleigh
curve.

For efficient resource utilisation as well as project completion over optimal
duration, starting from a small number of developers, there should be a staff
build-up and after a peak size has been achieved, staff reduction is required.
However, the staff build-up should not be carried out in large installments.
The team size should either be increased or decreased slowly whenever
required to match the Rayleigh-Norden curve.

Experience reports indicate that a very rapid build up of project staff any time during
the project development correlates with schedule slippage.

It should be clear that a constant level of manpower throughout the project
duration would lead to wastage of effort and as a result would increase both
the time and effort required to develop the product. If a constant number of
developers are used over all the phases of a project, some phases would be
overstaffed and the other phases would be understaffed causing inefficient
use of manpower, leading to schedule slippage and increase in cost.

If we examine the Rayleigh curve, we can see that approximately 40 per
cent of the area under the Rayleigh curve is to the left of td and 60 per cent
area is to the right o f t d . This has been verified mathematically by
integrating the expression provided by Putnam. This implies that the effort

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

required to develop the product to its maintenance effort is approximately in
40:60 ratio. We had already pointed out in Chapter 2 that this is an

expected pattern of distribution of effort between the development and
maintenance of a product.

Effect of schedule change on cost according to Putnom
method
Putnam’s method (Eq. 3.2) can be used to study the effect of changing the
duration of a project from that computed by the COCOMO model. By using
the Putnam’s expression Eq. (3.2):

From this expression, it can easily be observed that when the schedule of a
project is compressed, the required effort increases in proportion to the fourth
power of the degree of compression. It means that a relatively small
compression in delivery schedule can result in substantial penalty on human
effort. For example, if the estimated development time using COCOMO
formulas is 1 year, then in order to develop the product in 6 months, the total
effort required (and hence the project cost) increases 16 times.
Example 3 .7 The nominal effort and duration of a project have been
estimated to be 1000PM and 15 months. The project cost has been
negotiated to be Rs. 200,000,000. The needs the product to be developed
and delivered in 12 month time. What should be the new cost to be
negotiated?
Answer: The project can be classified as a large project. Therefore, the new
cost to be negotiated can be given by the Putnam’s formula: new cost = Rs.
200, 000, 000 × (15/12)4 = Rs. 488,281,250.

Why does project cost increase when schedule is
compressed?

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

It is a common intuition that the effort required to develop a product
should not depend on the time over which it is developed. Why then
does the effort requirement increase so much (16 times as per Eq. 3.3)
when the schedule is compressed by 50 per cent? After all, it is the
same product that is being developed? The answer to this can be the
following.

The extra effort can be attributed to the idle times of the developers
waiting for work. The project manager recruits large number of developers
hoping to complete the project early, but it becomes very difficult to keep
those additional developers continuously occupied with work. Implicit in the
schedule and cost estimation arrived at using the COCOMO model, is the fact
that all developers can be continuously assigned work. However, when more
number of developers are hired to decrease the duration, it becomes to keep
all developers busy all the time. After all, the activities in the project which
can be carried out simultaneously are restricted. As a corollary of this
observation, it can be remarked that benefits can be gained by using fewer
people over a somewhat longer time span to accomplish the same objective.
Thus, the Putnam’s model indicates an extreme manpower penalty for
schedule compression and an extreme reward for expanding the schedule.
However, increasing the development time beyond the duration computed by
COCOMO has been found to be not very helpful in reducing the cost.

The Putnam’s estimation model works reasonably well for very large
systems, but seriously overestimates the required effort on medium and small
systems. This is also corroborated by Boehm[Boehm 81].

Boehm states that there is a limit beyond which a software project cannot reduce its
schedule by buying any more personnel or equipment.

This limit occurs roughly at 75 per cent of the nominal time estimate for
small and medium sized projects. Thus, if a project manager accepts a
customer demand to compress the development schedule of a typical project
(medium or small project) by more than 25 per cent, he is very unlikely to
succeed. The main reason being that every project has only a limited amount
of activities which can be carried out in parallel and the sequential activities
cannot be speeded up by hiring any number of additional developers.

3.9.3 Jensen’s Model
Jensen model [Jensen 84] is very similar to Putnam model. However, it
attempts to soften the effect of schedule compression on effort to make it

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

applicable to smaller and medium sized projects. Jensen proposed the
equation:

where, Cte is the effective technology constant, td is the time to develop
the software, and K is the effort needed to develop the software.

In contrast to the Putnam’s model, Jensen’s model considers the increase in
effort (and cost) requirement to be proportional to the square of the degree
of compression.

3.10 SCHEDULING
Scheduling the project tasks is an important project planning activity.

The scheduling problem, in essence, consists of deciding which tasks would be taken
up when and by whom.

Once a schedule has been worked out and the project gets underway, the
project manager monitors the timely completion of the tasks and takes any
corrective action that may be necessary whenever there is a chance of
schedule slippage. In order to schedule the project activities, a software
project manager needs to do the following:

1. Identify all the major activities that need to be carried out to
complete the project.

2. Break down each activity into tasks.
3. Determine the dependency among different tasks.
4. Establish the estimates for the time durations necessary to complete

the tasks.
5. Represent the information in the form of an activity network.
6. Determine task starting and ending dates from the information

represented in the activity network.
7. Determine the critical path. A critical path is a chain of tasks that

determines the duration of the project.
8. Allocate resources to tasks.

The first step in scheduling a software project involves identifying all the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

activities necessary to complete the project. A good knowledge of the
intricacies of the project and the development process helps the managers to
effectively identify the important activities of the project. Next, the activities
are broken down into a logical set of smaller activities (subactivities). The
smallest subactivities are called ta sks which are assigned to different
developers.

The smallest unit of work activities that are subject to management
planning and control are called tasks.

A project manager breakdowns the tasks systematically by using the work
breakdown structure technique discussed in Section 3.10.1.

After the project manager has broken down the activities into tasks, he has
to find the dependency among the tasks. Dependency among the different
tasks determines the order in which the different tasks would be carried out.
If a task A requires the results of another task B, then task A must be
scheduled after task B and A is said to be dependent on B. In general, the
task dependencies define a partial ordering among tasks. That is, each tasks
may precede a subset of other tasks, but some tasks might not have any
precedence ordering defined between them (called concurrent task). The
dependency among the activities are represented in the form of an activity
network discussed in Section 3.10.2.

Once the activity network representation has been worked out, resources
are allocated to each activity. Resource allocation is typically done using a
Gantt chart. After resource allocation is done, a project evaluation and review
technique (PERT) chart representation is developed. The PERT chart
representation is useful to a project manager to carry out project monitoring
and control. Let us now discuss the work break down structure, activity
network, Gantt and PERT charts.

3.10.1 Work Breakdown Structure
Work breakdown structure (WBS) is used to recursively decompose a given
set of activities into smaller activities.

Tasks are the lowest level work activities in a WBS hierarchy. They also form the
basic units of work that are allocated to the developer and scheduled

First, let us understand why it is necessary to break down project activities
into tasks. Once project activities have been decomposed into a set of tasks
using WBS, the time frame when each activity is to be performed is to be
determined. The end of each important activity is called a milestone. The

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

project manager tracks the progress of a project by monitoring the timely
completion of the milestones. If he observes that some milestones start
getting delayed, he carefully monitors and controls the progress of the tasks,
so that the overall deadline can still be met.

WBS provides a notation for representing the activities, sub-activities, and
tasks needed to be carried out in order to solve a problem. Each of these is
represented using a rectangle (see Figure 3.7). The root of the tree is
labelled by the project name. Each node of the tree is broken down into
smaller activities that are made the children of the node. To decompose an
activity to a sub-activity, a good knowledge of the activity can be useful.
Figure 3.7 represents the WBS of a management information system (MIS)
software.

Figure 3.7: Work breakdown structure of an MIS problem.

How long to decompose?
The decomposition of the activities is carried out until any of the
following is satisfied:

A leaf-level subactivity (a task) requires approximately two weeks to
develop.
Hidden complexities are exposed, so that the job to be done is
understood and can be assigned as a unit of work to one of the
developers.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Opportunities for reuse of existing software components is identified.

Breaking down tasks to too coarse levels versus too fine
levels

Let us first investigate the implications of carrying out the
decompositions to very fine levels versus leaving the decomposition at
rather coarse grained. It is necessary to breakdown large activities into
many smaller tasks, because smaller tasks allow milestones to be
placed at shorter distances. This allows close monitoring of the project
and corrective actions can be initiated as soon as any problems are
noticed. However, very fine subdivision means that a disproportionate
amount of time must be spent on preparing and revising various charts.

Let us now investigate the implications of carrying out decompositions to
ve ry coarse levels versus decomposing to very fine levels. When the
granularity of the tasks is several months, by the time a problem (schedule
delay) is noticed and corrective actions are initiated, it may be too late for
the project to recover. On the other hand, if the tasks are decomposed into
very small granularity (one or two days each), then the milestones get too
closely spaced. This would require frequent monitoring of the project status
and entail frequent revisions to the plan document. This becomes a high
overhead on the project manager and his effectiveness in project monitoring
and control gets reduced.

While breaking down an activity into smaller tasks, a manager often has to
make some hard decisions. If a activity is broken down into a large number of
very small sub-activities, these can be distributed to a larger number of
developers. If the task ordering permits that solutions to these can be carried
out independently (parallelly), it becomes possible to develop the product
faster (with the help of additional manpower of course!). Therefore, to be
able to complete a project in the least amount of time, the manager needs to
break large tasks into smaller ones, expecting to find more parallelism.
However, it is not useful to subdivide tasks into units which take less than a
week or two to execute.
Example 3.8 Consider a project for development of a management
information system (MIS). The project manager has identified the main
development activities to be, requirements specification, design, code, test,
and document. decompose the activities into tasks using work breakdown
structure technique.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Answer: Based on the manager’s domain knowledge, he could arrive at the
work breakdown structure shown in Figure 3.8.

3.10.2 Activity Networks
An activity network shows the different activities making up a project,
their estimated durations, and their interdependencies. Two equivalent
representations for activity networks are possible and are in use:

Activity on Node (AoN): In this representation, each activity is
represented by a rectangular (some use circular) node and the duration
of the activity is shown alongside each task in the node. The inter-task
dependencies are shown using directional edges (see Figure 3.8).

Figure 3.8: Activity network representation of the MIS problem.

Activity on Edge (AoE): In this representation tasks are associated
with the edges. The edges are also annotated with the task duration.
The nodes in the graph represent project milestones.

Activity networks were originally represented using activity on edge (AoE)
representation. However, later activity on node (AoN) has become popular
since this representation is easier to understand and revise.

Managers can estimate the time durations for the different tasks in several
ways. One possibility is that they can empirically assign durations to different
tasks. This however may not be such a good idea, because software
developers often resent such unilateral decisions. However, some managers
prefer to estimate the time for various activities themselves. They believe
that an aggressive schedule would motivate the developers to do a better

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

and faster job. On the other hand, careful experiments have shown that
unrealistically aggressive schedules not only cause developers to compromise
on intangible quality aspects, but also cause greater schedule delays
compared to the other approaches. A possible alternative is to let each
developer himself estimate the time for an activity he would be assigned to.
This approach can help to accurately estimate the task durations without
creating undue schedule pressures.
Example 3.9: Determine the Activity network representation for the MIS
development project of Example 3.7. Assume that the manager has
determined the tasks to be represented from the work breakdown structure
of Figure 3.7, and has determined the durations and dependencies for each
task as shown in Table 3.7.
Answer: The activity network representation has been shown in Figure 3.8.

Table 3.7: Project Parameters Computed from Activity Network

Task Number Task Duration Dependent on Tasks

T1 Specification 15 –

T2 Design database 45 T 1

T3 Design GUI 30 T 1

T4 Code database 105 T 2

T5 Code GUI part 45 T 3

T6 Integrate and test 120 T 4 and T 5

T7 Write user manual 60 T 1

3.10.3 Critical Path Method (CPM)
CPM and PERT are operation research techniques that were developed in
the late 1950s. Since then, they have remained extremely popular
among project managers. Of late, these two techniques have got
merged and many project management tools support them as
CPM/PERT. How ever, we point out the fundamental differences
between the two and discuss CPM in this subsection and PERT in the
next subsection.

A path in the activity network graph is any set of consecutive nodes and
edges in this graph from the starting node to the last node. A critical path
consists of a set of dependent tasks that need to be performed in a sequence
and which together take the longest time to complete.

A critical task is one with a zero slack time. A path from the start node to the finish
node containing only critical tasks is called a critical path.

CPM is an algorithmic approach to determine the critical paths and slack

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

CPM is an algorithmic approach to determine the critical paths and slack
times for tasks not on the critical paths involves calculating the following
quantities:
Minimum time (MT): It is the minimum time required to complete the
project. It is computed by determining the maximum of all paths from start to
finish.
Earliest start (ES): It is the time of a task is the maximum of all paths from
the start to this task. The ES for a task is the ES of the previous task plus the
duration of the preceding task.
Latest start time (LST): It is the difference between MT and the maximum
of all paths from this task to the finish. The LST can be computed by
subtracting the duration of the subsequent task from the LST of the
subsequent task.
Earliest finish time (EF): The EF for a task is the sum of the earliest start
time of the task and the duration of the task.
Latest finish (LF): LF indicates the latest time by which a task can finish
without affecting the final completion time of the project. A task completing
beyond its LF would cause project delay. LF of a task can be obtained by
subtracting maximum of all paths from this task to finish from MT.
Slack time (ST): The slack time (or float time) is the total time that a task
may be delayed before it will affect the end time of the project. The slack
time indicates the ”flexibility” in starting and completion of tasks. ST for a
task is LS-ES and can equivalently be written as LF-EF.
Example 3.10 Use the Activity network of Figure 3.8 to determine the ES
and EF for every task for the MIS problem of Example 3.7.
Answer: The activity network with computed ES and EF values has been
shown in Figure 3.9.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 3.9: AoN for MIS problem with (ES,EF).

Example 3.11 Use the Activity network of Figure 3.9 to determine the
LS and LF for every task for the MIS problem of Example 3.7.

Answer: The activity network with computed LS and LF values has been
shown in Figure 3.10.

CPM can be used to determine the minimum estimated duration of a project and the
slack times associated with various non-critical tasks.

Thus any path whose duration equals MT is a critical path. Note that, there
can be more than one critical path for a project. Tasks which fall on the
critical path should receive special attention by both the project manager and
the personnel assigned to perform those tasks. One way is to draw the critical
paths with a double line instead of a single line. The critical path may change
as the project progresses. This may happen when tasks are completed either
behind or ahead of schedule.

The project parameters for different tasks for the MIS problem can be
computed as follows:

1. Compute ES and EF for each task. Use the rule: ES is equal to
the largest EF the immediate predecessors

2. Compute LS and LF for each task. Use the rule: LF is equal to
the smallest LS of the immediate successors

3. Compute ST for each task. Use the rule: ST=LF-EF

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 3.10: AoN of MIS problem with (LS,LF).

In Figure 3.9 and Figure 3.10, we show computation of (ES,EF) and (LS,LF)
respectively. From this project parameters for different tasks for the MIS
problem have been represented in Table 3.8.

Table 3.8: Project Parameters Computed From Activity Network

Task ES EF LS LF ST

Specification 0 15 0 15 0

Design data base 15 60 15 60 0

Design GUI part 15 45 90 120 75

Code data base 60 165 60 165 0

Code GUI part 45 90 120 165 75

Integrate and test 165 285 165 285 0

Write user manual 15 75 225 285 210

The critical paths are all the paths whose duration equals MT. The critical
path in Figure 3.8 is shown using a thick arrows.

3.10.4 PERT Charts
The activity durations computed using an activity network are only
estimated duration. It is therefore not possible to estimate the worst
case (pessimistic) and best case (optimistic) estimations using an
activity diagram. Since, the actual durations might vary from the
estimated durations, the utility of the activity network diagrams are
limited. The CPM can be used to determine the duration of a project,
but does not provide any indication of the probability of meeting that
schedule.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Project evaluation and review technique (PERT) charts are a more
sophisticated form of activity chart. Project managers know that there is
considerable uncertainty about how much time a task would exactly take to
complete. The duration assigned to tasks by the project manager are after all
only estimates. Therefore, in reality the duration of an activity is a random
variable with some probability distribution. In this context, PERT charts can
be used to determine the probabilistic times for reaching various project mile
stones, including the final mile stone. PERT charts like activity networks
consist of a network of boxes and arrows. The boxes represent activities and
the arrows represent task dependencies. A PERT chart represents the
statistical variations in the project estimates assuming these to be normal
distribution. PERT allows for some randomness in task completion times, and
therefore provides the capability to determine the probability for achieving
project milestones based on the probability of completing each task along the
path to that milestone. Each task is annotated with three estimates:

Optimistic (O): The best possible case task completion time.
Most likely estimate (M): Most likely task completion time.
Worst case (W): The worst possible case task completion time.

The optimistic (O) and worst case (W) estimates represent the extremities
of all possible scenarios of task completion. The most likely estimate (M) is
the completion time that has the highest probability. The three estimates are
used to compute the expected value of the standard deviation.

It can be shown that the entire distribution lies between the interval (M – 3
� ST) and (M + 3 � ST), where ST is the standard deviation. From this it is
possible to show that—The standard deviation for a task ST = (P – O)/6.

The mean estimated time is calculated as ET = (O + 4M + W)/6.
Since all possible completion times between the minimum and maximum

duration for every task has to be considered, there can be many critical
paths, depending on the various permutations of the estimates for each task.
This makes critical path analysis in PERT charts very complex. A critical path
in a PERT chart is shown by using thicker arrows. The PERT chart
representation of the MIS problem of Figure 3.8. is shown in Figure 3.11.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 3.11: PERT chart representation of the MIS problem.

3.10.5 Gantt Charts
Gantt chart has been named after its developer Henry Gantt. A Gantt
chart is a form of bar chart. The vertical axis lists all the tasks to be
performed. The bars are drawn along the y-axis, one for each task.
Gantt charts used in software project management are actually an
enhanced version of the standard Gantt charts. In the Gantt charts used
for software project management, each bar consists of a unshaded part
and a shaded part. The shaded part of the bar shows the length of time
each task is estimated to take. The unshaded part shows the slack time
or lax time. The lax time represents the leeway or flexibility available in
meeting the latest time by which a task must be finished. A Gantt chart
representation for the MIS problem of Figure 3.8 is shown in Figure
3.12. Gantt charts are useful for resource planning (i.e. allocate
resources to activities). The different types of resources that need to be
allocated to activities include staff, hardware, and software.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 3.12: Gantt chart representation of the MIS problem.

A Gantt chart is a special type of bar chart where each bar represents an activity. The
bars are drawn along a time line. The length of each bar is proportional to the
duration of time planned for the corresponding activity.

Gantt chart representation of a project schedule is helpful in planning the
utilisation of resources, while PERT chart is useful for monitoring the timely
progress of activities. Also, it is easier to identify parallel activities in a
project using a PERT chart. Project managers need to identify the parallel
activities in a project for assignment to different developers.

Project monitoring and control
Once a project gets underway, the project manager monitors the project
continuously to ensure that it is progressing as per plan. The project
manager designates certain key events such as completion of some
important activity as a milestone. A few examples of milestones are as
following—a milestone can be the preparation and review of the SRS
document, completion of the coding and unit testing, etc. Once a
milestone is reached, the project manager can assume that some
measurable progress has been made. If any delay in reaching a
milestone is predicted, then corrective actions might have to be taken.
This may entail reworking all the schedules and producing a fresh

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

schedule.
As already mentioned, the PERT chart is especially useful in project

monitoring and control. A path in this graph is any set of consecutive nodes
and edges from the starting node to the last node. A critical path in this graph
is a path along which every milestone is critical to meeting the project
deadline. In other words, if any delay occurs along a critical path, the entire
project would get delayed. It is therefore necessary to identify all the critical
paths in a schedule—adhering to the schedules of the tasks appearing on the
critical paths is of prime importance to meet the delivery date. Please note
that there may be more than one critical path in a schedule. The tasks along
a critical path are called critical tasks. The critical tasks need to be closely
monitored and corrective actions need to be initiated as soon as any delay is
noticed. If necessary, a manager may switch resources from a non-critical
task to a critical task so that all milestones along the critical path are met.

Several tools are available which can help you to figure out the critical
paths in an unrestricted schedule, but figuring out an optimal schedule with
resource limitations and with a large number of parallel tasks is a very hard
problem. There are several commercial products for automating the
scheduling techniques are available. Popular tools to help draw the schedule-
related graphs include the MS-Project software available on personal
computers.

3.11 ORGANISATION AND TEAM STRUCTURES
Usually every software development organisation handles several
projects at any time. Software organisations assign different teams of
developers to handle different software projects. With regard to staff
organisation, there are two important issues—How is the organisation
as a whole structured? And, how are the individual project teams
structured? There are a few standard ways in which software
organisations and teams can be structured. We discuss these in the
following subsection.

3.11.1 Organisation Structure
Essentially there are three broad ways in which a software development
organisation can be structured—functional format, project format, and
matrix format. We discuss these three formats in the following
subsection.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Functional format
In the functional format, the development staff are divided based on the
specific functional group to which they belong to. This format has
schematically been shown in Figure 3.13(a).

The different projects borrow developers from various functional groups for
specific phases of the project and return them to the functional group upon
the completion of the phase. As a result, different teams of programmers
from different functional groups perform different phases of a project. For
example, one team might do the requirements specification, another do the
design, and so on. The partially completed product passes from one team to
another as the product evolves. Therefore, the functional format requires
considerable communication among the different teams and development of
good quality documents because the work of one team must be clearly
understood by the subsequent teams working on the project. The functional
organisation therefore mandates good quality documentation to be produced
after every activity.

Project format
In the project format, the development staff are divided based on the project
for which they work (See Figure 3.13(b)). A set of developers is assigned to
every project at the start of the project, and remain with the project till the
completion of the project. Thus, the same team carries out all the life cycle
activities. An advantage of the project format is that it provides job rotation.
That is, every developer undertakes different life cycle activities in a project.
However, it results in poor manpower utilisation, since the full project team is
formed since the start of the project, and there is very little work for the team
during the initial phases of the life cycle.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 3.13: Schematic representation of the functional and project organisation.

Functional versus project formats
Even though greater communication among the team members may
appear as an avoidable overhead, the functional format has many
advantages. The main advantages of a functional organisation are:

• Ease of staffing
• Production of good quality documents
• Job specialisation
• Efficient handling of the problems associated with manpower turnover3.
The functional organisation allows the developers to become specialists in

particular roles, e.g. requirements analysis, design, coding, testing,
maintenance, etc. They perform these roles again and again for different
projects and develop deep insights to their work. It also results in more
attention being paid to proper documentation at the end of a phase because
of the greater need for clear communication as between teams doing
different phases. The functional organisation also provides an efficient
solution to the staffing problem. We have already seen in Section 3.9.2 that
the staffing pattern should approximately follow the Rayleigh distribution for
efficient utilisation of the personnel by minimizing their wait times. The
project staffing problem is eased significantly because personnel can be
brought onto a project as needed, and returned to the functional group when
they are no more needed. This possibly is the most important advantage of
the functional organisation.

A project organisation structure forces the manager to take in almost a

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

constant number of developers for the entire duration of his project. This
results in developers idling in the initial phase of software development and
are under tremendous pressure in the later phase of development. A further
advantage of the functional organisation is that it is more effective in
handling the problem of manpower turnover. This is because developers can
be brought in from the functional pool when needed. Also, this organisation
mandates production of good quality documents, so new developers can
quickly get used to the work already done.

In spite of several important advantages of the functional organisation, it is
not very popular in the software industry. This apparent paradox is not
difficult to explain. We can easily identify the following three points:

The project format provides job rotation to the team members. That is,
each team member takes on the role of the designer, co der, tester, etc
during the course of the project. On the other hand, considering the
present skill shortage, it would be very difficult for the functional
organisations to fill slots for some roles such as the maintenance,
testing, and coding groups.
Another problem with the functional organisation is that if an
organisation handles projects requiring knowledge of specialized
domain areas, then these domain experts cannot be brought in and out
of the project for the different phases, unless the company handles a
large number of such projects.
For obvious reasons the functional format is not suitable for small
organisations handling just one or two projects.

Matrix format
A matrix organisation is intended to provide the advantages of both
functional and project structures. In a matrix organisation, the pool of
functional specialists are assigned to different projects as needed. Thus, the
deployment of the different functional specialists in different projects can be
represented in a matrix (see Figure 3.14) In Figure 3.14 observe that
different members of a functional specialisation are assigned to different
projects. Therefore in a matrix organisation, the project manager needs to
share responsibilities for the project with a number of individual functional
managers.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 3.14: Matrix organisation.

Matrix organisations can be characterised as weak or strong, depending
upon the relative authority of the functional managers and the project
managers. In a strong functional matrix, the functional managers have
authority to assign workers to projects and project managers have to accept
the assigned personnel. In a weak matrix, the project manager controls the
project budget, can reject workers from functional groups, or even decide to
hire outside workers.

Two important problems that a matrix organisation often suffers from are:

Conflict between functional manager and project managers over
allocation of workers.
Frequent shifting of workers in a firefighting mode as crises occur in
different projects.

3.11.2 Team Structure
Team structure addresses organisation of the individual project teams.
Let us examine the possible ways in which the individual project teams
are organised. In this text, we shall consider only three formal team
structures—democratic, chief programmer, and the mixed control team
organisations, although several other variations to these structures are
possible. Projects of specific complexities and sizes often require
specific team structures for efficient working.

Chief programmer team
In this team organisation, a senior engineer provides the technical leadership
and is designated the chief programmer. The chief programmer partitions the
task into many smaller tasks and assigns them to the team members. He also

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

verifies and integrates the products developed by different team members.
The structure of the chief programmer team is shown in Figure 3.15. The
chief programmer provides an authority, and this structure is arguably more
efficient than the democratic team for well-understood problems. However,
the chief programmer team leads to lower team morale, since the team
members work under the constant supervision of the chief programmer. This
also inhibits their original thinking. The chief programmer team is subject to
single point failure since too much responsibility and authority is assigned to
the chief programmer. That is, a project might suffer severely, if the chief
programmer either leaves the organisation or becomes unavailable for some
other reasons.

Figure 3.15: Chief programmer team structure.

The chief programmer team is probably the most efficient way of completing simple
and small projects since the chief programmer can quickly work out a satisfactory
design and ask the programmers to code different modules of his design solution.

Let us now try to understand the types of projects for which the chief
programmer team organisation would be suitable. Suppose an organisation
has successfully completed many simple MIS projects. Then, for a similar MIS
project, chief programmer team structure can be adopted. The chief
programmer team structure works well when the task is within the
intellectual grasp of a single individual. However, even for simple and well-
understood problems, an organisation must be selective in adopting the chief
programmer structure. The chief programmer team structure should not be
used unless the importance of early completion outweighs other factors such
as team morale, personal developments, etc.

Democratic team
The democratic team structure, as the name implies, does not enforce any
formal team hierarchy (see Figure 3.16). Typically, a manager provides the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

administrative leadership. At different times, different members of the group
provide technical leadership.

Figure 3.16: Democratic team structure.

In a democratic organisation, the team members have higher morale and
job satisfaction. Consequently, it suffers from less manpower turnover.
Though the democratic teams are less productive compared to the chief
programmer team, the democratic team structure is appropriate for less
understood problems, since a group of developers can invent better solutions
than a single individual as in a chief programmer team. A democratic team
structure is suitable for research-oriented projects requiring less than five or
six developers. For large sized projects, a pure democratic organisation tends
to become chaotic. The democratic team organisation encourages egoless
programming as programmers can share and review each other’s work. To
appreciate the concept of egoless programming, we need to understand the
concept of ego from a psychological perspective.

Most of you might have heard about temperamental artists who take much
pride in whatever they create. Ordinarily, the human psychology makes an
individual take pride in everything he creates using original thinking. Software
development requires original thinking too, although of a different type. The
human psychology makes one emotionally involved with his creation and
hinders him from objective examination of his creations. Just like
temperamental artists, programmers find it extremely difficult to locate bugs
in their own programs or flaws in their own design. Therefore, the best way
to find problems in a design or code is to have someone review it. Often,
having to explain one’s program to someone else gives a person enough

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

objectivity to find out what might have gone wrong. This observation is the
basic idea behind code walk throughs to be discussed in Chapter 10. An
application of this, is to encourage a democratic teams to think that the
design, code, and other deliverables to belong to the entire group. This is
called egoless programming because it tries to avoid having programmers
invest much ego in the development activity they do in a democratic set up.
However, a democratic team structure has one disadvantage—the team
members may waste a lot time arguing about trivial points due to the lack of
any authority in the team to resolve the debates.

Mixed control team organisation
The mixed control team organisation, as the name implies, draws upon the
ideas from both the democratic organisation and the chief-programmer
organisation. The mixed control team organisation is shown pictorially in
Figure 3.17. This team organisation incorporates both hierarchical reporting
and democratic set up. In Figure 3.17, the communication paths are shown as
dashed lines and the reporting structure is shown using solid arrows. The
mixed control team organisation is suitable for large team sizes. The
democratic arrangement at the senior developers level is used to decompose
the problem into small parts. Each democratic setup at the programmer level
attempts solution to a single part. Thus, this team organisation is eminently
suited to handle large and complex programs. This team structure is
extremely popular and is being used in many software development
companies.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 3.17: Mixed team structure.

3.12 STAFFING
Software project managers usually take the responsibility of choosing
their team. Therefore, they need to identify good software developers
for the success of the project. A common misconception held by
managers as evidenced in their staffing, planning and scheduling
practices, is the assumption that one software engineer is as productive
as another. H owever, experiments have revealed that there exists a
large variability of productivity between the worst and the best software
developers in a scale of 1 to 30. In fact, the worst developers may
sometimes even reduce the overall productivity of the team, and thus in
effect exhibit negative productivity. Therefore, choosing good software
developers is crucial to the success of a project.

Who is a good software engineer?
In the past, several studies concerning the traits of a good software
engineer have been carried out. All these studies roughly agree on the
following attributes that good software developers should possess:

Exposure to systematic techniques, i.e. familiarity with software

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

engineering principles.
Good technical knowledge of the project areas (Domain knowledge)
Good programming abilities.
Good communication skills. These skills comprise of oral, written, and
interpersonal skills.
High motivation.
Sound knowledge of fundamentals of computer science
Intelligence.
Ability to work in a team.
Discipline, etc.

Studies show that these attributes vary as much as 1:30 for poor and bright
candidates. An experiment conducted by Sackman [1968] shows that the
ratio of coding hour for the worst to the best programmers is 25:1, and the
ratio of debugging hours is 28:1. Also, the ability of a software engineer to
arrive at the design of the software from a problem description varies greatly
with respect to the parameters of quality and time.

Technical knowledge in the area of the project (domain knowledge) is an
important factor determining the productivity of an individual for a particular
project, and the quality of the product that he develops. A programmer
having a thorough knowledge of database applications (e.g. MIS) may turn
out to be a poor data communication developer. Lack of familiarity with the
application areas can result in low productivity and poor quality of the
product.

Since software development is a group activity, it is vital for a software
developer to possess three main kinds of communication skills—Oral, Written,
and Interpersonal. A software developer not only needs to effectively
communicate with his teammates (e.g. reviews, walk throughs, and other
team communications) but may also have to communicate with the customer
to gather product requirements. Poor interpersonal skills hamper these vital
activities and often show up as poor quality of the product and low
productivity. Software developers are also required at times to make
presentations to the managers and to the customers. This requires a different
kind of communication skill (oral communication skill). A software developer
is also expected to document his work (design, code, test, etc.) as well as
write the users’ manual, training manual, installation manual, maintenance
manual, etc. This requires good written communication skill.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Motivation level of a software developer is another crucial factor
contributing to his work quality and productivity. Even though no systematic
studies have been reported in this regard, it is generally agreed that even
bright developers may turn out to be poor performers when they lack
motivation. An average developer who can work with a single mind track can
outperform other developers. But motivation is a complex phenomenon
requiring careful control. For majority of software developers, higher
incentives and better working conditions have only limited affect on their
motivation levels. Motivation is to a great extent determined by personal
traits, family and social backgrounds, etc.

3.13 RISK MANAGEMENT
Every project is susceptible to a large number of risks. Without effective
management of the risks, even the most meticulously planned project may go
hay ware.

A risk is any anticipated unfavourable event or circumstance that can occur while a
project is underway.

We need to distinguish between a risk which is a problem that might occur
from the problems currently being faced by a project. If a risk becomes real,
the anticipated problem becomes a reality and is no more a risk. If a risk
becomes real, it can adversely affect the project and hamper the successful
and timely completion of the project. Therefore, it is necessary for the project
manager to anticipate and identify different risks that a project is susceptible
to, so that contingency plans can be prepared beforehand to contain each
risk. In this context, risk management aims at reducing the chances of a risk
becoming real as well as reducing the impact of a risks that becomes real.
Risk management consists of three essential activities—risk identification, risk
assessment, and risk mitigation. We discuss these three activities in the
following subsections.

3.13.1 Risk Identification
The project manager needs to anticipate the risks in a project as early as
possible. As soon as a risk is identified, effective risk management plans
are made, so that the possible impacts of the risks is minimised. So,
early risk identification is important. Risk identification is somewhat
similar to the project manager listing down his nightmares. For
example, project manager might be worried whether the vendors whom

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

you have asked to develop certain modules might not complete their
work in time, whether they would turn in poor quality work, whether
some of your key personnel might leave the organisation, etc. All such
risks that are likely to affect a project must be identified and listed.

A project can be subject to a large variety of risks. In order to be able to
systematically identify the important risks which might affect a project, it is
necessary to categorise risks into different classes. The project manager can
then examine which risks from each class are relevant to the project. There
are three main categories of risks which can affect a software project: project
risks, technical risks, and business risks. We discuss these risks in the
following.
Project risks: Project risks concern various forms of budgetary, schedule,
personnel, resource, and customer-related problems. An important project
risk is schedule slippage. Since, software is intangible, it is very difficult to
monitor and control a software project. It is very difficult to control something
which cannot be seen. For any manufacturing project, such as manufacturing
of cars, the project manager can see the product taking shape. He can for
instance, see that the engine is fitted, after that the doors are fitted, the car
is getting painted, etc. Thus he can accurately assess the progress of the
work and control it, if he finds any activity is progressing at a slower rate than
what was planned. The invisibility of the product being developed is an
important reason why many software projects suffer from the risk of schedule
slippage.
Technical risks: Technical risks concern potential design, implementation,
interfacing, testing, and maintenance problems. Technical risks also include
ambiguous specification, incomplete specification, changing specification,
technical uncertainty, and technical obsolescence. Most technical risks occur
due the development team’s insufficient knowledge about the product.
Business risks: This type of risks includes the risk of building an excellent
product that no one wants, losing budgetary commitments, etc.

Classification of risks in a project
Example 3.12 Let us consider a satellite based mobile communication
product discussed in Case Study 2.2 of Section 2.5. The project
manager can identify several risks in this project. Let us classify them
appropriately.

What if the project cost escalates and overshoots what was

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

estimated?: Project risk.
What if the mobile phones that are developed become too bulky in size
to conveniently carry?: Business risk.
What if it is later found out that the level of radiation coming from the
phones is harmful to human being?: Business risk.
What if call hand-off between satellites becomes too difficult to
implement?: Technical risk.

In order to be able to successfully foresee and identify different risks that
might affect a software project, it is a good idea to have a company disaster
list. This list would contain all the bad events that have happened to software
projects of the company over the years including events that can be laid at
the customer’s doors. This list can be read by the project mangers in order to
be aware of some of the risks that a project might be susceptible to. Such a
disaster list has been found to help in performing better risk analysis.

3.13.2 Risk Assessment
The objective of risk assessment is to rank the risks in terms of their
damage causing potential. For risk assessment, first each risk should be
rated in two ways:

The likelihood of a risk becoming real (r).
The consequence of the problems associated with that risk (s).

Based on these two factors, the priority of each risk can be computed as
follows:

p = r � s
where, p is the priority with which the risk must be handled, r is the
probability of the risk becoming real, and s is the severity of damage
caused due to the risk becoming real. If all identified risks are
prioritised, then the most likely and damaging risks can be handled first
and more comprehensive risk abatement procedures can be designed
for those risks.

3.13.3 Risk Mitigation
After all the identified risks of a project have been assessed, plans are
made to contain the most damaging and the most likely risks first.
Different types of risks require different containment procedures. In

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

fact, most risks require considerable ingenuity on the part of the project
manager in tackling the risks.

There are three main strategies for risk containment:
Avoid the risk: Risks can be avoided in several ways. Risks often arise due
to project constraints and can be avoided by suitably modifying the
constraints. The different categories of constraints that usually give rise to
risks are:
Process-related risk: These risks arise due to aggressive work schedule,
budget, and resource utilisation.
Product-related risks: These risks arise due to commitment to challenging
product features (e.g. response time of one second, etc.), quality, reliability
etc.
Technology-related risks: These risks arise due to commitment to use certain
technology (e.g., satellite communication).

A few examples of risk avoidance can be the following: Discussing with the
customer to change the requirements to reduce the scope of the work, giving
incentives to the developers to avoid the risk of manpower turnover, etc.
Transfer the risk: This strategy involves getting the risky components
developed by a third party, buying insurance cover, etc.
Risk reduction: This involves planning ways to contain the damage due to a
risk. For example, if there is risk that some key personnel might leave, new
recruitment may be planned. The most important risk reduction techniques
for technical risks is to build a prototype that tries out the technology that
you are trying to use. For example, if you are using a compiler for recognising
user commands, you would have to construct a compiler for a small and very
primitive command language first.

There can be several strategies to cope up with a risk. To choose the most
appropriate strategy for handling a risk, the project manager must consider
the cost of handling the risk and the corresponding reduction of risk. For this
we may compute the risk leverage of the different risks. Risk leverage is the
difference in risk exposure divided by the cost of reducing the risk. More
formally,

Even though we identified three broad ways to handle any risk, effective
risk handling cannot be achieved by mechanically following a set procedure,

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

but requires a lot of ingenuity on the part of the project manager. As an
example, let us consider the options available to contain an important type of
risk that occurs in many software projects—that of schedule slippage.

An example of handling schedule slippage risk
Risks relating to schedule slippage arise primarily due to the intangible
nature of software. For a project such as building a house, the progress
can easily be seen and assessed by the project manager. If he finds
that the project is lagging behind, then corrective actions can be
initiated. Considering that software development per se is invisible, the
first step in managing the risks of schedule slippage, is to increase the
visibility of the software product. Visibility of a software product can be
increased by producing relevant documents during the development
process and getting these documents reviewed by an appropriate team.
Milestones should be placed at regular intervals to provide a manager
with regular indication of progress. Completion of a phase of the
development process being followed need not be the only milestones.
Every phase can be broken down to reasonable-sized tasks and
milestones can be associated with these tasks. A milestone is reached,
once documentation produced as part of a software engineering task is
produced and gets successfully reviewed. Milestones need not be placed
for every activity. An approximate rule of thumb is to set a milestone
every 10 to 15 days. If milestones are placed too close each other than
the overheads in managing the milestones would be too much.

3.14 SOFTWARE CONFIGURATION MANAGEMENT
The results (also called as the deliverables) of a large software development
effort typically consist of a large number of objects, e.g., source code, design
document, SRS document, test document, user’s manual, etc. These objects
are usually referred to and modified by a number of software developers
through out the life cycle of the software. The state of each deliverable object
changes as development progresses and also as bugs are detected and fixed.

The configuration of the software is the state of all project deliverables at any point
of time; and software configuration management deals with effectively tracking and
controlling the configuration of a software during its life cycle.

As a software is changed, new revisions and versions get created. Before
we discuss configuration management, we must be clear about the distinction

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

between a version and a revision of a software product.

Software revision versus version
A new version of a software is created when there is significant change
in functionality, technology, or the hardware it runs on, etc. On the
other hand, a new release is created if there is only a bug fix, minor
enhancements to the functionality, usability, etc. Even the initial
delivery might consist of several versions and more versions might be
added later on.

For example, one version of a mathematical computation package might
run on Unix-based machines, another on Microsoft Windows and so on. As a
software is released and used by the customer, errors are discovered that
need correction. Enhancements to the functionalities of the software may also
be needed. A new release of software is an improved system intended to
replace an old one. Often systems are described as version m, release n; or
simply mn. Formally, a history relation is version of can be defined between
objects. This relation can be split into two subrelations is revision of and is
variant of. In the following subsections, we first discuss the necessity of
configuration management and subsequently we discuss the configuration
management activities and tools.

3.14.1 Necessity of Software Configuration Management
There are several reasons for putting an object under configuration
management. The following are some of the important problems that
can crop up, if configuration management is not used: every software
developer has a personal copy of an object (e.g. source code). When a
developer makes changes to his local copy, he is expected to intimate
the changes that he has made to other developers, so that the
necessary changes in interfaces could be uniformly carried out across all
modules. However, not only would it eat up valuable time of the
developers, but many times a developer might make changes to the
interfaces in his local copies and forgets to intimate the teammates
about the changes. This makes the different copies of the object
inconsistent. Finally, when the different modules are integrated, it does
not work. Therefore, when several team members work on developing
an application, it is necessary for them to work on a single copy of the
application, otherwise inconsistencies may arise.

Problems associated with concurrent access: Possibly the most

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

important reason for configuration management is to control the access to
the different deliverable objects. Unless strict discipline is enforced regarding
updation and storage of different objects, several problems can appear.
Assume that only a single copy of a program module is maintained, and
several developer are working on it. Two developers may simultaneously
carry out changes to different functions of the same module, and while saving
overwrite each other. Similar problems can occur for any other deliv erable
object.
Providing a stable development environment: When a project work is
underway, the team members need a stable environment to make progress.
Suppose one developer is trying to integrate module A, with the modules B
and C; since if developer of module C keeps changing C; this can be
especially frustrating if a change to module C forces recompilation of the
module. When an effective configuration management is in place, the
manager freezes the objects to form a baseline.

A baseline is the status of all the objects under configuration control. When
any of the objects under configuration control is changed, a new baseline
gets formed.

When any team member needs to change any of the objects under
configuration control, he is provided with a copy of the baseline item. The
requester makes changes to his private copy. Only after the requester is
through with all modifications to his private copy, the configuration is updated
and a new baseline gets formed instantly. This establishes a baseline for
others to use and depend on. Also, baselines may be archived periodically
(archiving means copying to a safe place such as a remote storage), so that
the last baseline can be recovered when there is a disaster.
System accounting and maintaining status information: System
accounting denotes keeping track of who made a particular change to an
object and when the change was made.
Handling variants: Existence of variants of a software product causes some
peculiar problems. Suppose you have several variants of the same module,
and find that a bug exists in one of them. Then, it has to be fixed in all
versions and revisions. To do it e fficiently, you should not have to fix it in
each and every version and revision of the software separately. Making a
change to one program should be reflected appropriately in all relevant
versions and revisions.

3.14.2 Configuration Management Activities

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Configuration management is carried out through two principal activities:
Configuration identification: I t involves deciding which parts of the
system should be kept track of.
Configuration control: It ensures that changes to a system happen
smoothly. Normal ly, a project manager performs the configuration
management activity by using a configuration management tool. In addition,
a configuration management tool helps to keep track of various deliverable
objects, so that the project manager can quickly and unambiguously
determine the current state of the project. The configuration management
tool enables the developer to change various components in a controlled
manner.

In the following subsections, we provide an overview of the two
configuration management activities.

Configuration identification
Project managers normally classify the objects associated with a
software development into three main categories—controlled,
precontrolled, and uncontrolled. Controlled objects are those that are
already under configuration control. The team members must follow
some formal procedures to change them. Precontrolled objects are not
yet under configuration control, but will eventually be under
configuration control. Uncontrolled objects are not subject to
configuration control. Controllable objects include both controlled and
precontrolled objects. Typical controllable objects include:

Requirements specification document
Design documents
Tools used to build the system, such as compilers, linkers, lexical
analysers, parsers, etc.
Source code for each module
Test cases
Problem reports

Configuration management plan is written during the project planning
phase. It lists all controlled objects. The managers who develop the plan
must strike a balance between controlling too much, and controlling too little.
If too much is controlled, overheads due to configuration management

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

increase to unreasonably high levels. On the other hand, controlling too little
might lead to confusion and inconsistency when something changes.

Configuration control
Configuration control is the process of managing changes to controlled
objects. The configuration control part of a configuration management system
that most directly affects the day-to-day operations of developers.

Configuration control allows only authorised changes to the controlled objects to
occur and prevents unauthorised changes.

In order to change a controlled object such as a module, a developer can
get a private copy of the module by a reserve operation (see Figure 3.18).
Configuration management tools allow only one person to reserve a module
at any time. Once an object is reserved, it does not allow any one else to
reserve this module until the reserved module is restored. Thus, by
preventing more than one developer to simultaneously reserve a module, the
problems associated with concurrent access are solved.

Figure 3.18: Reserve and restore operation in configuration control.

Let us see how an object under configuration control can be changed. The
developer needing to change a module first makes a reserve request. After
the reserve command successfully executes, a private copy of the module is
created in his local directory. Then, he carries out all necessary changes on
his private copy. Once has satisfactorily completes all necessary changes, the
changes need to be restored in configuration management repository.
However, restoring the changed module to the system configuration requires
the permission of a change control board (CCB). The CCB is usually
constituted from among the development team members. For every change

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

that needs to be carried out, the CCB reviews the changes made to the
controlled object and certifies several things about the change:

1. Change is well-motivated.
2. Developer has considered and documented the effects of the change.
3. Changes interact well with the changes made by other developers.
4. Appropriate people (CCB) have validated the change, e.g., someone

has tested the changed code, and has verified that the change is
consistent with the requirement.

The change control board (CCB) sounds like a group of people. However,
except for very large projects, the functions of the change control board are
normally discharged by the project manager himself or some senior member
of the development team. Once the CCB reviews the changes to the module,
the project manager updates the old baseline through a restore operation
(see Figure 3.18). A configuration control tool does not allow a developer to
replace an object he has reserved with his local copy unless he gets an
authorisation from the CCB. By constraining the developers’ ability to replace
reserved objects, a stable environment is achieved. Since a configuration
management tool allows only one developer to work on one module at any
one time, problem of accidental overwriting is eliminated. Also, since only the
manager can update the baseline after the CCB approval, unintentional
changes to the configuration items are eliminated.

Source code control system (SCCS) and RCS
SCCS and RCS are two popular configuration management tools available
on most Unix systems. SCCS or RCS can be used for controlling and
managing different versions of text files. SCCS and RCS do not handle
binary files (i.e., executable files, documents, files containing diagrams,
etc.) SCCS and RCS provide an efficient way of storing versions that
minimises the amount of occupied disk space. Suppose, a module MOD
is present in 3 versions—MOD1.1, MOD1.2 and MOD1.3. Then, SCCS
and RCS stores the original module MOD1.1 together with changes
needed to transform MOD1.1 into MOD1.2 and MOD1.2 to MOD1.3. The
changes needed to transform each baselined file to the next version are
stored and are called deltas. The main reason behind storing the deltas
rather than storing the full revision files is to save disk space.

The change control facilities provided by SCCS and RCS include the ability

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

to incorporate restrictions on the set of individuals who can create new
versions, and facilities for checking components in and out (i.e., reserve and
restore operations). Individual developers check out components and modify
them. After they have made all necessary changes to a module and after the
changes have been reviewed, they check in the changed module into SCCS or
RCS. Revisions are denoted by numbers in ascending order, e.g., 1.1, 1.2, 1.3,
etc. It is also possible to create variants or revisions of a component by
creating a fork in the development history.

3.15 MISCELLANEOUS PLANS
Besides cost estimation, scheduling, and staffing plans, project managers
plan several other things during the project planning stage. An
important task at this stage is the selection of a suitable development
process model. We have already discussed in Chapter 2 that different
problems require either adopting an entirely different process model or
suitably tailoring the standard process model adopted by a company.
For example, a routine development work may require a waterfall
model to be followed, and an ambitious and technically challenging
project may require an evolutionary or prototyping development model
to be adopted. Also, depending upon the type of the project, some life
cycle phases may be omitted, modified, or new phases may be added
to a selected life cycle model. For example, for a software maintenance
project, the design phase may be modified to a design modification
stage. Thus during the project planning stage, the project manager may
have to select a suitable process model and do any required tailoring.

SUMMARY

In this chapter, we examined the chief responsibilities of a software
project manager. We mentioned that various responsibilities of a
project manager can be classified into two broad classes:

– Project planning, and
– Project monitoring and control.

Project planning activities are undertaken before any development
activity starts. We discussed the important project planning activities—
estimation, scheduling, and staffing.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

We also discussed about the other plans that project mangers must do
during the project planning stage, such as risk analysis, configuration
plan, and process tailoring.
Project monitoring and control activities are undertaken after the
development work starts.
We emphasised that although some systematic techniques are
available to the project managers to do project planning; for project
monitoring and control, experience and subjective judgement are very
important.
Software configuration is the state of the deliverable items at any point
in time. We discussed that without proper configuration management,
a project would suffer from many types of problems. For this reason,
software configuration management is an important and mandatory
requirement in almost all software quality assurance principles.

EXERCISES
1. Choose the correct option:

(a) Effort is measured using which one of the following units:
(i) persons
(ii) person-months
(iii) months
(iv) Rupees

(b) COCOMO estimation model can be used to estimate which one of the
following:
(i) LOC
(ii) Effort
(iii) Function points
(iv) Defect density

(c) What is the correct order in which a software project manager
estimates various project parameters while using COCOMO:
(i) Cost, effort, duration, size
(ii) Cost, duration, effort, size
(iii) Size, effort, duration, cost
(iv) Size, cost, effort, duration

(d) Which one of the following is NOT a factor for “Lines of code” being
considered as a poor size metric:
(i) It is programming language dependent. (ii) It penalises efficient
and compact coding.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(iii) It is programmer dependent.
(iv) It is dependent on the complexity of the requirements.

(e) Which one of the following project parameters is usually the first to
be estimated by a project manager:
(i) Cost
(ii) Effort
(iii) Size
(iv) Duration

(f) Which one of the following charts is the most useful to decompose
the project activities into smaller tasks that can be more meaningfully
managed:
(i) PERT chart
(ii) GANTT chart
(iii) Task network representation
(iv) Work breakdown structure

(g) Which one of the following is an example of a multivariable cost
estimation model?
(i) Basic COCOMO
(ii) Intermediate COCOMO
(iii) Complete COCOMO
(iv) Delphi technique

(h) If a software product of size S takes m months to develop, then
according to the COCOMO estimation model, how long (in months) will
it take to develop a product of size 2 × S?
(i) Greater than 2 × m months
(ii) Greater than 3 × m months
(iii) Less than 2 × m months
(iv) Greater than 4 × m months

(i) Which of the following statements is true of the COCOMO model.
(i) Cost is the most fundamental attribute of a software product, based

on which the project size and duration are measured.
(ii) Size is the most fundamental attribute of a software product, based

on which the project cost and duration are measured.
(iii) Effort is the most fundamental attribute of a software product,

based on which the project size and cost are measured.
(iv) Duration is the most fundamental attribute of a software product,

based on which the project size and effort are measured.
(j) For a certain software development project, an effort estimation of

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

100 person- months was arrived by using COCOMO model. This implies
that the project needs to be completed by:
(i) Employing 100 persons for 1 month
(ii) Employing 1 person for 100 months
(iii) Employing 10 persons for 10 months
(iv) The number of persons employed over different project phases

would correspond to Raleigh distribution
(k) Which one of the following most closely describes configuration

management in software engineering?
(i) Management of the configuration parameter settings in the

software.
(i i) Management of objects that control the system configuration

parameter settings.
(iii) Management of the states of various project deliverables.
(iv) Configuration of the management activities depending of the type

of the projects.
(l) How is an application’s “version” different from its “release”?

(i) A release is a small change to an earlier release.
(ii) A version is a small change made to an earlier release.
(iii) A release is essentially the same as a version.
(iv) A release is the one made available to customers whereas

versions are for internal use.
(m) If a project is already delayed, then adding manpower to complete it

at the earliest would be:
(i) Always counter productive
(ii) Can help to a very limited extent
(iii) Most effective way to tackle the situation
(iv) Can cause project completion in the shortest time

2. Write five major responsibilities of a software project manager.
3. Identify the factors that make software projects much more difficult to

manage, compared to many other types of projects such as a project to
lay out a 100 km concrete road on an existing non-concrete road.

4. At which point in the software development life cycle (SDLC), does the
project management activities start? When do these end? Identify the
important project management activities.

5. What is meant by the ‘size’ of a software project? Why does a project
manager need to estimate the size of the project? How is the size
estimated?

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

6. What do you understand by sliding window planning? Explain using a
few examples the types of projects for which this form of planning is
especially suitable. Is sliding window planning appropriate for small
projects? What are its advantages over conventional planning?

7. What do you understand by product visibility in the context of software
development?
Why is it important to improve product visibility during software
development? How can product visibility be improved.

8 . What are the different categories of software development projects
according to the COCOMO estimation model? Give an example of
software product development projects belonging to each of these
categories.

9 . Briefly explain the main differences between the original COCOMO
estimation model and the COCOMO 2 estimation model.

10. What do you mean by project size? What are the popular metrics to
measure project size? How can the size of a project be estimated during
the project planning stage?

11. Briefly explain project size estimation using Delphi and expert
judgement techniques.
Compare the advantages and disadvantages of the following two project
size estimation techniques—expert judgement and Delphi technique.

12. Why is it difficult to accurately estimate the effort required for
completing a project?
Briefly explain the different effort estimation methods that are available.
Which one would be the most advisable to use and why?

13. For the same number of lines of code and the same development team
size, rank the following software projects in order of their estimated
development time. Briefly mention the reasoning behind your answer.
(a) A text editor
(b) An employee pay roll system
(c) An operating system for a new computer

14. As the the manager of a software project to develop a product for
business application, if you estimate the effort required for completion of
the project to be 50 person-months, can you complete the project by
employing 50 developers for a period of one month? Justify your answer.

15. Briefly explain the COCOMO 2 model. In what aspects is it an
improvement over the original COCOMO model.

16. State whether the following statements are TRUE o r FALSE. Give

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

reasons for your answer.
(a) As a project manager it would be worthwhile on your part to reduce

the project duration by half provided the customer agrees to pay for
the increased manpower requirements.

(b) Software organisations achieve more efficient manpower utilisation
by adopting a project-based organisation structure as compared to a
function-based organisation.

(c) For the development of the same product, the larger is the size of a
software development team, the faster is the product development.
(for simplicity, assume that all developer are equally proficient and
have exactly similar experience).

(d) The number of development personnel required for any software
development project can be determined by dividing the total
(estimated) effort by the total (estimated) duration of the project.

(e) The democratic team organisation is very well suited to handle
complex and challenging projects.

(f) It is possible to carry out the configuration management for a
software project without using an automated tool.

(g) According to the COCOMO model, cost is the most fundamental
attribute of a software product, based on which size and effort are
estimated.

(h) Size of a project, as used in COCOMO is the size of the final
executable code in bytes.

(i) Delphi estimation technique usually gives a more accurate estimation
of project size compared to the expert judgement technique.

(j) A democratic team structure is the most suitable compared to other
types of team structures. for developing a very large software product.

(k) When a task along a critical path is completed in less time than
originally estimated, it should result in faster completion of the overall
project.

(l) A task completing after its latest finish (LF) time would show up as a
delay in the completion of the project by corresponding time.

(m) Project managers normally use GANTT charts for doing resource
allocation, whereas PERT charts are used for monitoring and controlling
the progress of the project.

17. What is a milestone in software development? Why is it considered
helpful to have milestones in software development?

18. What is the order in which the following are estimated in the COCOMO

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

estimation technique: cost, effort, duration, size? Represent the
precedence ordering among these activities using a task network
diagram.

19. Explain why the development time of a software product of given size
remains almost the same, regardless of whether it is organic,
semidetached, or embedded type.

20. Explain why according to the COCOMO model, when the size of a
software is increased by two times, the time to develop the product
usually increases by less than two times.

21. Suppose you have estimated the nominal development time of a
moderate-sized software product to be 5 months. You have also
estimated that it will cost Rs. 50,000 to develop the software product.
Now, the customer comes and tells you that he wants you to accelerate
the delivery time by 10 per cent. How much additional cost would you
charge the customer for this accelerated delivery? Irrespective of
whether you take less time or more time to develop the product, you are
essentially developing the same product. Why then does the effort
depend on the duration over which you develop the product?

22. Explain how Putnam’s model can be used to compute the change in
project cost with project duration. What are the main disadvantages of
using the Putnam’s model to compute the additional costs incurred due
to schedule compression? How can you overcome them?

23. Suppose you are developing a software product of organic type. You
have estimated the size of the product to be about 100,000 lines of
code. Compute the nominal effort and the development time.

24. For the following C program estimate the Halstead’s length and volume
measures. Compare Halstead’s length and volume measures of size with
the LOC measure.
/* Program to calculate GCD of two numbers */
int compute_gcd(int x, int y)
{
while (x != y)
if (x>y) then x=x-y;
else y=y-x;

return x;
}

25. What does Halstead’s volume metric represent conceptually? How
according to Halstead is the effort dependent on program volume?

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

26. What are the relative advantages of using either the LOC or the
function point metric to measure the size of a software product for
software project planning?

27. List the important shortcomings of LOC for use as a software size
metric for carrying out project estimations.

28. Explain why adding more man power to an already late project makes
it later.

29. What do you understand by work breakdown in project management?
Why is work breakdown important to effective project management?
How is work breakdown achieved? What problems might occur is tasks
are either broken down into too fine a granularity or tasks are broken
into too coarse granularity?

30. The following table indicates the various tasks involved in completing a
software project, the corresponding activities, and the estimated effort
for each task in person-months.

Notation Activity Effort in person-months

T1 Requirements specification 1

T2 Design 2

T3 Code actuator interface module 2

T4 Code sensor interface module 5

T5 Code user interface part 3

T6 Code control processing part 1

T7 Integrate and test 6

T8 Write user manual 3

The precedence relation Ti ≤ {Tj, Tk} implies that the task Ti must
complete before either task Tj or Tk can start. The following precedence
relation is known to hold among different tasks: T1 ≤ T2 ≤ {T3, T4, T5,
T6} ≤ T7.
(a) Draw the Activity network representation of the tasks.
(b) Determine ES, EF and LS, LF for every task.
(c) Develop the Gantt chart representations for the project.

31. Suppose you are the project manager of a software project requiring
the following activities.

Activity
No.

Activity
Name

Duration
(weeks)

Immediate
Predecessor

1. Obtain requirements 4 -

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

2. Analyse operations 4 -

3. Define subsystems 2 1

4. Develop database 4 1

5. Make decision analysis 3 2

6. Identify constraints 2 5

7. Build module 1 8 3,4,6

8 Build module 2 12 3,4,6

9. Build module 3 18 3,4,6

10. Write report 10 6

11. Integration and test 8 7,8,9

12. Implementation 2 10,11

(a) Draw the Activity Network representation of the project.
(b) Determine ES, EF and LS, LF for every task.
(c) Draw the Gantt chart representation of the project.

32. Consider a software project with 5 tasks T1–T5. Duration of the 5 tasks
in weeks are 3,2,3,5,2 respectively. T2 and T4 can start when T1 is
complete. T3 can start when T2 is complete. A T5 can start when both
T3 and T4 are complete. Draw the PERT chart representation of the
project. When is the latest start date of the task T3. What is the slack
time of the task T4. Which tasks are on the critical path?

33. Explain when should you use PERT charts and when you should use
Gantt charts while you are performing the duties of a project manager.

34. How is Gantt chart useful in software project management? What
problems might be encountered, if project monitoring and control is
carried out using a Gantt chart?

35. Suppose that a certain software product for business application costs
Rs. 50,000 to buy off-the-shelf and that its size is 40 KLOC. Assuming
that in-house developers cost Rs. 6000 per programmer-month
(including overheads), would it be more cost-effective to buy the product
or build it? Which elements of the cost are not included in COCOMO
estimation model? What additional factors should be considered in
making the buy/build decision?

36. What is a baseline in the context of software configuration
management? Explain how a baseline can be updated to form a new
baseline?

37. Suppose you are the manager of a software project. Explain using only
one or two sentences why you should not calculate the number of

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

developers required for the project as a simple division of the effort
estimate (in person-months) by the nominal duration estimate (in
months).

38. List the important items that a software project management plan
(SPMP) document should discuss.

39. Suppose you are the project manager of a large product development
team and you have to make a choice between democratic and chief
programmer team organisations, which one would you adopt for your
team? Explain the reasoning behind your answer.

40. Compare the relative advantages of the functional and the project
approaches of development center organisation. Suppose you are the
chief executive officer (CEO) of a software development center. Which
organisation structure would you select for your organisation? Why?

41. Name the different ways in which software development teams are
organised. For the development of a challenging satellite-based mobile
communication product which type of project team organisation would
you recommend? Justify your answer.

42. Do you agree with the following statement? “Few, if any, organisation
in the real world is purely functional, project, or matrix in nature.” Justify
your answer.

43. Explain the advantages of a functional organisation over a project
organisation. Also explain why software development houses are
preferring to use project organisation over functional organisation.

44. In the context of software configuration management, answer the
following:
(a) What do you understand by software configuration?
(b) What is meant by software configuration management?
(c) How can you manage software configuration (only mention the

names of the principal activities involved)?
(d) Why is software configuration management crucial to the success of

large software product development projects (write only the important
reasons)?

(e) What is change control board (CCB) and what is its role in software
configuration management?

45. Why are software projects more susceptible to schedule slippage
compared to other types of projects?

46. In what units can you measure the productivity of a software
development team? List three important factors that affect the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

productivity of a software development team.
47. List three common types of risks that a typical software project might

suffer from.
Explain how you can identify the risks that your project is susceptible to.
Suppose you are the project manager of a large software development
project, point out the main steps you would follow to manage risks in
your software project.

48. Schedule slippage is a very common form of risk that almost every
project manager has to encounter. Explain in 3 to 4 sentences how you
would manage the risk of schedule slippage as the project manager of a
medium-sized project.

49. Explain how you can choose the best risk reduction technique when
there are many ways of reducing a risk.

50. What are the important types of risks that a project might suffer from?
How would you identify the risks that a project is susceptible to during
project the project planning stage?

51. As a project manager, identify the characteristics that y ou would look
for in a software developer while trying to select personnel for your
team.

52. What is egoless programming? How can it be realised?
53. Is it true that a software product can always be developed faster by

having a larger development team (you can assume that all developers
are equally proficient and have exactly similar experience)? Justify your
answer.

54. Suppose you have been appointed as the project manager of a large
project, identify the activities you would undertake to plan your project.
Explain the sequence in which you would undertake these activities by
using a task network notation. What are some of the factors which make
it hard to accurately estimate the cost of software projects?

55. Suppose you are the project manager of a large development project.
The top management informs that you would have to do with a fixed
team size (i.e., constant number of developers) through out the duration
your project. What will be the impact of this decision on your project?

56. The industry average productivity figure for developers is only 10
LOC/day. What is the reason for such low productivity? Can we attribute
this to the poor programming skill of developers?

57. What do you understand by software configuration management? How
is it carried out?

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

What problems would you face if you are developing several versions of
the same product according to a client’s request, and you are not using
any configuration management tools?

58. What is the difference between a revision and a version of a software
product? What do you understand by the terms change control and
version control? Why are these necessary? Explain how change and
version control are achieved using a configuration management tool.

59. Discuss how SCCS or RCS can be used to efficiently manage the
configuration of source code. What are some of the shortcomings of
SCCS and RCS?

60. Consider a software project with 5 tasks T1-T5. Duration of the 5 tasks
(in days) are 15, 10, 12, 25 and 10, respectively. T2 and T4 can start
when T1 is complete. T3 can start when T2 is complete. T5 can start
when both T3 and T4 are complete. When is the latest start date of the
task T3? What is the slack time of the task T4?

61. Why is it necessary for a project manager to decompose the tasks of a
project using work breakdown structure (WBS)? To what granularity
level are the tasks decomposed? Explain your answer.

62. Suppose you are the project manager of a small team developing a
business application.
Assume that your team has experience in developing several similar
products. If you are asked to make a choice between democratic and
chief programmer team organisations, which one would you adopt for
your team? Explain the reasoning behind your answer.

63. What do you understand by project risk? How can risks be effectively
identified by a project manager? How can the risks be managed?

64. Suppose you are appointed as the project manager of a project to
develop a commercial word processing software product providing
features comparable to MS-WORD software, develop the work
breakdown structure (WBS). Explain your answer.

65. What are the different project parameters that determine the cost of a
project? What are the important factors which make it hard to accurately
estimate the cost of software projects? If you are a project manager
bidding for a product development to a customer, would you quote the
cost estimated using COCOMO as the price in your bid? Explain your
answer.

1 A data processing program is one which processes large volumes of data using a simple algorithm. An
example of a data processing application is a payroll software. A payroll software computes the salaries of
the employees and prints cheques for them. In a payroll software, the algorithm for pay computation is

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

fairly simple. The only complexity that arises while developing such a software product is on account of
large volumes of data. For example, the pay computation may have to be done for a large number of
employees.
2 This section can be skipped for the first-level course on software engineering.

3 Manpower turnover in the software industry parlance is developers leaving an organisation in the
middle of a project.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Chapter
4

REQUIREMENTS ANALYSIS AND
SPECIFICATION

All plan-driven life cycle models prescribe that before starting to develop a
software, the exact requirements of the customer must be understood and
documented. In the past, many projects have suffered because the
developers started to implement something without determining whether
they were building what the customers exactly wanted. Starting development
work without properly understanding and documenting the requirements
increases the number of iterative changes in the later life cycle phases, and
thereby alarmingly pushes up the development costs. This also sets the
ground for customer dissatisfaction and bitter customer-developer disputes
and protracted legal battles. No wonder that experienced developers consider
the requirements analysis and specification to be a very important phase of
software development life cycle and undertake it with utmost care.

Experienced developers take considerable time to understand the exact requirements
of the customer and to meticulously document those. They know that without a clear
understanding of the problem and proper documentation of the same, it is impossible
to develop a satisfactory solution.

For any type of software development project, availability of a good quality
requirements document has been acknowledged to be a key factor in the
successful completion of the project. A good requirements document not only
helps to form a clear understanding of various features required from the
software, but also serves as the basis for various activities carried out during
later life cycle phases. When software is developed in a contract mode for
some other organisation (that is, an outsourced project), the crucial role
played by documentation of the precise requirements cannot be overstated.
Even when an organisation develops a generic software product, the situation
is not very different since some personnel from the organisation’s own

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

marketing department act as the customer. Therefore, for all types of
software development projects, proper formulation of requirements and their
effective documentation is vital. However, for very small software service
projects, the agile methods advocate incremental development of the
requirements.

An overview of requirements analysis and specification
phase

The requirements analysis and specification phase starts after the
feasibility study stage is complete and the project has been found to be
financially viable and technically feasible.

The requirements analysis and specification phase ends when the
requirements specification document has been developed and reviewed. The
requirements specification document is usually called as the software
requirements specificat ion (SRS) document. The goal of the requirements
analysis and specification phase can be stated in a nutshell as follows.

The goal of the requirements analysis and specification phase is to clearly understand
the customer requirements and to systematically organise the requirements into a
document called the Software Requirements Specification (SRS) document.

Who carries out requirements analysis and specification?
Requirements analysis and specification activity is usually carried out by a
few experienced members of the development team and it normally requires
them to spend some time at the customer site. The engineers who gather
a n d analyse customer requirements and then write the requirements
specification document are known as system analysts in the software industry
parlance. System analysts collect data pertaining to the product to be
developed and analyse the collected data to conceptualise what exactly
needs to be done. After understanding the precise user requirements, the
analysts analyse the requirements to weed out inconsistencies, anomalies
and incompleteness. They then proceed to write the software requirements
specification (SRS) document.

The SRS document is the final outcome of the requirements analysis and specification
phase.

How is the SRS document validated?
Once the SRS document is ready, it is first reviewed internally by the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

project team to ensure that it accurately captures all the user
requirements, and that it is understandable, consistent, unambiguous,
and complete. The SRS document is then given to the customer for
review. After the customer has reviewed the SRS document and agrees
to it, it forms the basis for all future development activities and also
serves as a contract document between the customer and the
development organisation.

What are the main activities carried out during
requirements analysis and specification phase?

Requirements analysis and specification phase mainly involves carrying
out the following two important activities:

• Requirements gathering and analysis
• Requirements specification
In the next section, we will discuss the requirements gathering and analysis

activity and in the subsequent section we will discuss the requirements
specification activity.

4.1 REQUIREMENTS GATHERING AND ANALYSIS
The complete set of requirements are almost never available in the form
of a single document from the customer. In fact, it would be unrealistic
to expect the customers to produce a comprehensive document
containing a precise description of what he wants. Further, the
complete requirements are rarely obtainable from any single customer
representative. Therefore, the requirements have to be gathered by the
analyst from several sources in bits and pieces. These gathered
requirements need to be analysed to remove several types of problems
that frequently occur in the requirements that have been gathered
piecemeal from different sources.

We can conceptually divide the requirements gathering and analysis activity
into two separate tasks:

• Requirements gathering
• Requirements analysis
We discuss these two tasks in the following subsections.

4.1.1 Requirements Gathering
Requirements gathering is also popularly known as requirements elicitation.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The primary objective of the requirements gathering task is to collect the
requirements from the stakeholders.

A stakeholder is a source of the requirements and is usually a person, or a group of
persons who either directly or indirectly are concerned with the software.

Requirements gathering may sound like a simple task. However, in practice
it is very difficult to gather all the necessary information from a large number
of stakeholders and from information scattered across several pieces of
documents. Gathering requirements turns out to be especially challenging if
there is no working model of the software being developed.

Suppose a customer wants to automate some activity in his organisation
that is currently being carried out manually. In this case, a working model of
the system (that is, the manual system) exists. Availability of a working
model is usually of great help in requirements gathering. For example, if the
project involves automating the existing accounting activities of an
organisation, then the task of the system analyst becomes a lot easier as he
can immediately obtain the input and output forms and the details of the
operational procedures. In this context, consider that it is required to develop
a software to automate the book-keeping activities involved in the operation
of a certain office. In this case, the analyst would have to study the input and
output forms and then understand how the outputs are produced from the
input data. However, if a project involves de veloping something new for
which no working model exists, then the requirements gathering activity
becomes all the more difficult. In the absence of a working system, much
more imagination and creativity is required on the part of the system analyst.

Typically even before visiting the customer site, requirements gathering
activity is started by studying the existing documents to collect all possible
information about the system to be developed. During visit to the customer
site, the analysts normally interview the end-users and customer
representatives,1carry out requirements gathering activities such as
questionnaire surveys, task analysis, scenario analysis, and form analysis.

Given that many customers are not computer savvy, they describe their
requirements very vaguely. Good analysts share their experience and
expertise with the customer and give his suggestions to define certain
functionalities more comprehensively, make the functionalities more general
and more complete. In the following, we briefly discuss the important ways in
which an experienced analyst gathers requirements:
1. Studying existing documentation: The analyst usually studies all the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

available documents regarding the system to be developed before visiting the
customer site. Customers usually provide statement of purpose (SoP)
document to the developers. Typically these documents might discuss issues
such as the context in which the software is required, the basic purpose, the
stakeholders, features of any similar software developed elsewhere, etc.
2. Interview: Typically, there are many differe nt categories of users of a
software. Each category of users typically requires a different set of features
from the software. Therefore, it is important for the analyst to first identify
the different categories of users and then determine the requirements of
each. For example, the different categories of users of a library automation
software could be the library members, the librarians, and the accountants.
The library members would like to use the software to query availability of
books and issue and return books. The librarians might like to use the
software to determine books that are overdue, create member accounts,
delete member accounts, etc. The accounts personnel might use the software
to invoke functionalities concerning financial aspects such as the total fee
collected from the members, book procurement expenditures, staff salary
expenditures, etc.

To systematise this method of requirements gathering, the Delphi
technique can be followed. In this technique, the analyst consolidates the
requirements as understood by him in a document and then circulates it for
the comments of the various categories of users. Based on their feedback, he
refines his document. This procedure is repeated till the different users agree
on the set of requirements.
3. Task analysis: The users usually have a black-box view of a software and
consider the software as something that provides a set of services
(functionalities). A service supported by a software is also called a task. We
can therefore say that the software performs various tasks of the users. In
this context, the analyst tries to identify and understand the different tasks to
be performed by the software. For each identified task, the analyst tries to
formulate the different steps necessary to realise the required functionality in
consultation with the users. For example, for the issue book service, the steps
may be—authenticate user, check the number of books issued to the
customer and determine if the maximum number of books that this member
can borrow has been reached, check whether the book has been reserved,
post the book issue details in the member’s record, and finally print out a
book issue slip that can be presented by the member at the security counter
to take the book out of the library premises.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Task analysis helps the analyst to understand the nitty-gritty of various user tasks
and to represent each task as a hierarchy of subtasks.

Scenario analysis: A task can have many scenarios of operation. The
different scenarios of a task may take place when the task is invoked under
different situations. For different types of scenarios of a task, the behaviour of
the software can be different. For example, the possible scenarios for the
book issue task of a library automation software may be:

Book is issued successfully to the member and the book issue slip is
printed.
The book is reserved, and hence cannot be issued to the member.
The maximum number of books that can be issued to the member is
already reached, and no more books can be issued to the member.

For various identified tasks, the possible scenarios of execution are
identified and the details of each scenario is identified in consultation with
the users. For each of the identified scenarios, details regarding system
response, the exact conditions under which the scenario occurs, etc. are
determined in consultation with the user.

Form analysis: Form analysis is an important and effective
requirements gathering activity that is undertaken by the analyst, when
the project involves automating an existing manual system. During the
operation of a manual system, normally several forms are required to
b e filled up by the stakeholders, and in turn they receive several
notifications (usually manually filled forms). In form analysis the exiting
forms and the formats of the notifications produced are analysed to
determine the data input to the system and the data that are output
from the system. For the different sets of data input to the system, how
these input data would be used by the system to produce the
corresponding output data is determined from the users.

Case study 4.1 Requirements gathering for automation of the office work
at the CSE department
The academic, inventory, and financial information at the CSE (Computer Science and
Engineering) department of a certain institute was being carried out manually by two
office clerks, a store keeper, and two attendants. The department has a student
strength of 500 and a teacher strength of 30. The head of the department (HoD)
wants to automate the office work. Considering the low budget that he has at his
disposal, he entrusted the work to a team of student volunteers.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

For requirements gathering, a member of the team who was responsible for
requirements analysis and specification (analyst) was first briefed by the HoD about
the specific activities to be automated. The HoD mentioned that three main aspects
of the office work needs to be automated—stores-related activities, student grading
activities, and student leave management activities. It was necessary for the analyst
to meet the other categories of users. The HoD introduced the analyst (a student) to
the office staff. The analyst first discussed with the two clerks regarding their specific
responsibilities (tasks) that were required to be automated. For each task, they asked
the clerks to brief them about the steps through which these are carried out. The
analyst also enquired about the various scenarios that might arise for each task. The
analyst collected all types of forms that were being used by the student and the staff
of the department to register various types of information with the office (e.g.
student course registration, course grading) or requests for some specific service (e.g.
issue of items from store). He also collected samples of various types of documents
(outputs) the clerks were preparing. Some of these had specific printed forms that
the clerks filled up manually, and others were entered using a spreadsheet, and then
printed out on a laser printer. Fo r each output form, the analyst consulted the clerks
regarding how these different entries are generated from the input data.
The analyst met the store keeper and enquired about the material issue procedures,
store ledger entry procedures, and the procedures for raising indents on various
vendors. He also collected copies of all the relevant forms that were being used by
the store keeper. The analyst also interviewed the student and faculty representatives.
Since it was needed to automate the existing activities of an working office, the
analyst could without much difficulty obtain the exact formats of the input data,
output data, and the precise description of the existing office procedures.

4.1.2 Requirements Analysis
After requirements gathering is complete, the analyst analyses the gathered
requirements to form a clear understanding of the exact customer
requirements and to weed out any problems in the gathered requirements. It
is natural to expect that the data collected from various stakeholders to
contain several contradictions, ambiguities, and incompleteness, since each
stakeholder typically has only a partial and incomplete view of the software.
Therefore, it is necessary to identify all the problems in the requirements and
resolve them through further discussions with the customer.

The main purpose of the requirements analysis activity is to analyse the gathered
requirements to remove all ambiguities, incompleteness, and inconsistencies from the
gathered customer requirements and to obtain a clear understanding of the software
to be developed.

For carrying out requirements analysis effectively, the analyst first needs to

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

develop a clear grasp of the problem. The following basic questions
pertaining to the project should be clearly understood by the analyst before
carrying out analysis:

What is the problem?
Why is it important to solve the problem?
What exactly are the data input to the system and what exactly are
the data output by the system?
What are the possible procedures that need to be followed to solve the
problem?
What are the likely complexities that might arise while solving the
problem?
If there are external software or hardware with which the developed
software has to interface, then what should be the data interchange
formats with the external systems?

After the analyst has understood the exact customer requirements, he
proceeds to identify and resolve the various problems that he detects in the
gathered requirements.

During requirements analysis,the analyst needs to identify and resolve three main
types of problems in the requirements:

• Anomaly
• Inconsistency
• Incompleteness

Let us examine these different types of requirements problems in detail.
Anomaly: It is an anomaly is an ambiguity in a requirement. When a
requirement is anomalous, several interpretations of that requirement are
possible. Any anomaly in any of the requirements can lead to the
development of an incorrect system, since an anomalous requirement can be
interpreted in the several ways during development. The following are two
examples of anomalous requirements:
Example 4 . 1 While gathering the requirements for a process control
application, the following requirement was expressed by a certain
stakeholder: When the temperature becomes high, the heater should be
switched off. Please note that words such as “high”, “low”, “goo d”, “bad” etc.
are indications of ambiguous requirements as these lack quantification and
can be subjectively interpreted. If the threshold above which the temperature

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

can be considered to be high is not specified, then it can be interpreted
differently by different developers.
Example 4.2 In the case study 4.1, suppose one office clerk described the
following requirement: during the final grade computation, if any student
scores a sufficiently low grade in a semester, then his parents would need to
be informed. This is clearly an ambiguous requirement as it lacks any well
defined criterion as to what can be considered as a “sufficiently low grade”.
Inconsistency: Two requirements are said to be inconsistent, if one of the
requirements contradicts the other. The follo wing are two examples of
inconsistent requirements:
Example 4.3 Consider the following two requirements that were collected
from two different stakeholders in a process control application development
project.

The furnace should be switched-off when the temperature of the
furnace rises above 500� C.
When the temperature of the furnace rises above 500� C, the water
shower should be switched-on and the furnace should remain on.

The requirements expressed by the two stakeholders are clearly
inconsistent.
Example 4.4 In the case study 4.1 suppose one of the clerks gave the
following requirement— a student securing fail grades in three or more
subjects must repeat the courses over an entire semester, and he cannot
credit any other courses while repeating the courses. Suppose another clerk
expressed the following requirement—there is no provision for any student to
repeat a semester; the student should clear the subject by taking it as an
extra subject in any later semester. There is a clear inconsistency between
the requirements given by the two stakeholders.
Incompleteness: An incomplete set of requirements is one in which some
requirements have been overlooked. The lack of these features would be felt
by the customer much later, possibly while using the software. Often,
incompleteness is caused by the inability of the customer to visualise the
system that is to be developed and to anticipate all the features that would
be required. An experienced analyst can detect most of these missing
features and suggest them to the customer for his consideration and approval
for incorporation in the requirements. The following are two examples of

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

incomplete requirements:
Example 4.5 Suppose for the case study 4.1, one of the clerks expressed the
following—If a student secures a grade point average (GPA) of less than 6, then
the parents of the student must be intimated about the regrettable
performance through a (postal) letter as well as through e-mail. However, on
an examination of all requirements, it was found that there is no provision by
which either the postal or e-mail address of the parents of the students can
be entered into the system. The feature that would allow entering the e-mail
ids and postal addresses of the parents of the students was missing, thereby
making the requirements incomplete.
Example 4.6 In a chemical plant automation software, suppose one of the
requirements is that if the internal temperature of the reactor exceeds 200
�C then an alarm bell must be sounded. However, on an examination of all
requirements, it was found that there is no provision for resetting the alarm
bell after the temperature has been brought down in any of the requirements.
This is clearly an incomplete requirement.

Can an analyst detect all the problems existing in the
gathered requirements?

Many of the inconsistencies, anomalies, and incompleteness are
detected effortlessly, while some others require a focused study of the
specific requirements. A few problems in the requirements can,
however, be very subtle and escape even the most experienced eyes.
Many of these subtle anomalies and inconsistencies can be detected, if
the requirements are specified and analysed using a formal method.
Once a system has been formally specified, it can be systematically
(and even automatically) analysed to remove all problems from the
specification. We will discuss the basic concepts of formal system
specification in Section 4.3. Though the use of formal techniques is not
widespread, the current practice is to formally specify only the safety-
critical2 parts of a system.

4.2 SOFTWARE REQUIREMENTS SPECIFICATION (SRS)
After the analyst has gathered all the required information regarding the
software to be developed, and has removed all incompleteness,
inconsistencies, and anomalies from the specification, he starts to
systematically organise the requirements in the form of an SRS

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

document. The SRS document usually contains all the user
requirements in a structured though an informal form.

Among all the documents produced during a software development life
cycle, SRS document is probably the most important document and is the
toughest to write. One reason for this difficulty is that the SRS document is
expected to cater to the needs of a wide variety of audience. In the following
subsection, we discuss the different categories of users of an SRS document
and their needs from it.

4.2.1 Users of SRS Document
Usually a large number of different people need the SRS document for
very different purposes. Some of the important categories of users of
the SRS document and their needs for use are as follows:

Users, customers, and marketing personnel: These stakeholders need
to refer to the SRS document to ensure that the system as described in the
document will meet their needs. Remember that the customer may not be
the user of the software, but may be some one employed or designated by
the user. For generic products, the marketing personnel need to understand
the requirements that they can explain to the customers.
Software developers: The software developers refer to the SRS document
to make sure that they are developing exactly what is required by the
customer.
Test engineers: The test engineers use the SRS document to understand
the functionalities, and based on this write the test cases to validate its
working. They need that the required functionality should be clearly
described, and the input and output data should have been identified
precisely.
User documentation writers: The user documentation writers need to
read the SRS document to ensure that they understand the features of the
product well enough to be able to write the users’ manuals.
Pro ject managers: The project managers refer to the SRS document to
ensure that they can estimate the cost of the project easily by referring to the
SRS document and that it contains all the information required to plan the
project.
Maintenance engineers: The SRS document helps the maintenance
engineers to under- stand the functionalities supported by the system. A clear
knowledge of the functionalities can help them to understand the design and

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

code. Also, a proper understanding of the functionalities supported enables
them to determine the specific modifications to the system’s functionalities
would be needed for a specific purpose.

Many software engineers in a project consider the SRS document to be a
reference document. However, it is often more appropriate to think of the
SRS document as the documentation of a contract between the development
team and the customer. In fact, the SRS document can be used to resolve
any disagreements between the developers and the customers that may arise
in the future. The SRS document can even be used as a legal document to
settle disputes between the customers and the developers in a court of law.
Once the customer agrees to the SRS document, the development team
proceeds to develop the software and ensure that it conforms to all the
requirements mentioned in the SRS document.

4.2.2 Why Spend Time and Resource to Develop an SRS Document?
A well-formulated SRS document finds a variety of usage other than the
primary intended usage as a basis for starting the software
development work. In the following subsection, we identify the
important uses of a well-formulated SRS document:

Forms an agreement between the customers and the developers: A
good SRS document sets the stage for the customers to form their
expectation about the software and the developers about what is expected
from the software.
Reduces future reworks: The process of preparation of the SRS document
forces the stakeholders to rigorously think about all of the requirements
before design and development get underway. This reduces later redesign,
recoding, and retesting. Careful review of the SRS document can reveal
omissions, misunderstandings, and inconsistencies early in the development
cycle.
Provides a basis for estimating costs and schedules: Project managers
usually estimate the size of the software from an analysis of the SRS
document. Based on this estimate they make other estimations such as the
effort required to develop the software and the total cost of development.
The SRS document also serves as a basis for price negotiations with the
customer. The project manager also uses the SRS document for work
scheduling.
Provides a baseline for validation and verification: The SRS document

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

provides a baseline against which compliance of the developed software can
be checked. It is also used by the test engineers to create the test plan.

Facilitates future extensions: The SRS document usually serves as a basis
for planning future enhancements.

Before we discuss about how to write an SRS document, we first discuss the
characteristics of a good SRS document and the pitfalls that one must
consciously avoid while writing an SRS document.

4.2.3 Characteristics of a Good SRS Document
The skill of writing a good SRS document usually comes from the
experience gained from writing SRS documents for many projects.
However, the analyst should be aware of the desirable qualities that
every good SRS document should possess. IEEE Recommended Practice
for Software Requirements Specifications[IEEE830] describes the
content and qualities of a good software requirements specification
(SRS). Some of the identified desirable qualities of an SRS document
are the following:

Concise: The SRS document should be concise and at the same time
unambiguous, consistent, and complete. Verbose and irrelevant
descriptions reduce readability and also increase the possibilities of
errors in the document.
Implementation-independent: The SRS should be free of design
and implementation decisions unless those decisions reflect actual
requirements. It should only specify what the system should do and
refrain from stating how to do these. This means that the SRS
document should specify the externally visible behaviour of the system
and not discuss the implementation issues. This view with which a
requirements specification is written, has been shown in Figure 4.1.
Observe that in Figure 4.1, the SRS document describes the output
produced for the different types of input and a description of the
processing required to produce the output from the input (shown in
ellipses) and the internal working of the software is not discussed at
all.

The SRS document should describe the system to be developed as a black box, and
should specify only the externally visible behaviour of the system. For this reason, the
S R S document is also called the black-box specification of the software being

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

developed.

Figure 4.1: The black-box view of a system as performing a set of functions.

Traceable: It should be possible to trace a specific requirement to the
design elements that implement it and vice versa. Similarly, it should be
possible to trace a requirement to the code segments that implement it and
the test cases that test this requirement and vice versa. Traceability is also
important to verify the results of a phase with respect to the previous phase
and to analyse the impact of changing a requirement on the design elements
and the code.
Modifiable: Customers frequently change the requirements during the
software development development due to a variety of reasons. Therefore, in
practice the SRS document undergoes several revisions during software
development. Also, an SRS document is often modified after the project
completes to accommodate future enhancements and evolution. To cope up
with the requirements changes, the SRS document should be easily
modifiable. For this, an SRS document should be well-structured. A well-
structured document is easy to understand and modify. Having the
description of a requirement scattered across many places in the SRS
document may not be wrong—but it tends to make the requirement difficult
to understand and also any modification to the requirement would become
difficult as it would require changes to be made at large number of places in
the document.
Identification of response to undesired events: The SRS document
should discuss the system responses to various undesired events and

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

exceptional conditions that may arise.
Verifiable: All requirements of the system as documented in the SRS
document should be verifiable. This means that it should be possible to
design test cases based on the description of the functionality as to whether
or not requirements have been met in an implementation. A requirement
such as “the system should be user friendly” is not verifiable. On the other
hand, the requirement—“When the name of a book is entered, the software
should display whether the book is available for issue or it has been loaned
out” is verifiable. Any feature of the required system that is not verifiable
should be listed separately in the goals of the implementation section of the
SRS document.

4.2.4 Attributes of Bad SRS Documents
SRS documents written by novices frequently suffer from a variety of
problems. As discussed earlier, the most damaging problems are
incompleteness, ambiguity, and contradictions. There are many other
types problems that a specification document might suffer from. By
knowing these problems, one can try to avoid them while writing an
SRS document. Some of the important categories of problems that
many SRS documents suffer from are as follows:

Over-specification: It occurs when the analyst tries to address the “how to”
aspects in the SRS document. For example, in the library automation
problem, one should not specify whether the library membership records
need to be stored indexed on the member’s first name or on the library
member’s identification (ID) number. Over-specification restricts the freedom
of the designers in arriving at a good design solution.
Forward references: One should not refer to aspects that are discussed
much later in the SRS document. Forward referencing seriously reduces
readability of the specification.
Wishful thinking: This type of problems concern description of aspects
which would be difficult to implement.
Noise: The term noise refers to presence of material not directly relevant to
the software development process. For example, in t h e register customer
function, suppose the analyst writes that customer registration department is
manned by clerks who report for work between 8am and 5pm, 7 days a week.
This information can be called noise as it would hardly be of any use to the
software developers and would unnecessarily clutter the SRS document,

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

diverting the attention from the crucial points.
Several other “sins” of SRS documents can be listed and used to guard

against writing a bad SRS document and is also used as a checklist to review
an SRS document.

4.2.5 Important Categories of Customer Requirements
A good SRS document, should properly categorize and organise the
requirements into different sections [IEEE830]. As per the IEEE 830
guidelines, the important categories of user requirements are the following.

An SRS document should clearly document the following aspects of a software:
• Functional requirements
• Non-functional requirements

— Design and implementation constraints
— External interfaces required
— Other non-functional requirements

• Goals of implementation.

In the following subsections, we briefly describe the different categories of
requirements.

Functional requirements
The functional requirements capture the functionalities required by the
users from the system. We have already pointed out in Chapter 2 that it
is useful to consider a software as offering a set of functions {fi} to the
user. These functions can be considered similar to a mathematical
function f : I → O, meaning that a function transforms an element (ii) in
the input domain (I) to a value (oi) in the output (O). This functional
view of a system is shown schematically in Figure 4.1. Each function fi
of the system can be considered as reading certain data ii, and then
transforming a set of input data (ii) to the corresponding set of output
data (oi). The functional requirements of the system, should clearly
describe each functionality that the system would support along with
the corresponding input and output data set. Considering that the
functional requirements are a crucial part of the SRS document, we
discuss functional requirements in more detail in Section 4.2.6. Section
4.2.7 discusses how the functional requirements can be identified from
a problem description.

Finally, Section 4.2.8 discusses how the functional requirements can be

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

documented effectively.

Non-functional requirements
The non-functional requirements are non-negotiable obligations that must be
supported by the software. The non-functional requirements capture those
requirements of the customer that cannot be expressed as functions (i.e.,
accepting input data and producing output data). Non-functional
requirements usually address aspects concerning external interfaces, user
interfaces, maintainability, portability, usability, maximum number of
concurrent users, timing, and throughput (transactions per second, etc.). The
non-functional requirements can be critical in the sense that any failure by
the developed software to achieve some minimum defined level in these
requirements can be considered as a failure and make the software
unacceptable by the customer.

The IEEE 830 standard recommends that out of the various non-functional
requirements, the external interfaces, and the design and implementation constraints
should be documented in two different sections. The remaining non-functional
requirements should be documented later in a section and these should include the
performance and security requirements.

In the following subsections, we discuss the different categories of non-
functional requirements that are described under three different sections:
Design and implementation constraints: Design and implementation
constraints are an important category of non-functional requirements describe
any items or issues that will limit the options available to the developers.
Some of the example constraints can be—corporate or regulatory policies that
needs to be honoured; hardware limitations; interfaces with other
applications; specific technologies, tools, and databases to be used; specific
communications protocols to be used; security considerations; design
conventions or programming standards to be followed, etc. Consider an
example of a constraint that can be included in this section—Oracle DBMS
needs to be used as this would facilitate easy interfacing with other
applications that are already operational in the organisation.
External interfaces required: Examples of external interfaces are—
hardware, software and communication interfaces, user interfaces, report
formats, etc. To specify the user interfaces, each interface between the
software and the users must be described. The description may include
sample screen images, any GUI standards or style guides that are to be

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

followed, screen layout constraints, standard buttons and functions (e.g.,
help) that will appear on every screen, keyboard shortcuts, error message
display standards, and so on. One example of a user interface requirement of
a software can be that it should be usable by factory shop floor workers who
may not even have a high school degree. The details of the user interface
design such as screen designs, menu structure, navigation diagram, etc.
should be documented in a separate user interface specification document.
Other non-functional requirements: This section contains a description of
non- functional requirements that are neither design constraints and nor are
external interface requirements. An important example is a performance
requirement such as the number of transactions completed per unit time.
Besides performance requirements, the other non-functional requirements to
be described in this section may include reliability issues, accuracy of results,
and security issues.
Goals of implementation
The ‘goals of implementation’ part of the SRS document offers some general
suggestions regarding the software to be developed. These are not binding
on the developers, and they may take these suggestions into account if
possible. For example, the developers may use these suggestions while
choosing among different design solutions.

A goal, in contrast to the functional and non-functional requirements, is not checked
by the customer for conformance at the time of acceptance testing.

The goals of implementation section might document issues such as easier
revisions to the system functionalities that may be required in the future,
easier support for new devices to be supported in the future, reusability
issues, etc. These are the items which the developers might keep in their
mind during development so that the developed system may meet some
aspects that are not required immediately. It is useful to remember that
anything that would be tested by the user and the acceptance of the system
would depend on the outcome of this task, is usually considered as a
requirement to be fulfilled by the system and not a goal and vice versa.

How to classify the different types of requirements?
We should be clear regarding the aspects of the system requirement that
are to be documented as the functional requirement, the ones to be
documented as non-functional requirement, and the ones to be

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

documented as the goals of implementation. Aspects which can be
expressed as transformation of some input data to some output data
(i.e., the functions of the system) should be documented as the
functional requirement. Any other requirements whose compliance by
the developed system can be verified by inspecting the system are
documented as non- functional requirements. Aspects whose
compliance by the developed system need not be verified but are
merely included as suggestions to the developers are documented as
goals of the implementation.

The difference between non-functional requirements and guidelines is the
following. Non-functional requirements would be tested for compliance,
before the developed product is accepted by the customer whereas guideline,
on the other hand, are customer request that are desirable to be done, but
would not be tested during product acceptance.

Functional requirements form the basis for most design and test
methodologies. Therefore, unless the functional requirements are properly
identified and documented, the design and testing activities cannot be carried
out satisfactorily. We discuss how to do cument the functional requirements in
the next section.

4.2.6 Functional Requirements
In order to document the functional requirements of a system, it is
necessary to first learn to identify the high-level functions of the
systems by reading the informal documentation of the gathered
requirements. The high-level functions would be split into smaller
subrequirements. Each high-level function is an instance of use of the
system (use case) by the user in some way.

A high-level function is one using which the user can get some useful piece
of work done.

However, the above is not a v ery accurate definition of a high-level
function. For example, how useful must a piece of work be performed by the
system for it to be called ‘a useful piece of work’ ? Can the printing of the
statements of the ATM transaction during withdrawal of money from an ATM
be called a useful piece of work? Printing of ATM transaction should not be
considered a high-level requirement, because the user does not specifically
request for this activity. The receipt gets printed automatically as part of the
withdraw money function. Usually, the user invokes (requests) the services of
each high-level requirement. It may therefore be possible to treat print

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

receipt as part of the withdraw money function rather than treating it as a
high-level function. It is therefore required that for some of the high-level
functions, we might have to debate whether we wish to consider it as a high-
level function or not. However, it would become possible to identify most of
the high-level functions without much difficulty after practising the solution to
a few exercise problems.

Each high-level requirement typically involves accepting some data from
the user through a user interface, transforming it to the required response,
and then displaying the system response in proper format. For example, in a
library automation software, a high-level functional requirement might be
search-book. This function involves accepting a book name or a set of key
words from the user, running a matching algorithm on the book list, and
finally outputting the matched books. The generated system response can be
in several forms, e.g., display on the terminal, a print out, some data
transferred to the other systems, etc. However, in degenerate cases, a high-
level requirement may not involve any data input to the system or production
of displayable results. For example, it may involve switch on a light, or
starting a motor in an embedded application.

Are high-level functions of a system similar to
mathematical functions?

We all know that a mathematical function transforms input data to
output data. A high-level function transforms certain input data to
output data. However, except for very simple high- level functions, a
function rarely reads all its required data in one go and rarely outputs
all the results in one shot. In fact, a high-level function usually involves
a series of interactions between the system and one or more users. An
example of the interactions that may occur in a single high-level
requirement has been shown in Figure 4.2. In Figure 4.2, the user
inputs have been represented by rectangles and the response produced
by the system by circles. Observe that the rectangles and circles
alternate in the execution of a single high-level function of the system,
indicating a series of requests from the user and the corresponding
responses from the system. Typically, there is some initial data input by
the user. After accepting this, the system may display some response
(called system action). Based on this, the user may input further data,
and so on.

For any given high-level function, there can be different interaction

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

sequences or scenarios due to users selecting different options or entering
different data items.

In Figure 4.2, the different scenarios occur depending on the amount
entered for withdrawal. The different scenarios are essentially different
behaviour exhibited by the system for the same high-level function. Typically,
each user input and the corresponding system action may be considered as a
sub-requirement of a high-level requirement. Thus, each high-level
requirement can consist of several sub-requirements.

Figure 4.2: User and system interactions in high-level functional requirement.

Is it possible to determine all input and output data
precisely?

In a requirements specification document, it is desirable to define the
precise data input to the system and the precise data output by the
system. Sometimes, the exact data items may be very difficult to

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

identify. This is especially the case, when no working model of the
system to be developed exists. In such cases, the data in a high-level
requirement should be described using high-level terms and it may be
very difficult to identify the exact components of this data accurately.
Another aspect that must be kept in mind is that the data might be
input to the system in stages at different points in execution. For
example, consider the withdraw-cash function of an automated teller
machine (ATM) of Figure 4.2. Since during the course of execution of the
withdraw-cash function, the user would have to input the type of
account, the amount to be withdrawn, it is very difficult to form a single
high-level name that would accurately describe both the input data.
However, the input data for the subfunctions can be more accurately
described.

4.2.7 How to Identify the Functional Requirements?
The high-level functional requirements often need to be identified either from
an informal problem description document or from a conceptual
understanding of the problem.

Each high-level requirement characterises a way of system usage (service invocation)
by some user to perform some meaningful piece of work.

Remember that there can be many types of users of a system and their
requirements from the system may be very different. So, it is often useful to
first identify the different types of users who might use the system and then
try to identify the different services expected from the software by different
types of users.

The decision regarding which functionality of the system can be taken to be
a high-level functional requirement and the one that can be considered as
part of another function (that is, a subfunction) leaves scope for some
subjectivity. For example, consider the issue-book function in a Library
Automation System. Suppose, when a user invokes the issue-book function,
the system would require the user to enter the details of each book to be
issued. Should the entry of the book details be considered as a high-level
function, or as only a part of the issue-book function? Many times, the choice is
obvious. But, sometimes it requires making non-trivial decisions.

4.2.8 How to Document the Functional Requirements?
Once all the high-level functional requirements have been identified and

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

the requirements problems have been eliminated, these are
documented. A function can be documented by identifying the state at
which the data is to be input to the system, its input data domain, the
output data domain, and the type of processing to be carried on the
input data to obtain the output data. We now illustrate the specification
of the functional requirements through two examples. Let us first try to
document the withdraw-cash function of an automated tell e r machine
(ATM) system in the following. The withdraw-cash is a high-level
requirement. It has several sub-requirements corresponding to the
different user interactions. These user interaction sequences may vary
from one invocation from another depending on some conditions. These
different interaction sequences capture the different scenarios. To
accurately describe a functional requirement, we must document all the
different scenarios that may occur.

Example 4.7 (Withdraw cash from ATM): An initial informal description
of a required functionality is usually given by the customer as a statement of
purpos e (SoP). An SoP serves as a starting point for the analyst and he
proceeds with the requirements gathering activity after a basic understanding
of the SoP. How ever, the functionalities of withdraw cash from ATM is
intuitively obvious to any one who has used a bank ATM. So, we are not
including an informal description of withdraw cash functionality here and in
the following, we documents this functional requirement.
R.1: Withdraw cash

Description:The withdraw cash function first determines the type of
account that the user has and the account number from which the user
wishes to withdraw cash. It checks the balance to determine whether
the requested amount is available in the account. If enough balance is
available, it outputs the required cash, otherwise it generates an error
message.

R.1.1: Select withdraw amount option
Input: “Withdraw amount” option selected Output: User prompted to enter the
account type
R.1.2: Select account type
I n p u t : User selects option from any one of the followings—
savings/checking/deposit.

Output: Prompt to enter amount

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

R.1.3: Get required amount
Input: Amount to be withdrawn in integer values greater than 100 and less
than 10,000 in multiples of 100.
Output: The requested cash and printed transaction statement.
Processing: The amount is debited from the user’s account if sufficient balance
is available, otherwise an error message displayed.
Example 4.8 (Search book availability in library): An initial informal
description of a required functionality is usually given by the customer as a
statement of purpose (SoP) based on which an later requirements gathering,
the analyst understand the functionality. However, the functionalities of
search book availability is intuitively obvious to any one who has used a
library. So, we are not including an informal description of searc h book
availability functionality here and in the following, we documents this
functional requirement.
R.1: Search book
Description Once the user selects the search option, he would be asked to
enter the keywords. The system would search the book in the book list based
on the key words entered. After making the search, the system should output
the details of all books whose title or author name match any of the key
words entered. The book details to be displayed include: title, author name,
publisher name, year of publication, ISBN number, catalog number, and the
location in the library.
R.1.1: Select search option
Input: “Search” option
Output: User prompted to enter the key words
R.1.2: Search and display
Input: Key words
Output: Details of all books whose title or author name matches any of the
key words entered by the user. The book details displayed would include—
tit le of the book, author name, ISBN number, catalog number, year of
publication, number of copies available, and the location in the library.
Processing: Search the book list based on the key words:
R.2: Renew book
Description: When the “renew” option is selected, the user is asked to enter
his membership number and password. After password validation, the list of

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

the books borrowed by him are displayed. The user can renew any of his
borrowed books by indicating them. A requested book cannot be renewed if it
is reserved by another user. In this case, an error message would be
displayed.
R.2.1: Select renew option
State: The user has logged in and the main menu has been displayed.
Input: “Renew” option selection.
Output: Prompt message to the user to enter his membership number and
password.
R.2.2: Login
State: The renew option has been selected.
Input: Membership number and password.
Output: List of the books borrowed by the user is displayed, and user is
prompted to select the books to be renewed, if the password is valid. If the
password is invalid, the user is asked to re-enter the password.
Processing: Password validation, search the books issued to the user from the
borrower’s list and display.
Next function: R.2.3 if password is valid and R.2.2 if password is invalid.
R.2.3: Renew selected books
Input: User choice for books to be renewed out of the books borrowed by him.
Output: Confirmation of the books successfully renewed and apology message
for the books that could not be renewed.
Processing: Check if any one has reserved any of the requested books. Renew
the books selected by the user in the borrower’s list, if no one has reserved
those books.

In order to properly identify the high-level requirements, a lot of common
sense and the ability to visualise various scenarios that might arise in the
operation of a function are required. Please note that when any of the
aspects of a requirement, such as the state, processing description, next
function to be executed, etc. are obvious, we have omitted it. We have to
make a trade-off between cluttering the document with trivial details versus
missing out some important descriptions.
Specification of large software: If there are large number of functional
requirements (much larger than seen), should they just be written in a long
numbered list of requirements? A better way to organise the functional

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

requirements in this case would be to split the requirements into sections of
related requirements. For example, the functional requirements of a
academic institute automation software can be split into sections such as
accounts, academics, inventory, publications, etc. When there are too many
functional requirements, these should be properly arranged into sections. For
example the following can be sections in the trade house automation
software:

• Customer management
• Account management
• Purchase management
• Vendor management
• Inventory management

Level of details in specification: Even for experienced analysts, a common
dilemma is in specifying too little or specifying too much. In practice, we
would have to specify only the important input/output interactions in a
functionality along with the processing required to generate the output from
the input. However, if the interaction sequence is s pecified in too much
detail, then it becomes an unnecessary constraint on the developers and
restricts their choice in solution. On the other hand, if the interaction
sequence is not sufficiently detailed, it may lead to ambiguities and result in
improper implementation.

4.2.9 Traceability
Traceability means that it would be possible to identify (trace) the
specific design component which implements a given requirement, the
code part that corresponds to a given design component, and test cases
that test a given requirement. Thus, any given code component can be
traced to the corresponding design component, and a design
component can be traced to a specific requirement that it implements
and vice versa. Traceability analysis is an important concept and is
frequently used during software development. For example, by doing a
traceability analysis, we can tell whether all the requirements have
been satisfactorily addressed in all phases. It can also be used to assess
the impact of a requirements change. That is, traceability makes it easy
to identify which parts of the design and code would be affected, when
certain requirement change occurs. It can also be used to study the
impact of a bug that is known to exist in a code part on various

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

requirements, etc.
To achieve traceabili ty, it is necessary that each functional requirement

should be numbered uniquely and consistently. Proper numbering of the
requirements makes it possible for different documents to uniquely refer to
specific requirements. An example scheme of numbering the functional
requirements is shown in Examples 4.7 and 4.8, where the functional
requirements have been numbered R.1, R.2, etc. and the subrequirements for
the requirement R.1 have been numbered R.1.1, R.1.2, etc.

4.2.10 Organisation of the SRS Document
I n this section, we discuss the organisation of an SRS document as

prescribed by the IEEE 830 standard[IEEE 830]. Please note that IEEE 830
standard has been intended to serve only as a guideline for organizing a
requirements specification document into sections and allows the flexibility of
tailoring it, as may be required for specific projects. Depending on the type of
project being handled, some sections can be omitted, introduced, or
interchanged as may be considered prudent by the analyst. However,
organisation of the SRS document to a large extent depends on the
preferences of the system analyst himself, and he is often guided in this by
the policies and standards being followed by the development company. Also,
the organisation of the document and the issues discussed in it to a large
extent depend on the type of the product being developed. However,
irrespective of the company’s principles and product type, the three basic
issues that any SRS document should discuss are—functional requirements,
non-functional requirements, and guidelines for system implementation.

The introduction section should describe the context in which the system is
being developed, and provide an overall description of the system, and the
environmental characteristics. The introduction section may include the
hardware that the system will run on, the devices that the system will
interact with and the user skill-levels. Description of the user skill-level is
important, since the command language design and the presentation styles of
the various documents depend to a large extent on the types of the users it is
targeted for. For example, if the skill-levels of the users is “novice”, it would
mean that the user interface has to be very simple and rugged, whereas if
the user-level is “advanced”, several short cut techniques and advanced
features may be provided in the user interface.

It is desirable to describe the formats for the input commands, input data,
output reports, and if necessary the modes of interaction. We have already

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

discussed how the contents of the Sections on the functional requirements,
the non-functional requirements, and the goals of implementation should be
written. In the following subsections, we outline the important sections that
an SRS document should contain as suggested by the IEEE 830 standard, for
each section of the document, we also briefly discuss the aspects that should
be discussed in it.

Introduction
Purpose: This section should describe where the software would be
deployed and and how the software would be used.
Project scope: This section should briefly describe the overall context within
which the software is being developed. For example, the parts of a problem
that are being automated and the parts that would need to be automated
during future evolution of the software.
Environmental characteristics: This section should briefly outline the
environment (hardware and other software) with which the software will
interact.

Overall description of organisation of SRS document
Product perspective: This section needs to briefly state as to whether the
software is intended to be a replacement for a certain existing systems, or it
is a new software. If the software being developed would be used as a
component of a larger system, a simple schematic diagram can be given to
show the major components of the overall system, subsystem
interconnections, and external interfaces can be helpful.
Product features: This section should summarize the major ways in which
the software would be used. Details should be provided in Section 3 of the
document. So, only a brief summary should be presented here.
User classes: Various user classes that are expected to use this software are
identified and described here. The different classes of users are identified by
the types of functionalities that they are expected to invoke, or their levels of
expertise in using computers.
Operating environment: This section should discuss in some detail the
hardware platform on which the software would run, the operating system,
and other application software with which the developed software would
interact.
Design and implementation constraints: In this section, the different

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

constraints on the design and implementation are discussed. These might
include—corporate or regulatory policies; hardware limitations (timing
requirements, memory requirements); interfaces to other applications;
specific technologies, tools, and databases to be used; specific programming
language to be used; specific communication protocols to be used; security
considerations; design conventions or programming standards.
User documentation: This section should list out the types of user
documentation, such as user manuals, on-line help, and trouble-shooting
manuals that will be delivered to the customer along with the software.

Functional requirements for organisation of SRS document
This section can classify the functionalities either based on the specific
functionalities invoked by different users, or the functionalities that are
available in different modes, etc., depending what may be appropriate.

1. User class 1
(a) Functional requirement 1.1
(b) Functional requirement 1.2

2. User class 2
(a) Functional req uirement 2.1
(b) Functional requirement 2.2

External interface requirements
User interfaces: This section should describe a high-level description of
various interfaces and various principles to be followed. The user
interface description may include sample screen images, any GUI
standards or style guides that are to be followed, screen layout
constraints, standard push buttons (e.g., help) that will appear on every
screen, keyboard shortcuts, error message display standards, etc. The
details of the user interface design should be documented in a separate
user interface specification document.

Hardware interfaces: This section should describe the interface between
the software and the hardware components of the system. This section may
include the description of the supported device types, the nature of the data
and control interactions between the software and the hardware, and the
communication protocols to be used.
Software interfaces: This section should describe the connections between
this software and other specific software components, including databases,

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

operating systems, tools, libraries, and integrated commercial components,
etc. Identify the data items that would be input to the software and the data
that would be output should be identified and the purpose of each should be
described.
Communications interfaces: This section should describe the requirements
associated with any type of communications required by the software, such
as e-mail, web access, network server communications protocols, etc. This
section should define any pertinent message formatting to be used. It should
also identify any communication standards that will be used, such as TCP
sockets, FTP, HTTP, or SHTTP. Specify any com munication security or
encryption issues that may be relevant, and also the data transfer rates, and
synchronisation mechanisms.

Other non-functional requirements for organisation of SRS
document

This section should describe the non-functional requirements other than
the design and implementation constraints and the external interface
requirements that have been described in Sections 2 and 4 respectively.

Performance requirements: Aspects such as number of transaction to be
completed per second should be specified here. Some performance
requirements may be specific to individual functional requirements or
features. These should also be specified here.
Safety requirements: Those requirements that are concerned with possible
loss or damage that could result from the use of the software are specified
here. For example, recovery after power failure, handling software and
hardware failures, etc. may be documented here.
Security requirements: This section should specify any requirements
regarding security or privacy requirements on data used or created by the
software. Any user identity authentication requirements should be described
here. It should also refer to any external policies or regulations concerning
the security issues. Define any security or privacy certifications that must be
satisfied.

For software that have distinct modes of operation, in the functional
requirements section, the different modes of operation can be listed and in
each mode the specific functionalities that are available for invocation can be
organised as follows.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Functional requirements
1. Operation mode 1

(a) Functional requirement 1.1
(b) Functional requirement 1.2

2. Operation mode 2
(a) Functional requirement 2.1
(b) Functional requirement 2.2

Specification of the behaviour may not be necessary for all systems. It is
usually necessary for those systems in which the system behaviour depends
on the state in which the system is, and the system transits among a set of
states depending on some prespecified conditions and events. The behaviour
of a system can be specified using either the finite state machine (FSM)
formalism and any other alternate formalisms. The FSMs can used to specify
the possible states (modes) of the system and the transition among these
states due to occurrence of events.
Example 4.9 (Personal library software): It is proposed to develop a
software that would be used by individuals to manage their personal
collection of books. The following is an informal description of the
requirements of this software as worked out by the marketing department.
Develop the functional and non-functional requirements for the software.

A person can have up to a few hundreds of books. The details of all the
books such as name of the book, year of publication, date of purchase, price,
and publisher would be entered by the owner. A book should be assigned a
unique serial number by the computer. This number would be written by the
owner using a pen on the inside page of the book. Only a registered friend
can be lent a book. While registering a friend, the following data would have
to be supplied—name of the friend, his address, land line number, and mobile
number. Whenever a book issue request is given, the name of the friend to
whom the book is to be issued and the unique id of the book is entered. At
this, the various books outstanding against the borrower along with the date
borrowed are displayed for information of the owner. If the owner wishes to
go ahead with the issue of the book, then the date of issue, the title of the
book, and the unique identification number of the book are stored. When a
friend returns a book, the date of return is stored and the book is removed
from his borrowing list. Upon query, the software should display the name,
address, and telephone numbers of each friend against whom books are
outstanding along with the titles of the outstanding books and the date on

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

which those were issued. The software should allow the owner to update the
details of a friend such as his address, phone, telephone number, etc. It
should be possible for the owner to delete all the data pertaining to a friend
who is no more active in using the library. The records should be stored using
a free (public domain) data base management system. The software should
run on both Windows and Unix machines.

Whenever the owner of the library software borrows a book from his
friends, would enter the details regarding the title of the book, and the date
borrowed and the friend from whom he borrowed it. Similarly, the return
details of books would be entered. The software should be able to display all
the books borrowed from various friends upon request by the owner.

It should be possible for any one to query about the availability of a
particular book through a web browser from any location. The owner should
be able to query the total number of books in the personal library, and the
total amount he has invested in his library. It should also be possible for him
to view the number of books borrowed and returned by any (or all) friend(s)
over any specified time.

Functional requirements
The software needs to support three categories of functionalities as
described below:

1. Manage own books
1.1 Register book

Description: To register a book in the personal library, the details of a
book, such as name, year of publication, date of purchase, price and
publisher are entered. This is stored in the database and a unique serial
number is generated.

Input: Book details
Output: Unique serial number
R.1.2: Issue book
Description: A friend can be issued book only if he is registered. The various
books outstanding against him along with the date borrowed are first
displayed.
R.1.2.1: Display outstanding books
Description: First a friend’s name and the serial number of the book to be issued are
entered. Then the books outstanding against the friend should be displayed.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Input: Friend name
Output: List of outstanding books along with the date on which each was
borrowed.
R.1.2.2: Confirm issue book
If the owner confirms, then the book should be issued to him and the relevant
records should be updated.
Input: Owner confirmation for book issue. Output: Confirmation of book issue.
R.1.3: Query outstanding books
Description: Details of friends who have books outstanding against their name
is displayed.
Input: User selection
Output: The display includes the name, address and telephone numbers of
each friend against whom books are outstanding along with the titles of the
outstanding books and the date on which those were issued.
R.1.4: Query book
Description: Any user should be able to query a particular book from
anywhere using a web browser.
Input: Name of the book.
Output: Availability of the book and whether the book is issued out.
R.1.5: Return book
Description: Upon return of a book by a friend, the date of return is stored and
the book is removed from the borrowing list of the concerned friend.
Input: Name of the book.
Output: Confirmation message.

2. Manage friend details
R.2.1: Register friend
Description: A friend must be registered before he can be issued books. After
the registration data is entered correctly, the data should be stored and a
confirmation message should be displayed.
Input: Friend details including name of the friend, address, land line number
and mobile number.
Output: Confirmation of registration status.
R.2.2: Update friend details

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Description: When a friend’s registration information changes, the same must
be updated in the computer.
R.2.2.1: Display current details
Input: Friend name.
Output: Currently stored details.
R2.2.2: Update friend details
Input: Changes needed.
Output: Updated details with confirmation of the changes.
R.3.3: Delete a friend record
Description: Delete records of inactive members.
Input: Friend name.
Output: Confirmation message.

3. Manage borrowed books
R.3.1: Register borrowed books

Description: The books borrowed by the user of the personal library are
registered.
Input: Title of the book and the date borrowed.
Output: Confirmation of the registration status.
R.3.2: Deregister borrowed books
Description: A borrowed book is deregistered when it is returned.
Input: Book name.
Output: Confirmation of deregistration.
R.3.3: Display borrowed books
Description: The data about the books borrowed by the owner are displayed.
Input: User selection.
Output: List of books borrowed from other friends.

4. Manage statistics
R.4.1: Display book count

Description: The total number of books in the personal library should be
displayed.
Input: User selection.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Output: Count of books.
R4.2: Display amount invested
Description: The total amount invested in the personal library is displayed.
Input: User selection.
Output: Total amount invested.

R.4.2: Display number of transactions Description: The total numbers of books
issued and returned over a specific period by one (or all) friend(s) is
displayed.
Input: Start of period and end of period.
Output: Total number of books issued and total number of books returned.

Non-functional requirements
N.1: Database: A data base management system that is available free of
cost in the public domain should be used.
N.2: Platform: Both Windows and Unix versions of the software need to be
developed. N.3: Web-support: It should be possible to invoke the query
book functionality from any place by using a web browser.
Observation: Since there are many functional requirements, the
requirements have been organised into four sections: Manage own books,
manage friends, manage borrowed books, and manage statistics. Now each
section has less than 7 functional requirements. This would not only enhance
the readability of the document, but would also help in design.

4.2.11 Techniques for Representing Complex Logic
A good SRS document should properly characterise the conditions under
which different scenarios of interaction occur (see Section 4.2.5). That
is, a high-level function might involve different steps to be undertaken
as a consequence of some decisions made after each step. Sometimes
the conditions can be complex and numerous and several alternative
interaction and processing sequences may exist depending on the
outcome of the corresponding condition checking. A simple text
description in such cases can be difficult to comprehend and analyse. In
such situations, a decision tree or a decision table can be used to
represent the logic and the processing involved. Also, when the decision
making in a functional requirement has been represented as a decision
table, it becomes easy to automatically or at least manually design test

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

cases for it. However, use of decision trees or tables would be
superfluous in cases where the number of alternatives are few, or the
decision logic is straightforward. In such cases, a simple text description
would suffice.

There are two main techniques available to analyse and represent complex
processing logic—decision trees and decision tables. Once the decision
making logic is captured in the form of trees or tables, the test cases to
validate these logic can be automatically obtained. It should, however, be
noted that decision trees and decision tables have much broader applicability
than just specifying complex processing logic in an SRS document. For
instance, decision trees and decision tables find applications in information
theory and switching theory.

Decision tree
A decision tree gives a graphic view of the processing logic involved in
decision making and the corresponding actions taken. Decision tables
specify which variables are to be tested, and based on this what actions
are to be taken depending upon the outcome of the decision making
logic, and the order in which decision making is performed.

The edges of a decision tree represent conditions and the leaf nodes
represent the actions to be performed depending on the outcome of testing
the conditions. Instead of discussing how to draw a decision tree for a given
processing logic, we shall explain through a simple example how to represent
the processing logic in the form of a decision tree.
Example 4.10 A library membership management software (LMS) should
support the following three options—new member, renewal, and cancel
membership. When the new membe r option is selected, the software should
ask the member’s name, address, and phone number. If proper information is
entered, the software should create a membership record for the new
member and print a bill for the annual membership charge and the security
deposit payable. If the renewal option is chosen, the LMS should ask the
member’s name and his membership number and check whether he is a valid
member. If the member details entered are valid, then the membership
expiry date in the membership record should be updated and the annual
membership charge payable by the member should be printed. If the
membership details entered are invalid, an error message should be
displayed. If the cancel membership option is selected and the name of a valid
member is entered, then the membership is cancelled, a choke for the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

balance amount due to the member is printed and his membership record is
deleted. The decision tree representation for this problem is shown in Figure
4.3.

Figure 4.3: Decision Tree for LMS.

Observe from Figure 4.3 that the internal nodes represent conditions, the
edges of the tree correspond to the outcome of the corresponding conditions.
The leaf nodes represent the actions to be performed by the system. In the
decision tree of Figure 4.3, first the user selection is checked. Based on
whether the selection is valid, either further condition checking is undertaken
or an error message is displayed. Observe that the order of condition
checking is explicitly represented.

Decision table
A decision table shows the decision making logic and the corresponding
actions taken in a tabular or a matrix form. The upper rows of the table
specify the variables or conditions to be evaluated and the lower rows
specify the actions to be taken when an evaluation test is satisfied. A
column in the table is called a rule. A rule implies that if a certain
condition combination is true, then the corresponding action is
executed. The decision table for the

LMS problem of Example 4.10 is as shown in Table 4.1.
Table 4.1: Decision Table for the LMS Problem

Conditions

Valid selection NO YES YES YES

New member - YES NO NO

Renewal - NO YES NO

Cancellation - NO NO YES

Actions

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Display error message ×

Ask member’s name, etc. ×

Build customer record ×

Generate bill × ×

Ask membership details × ×

Update expiry date ×

Print cheque ×

Delete record ×

Decision table versus decision tree
Even though both decision tables and decision trees can be used to
represent complex program logic, they can be distinguishable on the
following three considerations:

Readability: Decision trees are easier to read and understand when the
number of conditions are small. On the other hand, a decision table causes
the analyst to look at every possible combination of conditions which he
might otherwise omit.
Explicit representation of the order of decision making: In contrast to
the decision trees, the order of decision making is abstracted out in decision
tables. A situation where decision tree is more useful is when multilevel
decision making is required. Decision trees can more intuitively represent
multilevel decision making hierarchically, whereas decision tables can only
represent a single decision to select the appropriate action for execution.
Representing complex decision logic: Decision trees become very
complex to understand when the number of conditions and actions increase.
It may even be to draw the tree on a single page. When very large number of
decisions are involved, the decision table representation may be preferred.

4.3 FORMAL SYSTEM SPECIFICATION

In recent years, formal techniques3 have emerged as a central issue in
software engineering. This is not accidental; the importance of precise
specification, modelling, and verification is recognised to be important
in most engineering disciplines. Formal methods provide us with tools to
precisely describe a system and show that a system is correctly
implemented. We say a system is correctly implemented when it
satisfies its given specification. The specification of a system can be
given either as a list of its desirable properties (property-oriented
approach) or as an abstract model of the system (model-oriented

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

approach). These two approaches are discussed here. Before discussing
representative examples of these two types of formal specification
techniques, we first discuss a few basic concepts in formal specification
We will first highlight some important concepts in formal methods, and
examine the merits and demerits of using formal techniques.

4.3.1 What is a Formal Technique?
A formal technique is a mathematical method to specify a hardware
and/or software system, verify whether a specification is realisable,
verify that an implementation satisfies its specification, prove properties
of a system without necessarily running the system, etc. The
mathematical basis of a formal method is provided by its specification
language. More precisely, a formal specification language consists of
two sets—syn and sem, and a relation sat between them. The set syn is
called the syntactic domain, the set sem is called the semantic domain, and
the relation sat is called the satisfaction relation. For a given specification
syn, and model of the system sem, if sat (syn, sem), then syn is said to be
the specification of sem, and sem is said to be the specificand of syn.

The generally accepted paradigm for system development is through a
hierarchy of abstractions. Each stage in this hierarchy is an implementation of
its preceding stage and a specification of the succeeding stage. The different
stages in this system development activity are requirements specification,
functional design, architectural design, detailed design, coding,
implementation, etc. In general, formal techniques can be used at every
stage of the system development activity to verify that the output of one
stage conforms to the output of the previous stage.

Syntactic domains
The syntactic domain of a formal specification language consists of an
alphabet of symbols and a set of formation rules to construct well-
formed formulas from the alphabet. The well-formed formulas are used
to specify a system.

Semantic domains
Formal techniques can have considerably different semantic domains.
Abstract data type specification languages are used to specify algebras,
theories, and programs. Programming languages are used to specify
functions from input to output values. Concurrent and distributed

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

system specification languages are used to specify state sequences,
event sequences, state-transition sequences, synchronisation trees,
partial orders, state machines, etc.

Satisfaction relation
Given the model of a system, it is important to determine whether an
element of the semantic domain satisfies the specifications. This
satisfaction is determined by using a homomorphism known as semantic
abstrac t i on function. The semantic abstraction function maps the
elements of the semantic domain into equivalent classes. There can be
different specifications describing different aspects of a system model,
possibly using different specification languages. Some of these
specifications describe the system’s behaviour and the others describe
the system’s structure. Consequently, t wo broad classes of semantic
abstraction functions are defined— those that preserve a system’s
behaviour and those that preserve a system’s structure.

Model versus property-oriented methods
Formal methods are usually classified into two broad categories—the so-
called model-oriented and the property-oriented approaches. In a model-
oriented style, one defines a system’s behaviour directly by constructing
a model of the system in terms of mathematical structures such as
tuples, relations, functions, sets, sequences, etc. In the property-oriented
style, the system’s behaviour is defined indirectly by stating its
properties, usually in the form of a set of axioms that the system must
satisfy. Let us consider a simple producer/consumer example. In a
property-oriented style, we would probably start by listing the properties
of the system like—the consumer can start consuming only after the
producer has produced an item, the producer starts to produce an item
only after the consumer has consumed the last item, etc. Two examples
of property-oriented specification styles are axiomatic specification and
algebraic specification.

In a model-oriented style, we would start by defining the basic operations, p
(produce) and c (consume). Then we can state that S 1 + p ⇒ S, S + c ⇒ S
1. Thus model-oriented approaches essentially specify a program by writing
another, presumably simpler program. A few notable examples of popular
model-oriented specification techniques are Z, CSP,CCS, etc.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

It is alleged that property-oriented approaches are more suitable for
requirements specification, and that the model-oriented approaches are more
suited to system design specification. The reason for this distinction is the fact
that property-oriented approaches specify a system behaviour not by what
they say of the system but by what they do not say of the system. Thus,
property-oriented specifications permit a large number of possible
implementations. Furthermore, property-oriented approaches specify a
system by a conjunction of axioms, thereby making it easier to alter/augment
specifications at a later stage. On the other hand, model-oriented methods do
n o t support logical conjunctions and disjunctions, and thus even minor
changes to a specification may lead to overhauling an entire specification.
Since the initial customer requirements undergo several changes as the
development proceeds, the property-oriented style is generally preferred for
requirements specification. Later in this chapter, we have discussed tw o
property-oriented specification techniques.

4.3.2 Operational Semantics
Informally, the operational semantics of a formal method is the way
computations are represented. There are different types of operational
semantics according to what is meant by a single run of the system and
how the runs are grouped together to describe the behaviour of the
system. In the following subsection we discuss some of the commonly
used operational semantics.

Linear semantics: In this approach, a run o f a system is described by a
sequence (possibly infinite) of events or states. The concurrent activities of
the system are represented by non-deterministic interleavings of the atomic
actions. For example, a concurrent activity a || b is represented by the set of
sequential activities a; b and b; a. This is a simple but rather unnatural
representation of concurrency. The behaviour of a system in this model
consists of the set of all its runs. To make this model more realistic, usually
justice and fairness restrictions are imposed on computations to exclude the
unwanted interleavings.
Branching semantics: In this approach, the behaviour of a system is
represented by a directed graph. The nodes of the graph represent the
possible states in the evolution of a system. The descendants of each node of
the graph represent the states which can be generated by any of the atomic
actions enabled at that state. Although this semantic model distinguishes the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

branching points in a computation, still it represents concurrency by
interleaving.
Maximally parallel semantics: In this approach, all the concurrent actions
enabled at any state are assumed to be taken together. This is again not a
natural model of concurrency since it implicitly assumes the availability of all
the required computational resources.
Partial order semantics: Under this view, the semantics ascribed to a
system is a structure of states satisfying a partial order relation among the
states (events). The partial order represents a precedence ordering among
events, and constrains some events to occur only after some other events
have occurred; while the occurrence of other events (called concurrent events)
is considered to be incomparable. This fact identifies concurrency as a
phenomenon not translatable to any interleaved representation.

Merits and limitations of formal methods
In addition to facilitating precise formulation of specifications, formal
methods possess several positive features, some of which are discussed
as follows:

Formal specifications encourage rigour. It is often the case that the
very process of construction of a rigorous specification is more
important than the formal specification itself. The construction of a
rigorous specification clarifies several aspects of system behaviour that
are not obvious in an informal specification. It is widely acknowledged
that it is cost-effective to spend more efforts at the specification stage,
otherwise, many flaws would go unnoticed only to be detected at the
later stages of software development that would lead to iterative
changes to occur in the development life cycle. According to an
estimate, for large and complex systems like distributed real-time
systems 80 per cent of project costs and most of the cost overruns
result from the iterative changes required in a system development
process due to inappropriate formulation of requirements specification.
Thus, the additional effort required to construct a rigorous specification
is well worth the trouble.
Formal methods usually have a well-founded mathematical basis.
Thus, formal specifications are not only more precise, but also
mathematically sound and can be used to reason about the properties

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

of a specification and to rigorously prove that an implementation
satisfies its specifications. Informal specifications may be useful in
understanding a system and its documentation, but they cannot serve
as a basis of verification. Even carefully written specifications are prone
to error, and experience has shown that unverified specifications are
comparable in reliability to unverified programs. automatically avoided
when one formally specifies a system.
The mathematical basis of the formal methods makes it possible for
automating the analysis of specifications. For example, a tableau-
based technique has been used to automatically check the consistency
of specifications. Also, automatic theorem proving techniques can be
used to verify that an implementation satisfies its specifications. The
possibility of automatic verification is one of the most important
advantages of formal methods.
Formal specifications can be executed to obtain immediate feedback
o n the features of the specified system. This concept of executable
specifications is related to rapid prototyping. Informally, a prototype is
a “toy” working model of a system that can provide immediate
feedback on the behaviour of the specified system, and is especially
useful in checking the completeness of specifications.

It is clear that formal methods provide mathematically sound frameworks
within which large, complex systems can be specified, developed and verified
in a systematic rather than in an ad hoc manner. However, formal meth ods
suffer from several shortcomings, some of which are as following:

Formal methods are difficult to learn and use.
The basic incompleteness results of first-order logic suggest that it is
impossible to check absolute correctness of systems using theorem
proving techniques.
Formal techniques are not able to handle complex problems. This
shortcoming results from the fact that, even moderately complicated
problems blow up the complexity of formal specification and their
analysis. Also, a large unstructured set of mathematical formulas is
difficult to comprehend.

It has been pointed out by several researchers that formal specifications
neither replace nor make the informal descriptions obsolete but complement

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

them. In fact, the comprehensibility of formal specifications is greatly
enhanced when the specifications are accompanied by an informal
description. What is suggested is the use of formal techniques as a broad
guideline for the use of the informal techniques. An interesting example of
such an approach is reported by Jones in [1980]. In this approach, the use of
a formal method identifies the necessary verification steps that need to be
carried out, but it is legitimate to apply informal reasoning in presentation of
correctness arguments and transformations. Any doubt or query relating to an
informal argument is to be resolved by formal proofs.

In the following two sections, we discuss the axiomatic and algebraic
specification styles. Both these techniques can be classified as the property-
oriented specification techniques.

4.4 AXIOMATIC SPECIFICATION
In axiomatic specification of a system, first-order logic is used to write
the pre- and post- conditions to specify the operations of the system in
the form of axioms. The pre-conditions basically capture the conditions
that must be satisfied before an operation can successfully be invoked.
In essence, the pre-conditions capture the requirements on the input
parameters of a function. The post-conditions are the conditions that
must be satisfied when a function post-conditions are essentially
constraints on the results produced for the function execution to be
considered successful.

How to develop an axiomatic specifications?
The following are the sequence of steps that can be followed to
systematically develop the axiomatic specifications of a function:

Establish the range of input values over which the function should
behave correctly. Establish the constraints on the input parameters as
a predicate.
Specify a predicate defining the condition which must hold on the
output of the function if it behaved properly.
Establish the changes made to the function’s input parameters after
execution of the function. Pure mathematical functions do not change
their input and therefore this type assertion is not necessary for pure
functions.
Combine all of the above into pre- and post-conditions of the function.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

We now illustrate how simple abstract data types can be algebraically
specified through two simple examples.
Example 4.11 Specify the pre- and post-conditions of a function that takes a
real number as argument and returns half the input value if the input is less
than or equal to 100, or else returns double the value.

f (x : real) : real
pre : x ∈ R

post : {(x ≤ 100) ∧ (f (x) = x/2)} ∨ {(x > 100) ∧ (f (x) = 2 ∗ x)}
Example 4.12 Axiomatically specify a function named search which takes an
integer array and an integer key value as its arguments and returns the index
in the array where the key value is present.

search(X : intArray, key : integer) : integer
pre : ∃i ∈ [X f irst...X last], X [i] = key

post : {(X� [search(X, key)] = key) ∧ (X = X�)}
Please note that we have followed the convention that if a function changes

any of its input parameters, and if that parameter is named X , then we refer
to it after the function completes execution as X ’. One practical application of
the axiomatic specification is in program documentation. Engineers
developing code for a function specify the function by noting down the pre
and post conditions of the function in the function header. Another application
of the axiomatic specifications is in proving program properties by composing
the pre and post-conditions of a number of functions.

4.5 ALGEBRAIC SPECIFICATION
In the algebraic specification technique, an object class or type is
specified in terms of relationships existing between the operations
defined on that type. It was first brought into prominence by Guttag
[1980,1985] in specification of abstract data types. Various notations of
algebraic specifications have evolved, including those based on OBJ and
Larch languages.

Essentially, algebraic specifications define a system as a heterogeneous
algebra. A heterogeneous algebra is a collection of different sets on which
several operations are defined. Traditional algebras are homogeneous. A
homogeneous algebra consists of a single set and several operations defined
in this set; e.g. { I, +, -, *, / }. In contrast, alphabetic strings S together with

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

operations of concatenation and length {S, I , con, len}, is not a
homogeneous algebra, since the range of the length operation is the set of
integers.

Each set of symbols in a heterogeneous algebra is called a sort of the
algebra. To define a heterogeneous algebra, besides defining the sorts, we
need to specify the involved operations, their signatures, and their domains
and ranges. Using algebraic specification, we define the meaning of a set of
interface procedure by using equations. An algebraic specification is usually
presented in four sections.
Types section: In this section, the sorts (or the data types) being used is
specified.
Exception section: This section gives the names of the exceptional
conditions that might occur when different operations are carried out. These
exception conditions are used in the later sections of an algebraic
specification.
Syntax section: This section defines the signatures of the interface
procedures. The collection of sets that form input domain of an operator and
the sort where the output is produced are called the signature of the operator.
For example, PUSH takes a stack and an element as its input and returns a
new stack that has been created.
Equations section: This section gives a set of rewrite rules (or equations)
defining the meaning of the interface procedures in terms of each other. In
general, this section is allowed to contain conditional expressions.

By convention each equation is implicitly universally quantified over all
possible values of the variables. This means that the equation holds for all
possible values of the variable. Names not mentioned in the syntax section
such r or e are variables. The first step in defining an algebraic specification is
to identify the set of required operations. After having identified the required
operators, it is helpful to classify them as either basic constructor operators,
extra constructor operators, basic inspector operators, or extra inspection
operators. The definition of these categories of operators is as follows:
Basic construction operators: These operators are used to create or
modify entities of a type. The basic construction operators are essential to
generate all possible element of the type being specified. For example,
‘create’ and ‘append’ are basic construction operators in Example 4.13.
Extra construction operators: These are the construction operators other

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

than the basic construction operators. For example, the operator ‘remove’ in
Example 4.13 is an extra construction operator, because e ven without using
‘remove’ it is possible to generate all values of the type being specified.
Basic inspection operators: These operators evaluate attributes of a type
without modifying them, e.g., eval, get, etc. Let S be the set of operators
whose range is not the data type being specified—these are the inspection
operators. The set of the basic operators S1 is a subset of S , such that each
operator from S -S 1 can be expressed in terms of the operators from S 1.
Extra inspection operators: These are the inspection operators that are
not basic inspectors. A simple way to determine whether an operator is a
constructor (basic or extra) or an inspector (basic or extra) is to check the
syntax expression for the operator. If the type being specified appears on the
right hand side of the expression then it is a constructor, otherwise it is an
inspection operator. For example, in Example 4.13, create is a constructor
because point appears on the right hand side of the expression and point is
the data type being specified. But, xcoord is an inspection operator since it
does not modify the point type.

A good rule of thumb while writing an algebraic specification, is to first
establish which are the constructor (basic and extra) and inspection operators
(basic and extra). Then write down an axiom for composition of each basic
construction operator over each basic inspection operator and extra
constructor operator. Also, write down an axiom for each of the extra
inspector in terms of any of the basic inspectors. Thus, if there are m1 basic
constructors, m2 extra constructors, n1 basic inspectors, a n d n2 extra
inspectors, we should have m1 × (m2 + n1) + n2 axioms. However, it should
be clearly noted that these m1 × (m2 + n1) + n2 axioms are the minimum
required and many more axioms may be needed to make the specification
complete. Using a complete set of rewrite rules, it is possible to simplify an
arbitrary sequence of operations on the interface procedures.

While developing the rewrite rules, different persons can come up with
different sets of equations. However, while developing the equations one has
to be careful that the equations should be able to handle all meaningful
composition of operators, and they should have the unique termination and
finite termination properties. These two properties of the rewrite rules are
discussed later in this section.
Example 4.13 Let us specify a data type point supporting the operations
create, xcoord, ycoord, isequal; where the operations have their usual

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

meaning.
Types:

defines point
uses boolean, integer

Syntax:
1. create : integer × integer → point
2. xcoord : point → integer
3. ycoord : point → integer
4. isequal : point × point → boolean

Equations:
1. xcoord(create(x, y)) = x
2. ycoord(create(x, y)) = y
3. isequal(create(x1, y1), create(x2, y2)) = ((x1 = x2)and(y1 = y2))
In this example, we have only one basic constructor (create), and three

basic inspectors (xcoord, ycoord, and isequal). Therefore, we have only 3
equations.

The rewrite rules let you determine the meaning of any sequence of calls
on the point type. Consider the following expression: isequal (creat e (xcoord
(create(2, 3)), 5),create (ycoord (create(2, 3)), 5)). By applying the rewrite rule 1,
you can simplify the given expression as isequal (create (2, 5), create (ycoord
(create(2, 3)), 5)). By using rewrite rule 2, you can further simplify this as
isequal (create (2, 5),create (3, 5)). This is false by rewrite rule 3.

Properties of algebraic specifications
Three important properties that every algebraic specification should
possess are:

Completeness: This property ensures that using the equations, it should be
possible to reduce any arbitrary sequence of operations on the interface
procedures. When the equations are not complete, at some step during the
reduction process, we might not be able to reduce the expression arrived at
that step by using any of the equations. There is no simple procedure to
ensure that an algebraic specification is complete.
Finite termination property: This property essentially addresses the
following question: Do applications of the rewrite rules to arbitrary
expressions involving the interface procedures always terminate? For
arbitrary algebraic equations, convergence (finite termination) is undecidable.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

But, if the right hand side of each rewrite rule has fewer terms than the left,
then the rewrite process must terminate.
Unique termination property: This property indicates whether application
of rewrite rules in different orders always result in the same answer.
Essentially, to determine this property, the answer to the following question
needs to be checked—Can all possible sequence of choices in application of
the rewrite rules to an arbitrary expression involving the interface procedures
always give the same answer? Checking the unique termination property is a
very difficult problem.
Example 4.14 Let us specify a FIFO queue supporting the operations create,
append, remove, first, and isempty; where the operations have their usual
meaning.
Types:

defines queue
uses boolean, element

Exception:
underflow, novalue

Syntax:
1. create : ϕ → queue
2. append : queue × element → queue
3. remove : queue → queue + {underf low}
4. f irst : queue → element + {novalue}
5. isempty : queue → boolean

Equations:
1. isempty(create()) = true
2. isempty(append(q, e)) = f alse
3. f irst(create()) = novalue
4. f irst(append(q, e)) = if isempty(q) then e else f irst(q)
5. remove(create()) = underf low
6 . remove(append(q, e)) = if isempty(q) then create() else

append(remove(q), e)
In this example, we have two basic construction operators (create and

append). We have one extra construction operator (remove). We have
considered remove to be an extra construction operator because all values of
the queue can be realised, even without having the remove operator. We
have two basic inspectors (first and isempty). Therefore we have 2 × 3 = 6

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

equations.

4.5.1 Auxiliary Functions
Sometimes while specifying a system, one needs to introduce extra
functions not part of the system to define the meaning of some
interface procedures. These are called auxiliary functions. In the
following, we discuss an example where it becomes necessary to use an
auxiliary function to be able to specify a system.

Example 4.15 Let us specify a bounded FIFO queue having a maximum size
of MaxSize and supporting the operations create, append, remove, first, and
isempty; where the operations have their usual meaning.
Types:

defines queue
uses boolean, element, integer

Exception:
underflow, novalue, overflow

Syntax:
1. create : ϕ → queue
2. append : queue × element → queue + {overf low}
3. size : queue → integer
4. remove : queue → queue + {underf low}
5. f irst : queue → element + {novalue}
6. isempty : queue → boolean

Equations:

1. f irst(create()) = novalue
2. first(append(q,e)) = if size(q)= MaxSize then overflow else i f isempty(q) then e

else first(q)
3. remove(create()) = underf low
4. remove(append(q, e)) = if isempty(q) then create() else
.
if size(q) = M axS ize then overf low else append(remove(q), e)

5. size(create()) = 0
6. size(append(q, e)) = if size(q) = M axS ize then overf low else size(q) +

1
7. isempty(q) = if (size(q) = 0) then true elsef alse
In this example, we have used the auxiliary function size to enable us to

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

specify that during appending an element, overflow might occur if the queue
size exceeds MaxSize. However, after we have introduced the auxiliary
function size, we find that the operator isempty can no longer be considered as
a basic inspector because isempty can be expressed in terms of size.
Therefore, we have removed the axioms for the operator issmpty used in
Example 4.15, and have instead used an axiom to express isempty in terms of
size. We have added two axioms to express size in terms of the basic
construction operators (create and append).

4.5.2 Structured Specification
Developing algebraic specifications is time consuming. Therefore efforts
have been made to devise ways to ease the task of developing
algebraic specifications. The following are some of the techniques that
have successfully been used to reduce the effort in writing the
specifications.

Incremental specification: The idea behind incremental specification is to
first develop the specifications of the simple types and then specify more
complex types by using the specifications of the simple types.
Specification instantiation: This involves taking an existing specification
which has been developed using a generic parameter and instantiating it with
some other sort.

Pros and Cons of algebraic specifications
Algebraic specifications have a strong mathematical basis and can be
viewed as heterogeneous algebra. Therefore, they are unambiguous
and precise. Using an algebraic specification, the effect of any arbitrary
sequence of operations involving the interface procedures can
automatically be studied. A major shortcoming of algebraic
specifications is that they cannot deal with side effects. Therefore,
algebraic specifications are difficult to integrate with typical
programming languages. Also, algebraic specifications are hard to
understand.

4.6 EXECUTABLE SPECIFICATION AND 4GL
When the specification of a system is expressed formally or is described
by using a programming language, then it becomes possible to directly
execute the specification without having to design and write code for

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

implementation. However, executable specifications are usually sl ow
and inefficient, 4GLs4 (4th Generation Languages) are examples of
executable specification languages. 4GLs are successful because there
i s a lot of large granularity commonality across data processing
applications which have been identified and mapped to program code.
4GLs get their power from software reuse, where the common
abstractions have been identified and parameterized. Careful
experiments have shown that rewriting 4GL programs in 3GLs results in
up to 50 per cent lower memory usage and also the program execution
time can reduce up to ten folds.

SUMMARY

Substantial time and effort must be spent in developing good quality
SRS document before starting the design activity. Any improper
specification turns out to be very expensive as the results of this phase
affect all subsequent phases of development.
The requirements analysis and specification phase consists of two
important activities—requirements gathering and analysis, and
requirements specification.
The aim of requirements analysis is to clearly understand the exact
user requirements and to remove any inconsistencies, anomalies, and
incompleteness in these requirements.
During the requirements specification activity, the requirements are
systematically organised into an SRS document.
Formally specifying the requirements has many advantages. But, a
major shortcoming of the formal specification techniques is that they
are hard to use. However, it is possible that formal techniques will
become more usable in future with the development of suitable front-
ends. We discussed the axiomatic and algebraic techniques as example
formal specification techniques to give an idea of some of the issues
involved in formal specification.

EXERCISES
1. Choose the correct option.

(a) Who among the following is a stakeholder in a software development
project?
(i) A shareholder of the organisation developing the software

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(ii) Anyone who is interested in the software
(iii) Anyone who is a source of requirements for the software
(iv) Anyone who might be affected by the software

(b) A software requirements specification (SRS) document should avoid
discussing which one of the following?
(i) Functional requirements
(ii) Non-functional requirements
(iii) Design specification
(iv) Constraints on the implementation

(c) Which of the following is not a goal of requirements analysis?
(i) Weed out ambiguities in the requirements
(ii) Weed out inconsistencies in the requirements
(iii) Weed out non-functional requirements
(iv) Weed out incompleteness in the requirements

(d) Consider the following requirement for a word processor software:
“The software should provide facility to import an existing image
available as a jpeg file into the document being created.” Which one of
the following types of requirement is this?
(i) Functional requirement
(ii) Non-functional requirement
(iii) Constraint on the implementation
(iv) Goal of implementation

(e) Assume that you are the project manager of a development project
for a data processing application in which the user requirements for
the GUI part are not very clear. Which life cycle model would you use
to develop the GUI part?

(i) Classical waterfall model (ii) Iterative waterfall model (iii) Prototyping
model

(iv) Spiral model
2. What is the difference between requirements analysis and specification?

What are the important activities carried out during requirements
analysis and specification phase? What is the final outcome of the
requirements analysis and specification phase?

3 . What are the goals of the requirements analysis and specification
phase? How are the requirements analysis and specification activities
carried out and by whom?

4. Discuss the important ways in which a well formulated SRS document
can be useful to various stakeholders.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

5 . What is the difference between the functional and the non-functional
requirements of a system? Identify at least two functional requirements
of a bank automated teller machine (ATM) system. Also identify one
non-functional requirement for an ATM system.

6. What are the four types of non-functional requirements that have been
suggested by IEEE 830 standard document. Give one example of each of
these categories of requirements.

7. What do you understand by requirements gathering? Name and explain
the different requirements gathering techniques that are normally
deployed by an analyst.

8. What are the different types of requirements problems that an analyst
usually anticipates and rectifies in the gathered requirements before
starting to write the SRS document? Give at least one example of each.

9. Explain the likely consequences of starting a large project development
effort without accurately understanding and documenting the customer
requirements.

10. Suppose you have been appointed as the analyst for a large software
development project. Discuss the aspects of the software product you
would document in the software requirements specification (SRS)
document? What would be the organisation of your SRS document? How
would you validate your SRS document?

11. Make a checklist of errors that might exist in an SRS document. This
checklist can be used to review an SRS document.

12. Write down the important users of the SRS document for a project, the
specific ways in which they use the document, and their specific
expectations from the document, if any.

13. What do you understand by the problems of overspecification, forward
reference, and noise in an SRS document? Explain each of these with
suitable examples.

14. What is the difference between functional and non-functional
requirements? Give one example of each type of requirement for a
library automation software.

15. List five desirable characteristics of a good software requirements
specification (SRS) document.

16. Suppose you are trying to gather the requirements for a software that
needs to be developed to automate the book-keeping activities of a
supermarket. Identify the main tasks that you would undertake as the
analyst to satisfactorily gather the requirements.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

17. How are the abstraction and decomposition principles used in the
development of a good software requirements specification?

18. Suppose the analyst of a large product development effort has
prepared the SRS document in the form of a narrative essay of the
system to be developed. Based on this document, the product
development activity gets underway. Explain the problems that such a
requirements specification document may create while developing the
software.

19. Discuss the relative advantages of formal and informal requirements
specifications.

20. Why is the SRS document also known as the black-box specification of
a system?

21. Who are the different category of users of the SRS document? In what
ways is the SRS document useful to them?

22. Give an example of an inconsistent functional requirement. Explain why
do you think that the requirement is inconsistent.

23. What do you understand by traceability in the context of software
requirements specification. How is traceability achieved? Identify at least
two important benefits of having traceability among development
artifacts.

24. State whether the following statements are TRUE o r FALSE. Give
reasons for your answer.
(a) Applications developed using 4GLs would normally be more efficient

and run faster compared to applications developed using 3GL. (b) A
formal specification cannot be ambiguous.

(c) A formal specification cannot be incomplete. (d) A formal
specification cannot be inconsistent.

(e) The system test plan can be prepared immediately after the
completion of the requirements specification phase.

(f) The SRS document is a formal specification of a system.
(g) User interface issues of a system are usually its functional

requirements.
(h) The SRS document is written using the customer’s terminology of

various data and procedures in the problem, rather than the
development team’s terminology.

(i) A precise specification cannot be incomplete.
(j) If a requirement specification is precise, then it would automatically

imply that it is an unambiguous requirements specification.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

25. (a) What are the important differences between a model-oriented
specification method and a property-oriented specification method.
(b) Compare the relative advantages of property-oriented specification

methods over model-oriented specification methods.
(c) Name at least one representative popular property-oriented

specification technique, and one representative model-oriented
specification technique.

26. Consider the following requirement for a software to be developed for
controlling a chemical plant. The chemical plant has a number of
emergency conditions. When any of the emergency conditions occurs,
some prespecified actions should be taken. The different emergency
conditions and the corresponding actions that need to be taken are as
follows:

(a) If the temperature of the chemical plant exceeds T1 �C, then the
water shower should be turned ON and the heater should be turned OFF.
(b) If the temperature of the chemical tank falls below T2 � C, then the

heater should be turned ON and the water shower should be turned
OFF.

(c) If the pressure of the chemical plant is above P1, then the valve v1
should be OPENED.

(d) If the chemical concentration of the tank rises above M , and the
temperature of the tank is more than T3 � C, then the water shower
should be turned ON.

(e) If the pressure rises above P3 and the temperature rises above T1 �
C, then the water shower should be turned ON, valves v1 and v2 are
OPENED and the alarm bells sounded.

Write the requirements of this chemical plant software in the form of a
decision table.

27. Draw a decision tree to represent the processing logic of the chemical
plant controller described in question 26.

28. Represent the decision making involved in the operation of the
following wash-machine by means of a decision table:
The machine waits for the start switch to be pressed. After the user
presses the start switch, the machine fills the wash tub with either hot
or cold water depending upon the setting of the HotWash switch. The
water filling continues until the high level is sensed. The machine starts
the agitation motor and continues agitating the wash tub until either the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

preset timer expires or the user presses the s top switch. After the
agitation stops, the machine waits for the user to press the
startDrying switch. After the user presses the startDrying switch,
the machine starts the hot air blower and continues blowing hot air into
the drying chamber until either the user presses the stop switch or the
preset timer expires.

29. Represent the processing logic of the following problem in the form of
a decision table: A Library Membership Automation System needs to
support three functions: a d d new-member, renew-membership,
cancel-membership. If the user requests for any function other than
these three, then an error message is is flashed. When an add new-
member request is made, a new member record is created and a bill for
the annual membership fee for the new member is generated. If a
membership renewal request is made, then the expiry date of the
concerned membership record is updated and a bill towards the annual
membership fee is generated. If a membership cancellation request is
made, then the concerned membership record is deleted and a cheque
for the balance amount due to the member is printed.

30. What do you understand by pre- and post-conditions of a function?
Write the pre- and post-conditions to axiomatically specify the following
functions:
(a) A function takes two floating point numbers representing the sides of

a rectangle as input and returns the area of the corresponding
rectangle as output.

(b) A function accepts three integers in the range of -100 and +100 and
determines the largest of the three integers.

(c) A function takes an array of integers as input and finds the minimum
value.

(d) A function named square-array creates a 10 element array where
each all elements of the array, the value of any array element is
square of its index.

(e) A function sort takes an integer array as its argument and sorts the
input array in ascending order.

31. Using the algebraic specification method, formally specify a string
supporting the following operations:
• append: append a given string to another string
• add: add a character to a string
• create: create a new null string

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

• isequal: checks whether two strings are equal or not
• isempty: checks whether the string is null

32. Using the algebraic specification method, formally specify an array of
generic type elem.
Assume that array supports the following operations:
• create: takes the array bounds as parameters and initializes the
values of the array to undefined.

• eval: reveals the value of a specified element.
• first: returns the first bound of the array.
• last: returns the last bound of the array.

33. What do you understand by an executable specification language? How
is it different from a traditional procedural programming language? Give
an example of an executable specification language.

34. What is a fourth generation programming technique? What are its
advantages and disadvantages vis-a-vis a third generation technique?

35. What are auxiliary functions in algebraic specifications? Why are these
needed?

36. What do you understand by incremental development of algebraic
specifications? What is the advantage of incremental development of
algebraic specifications?

37. (a) Algebraically specify an abstract data type that stores a set of
elements and supports the following operations. Assume that the ADT
element has already been specified and you can use it:
• new: creates a null set.
• add: takes a set and an element and returns the set with the
additional elements stored.

• size: takes a set as argument and returns the number of elements in
the set.

• remove: takes a set and an element as its argument and returns the
set with the element removed.

• contains: takes a set and an element as its argument and returns the
boolean value true if the element belongs to the set and returns false if
the element does not belong to the set.

• equals: takes two sets as arguments and returns true if they contain
identical elements and returns false otherwise.

(b) Using the specification you have developed for the ADT set, reduce
the following expression by applying the rewrite rules: equals (add(5,

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(add(6, new()), add(6, (add(5, new()))). Show the details of every
reduction.

38 . Algebraically specify a data type Point, that supports the following
operations: create, xcoord, ycoord, move, movex, movey. The informal
meanings of these operations are the following—create takes two
integers as its arguments and creates an instance of point type that has
the two integers as its x and y coordinate values respectively, xcoord and
ycoord return the x and y-coordinates of a given point, move takes a point
and two integer values as its argument and sets the x and y-coordinates
of point to the specified values, movex takes a point and an integer value
as its argument and sets the x-coordinate of the point to the given
integer value. Similarly, movey takes a point and an integer value and
sets the y-coordinate of point to the given integer value.
Reduce the following expression, clearly showing each step and
mentioning the reduction rule used.
xcoord(movex(create(20,100), ycoord(create(10,50)))

39. Write a formal algebraic specification of the sort symbol-table whose
operations are informally defined as follows:
• create: bring a symbol table into existence.
• enter: enter a symbol table and its type into the table.
• lookup: return the type associated with a name in the table.
• delete: remove a name, type pair from the table, given a name as a
parameter.

• replace: replace the type associated with a given name with the type
specified as its parameter.

The enter operation fails if the name is already present in the table. The
lookup, delete, and replace operations fail if the name is not available in
the table.

40. Algebraically specify the data type queue which supports the following
operations:
• create: creates an empty queue.
• append: takes a queue and an item as its arguments and returns a
queue with the item added at the end of the queue.

• remove: takes a queue as its argument and returns a queue with the
first element of the original queue removed.

• inspect: takes a queue as its argument and returns the value of the
first item in the queue.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

• isempty: takes a queue as its argument and returns true if the queue
contains no elements, and returns false if it contains one or more
elements.

You can assume that the data type item has previously been specified
and that you can reuse this specification.

41. Define the finite termination and unique termination properties of
algebraic specifications? Why is it necessary for an algebraic specification
to satisfy these properties?

42. If the prototyping model is being used in a development effort, is it
necessary to develop a requirements specification document?

43. Express the decision making involved in the following withdraw cash
function of a bank ATM using a decision table.
To withdraw cash, first a valid customer identification is required. For
this, the customer is prompted to insert his ATM card in the card
checking machine. If his card is found to be invalid, the card is ejected
out along with an appropriate message displayed. If the card is verified
to be a valid card, the customer is prompted to type his password. If the
password is invalid, an error message is shown and the customer is
prompted to enter his password again. If the customer enters incorrect
password consecutively for three times, then his card is seized and he is
asked to contact the bank manager. On the other hand, if the customer
enters his password correctly, then he is considered to have validly
identified himself and is prompted to enter the amount he needs to
withdraw. If he enters an amount that is not a multiple of Rs. 100, he is
prompted to enter the amount again. After he enters an amount that is a
multiple of Rs. 100, the cash is dispensed if sufficient amount is available
in his account and his card is ejected; otherwise his card is ejected out
without any cash being dispensed along with a message display
regarding insufficient fund position in his account.

44. Identify the functional and non-functional requirements in the following
problem description and document them.
A cosmopolitan clock software is to be developed that displays up to 6
clocks with the names of the city and their local times. The clocks should
be aesthetically designed. The software should allow the user to change
name of any city and change the time readings of any clock by typing
typing c (for configure) on any clock. The user should also be able to
toggle between a digital clock and an analog clock display by typing
either d (for digital) or a (for analog) on a clock display. After the stand-

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

alone implementation works, a web-version should be developed that
can be downloaded on a browser as an applet and run. The clock should
use only the idle cycles on the computer it runs.

4 5 . What do you understand by inconsistencies, anomalies, and
incompletenesses in an SRS document. Identify the inconsistencies,
anomalies, and incompletenesses in the following requirements of an
academic activity automation software of an educational institute:
“The semester performance of each student is computed as the average
academic performance for the semester. The guardians of all students
having poor performance record in the semester are mailed a letter
informing about the poor performance of the ward and intimating that
repetition of poor performance in the subsequent semester can lead to
expulsion. The extracurricular activities of a student are also graded and
taken into consideration for determination of the semester
performance.”

46. Identify any inconsistencies, anomalies, and incompleteness that are
present in the following requirements that were gathered by
interviewing the clerks of the CSE department for developing an
academic automation software (AAS): “The CGPA of each student is
computed as the average performance for the semester. The parents of
all students having poor performance are mailed a letter informing about
the poor performance of their ward and with a request to convey a
warning to the student that the poor performance should not be
repeated.”

47. Represent the decision making involved in the following functional
requirement of a library automation system: Issue Item: An item
when submitted at the counter along with the library identity card, first it
is determined if the member has exceeded his quota. If he has exceeded
his quota, then no items can be issued to him. If the requested item is a
journal, then it is issued for two days only. If it is a book, then it is
checked whether it is a reference book. Reference books can not be
issued out. If it is not a reference book, it is determined if any one has
reserved it. Reserved books can not be issued out. If the book issue
request of the member meets all the mentioned criteria, then the book is
issued to the member for one month, appropriate entry is made in the
member’s account and an issue slip is printed.

48. Suppose you wish to develop a word processing software that would
have features similar to Microsoft Word. Develop the SRS document for

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

this word processing software.
1 Note that the customer and the users of a software may, in general, be different. For example,
the customer may be an organisation and the users may be a few select employees of the
organisation.

2 A safety-critical system is one whose improper working can result in financial loss, loss of
property, or life.

3 Sections 4.3–4.5 can be omitted in a first level course on software engineering.

4 Programming languages are generally classified into four generations. The first generation (1GL)
programming languages consist of machine language programs. The second generation (2GL)
started when the assembly language was introduced. All procedural languages are classified as
3GLs. In procedural languages, in order to solve a problem, you would have to precisely write
down “how” the required result can be obtained. This requires writing the exact procedures or the
algorithmic steps that need to be followed to arrive at the result. In contrast, using a 4GL only the
“what” parts have to be specified.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Chapter
5

SOFTWARE DESIGN

During the software design phase, the design document is produced, based
on the customer requirements as documented in the SRS document. We can
state the main objectives of the design phase, in other words, as follows.

The activities carried out during the design phase (called as design process)
transform the SRS document into the design document.

This view of a design process has been shown schematically in Figure 5.1.
As shown in Figure 5.1, the design process starts using the SRS document and
completes with the production of the design document. The design document
produced at the end of the design phase should be implementable using a
programming language in the subsequent (coding) phase.

Figure 5.1: The design process.

5.1 OVERVIEW OF THE DESIGN PROCESS
The design process essentially transforms the SRS document into a
design document. In the following sections and subsections, we will
discuss a few important issues associated with the design process.

5.1.1 Outcome of the Design Process
The following items are designed and documented during the design
phase.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Different modules required: The different modules in the solution should
be clearly identified. Each module is a collection of functions and the data
shared by the functions of the module. Each module should accomplish some
well-defined task out of the overall responsibility of the software. Each
module should be named according to the task it performs. For example, in
an academic automation software, the module consisting of the functions and
data necessary to accomplish the task of registration of the students should
be named handle student registration.
Control relationships among modules: A control relationship between
two modules essentially arises due to function calls across the two modules.
The control relationships existing among various modules should be identified
in the design document.
Interfaces among different modules: The interfaces between two
modules identifies the exact data items that are exchanged between the two
modules when one module invokes a function of the other module.
Data structures of the individual modules: Each module normally stores
some data that the functions of the module need to share to accomplish the
overall responsibility of the module. Suitable data structures for storing and
managing the data of a module need to be properly designed and
documented.
Algorithms required to implement the individual modules: Each
function in a module usually performs some processing activity. The
algorithms required to accomplish the processing activities of various modules
need to be carefully designed and documented with due considerations given
to the accuracy of the results, space and time complexities.

Starting with the SRS document (as shown in Figure 5.1), the design
documents are produced through iterations over a series of steps that we are
going to discuss in this chapter and the subsequent three chapters. The
design documents are reviewed by the members of the development team to
ensure that the design solution conforms to the requirements specification.

5.1.2 Classification of Design Activities
A good software design is seldom realised by using a single step
procedure, rather it requires iterating over a series of steps called the
design activities. Let us first classify the design activities before
discussing them in detail. Depending on the order in which various
design activities are performed, we can broadly classify them into two

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

important stages.
• Preliminary (or high-level) design, and
• Detailed design.

The meaning and scope of these two stages can vary considerably from one
design methodology to another. However, for the traditional function-oriented
design approach, it is possible to define the objectives of the high-level
design as follows:

Through high-level design, a problem is decomposed into a set of modules. The
control relationships among the modules are identified, and also the interfaces among
various modules are identified.

The outcome of high-level design is called the program structure or the
software architecture. High-level design is a crucial step in the overall design
of a software. When the high-level design is complete, the problem should
have been decomposed into many small functionally independent modules
that are cohesive, have low coupling among themselves, and are arranged in
a hierarchy. Many different types of notations have been used to represent a
high-level design. A notation that is widely being used for procedural
development is a tree-like diagram called the structure chart. Another popular
design representation techniques called UML that is being used to document
object-oriented design, involves developing several types of diagrams to
document the object-oriented design of a systems. Though other notations
such as Jackson diagram [1975] or Warnier-Orr [1977, 1981] diagram are
available to document a software design, we confine our attention in this text
to structure charts and UML diagrams only.

Once the high-level design is complete, detailed design is undertaken.

During detailed design each module is examined carefully to design its data structures
and the algorithms.

The outcome of the detailed design stage is usually documented in the
form of a module specification (MSPEC) document. After the high-level design
is complete, the problem would have been decomposed into small modules,
and the data structures and algorithms to be used described using MSPEC and
can be easily grasped by programmers for initiating coding. In this text, we
do not discuss MSPECs and confine our attention to high-level design only.

5.1.3 Classification of Design Methodologies
The design activities vary considerably based on the specific design

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

methodology being used. A large number of software design
methodologies are available. We can roughly classify these
methodologies into procedural and object-oriented approaches. These
two approaches are two fundamentally different design paradigms. In
this chapter, we shall discuss the important characteristics of these two
fundamental design approaches. Over the next three chapters, we shall
study these two approaches in detail.

Do design techniques result in unique solutions?
Even while using the same design methodology, different designers
usually arrive at very different design solutions. The reason is that a
design technique often requires the designer to make many subjective
decisions and work out compromises to contradictory objectives. As a
result, it is possible that even the same designer can work out many
different solutions to the same problem. Therefore, obtaining a good
design would involve trying out several alternatives (or candidate
solutions) and picking out the best one. However, a fundamental
question that arises at this point is—how to distinguish superior design
solution from an inferior one? Unless we know what a good software
design is and how to distinguish a superior design solution from an
inferior one, we can not possibly design one. We investigate this issue
in the next section.

Analysis versus design
Analysis and design activities differ in goal and scope.

The goal of any analysis technique is to elaborate the customer requirements through
careful thinking and at the same time consciously avoiding making any decisions
regarding the exact way the system is to be implemented.

The analysis results are generic and does not consider implementation or
the issues associated with specific platforms. The analysis model is usually
documented using some graphical formalism. In case of the function-oriented
approach that we are going to discuss, the analysis model would be
documented using data flow diagrams (DFDs), whereas the design would be
documented using structure chart. On the other hand, for object-oriented
approach, both the design model and the analysis model will be documented
using unified modelling language (UML). The analysis model would normally
be very difficult to implement using a programming language.

The design model is obtained from the analysis model through

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

transformations over a series of steps. In contrast to the analysis model, the
design model reflects several decisions taken regarding the exact way system
is to be implemented. The design model should be detailed enough to be
easily implementable using a programming language.

5.2 HOW TO CHARACTERISE A GOOD SOFTWARE DESIGN?
Coming up with an accurate characterisation of a good software design
that would hold across diverse problem domains is certainly not easy. In
fact, the definition of a “good” software design can vary depending on
the exact application being designed. For example, “memory size used
up by a program” may be an important issue to Characterise a good
solution for embedded software development—since embedded
applications are often required to work under severely limited memory
sizes due to cost, space, or power consumption considerations. For
embedded applications, factors such as design comprehensibility may
take a back seat while judging the goodness of design. Thus for
embedded applications, one may sacrifice design comprehensibility to
achieve code compactness. Similarly, it is not usually true that a
criterion that is crucial for some application, needs to be almost
completely ignored for another application. It is therefore clear that the
criteria used to judge a design solution can vary widely across different
types of applications. Not only do the criteria used to judge a design
solution depend on the exact application being designed, but to make
the matter worse, there is no general agreement among software
engineers and researchers on the exact criteria to use for judging a
design even for a specific category of application. However, most
researchers and software engineers agree on a few desirable
characteristics that every good software design for general applications
must possess. These characteristics are listed below:

Correctness: A good design should first of all be correct. That is, it should
correctly implement all the functionalities of the system.
Understandability: A good design should be easily understandable. Unless
a design solution is easily understandable, it would be difficult to implement
and maintain it.
Efficiency: A good design solution should adequately address resource,
time, and cost optimisation issues.
Maintainability: A good design should be easy to change. This is an

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

important requirement, since change requests usually keep coming from the
customer even after product release.

5.2.1 Understandability of a Design: A Ma jor Concern
While performing the design of a certain problem, assume that we have
arrived at a large number of design solutions and need to choose the best
one. Obviously all incorrect designs have to be discarded first. Out of the
correct design solutions, how can we identify the best one?

Given that we are choosing from only correct design solutions, understandability of a
design solution is possibly the most important issue to be considered while judging
the goodness of a design.

Recollect from our discussions in Chapter 1 that a good design should help
overcome the human cognitive limitations that arise due to limited short-term
memory. A large problem overwhelms the human mind, and a poor design
would make the matter worse. Unless a design solution is easily
understandable, it could lead to an implementation having a large number of
defects and at the same time tremendously pushing up the development
costs. Therefore, a good design solution should be simple and easily
understandable. A design that is easy to understand is also easy to develop
and maintain. A complex design would lead to severely increased life cycle
costs. Unless a design is easily understandable, it would require tremendous
effort to implement, test, debug, and maintain it. We had already pointed out
in Chapter 2 that about 60 per cent of the total effort in the life cycle of a
typical product is spent on maintenance. If the software is not easy to
understand, not only would it lead to increased development costs, the effort
required to maintain the product would also increase manifold. Besides, a
design solution that is difficult to understand would lead to a program that is
full of bugs and is unreliable. Recollect that we had already discussed in
Chapter 1 that understandability of a design solution can be enhanced
through clever applications of the principles of abstraction and decomposition.

An understandable design is modular and layered
How can the understandability of two different designs be compared, so
that we can pick the better one? To be able to compare the
understandability of two design solutions, we should at least have an
understanding of the general features that an easily understandable
design should possess. A design solution should have the following

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

characteristics to be easily understandable:

It should assign consistent and meaningful names to various design
components.
It should make use of the principles of decomposition and abstraction
in good measures to simplify the design.

We had discussed the essential concepts behind the principles of
abstraction and decomposition principles in Chapter 1. But, how can the
abstraction and decomposition principles are used in arriving at a design
solution? These two principles are exploited by design methodologies to
make a design modular and layered. (Though there are also a few other
forms in which the abstraction and decomposition principles can be used in
the design solution, we discuss those later). We can now define the
characteristics of an easily understandable design as follows: A design
solution is understandable, if it is modular and the modules are arranged in
distinct layers.

A design solution should be modular and layered to be understandable.

We now elaborate the concepts of modularity and layering of modules:

Modularity
A modular design is an effective decomposition of a problem. It is a basic
characteristic of any good design solution. A modular design, in simple
words, implies that the problem has been decomposed into a set of
modules that have only limited interactions with each other.
Decomposition of a problem into modules facilitates taking advantage
of the divide and conquer principle. If different modules have either no
interactions or little interactions with each other, then each module can
be understood separately. This reduces the perceived complexity of the
design solution greatly. To understand why this is so, remember that it
may be very difficult to break a bunch of sticks which have been tied
together, but very easy to break the sticks individually.

It is not difficult to argue that modularity is an important characteristic of a
good design solution. But, even with this, how can we compare the
modularity of two alternate design solutions? From an inspection of the
module structure, it is at least possible to intuitively form an idea as to which
design is more modular For example, consider two alternate design solutions

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

to a problem that are represented in Figure 5.2, in which the modules M1 ,
M2 etc. have been drawn as rectangles. The invocation of a module by
another module has been shown as an arrow. It can easily be seen that the
design solution of Figure 5.2(a) would be easier to understand since the
interactions among the different modules is low. But, can we quantitatively
measure the modularity of a design solution? Unless we are able to
quantitatively measure the modularity of a design solution, it will be hard to
say which design solution is more modular than another. Unfortunately, there
are no quantitative metrics available yet to directly measure the modularity
of a design. However, we can quantitatively characterise the modularity of a
design solution based on the cohesion and coupling existing in the design.

A design solution is said to be highly modular, if the different modules in the solution
have high cohesion and their inter-module couplings are low.

A software design with high cohesion and low coupling among modules is
the effective problem decomposition we discussed in Chapter 1. Such a
design would lead to increased productivity during program development by
bringing down the perceived problem complexity.

Figure 5.2: Two design solutions to the same problem.

Based on this classification, we would be able to easily judge the cohesion
and coupling existing in a design solution. From a knowledge of the cohesion
and coupling in a design, we can form our own opinion about the modularity
of the design solution. We shall define the concepts of cohesion and coupling
and the various classes of cohesion and coupling in Section 5.3. Let us now
discuss the other important characteristic of a good design solution—layered

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

design.

Layered design
A layered design is one in which when the call relations among different
modules are represented graphically, it would result in a tree-like
diagram with clear layering. In a layered design solution, the modules
are arranged in a hierarchy of layers. A module can only invoke
functions of the modules in the layer immediately below it. The higher
layer modules can be considered to be similar to managers that invoke
(order) the lower layer modules to get certain tasks done. A layered
design can be considered to be implementing control abstraction, since
a module at a lower layer is unaware of (about how to call) the higher
layer modules.

A layered design can make the design solution easily understandable, since
to understand the working of a module, one would at best have to
understand how the immediately lower layer modules work without having to
worry about the functioning of the upper layer modules.

When a failure is detected while executing a module, it is obvious that the
modules below it can possibly be the source of the error. This greatly
simplifies debugging since one would need to concentrate only on a few
modules to detect the error. We shall elaborate these concepts governing
layered design of modules in Section 5.4.

5.3 COHESION AND COUPLING
We have so far discussed that effective problem decomposition is an
important characteristic of a good design. Good module decomposition
is indicated through high cohesion of the individual modules and low
coupling of the modules with each other. Let us now define what is
meant by cohesion and coupling.

Cohesion is a measure of the functional strength of a module, whereas the
coupling between two modules is a measure of the degree of interaction (or
interdependence) between the two modules.

In this section, we first elaborate the concepts of cohesion and coupling.
Subsequently, we discuss the classification of cohesion and coupling.

Coupling: Intuitively, we can think of coupling as follows. Two modules are
said to be highly coupled, if either of the following two situations arise:

If the function calls between two modules involve passing large chunks

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

of shared data, the modules are tightly coupled.
If the interactions occur through some shared data, then also we say
that they are highly coupled.

If two modules either do not interact with each other at all or at best
interact by passing no data or only a few primitive data items, they are said
to have low coupling.
Cohesion: To understand cohesion, let us first understand an analogy.
Suppose you listened to a talk by some speaker. You would call the speech to
be cohesive, if all the sentences of the speech played some role in giving the
talk a single and focused theme. Now, we can extend this to a module in a
design solution. When the functions of the module co-operate with each other
for performing a single objective, then the module has good cohesion. If the
functions of the module do very different things and do not co-operate with
each other to perform a single piece of work, then the module has very poor
cohesion.

Functional independence
By the term functional independence, we mean that a module performs a
single task and needs very little interaction with other modules.

A module that is highly cohesive and also has low coupling with other modules is said
to be functionally independent of the other modules.

Functional independence is a key to any good design primarily due to the
following advantages it offers:
Error isolation: Whenever an error exists in a module, functional
independence reduces the chances of the error propagating to the other
modules. The reason behind this is that if a module is functionally
independent, its interaction with other modules is low. Therefore, an error
existing in the module is very unlikely to affect the functioning of other
modules.

Further, once a failure is detected, error isolation makes it very easy to
locate the error. On the other hand, when a module is not functionally
independent, once a failure is detected in a functionality provided by the
module, the error can be potentially in any of the large number of modules
and propagated to the functioning of the module.
Scope of reuse: Reuse of a module for the development of other
applications becomes easier. The reasons for this is as follows. A functionally

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

independent module performs some well-defined and precise task and the
interfaces of the module with other modules are very few and simple. A
functionally independent module can therefore be easily taken out and
reused in a different program. On the other hand, if a module interacts with
several other modules or the functions of a module perform very different
tasks, then it would be difficult to reuse it. This is especially so, if the module
accesses the data (or code) internal to other modules.
Understandability: When modules are functionally independent, complexity
of the design is greatly reduced. This is because of the fact that different
modules can be understood in isolation, since the modules are independent
of each other. We have already pointed out in Section 5.2 that
understandability is a major advantage of a modular design. Besides the
three we have listed here, there are many other advantages of a modular
design as well. We shall not list those here, and leave it as an assignment to
the reader to identify them.

5.3.1 Classification of Cohesiveness
Cohesiveness of a module is the degree to which the different functions of the
module co-operate to work towards a single objective. The different modules
of a design can possess different degrees of freedom. However, the different
classes of cohesion that modules can possess are depicted in Figure 5.3. The
cohesiveness increases from coincidental to functional cohesion. That is,
coincidental is the worst type of cohesion and functional is the best cohesion
possible. These different classes of cohesion are elaborated below.

Figure 5.3: Classification of cohesion.

Coincidental cohesion: A module is said to have coincidental cohesion,
if it performs a set of tasks that relate to each other very loosely, if at
all. In this case, we can say that the module contains a random
collection of functions. It is likely that the functions have been placed in
the module out of pure coincidence rather than through some thought
or design. The designs made by novice programmers often possess this
category of cohesion, since they often bundle functions to modules
rather arbitrarily. An example of a module with coincidental cohesion

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

has been shown in Figure 5.4(a).Observe that the different functions of
the module carry out very different and unrelated activities starting
from issuing of library books to creating library member records on one
hand, and handling librarian leave request on the other.

Figure 5.4: Examples of cohesion.

Logical cohesion: A module is said to be logically cohesive, if all
elements of the module perform similar operations, such as error
handling, data input, data output, etc. As an example of logical
cohesion, consider a module that contains a set of print functions to
generate various types of output reports such as grade sheets, salary
slips, annual reports, etc.

Temporal cohesion: When a module contains functions that are related by
the fact that these functions are executed in the same time span, then the
module is said to possess temporal cohesion. As an example, consider the
following situation. When a computer is booted, several functions need to be
performed. These include initialisation of memory and devices, loading the
operating system, etc. When a single module performs all these tasks, then
the module can be said to exhibit temporal cohesion. Other examples of
modules having temporal cohesion are the following. Similarly, a module
would exhibit temporal cohesion, if it comprises functions for performing
initialisation, or start-up, or shut-down of some process.
Procedural cohesion: A module is said to possess procedural cohesion, if
the set of functions of the module are executed one after the other, though
these functions may work towards entirely different purposes and operate on
very different data. Consider the activities associated with order processing in
a trading house. The functions login(), place-order(), check-order(), print-
bill(), place-order-on-vendor(), update-inventory(), and logout() all do
different thing and operate on different data. However, they are normally

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

executed one after the other during typical order processing by a sales clerk.
Communicational cohesion: A module is said to have communicational
cohesion, if all functions of the module refer to or update the same data
structure. As an example of procedural cohesion, consider a module named
student in which the different functions in the module such as admitStudent,
enterMarks, printGradeSheet, etc. access and manipulate data stored in an
array named studentRecords defined within the module.
Sequential cohesion: A module is said to possess sequential cohesion, if
the different functions of the module execute in a sequence, and the output
from one function is input to the next in the sequence. As an example
consider the following situation. In an on-line store consider that after a
customer requests for some item, it is first determined if the item is in stock.
In this case, if the functions create-order(), check-item-availability(), place-
order-on-vendor() are placed in a single module, then the module would
exhibit sequential cohesion. Observe that the function create-order() creates
an order that is processed by the function check-item-availability() (whether
the items are available in the required quantities in the inventory) is input to
place-order-on-vendor().
Functional cohesion: A module is said to possess functional cohesion, if
different functions of the module co-operate to complete a single task. For
example, a module containing all the functions required to manage
employees’ pay-roll displays functional cohesion. In this case, all the functions
of the module (e.g., computeOvertime(), computeWorkHours(),
computeDeductions(), etc.) work together to generate the payslips of the
employees. Another example of a module possessing functional cohesion has
been shown in Figure 5.4(b). In this example, the functions issue-book(),
return-book(), query-book(), and find-borrower(), together manage all
activities concerned with book lending. When a module possesses functional
cohesion, then we should be able to describe what the module does using
only one simple sentence. For example, for the module of Figure 5.4(a), we
can describe the overall responsibility of the module by saying “It manages
the book lending procedure of the library.”

A simple way to determine the cohesiveness of any given module is as
follows. First examine what do the functions of the module perform. Then, try
to write down a sentence to describe the overall work performed by the
module. If you need a compound sentence to describe the functionality of the
module, then it has sequential or communicational cohesion. If you need
words such as “first”, “next”, “after”, “then”, etc., then it possesses sequential

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

or temporal cohesion. If it needs words such as “initialise”, “setup”, “shut
down”, etc., to define its functionality, then it has temporal cohesion.

We can now make the following observation. A cohesive module is one in
which the functions interact among themselves heavily to achieve a single
goal. As a result, if any of these functions is removed to a different module,
the coupling would increase as the functions would now interact across two
different modules.

5.3.2 Classification of Coupling
The coupling between two modules indicates the degree of interdependence
between them. Intuitively, if two modules interchange large amounts of data,
then they are highly interdependent or coupled. We can alternately state this
concept as follows.

The degree of coupling between two modules depends on their interface complexity.

The interface complexity is determined based on the number of parameters
and the complexity of the parameters that are interchanged while one
module invokes the functions of the other module.

Let us now classify the different types of coupling that can exist between
two modules. Between any two interacting modules, any of the following five
different types of coupling can exist. These different types of coupling, in
increasing order of their severities have also been shown in Figure 5.5.

Figure 5.5: Classification of coupling.

Data coupling: Two modules are data coupled, if they communicate using
an elementary data item that is passed as a parameter between the two, e.g.
an integer, a float, a character, etc. This data item should be problem related
and not used for control purposes.
Stamp coupling: Two modules are stamp coupled, if they communicate
using a composite data item such as a record in PASCAL or a structure in C.
Control coupling: Control coupling exists between two modules, if data
from one module is used to direct the order of instruction execution in
another. An example of control coupling is a flag set in one module and

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

tested in another module.
Common coupling: Two modules are common coupled, if they share some
global data items.
Content coupling: Content coupling exists between two modules, if they
share code. That is, a jump from one module into the code of another module
can occur. Modern high-level programming languages such as C do not
support such jumps across modules.

The different types of coupling are shown schematically in Figure 5.5. The
degree of coupling increases from data coupling to content coupling. High
coupling among modules not only makes a design solution difficult to
understand and maintain, but it also increases development effort and also
makes it very difficult to get these modules developed independently by
different team members.

5.4 LAYERED ARRANGEMENT OF MODULES
T h e control hier a r c h y represents the organisation of program
components in terms of their call relationships. Thus we can say that
the control hierarchy of a design is determined by the order in which
different modules call each other. Many different types of notations
have been used to represent the control hierarchy. The most common
notation is a tree-like diagram known as a structure chart which we
shall study in some detail in Chapter 6. However, other notations such
as Warnier-Orr [1977, 1981] or Jackson diagrams [1975] may also be
used. Since, Warnier-Orr and Jackson’s notations are not widely used
nowadays, we shall discuss only structure charts in this text.

In a layered design solution, the modules are arranged into several layers
based on their call relationships. A module is allowed to call only the modules
that are at a lower layer. That is, a module should not call a module that is
either at a higher layer or even in the same layer. Figure 5.6(a) shows a
layered design, whereas Figure 5.6(b) shows a design that is not layered.
Observe that the design solution shown in Figure 5.6(b), is actually not
layered since all the modules can be considered to be in the same layer. In
the following, we state the significance of a layered design and subsequently
we explain it.

An important characteristic feature of a good design solution is layering of the
modules. A layered design achieves control abstraction and is easier to understand
and debug.

In a layered design, the top-most module in the hierarchy can be

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

In a layered design, the top-most module in the hierarchy can be
considered as a manager that only invokes the services of the lower level
module to discharge its responsibility. The modules at the intermediate layers
offer services to their higher layer by invoking the services of the lower layer
modules and also by doing some work themselves to a limited extent. The
modules at the lowest layer are the worker modules. These do not invoke
services of any module and entirely carry out their responsibilities by
themselves.

Understanding a layered design is easier since to understand one module,
one would have to at best consider the modules at the lower layers (that is,
the modules whose services it invokes). Besides, in a layered design errors
are isolated, since an error in one module can affect only the higher layer
modules. As a result, in case of any failure of a module, only the modules at
the lower levels need to be investigated for the possible error. Thus,
debugging time reduces significantly in a layered design. On the other hand,
if the different modules call each other arbitrarily, then this situation would
correspond to modules arranged in a single layer. Locating an error would be
both difficult and time consuming. This is because, once a failure is observed,
the cause of failure (i.e. error) can potentially be in any module, and all
modules would have to be investigated for the error. In the following, we
discuss some important concepts and terminologies associated with a layered
design:
Superordinate and subordinate modules: In a control hierarchy, a
module that controls another module is said to be superordinate to it.
Conversely, a module controlled by another module is said to be subordinate
to the controller.
Visibility: A module B is said to be visible to another module A, if A directly
calls B. Thus, only the immediately lower layer modules are said to be visible
to a module.
Control abstraction: In a layered design, a module should only invoke the
functions of the modules that are in the layer immediately below it. In other
words, the modules at the higher layers, should not be visible (that is,
abstracted out) to the modules at the lower layers. This is referred to as
control abstraction.
Depth and width: Depth and width of a control hierarchy provide an
indication of the number of layers and the overall span of control respectively.
For the design of Figure 5.6(a), the depth is 3 and width is also 3.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Fan-out: Fan-out is a measure of the number of modules that are directly
controlled by a given module. In Figure 5.6(a), the fan-out of the module M1
is 3. A design in which the modules have very high fan-out numbers is not a
good design. The reason for this is that a very high fan-out is an indication
that the module lacks cohesion. A module having a large fan-out (greater
than 7) is likely to implement several different functions and not just a single
cohesive function.
Fan-in: Fan-in indicates the number of modules that directly invoke a given
module. High fan-in represents code reuse and is in general, desirable in a
good design. In Figure 5.6(a), the fan-in of the module M1 is 0, that of M2 is
1, and that of M5 is 2.

Figure 5.6: Examples of good and poor control abstraction.

5.5 APPROACHES TO SOFTWARE DESIGN
There are two fundamentally different approaches to software design
that are in use today— function-oriented design, and object-oriented
design. Though these two design approaches are radically different,
they are complementary rather than competing techniques. The object-
oriented approach is a relatively newer technology and is still evolving.
For development of large programs, the object- oriented approach is
becoming increasingly popular due to certain advantages that it offers.
On the other hand, function-oriented designing is a mature technology
and has a large following. Salient features of these two approaches are
discussed in subsections 5.5.1 and 5.5.2 respectively.

5.5.1 Function-oriented Design

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The following are the salient features of the function-oriented design
approach:

Top-down decomposition: A system, to start with, is viewed as a black
box that provides certain services (also known as high-level functions) to the
users of the system.

In top-down decomposition, starting at a high-level view of the system,
each high-level function is successively refined into more detailed functions.

For example, consider a function create-new-library membe r which
essentially creates the record for a new member, assigns a unique
membership number to him, and prints a bill towards his membership charge.
This high-level function may be refined into the following subfunctions:

• assign-membership-number
• create-member-record
• print-bill
Each of these subfunctions may be split into more detailed subfunctions and

so on.
Centralised system state: The system state can be defined as the values
of certain data items that determine the response of the system to a user
action or external event. For example, the set of books (i.e. whether
borrowed by different users or available for issue) determines the state of a
library automation system. Such data in procedural programs usually have
global scope and are shared by many modules.

The system state is centralised and shared among different functions.

For example, in the library management system, several functions such as
the following share data such as member-records for reference and updation:

• create-new-member
• delete-member
• update-member-record
A large number of function-oriented design approaches have been proposed

in the past. A
few of the well-established function-oriented design approaches are as

following:
• Structured design by Constantine and Yourdon, [1979]
• Jackson’s structured design by Jackson [1975]
• Warnier-Orr methodology [1977, 1981]

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

• Step-wise refinement by Wirth [1971]
• Hatley and Pirbhai’s Methodology [1987]

5.5.2 Object-oriented Design
In the object-oriented design (OOD) approach, a system is viewed as
being made up of a collection of objects (i.e. entities). Each object is
associated with a set of functions that are called its methods. Each
object contains its own data and is responsible for managing it. The
data internal to an object cannot be accessed directly by other objects
and only through invocation of the methods of the object. The system
state is decentralised since there is no globally shared data in the
system and data is stored in each object. For example, in a library
automation software, each library member may be a separate object
with its own data and functions to operate on the stored data. The
methods defined for one object cannot directly refer to or change the
data of other objects.

The object-oriented design paradigm makes extensive use of the principles
of abstraction and decomposition as explained below. Objects decompose a
system into functionally independent modules. Objects can also be
considered as instances of abstract data types (ADTs). The ADT concept did
not originate from the object-oriented approach. In fact, ADT concept was
extensively used in the ADA programming language introduced in the 1970s.
ADT is an important concept that forms an important pillar of object-
orientation. Let us now discuss the important concepts behind an ADT. There
are, in fact, three important concepts associated with an ADT—data
abstraction, data structure, data type. We discuss these in the following
subsection:

Data abstraction: The principle of data abstraction implies that how
data is exactly stored is abstracted away. This means that any entity
external to the object (that is, an instance of an ADT) would have no
knowledge about how data is exactly stored, organised, and
manipulated inside the object. The entities external to the object can
access the data internal to an object only by calling certain well-defined
methods supported by the object. Consider an ADT such as a stack. The
data of a stack object may internally be stored in an array, a linearly
linked list, or a bidirectional linked list. The external entities have no
knowledge of this and can access data of a stack object only through
the supported operations such as push and pop.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Data structure: A data structure is constructed from a collection of primitive
data items. Just as a civil engineer builds a large civil engineering structure
using primitive building materials such as bricks, iron rods, and cement; a
programmer can construct a data structure as an organised collection of
primitive data items such as integer, floating point numbers, characters, etc.
Data type: A type is a programming language terminology that refers to
anything that can be instantiated. For example, int, float, char etc., are the
basic data types supported by C programming language. Thus, we can say
that ADTs are user defined data types.

In object-orientation, classes are ADTs. But, what is the advantage of
developing an application using ADTs? Let us examine the three main
advantages of using ADTs in programs:

The data of objects are encapsulated within the methods. The
encapsulation principle is also known as data hiding. The encapsulation
principle requires that data can be accessed and manipulated only
through the methods supported by the object and not directly. This
localises the errors. The reason for this is as follows. No program
element is allowed to change a data, except through invocation of one
of the methods. So, any error can easily be traced to the code segment
changing the value. That is, the method that changes a data item,
making it erroneous can be easily identified.
An ADT-based design displays high cohesion and low coupling.
Therefore, object- oriented designs are highly modular.
Since the principle of abstraction is used, it makes the design solution
easily understandable and helps to manage complexity.

Similar objects constitute a class. In other words, each object is a member
of some class. Classes may inherit features from a super class. Conceptually,
objects communicate by message passing. Objects have their own internal
data. Thus an object may exist in different states depending the values of the
internal data. In different states, an object may behave differently. We shall
elaborate these concepts in Chapter 7 and subsequently we discuss an
object-oriented design methodology in Chapter 8.

O b je ct -or ie n t e d v e r s u s function-oriented design
approaches

The following are some of the important differences between the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

function-oriented and object-oriented design:

Unlike function-oriented design methods in OOD, the basic abstraction
is not the services available to the users of the system such as issue-
book, display-book-details, find-issued-books, etc., but real-world
entities such as member, book, book-register, etc. For example in
OOD, an employee pay-roll software is not developed by designing
functions such as update-employee-record, get-employee-address,
etc., but by designing objects such as employees, departments, etc.
In OOD, state information exists in the form of data distributed among
several objects of the system. In contrast, in a procedural design, the
state information is available in a centralised shared data store. For
example, while developing an employee pay-roll system, the employee
data such as the names of the employees, their code numbers, basic
salaries, etc., are usually implemented as global data in a traditional
programming system; whereas in an object-oriented design, these
data are distributed among different employee objects of the system.
Objects communicate by message passing. Therefore, one object may
discover the state information of another object by sending a message
to it. Of course, somewhere or other the real-world functions must be
implemented.
Function-oriented techniques group functions together if, as a group,
they constitute a higher level function. On the other hand, object-
oriented techniques group functions together on the basis of the data
they operate on.

To illustrate the differences between the object-oriented and the function-
oriented design approaches, let us consider an example—that of an
automated fire-alarm system for a large building.

Automated fire-alarm system—customer requirements
The owner of a large multi-storied building wants to have a
computerised fire alarm system designed, developed, and installed in
his building. Smoke detectors and fire alarms would be placed in each
room of the building. The fire alarm system would monitor the status of
these smoke detectors. Whenever a fire condition is reported by any of
the smoke detectors, the fire alarm system should determine the
location at which the fire has been sensed and then sound the alarms

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

only in the neighbouring locations. The fire alarm system should also
flash an alarm message on the computer console. Fire fighting
personnel would man the console round the clock. After a fire condition
has been successfully handled, the fire alarm system should support
resetting the alarms by the fire fighting personnel.

Function-oriented approach: In this approach, the different high-level
functions are first identified, and then the data structures are designed.

The functions which operate on the system state are:
interrogate_detectors();
get_detector_location();
determine_neighbour_alarm();
determine_neighbour_sprinkler();
ring_alarm();
activate_sprinkler();
reset_alarm();
reset_sprinkler();
report_fire_location();

Object-oriented approach: In the object-oriented approach, the different
classes of objects are identified. Subsequently, the methods and data for
each object are identified. Finally, an appropriate number of instances of each
class is created.

class detector
attributes: status, location, neighbours
operations: create, sense-status, get-location,

find-neighbours

class alarm
attributes: location, status
operations: create, ring-alarm, get_location, reset-
alarm

class sprinkler

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

attributes: location, status
operations: create, activate-sprinkler, get_location,
reset-sprinkler

We can now compare the function-oriented and the object-oriented
approaches based on the two examples discussed above, and easily observe
the following main differences:

In a function-oriented program, the system state (data) is centralised
and several functions access and modify this central data. In case of an
object-oriented program, the state information (data) is distributed
among various objects.
In the object-oriented design, data is private in different objects and
these are not available to the other objects for direct access and
modification.
The basic unit of designing an object-oriented program is objects,
whereas it is functions and modules in procedural designing. Objects
appear as nouns in the problem description; whereas functions appear
as verbs.

At this point, we must emphasise that it is not necessary that an object-
oriented design be implemented by using an object-oriented language only.
However, an object-oriented language such as C++ and Java support the
definition of all the basic mechanisms of class, inheritance, objects, methods,
etc. and also support all key object-oriented concepts that we have just
discussed. Thus, an object-oriented language facilitates the implementation
of an OOD. However, an OOD can as well be implemented using a
conventional procedural languages—though it may require more effort to
implement an OOD using a procedural language as compared to the effort
required for implementing the same design using an object-oriented
language. In fact, the older C++ compilers were essentially pre-processors
that translated C++ code into C code.

Even though object-oriented and function-oriented techniques are
remarkably different approaches to software design, yet one does not replace
the other; but they complement each other in some sense. For example,
usually one applies the top-down function oriented techniques to design the
internal methods of a class, once the classes are identified. In this case,
though outwardly the system appears to have been developed in an object-
oriented fashion, but inside each class there may be a small hierarchy of

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

functions designed in a top-down manner.

SUMMARY

software design is typically carried out through two stages—high-level
design, and detailed design. During high-level design, the important
components (modules) of the system and their interactions are
identified. During detailed design, the algorithms and data structures
are identified.
We discussed that there is no unique design solution to any problem
and one needs to choose the best solution among a set of candidate
solutions. To be able to achieve this, we identified the factors based on
which a superior design can be distinguished from a inferior design.
We discussed that understandability of a design is a major criterion
determining the goodness of a design. We Characterised the
understandability of design in terms of satisfactory usage of
decomposition and abstraction principles. Later, we Characterised
these in terms of cohesion, coupling, layering, control abstraction, fan-
in, fan-out, etc.
We identified two fundamentally different approaches to software
design—function- oriented design and object-oriented design. We
discussed the essential philosophy governing these two approaches
and argued that these two approaches to software design are not
really competing approaches but complementary approaches.

EXERCISES
1. Choose the correct option

(a) The extent of data interchange between two modules is called:
(i) Coupling
(ii) Cohesion
(iii) Structure
(iv) Union

(b) Which of the following type of cohesion can be considered as the
strongest cohesion:
(i) Logical
(ii) Coincidental
(iii) Temporal
(iv) Functional

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(c) The modules in a good software design should have which of the
following characteristics:
(i) High cohesion, low coupling
(ii) Low cohesion, high coupling
(iii) Low cohesion, low coupling
(iv) High cohesion, high coupling

2 . Do you agree with the following assertion? A design solution that is
difficult to under- stand would lead to increased development and
maintenance cost. Give reasonings for your answer.

3. What do you mean by the terms cohesion and coupling in the context of
software design?
How are these concepts useful in arriving at a good design of a system?

4 . What do you mean by a modular design? How can you determine
whether a given design is modular or not?

5 . Enumerate the different types of cohesion that a module in a design
might exhibit. Give examples of each.

6. Enumerate the different types of coupling that might exist between two
modules. Give examples of each.

7 . Is it true that whenever you increase the cohesion of your design,
coupling in the design would automatically decrease? Justify your answer
by using suitable examples.

8. What according to you are the characteristics of a good software design?
9 . What do you understand by the term functional independence in the

context of software design? What are the advantages of functional
independence? How can functional independence in a software design be
achieved?

10. Explain how the principles of abstraction and decomposition are used
to arrive at a good design.

1 1 . What do you understand by information hiding in the context of
software design?
Explain why a design approach based on the information hiding principle
is likely to lead to a reusable and maintainable design. Illustrate your
answer with a suitable example.

12. In the context of software development, distinguish between analysis
and design with respect to intention, methodology, and the
documentation technique used.

13. State whether the following statements are TRUE o r FALSE. Give
reasons for your answer.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(a) The essence of any good function-oriented design technique is to
map the functions performing similar activities into a module.

(b) Traditional procedural design is carried out top-down whereas
object-oriented design is normally carried out bottom-up.

(c) Common coupling is the worst type of coupling between two
modules.

(d) Temporal cohesion is the worst type of cohesion that a module can
have.

(e) The extent to which two modules depend on each other determines
the cohesion of the two modules.

14. Compare relative advantages of the object-oriented and function-
oriented approaches to software design.

15. Name a few well-established function-oriented software design
techniques.

16. Explain the important causes of and remedies for high coupling
between two software modules.

17. What problems are likely to arise if two modules have high coupling?
18. What problems are likely to occur if a module has low cohesion?
19. Distinguish between high-level and detailed designs. What documents

should be produced on completion of high-level and detailed designs
respectively?

20. What is meant by the term cohesion in the context of software design?
Is it true that in a good design, the modules should have low cohesion?
Why?

21. What is meant by the term coupling in the context of software design?
Is it true that in a good design, the modules should have low coupling?
Why?

22. What do you mean by modular design? What are the different factors
that affect the modularity of a design? How can you assess the
modularity of a design? What are the advantages of a modular design?

23. How would you improve a software design that displays very low
cohesion and high coupling?

24. Explain how the overall cohesion and coupling of a design would be
impacted if all modules of the design are merged into a single module.

25. Explain what do you understand by the terms decomposition and
abstraction in the context of software design. How are these two
principles used in arriving good procedural designs?

26. What is an ADT? What advantages accrue when a software design

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

technique is based on ADTs? Explain why the object paradigm is said to
be based on ADTs.

27. By using suitable examples explain the following terms associated with
an abstract data type (ADT)—data abstraction, data structure, data
type.

28. What do you understand by the term top-down decomposition in the
context of function- oriented design? Explain your answer using a
suitable example.

29. What do you understand by a layered software design? What are the
advantages of a layered design? Explain your answer by using suitable
examples.

30. What is the principal difference between the software design
methodologies based on functional abstraction and those based on data
abstraction? Name at least one popular design technique based on each
of these two software design paradigms.

31. What are the main advantages of using an object-oriented approach to
software design over a function-oriented approach?

32. Point out three important differences between the function oriented
and the object- oriented approaches to software design. Corroborate
your answer through suitable examples.

33. Identify the criteria that you would use to decide which one of two
alternate function- oriented design solutions to a problem is superior.

34. Explain the main differences between architectural design, high-level-
design, and detailed design of a software system.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Chapter
6

FUNCTION-ORIENTED SOFTWARE
DESIGN

Function-oriented design techniques were proposed nearly four decades ago.
These techniques are at the present time still very popular and are currently
being used in many software development organisations. These techniques,
to start with, view a system as a black-box that provides a set of services to
the users of the software. These services provided by a software (e.g., issue
book, serach book, etc., for a Library Automation Software to its users are also
known as the high-level functions supported by the software. During the
design process, these high-level functions are successively decomposed into
more detailed functions.

The term top-down decomposition i s often used to denote the successive
decomposition of a set of high-level functions into more detailed functions.

After top-down decomposition has been carried out, the different identified
functions are mapped to modules and a module structure is created. This
module structure would possess all the characteristics of a good design
identified in the last chapter.

In this text, we shall not focus on any specific design methodology. Instead,
we shall discuss a methodology that has the essential features of several
important function-oriented design methodologies. Such an approach shall
enable us to easily assimilate any specific design methodology in the future
whenever the need arises. Learning a specific methodology may become
necessary for you later, since different software development houses follow
different methodologies. After all, the different procedural design techniques
can be considered as sister techniques that have only minor differences with
respect to the methodology and notations. We shall call the design technique
discussed in this text a s structured analysis/structured design (SA/SD)

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

methodology. This technique draws heavily from the design methodologies
proposed by the following authors:

DeMarco and Yourdon [1978]
Constantine and Yourdon [1979]
Gane and Sarson [1979]
Hatley and Pirbhai [1987]

The SA/SD technique can b e used to perform the high-level design of a
software. The details of SA/SD technique are discussed further.

6.1 OVERVIEW OF SA/SD METHODOLOGY
As the name itself implies, SA/SD methodology involves carrying out two
distinct activities:

Structured analysis (SA)
Structured design (SD)

The roles of structured analysis (SA) and structured design (SD) have been
shown schematically in Figure 6.1. Observe the following from the figure:

During structured analysis, the SRS document is transformed into a
data flow diagram (DFD) model.
During structured design, the DFD model is transformed into a
structure chart.

Figure 6.1: Structured analysis and structured design methodology.

As shown in Figure 6.1, the structured analysis activity transforms the SRS
document into a graphic model called the DFD model. During structured
analysis, functional decomposition of the system is achieved. That is, each

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

function that the system needs to perform is analysed and hierarchically
decomposed into more detailed functions. On the other hand, during
structured design, all functions identified during structured analysis are
mapped to a module structure. This module structure is also called the high-
level design or the software architecture for the given problem. This is
represented using a structure chart.

The high-level design stage is normally followed by a detailed design stage.
During the detailed design stage, the algorithms and data structures for the
individual modules are designed. The detailed design can directly be
implemented as a working system using a conventional programming
language.

It is important to understand that the purpose of structured analysis is to capture the
detailed structure of the system as perceived by the user, whereas the purpose of
structured design is to define the structure of the solution that is suitable for
implementation in some programming language.

The results of structured analysis can therefore, be easily understood by
the user. In fact, the different functions and data in structured analysis are
named using the user’s terminology. The user can therefore even review the
results of the structured analysis to ensure that it captures all his
requirements.

In the following section, w e first discuss how to carry out structured
analysis to construct the DFD model. Subsequently, we discuss how the DFD
model can be transformed into structured design.

6.2 STRUCTURED ANALYSIS
We have already mentioned that during structured analysis, the major
processing tasks (high-level functions) of the system are analysed, and
t h e data flow among these processing tasks are represented
graphically. Significant contributions to the development of the
structured analysis techniques have been made by Gane and Sarson
[1979], and DeMarco and Yourdon [1978]. The structured analysis
technique is based on the following underlying principles:

Top-down decomposition approach.
Application of divide and conquer principle. Through this each high-
level function is independently decomposed into detailed functions.
Graphical representation of the analysis results us i ng data flow

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

diagrams (DFDs).

DFD representation of a problem, as we shall see shortly, is very easy to
construct. Though extremely simple, it is a very powerful tool to tackle the
complexity of industry standard problems.

A DFD is a hierarchical graphical model of a system that shows the different
processing activities or functions that the system performs and the data interchange
among those functions.

Please note that a DFD model only represents the data flow aspects and
does not show the sequence of execution of the different functions and the
conditions based on which a function may or may not be executed. In fact, it
completely ignores aspects such as control flow, the specific algorithms used
by the functions, etc. In the DFD terminology, each function is called a
process or a bubble. It is useful to consider each function as a processing
station (or process) that consumes some input data and produces some
output data.

DFD is an elegant modelling technique that can be used not only to
represent the results of structured analysis of a software problem, but also
useful for several other applications such as showing the flow of documents
or items in an organisation. Recall that in Chapter 1 we had given an example
(see Figure 1.10) to illustrate how a DFD can be used t o represent the
processing activities and flow of material in an automated car assembling
plant. We now elaborate how a DFD model can be constructed.

6.2.1 Data Flow Diagrams (DFDs)
The DFD (also known as the bubble chart) is a simple graphical
formalism that can be used to represent a system in terms of the input
data to the system, various processing carried out on those data, and
the output data generated by the system. The main reason why the
DFD technique is so popular is probably because of the fact that DFD is
a very simple formalism— it is simple to understand and use. A DFD
model uses a very limited number of primitive symbols (shown in Figure
6.2) to represent the functions performed by a system and the data
flow among these functions.

Starting with a set of high-level functions that a system performs, a DFD
model represents the subfunctions performed by the functions using a
hierarchy of diagrams. We had pointed out while discussing the principle of
abstraction in Section 1.3.2 that any hierarchical representation is an

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

effective means to tackle complexity. Human mind is such that it can easily
understand any hierarchical model of a system—because in a hierarchical
model, starting with a very abstract model of a system, various details of the
system are slowly introduced through different levels of the hierarchy. The
DFD technique is also based on a very simple set of intuitive concepts and
rules. We now elaborate the different concepts associated with building a
DFD model of a system.

Primitive symbols used for constructing DFDs
There are essentially five different types of symbols used for constructing
DFDs. These primitive symbols are depicted in Figure 6.2. The meaning of
these symbols are explained as follows:

Figure 6.2: Symbols used for designing DFDs.

Function symbol: A function is represented using a circle. This symbol is
called a process or a bubble. Bubbles are annotated with the names of
the corresponding functions (see Figure 6.3).

External entity symbol: An external entity such as a librarian, a library
member, etc. is represented by a rectangle. The external entities are
essentially those physical entities external to the software system which
interact with the system by inputting data to the system or by consuming the
data produced by the system. In addition to the human users, the external
entity symbols can be used to represent external hardware and software such
as another application software that would interact with the software being
modelled.
Data flow symbol: A directed arc (or an arrow) is used as a data flow symbol.
A data flow symbol represents the data flow occurring between two processes
or between an external entity and a process in the direction of the data flow
arrow. Data flow symbols are usually annotated with the corresponding data
names. For example the DFD in Figure 6.3(a) shows three data flows—the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

data item number flowing from the process read-number to validate-number, data-
item flowing into read-number, and valid-number flowing out of validate-number.
Data store symbol: A data store is represented using two parallel lines. It
represents a logical file. That is, a data store symbol can represent either a
data structure or a physical file on disk. Each data store is connected to a
process by means of a data flow symbol. The direction of the data flow arrow
shows whether data is being read from or written into a data store. An arrow
flowing in or out of a data store implicitly represents the entire data of the
data store and hence arrows connecting t o a data store need not be
annotated with the name of the corresponding data items. As an example of
a data store, number is a data store in Figure 6.3(b).

Output symbol: The output symbol i s as shown in Figure 6.2. The output
symbol is used when a hard copy is produced.

The notations that we are following in this text are closer to the Yourdon’s
notations than to the other notations. You may sometimes find notations in
other books that are slightly different than those discussed here. For
example, the data store may look like a box with one end open. That is
because, they may be following notations such as those of Gane and Sarson
[1979].

Important concepts associated with constructing DFD models
Before we discuss how to construct the DFD model of a system, let us
discuss some important concepts associated with DFDs:

Synchronous and asynchronous operations
If two bubbles are directly connected by a data flow arrow, then they are
synchronous. This means that they operate at t he same speed. An
example of such an arrangement is shown in Figure 6.3(a). Here, the
validate-number bubble can start processing only after t he read-
number bubble has supplied data to it; and the read-number bubble
has to wait until the validate-number bubble has consumed its
data.

However, if two bubbles are connected through a data store, as in Figure
6.3(b) then the speed of operation of the bubbles are independent. This
statement can be explained using the following reasoning. The data produced
by a producer bubble gets stored in the data store. It is therefore possible
that the producer bubble stores several pieces of data items, even before the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

consumer bubble consumes any of them.

Figure 6.3: Synchronous and asynchronous data flow.

Data dictionary
Every DFD model of a system must be accompanied by a data dictionary. A
data dictionary lists all data items that appear in a DFD model. The data
items listed include all data flows and the contents of all data stores
appearing on all the DFDs in a DFD model. Please remember that the DFD
model of a system typically consists of several DFDs, viz., level 0 DFD, level 1
DFD, level 2 DFDs, etc., as shown in Figure 6.4 discussed in new subsection.
However, a single data dictionary should capture all the data appearing in all
the DFDs constituting the DFD model of a system.

A data dictionary lists the purpose of all data items and the definition of all composite
data items in terms of their component data items.

For example, a data dictionary entry may represent that the data grossPay
consists of the components regularPay and overtimePay.

grossP ay = regularP ay + overtimeP ay
For the smallest units of data items, the data dictionary simply lists their
name and their type. Composite data items are expressed in terms of
the component data items using certain operators. The operators using
which a composite data item can be expressed in terms of its
component data items are discussed subsequently.

The dictionary plays a very important role in any software development
process, especially for the following reasons:

A data dictionary provides a standard terminology for all relevant data
for use by the developers working in a project. A consistent vocabulary
for data items is very important, since in large projects different
developers of the project have a tendency to use different terms to
refer to the same data, which unnecessarily causes confusion.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The data dictionary helps the developers to determine the definition of
different data structures in terms of their component elements while
implementing the design.
The data dictionary helps to perform impact analysis. That is, it is
possible to determine the effect of some data on various processing
activities and vice versa. Such impact analysis is especially useful when
one wants to check the impact of changing an input value type, or a
bug in some functionality, etc.

For large systems, the data dictionary can become extremely complex and
voluminous. Even moderate-sized projects can have thousands of entries in
the data dictionary. It becomes extremely di fficult to maintain a voluminous
dictionary manually. Computer-aided software engineering (CASE) tools come
handy to overcome this problem. Most CASE tools usually capture the data
items appearing in a DFD as the DFD is drawn, and automatically generate
the data dictionary. As a result, the designers do not have to spend almost
any effort in creating the data dictionary. These CASE tools also support some
query language facility to query about the definition and usage of data items.
For example, queries may be formulated to determine which data item
affects which processes, or a process affects which data items, or the
definition and usage of specific data items, etc. Query handling is facilitated
by storing the data dictionary in a relational database management system
(RDBMS).

Data definition
Composite data items can be defined in terms of primitive data items
using the following data definition operators.

+: denotes composition of two data items, e.g. a+b represents data a and b.
[,,]: represents selection, i.e. any one of the data items listed inside the

square bracket can occur For example, [a,b] represents either a occurs or b
occurs.

(): the contents inside the bracket represent optional data which may or may
not appear.
a+(b) represents either a or a+b occurs.

{}: represents iterative data definition, e.g. {name}5 represents five name data.
{name}* represents zero or more instances of name data.

=: represents equivalence, e.g. a=b+c means that a is a composite data item

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

comprising of both b and c.
/* */: Anything appearing within /* and */ is considered as comment.

6.3 DEVELOPING THE DFD MODEL OF A SYSTEM
A DFD model of a system graphically represents how each input data is
transformed to its corresponding output data through a hierarchy of DFDs.

The DFD model of a problem consists of many of DFDs and a single data dictionary.

The DFD model of a system i s constructed by using a hierarchy of DFDs
(see Figure 6.4). The top level DFD is called the level 0 DFD or the context
diagram. This is the most abstract (simplest) representation of the system
(highest level). It is the easiest to draw and understand. At each successive
lower level DFDs, more and more details are gradually introduced. To
develop a higher-level DFD model, processes are decomposed into their
subprocesses and the data flow among these subprocesses are identified.

To develop the data flow model of a system, first the most abstract
representation (highest level) of the problem is to be worked out.
Subsequently, the lower level DFDs are developed. Level 0 and Level 1
consist of only one DFD each. Level 2 may contain up to 7 separate DFDs,
and level 3 up to 49 DFDs, and so on. However, there is only a single data
dictionary for the entire DFD model. All the data names appearing in all DFDs
are populated in the data dictionary and the data dictionary contains the
definitions of all the data items.

6.3.1 Context Diagram
The context diagram is the most abstract (highest level) data flow
representation of a system. It represents the entire system as a single
bubble. The bubble in the context diagram is annotated with the name of the
software system being developed (usually a noun). This is the only bubble in
a DFD model, where a noun is used for naming the bubble. The bubbles at all
other levels are annotated with verbs according to the main function
performed by the bubble. This is expected since the purpose of the context
diagram is to capture the context of the system rather than its functionality.
As an example of a context diagram, consider the context diagram a software
developed to automate the book keeping activities of a supermarket (see
Figure 6.10). The context diagram has been labelled as ‘Supermarket
software’.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 6.4: DFD model of a system consists of a hierarchy of DFDs and a single data dictionary.

The context diagram establishes the context in which the system operates; that is,
who are the users, what data do they input to the system, and what data they
received by the system.

The name context diagram of the level 0 DFD is justified because it
represents the context in which the system would exist; that is, the external
entities who would interact with the system and the specific data items that
they would be supplying the system and the data items they would be
receiving from the system. The various external entities with which the
system interacts and the data flow occurring between the system and the
external entities are represented. The data input to the system and the data
output from the system are represented as incoming and outgoing arrows.
These data flow arrows should be annotated with the corresponding data

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

names.
To develop the context diagram of the system, we have to analyse the SRS

document to identify the different types o f users who would be using the
system and the kinds of data they would be inputting to the system and the
data they would be receiving from the system. Here, the term users of the
system also includes any external systems which supply data to or receive
data from the system.

6.3.2 Level 1 DFD
The level 1 DFD usually contains three to seven bubbles. That is, the
system is represented as performing three to seven important functions.
To develop the level 1 DFD, examine the high-level functional
requirements in the SRS document. If there are three to seven high-
level functional requirements, then each of these can be directly
represented as a bubble in the level 1 DFD. Next, examine the input
data to these functions and the data output by these functions as
documented in the SRS document and represent them appropriately in
the diagram.

What if a system has more than seven high-level requirements identified in
the SRS document? In this case, some of the related requirements have to be
combined and represented as a single bubble in the level 1 DFD. These can
be split appropriately in the lower DFD levels. If a system has less than three
high-level functional requirements, then some of the high-level requirements
need to be split into their subfunctions so that we have roughly about five to
seven bubbles represented on the diagram. We illustrate construction of level
1 DFDs in Examples 6.1 to 6.4.

Decomposition
Each bubble in the DFD represents a function performed by the system.
The bubbles are decomposed into subfunctions at the successive levels
of the DFD model. Decomposition of a bubble is also known as factoring
o r exploding a bubble. Each bubble at any level of DFD is usually
decomposed to anything three to seven bubbles. A few bubbles at any
level m a k e that level superfluous. For example, if a bubble is
decomposed to just one bubble or two bubbles, then this decomposition
becomes trivial and redundant. On the other hand, too many bubbles
(i.e. more than seven bubbles) at any level o f a DFD makes the DFD
model hard to understand. Decomposition of a bubble should be carried

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

on until a level is reached at which the function of the bubble can be
described using a simple algorithm.

We can now describe how to go about developing the DFD model of a
system more systematically.

1. Construction of context diagram: Examine the SRS document to
determine:

• Different high-level functions that the system needs to perform.
• Data input to every high-level function.
• Data output from every high-level function.
• Interactions (data flow) among the identified high-level functions.

Represent these aspects of the high-level functions in a diagrammatic
form. This would form the top-level data flow diagram (DFD), usually
called the DFD 0.
Construction of level 1 diagram: Examine the high-level functions
described in the SRS document. If there are three to seven high-level
requirements in the SRS document, then represent each of the high-level
function in the form of a bubble. If there are more than seven bubbles,
then some of them have to be combined. If there are less than three
bubbles, then some of these have to be split.
Construction of lower-level diagrams: Decompose each high-level function
into its constituent subfunctions through the following set of activities:
•...Identify the different subfunctions of the high-level function.
•...Identify the data input to each of these subfunctions.
•...Identify the data output from each of these subfunctions.
•...Identify the interactions (data flow) among these subfunctions.
Represent these aspects in a diagrammatic form using a DFD.
Recursively repeat Step 3 for each subfunction until a subfunction can be
represented by using a simple algorithm.

Numbering of bubbles
It is necessary to number the different bubbles occurring in the DFD.
These numbers help in uniquely identifying any bubble in the DFD from
its bubble number. The bubble at the context level is usually assigned
the number 0 to indicate that it is the 0 level DFD. Bubbles at level 1
are numbered, 0.1, 0.2, 0.3, etc. When a bubble numbered x is

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

decomposed, its children bubble are numbered x.1, x.2, x.3, etc. In this
numbering scheme, by looking at the number of a bubble we can
unambiguously determine its level, its ancestors, and its successors.

Balancing DFDs
The DFD model of a system usually consists of many DFDs that are organised
in a hierarchy. In this context, a DFD is required to be balanced with respect
to the corresponding bubble of the parent DFD.

The data that flow into or out of a bubble must match the data flow at the next level
of DFD. This is known as balancing a DFD.

We illustrate the concept of balancing a DFD in Figure 6.5. In the level 1
DFD, data items d1 and d3 flow out of the bubble 0.1 and the data item d2
flows into the bubble 0.1 (shown by the dotted circle). In the next level,
bubble 0.1 is decomposed into three DFDs (0.1.1,0.1.2,0.1.3). The
decomposition is balanced, as d1 and d3 flow out of the level 2 diagram and
d2 flows in. Please note that dangling arrows (d1,d2,d3) represent the data
flows into or out of a diagram.

How far to decompose?
A bubble should not be decomposed any further once a bubble is found to
represent a simple set of instructions. For simple problems, decomposition up
to level 1 should suffice. However, large industry standard problems may
need decomposition up to level 3 or level 4. Rarely, if ever, decomposition
beyond level 4 is needed.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 6.5: An example showing balanced decomposition.

Commonly made errors while constructing a DFD model
Although DFDs are simple to understand and draw, students and
practitioners alike encounter similar types of problems while modelling
software problems using DFDs. While learning from experience is a
powerful thing, it is an expensive pedagogical technique in the business
world. It is therefore useful to understand the different types of
mistakes that beginners usually make while constructing the DFD model

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

of systems, so that you can consciously try to avoid them.The errors are
as follows:

Many beginners commit the mistake of drawing more than one bubble
in the context diagram. Context diagram should depict the system as a
single bubble.
Many beginners create DFD models in which external entities
appearing at all levels of DFDs. All external entities interacting with the
system should be represented only in the context diagram. The
external entities should not appear in the DFDs at any other level.
It is a common oversight to have either too few or too many bubbles in
a DFD. Only three to seven bubbles per diagram should be allowed.
This also means that each bubble in a DFD should be decomposed
three to seven bubbles in the next level.
Many beginners leave the DFDs at the different levels of a DFD model
unbalanced.
A common mistake committed by many beginners while developing a
DFD model is attempting to represent control information in a DFD.

It is important to realise that a DFD represents only data flow, and it does not
represent any control information.

The following are some illustrative mistakes of trying to represent control
aspects such as:
Illustration 1. A book can be searched in the library catalog by inputting its
name. If the book is available in the library, then the details of the book are
displayed. If the book is not listed in the catalog, then an error message is
generated. While developing the DFD model for this simple problem, many
beginners commit the mistake of drawing an arrow (as shown in Figure 6.6)
to indicate that the error function is invoked after the search book. But, this is
a control information and should not be shown on the DFD.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 6.6: It is incorrect to show control information on a DFD.

Illustration 2. Another type of error occurs when one tries to represent
when or in what order different functions (processes) are invoked. A
DFD similarly should not represent the conditions under which different
functions are invoked.

Illustration 3. If a bubble A invokes either the bubble B or the bubble C
depending upon some conditions, we need only to represent the data that
flows between bubbles A and B or bubbles A and C and not the conditions
depending on which the two modules are invoked.

A data flow arrow should not connect two data stores or even a data
store with an external entity. Thus, data cannot flow from a data store
to another data store or to an external entity without any intervening
processing. As a result, a data store should be connected only to
bubbles through data flow arrows.
All the functionalities of the system must be captured by the DFD
model. No function of the system specified in the SRS document of the
system should be overlooked.
Only those functions of the system specified in the SRS document
should be represented. That is, the designer should not assume
functionality of the system not specified by the SRS document and then
try to represent them in the DFD.
Incomplete data dictionary and data dictionary showing incorrect
composition of data items are other frequently committed mistakes.
The data and function names must be intuitive. Some students and
even practicing developers use meaningless symbolic data names such
as a,b,c, etc. Such names hinder understanding the DFD model.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Novices usually clutter their DFDs with too many data flow arrow. It
becomes difficult to understand a DFD if any bubble is associated with
more than seven data flows. When there are too many data flowing in
or out of a DFD, it is better to combine these data items into a high-
level data item. Figure 6.7 shows an example concerning how a DFD
can be simplified by combining several data flows into a single high-
level data flow.

Figure 6.7: Illustration of how to avoid data cluttering.

We now illustrate the structured analysis technique through a few
examples.

Example 6.1 (RMS Calculating Software) A software system called RMS
calculating software would read three integral numbers from the user in the
range of –1000 and +1000 and would determine the root mean square (RMS)
of the three input numbers and display it.

In this example, the context diagram is simple to draw. The system accepts
three integers from the user and returns the result to him. This has been
shown in Figure 6.8(a). To draw the level 1 DFD, from a cursory analysis of
the problem description, we can see that there are four basic functions that
the system needs to perform—accept the input numbers from the user,
validate the numbers, calculate the root mean square of the input numbers
and, then display the result. After representing these four functions in Figure
6.8(b), we observe that the calculation of root mean square essentially
consists of the functions—calculate the squares of the input numbers,

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

calculate the mean, and finally calculate the root. This decomposition is
shown in the level 2 DFD in Figure 6.8(c).

Figure 6.8: Context diagram, level 1, and level 2 DFDs for Example 6.1.

Data dictionary for the DFD model of Example 6.1
data-items: {integer}3
rms: float
valid-data:data-items
a: integer
b: integer
c: integer
asq: integer

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

bsq: integer
csq: integer
msq: integer
Example 6.1 is an almost trivial example and is only meant to illustrate the

basic methodology. Now, let us perform the structured analysis for a more
complex problem.
Example 6.2 (Tic-Tac-Toe Computer Game) Tic-tac-toe is a computer game in
which a human player and the computer make alternate moves on a 3 × 3
square. A move consists of marking a previously unmarked square. The
player who is first to place three consecutive marks along a straight line (i.e.,
along a row, column, or diagonal) on the square wins. As soon as either of
the human player or the computer wins, a message congratulating the winner
should be displayed. If neither player manages to get three consecutive
marks along a straight line, and all the squares on the board are filled up,
then the game is drawn. The computer always tries to win a game.

The context diagram and the level 1 DFD are shown in Figure 6.9.

Data dictionary for the DFD model of Example 6.2
move: integer /* number between 1 to 9 */
display: game+result
game: board
board: {integer}9
result: [“computer won”, “human won”, “drawn”]

Example 6.3 (Supermarket Prize Scheme) A super market needs to develop a
software that would help it to automate a scheme that it plans to introduce
to encourage regular customers. In this scheme, a customer would have first
register by supplying his/her residence address, telephone number, and the
driving license number. Each customer who registers for this scheme is
assigned a unique customer number (CN) by the computer. A customer can
present his CN to the check out staff when he makes any purchase. In this
case, the value of his purchase is credited against his CN. At the end of each
year, the supermarket intends to award surprise gifts to 10 customers who
make the highest total purchase over the year. Also, it intends to award a 22
caret gold coin to every customer whose purchase exceeded Rs. 10,000. The
entries against the CN are reset on the last day of every year after the prize
winners’ lists are generated.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 6.9: Context diagram and level 1 DFDs for Example 6.2.

The context diagram for the supermarket prize scheme problem of Example
6.3 is shown in Figure 6.10. The level 1 DFD in Figure 6.11. The level 2 DFD
in Figure 6.12.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 6.10: Context diagram for Example 6.3.

Figure 6.11: Level 1 diagram for Example 6.3.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 6.12: Level 2 diagram for Example 6.3.

Data dictionary for the DFD model of Example 6.3
address: name+house#+street#+city+pin
sales-details: {item+amount}* + CN
CN: integer
customer-data: {address+CN}*
sales-info: {sales-details}*
winner-list: surprise-gift-winner-list + gold-coin-winner-list
surprise-gift-winner-list: {address+CN}*
gold-coin-winner-list: {address+CN}*
gen-winner-command: command
total-sales: {CN+integer}*

Observations: The following observations can be made from the Example 6.3.

1. The fact that the customer is issued a manually prepared customer
identity card or that the customer hands over the identity card each
time he makes a purchase has not been shown in the DFD. This is
because these are item transfers occurring outside the computer.

2. The data generate-winner-list in a way represents control information

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(that is, command to the software) a n d no real data. We have
included it in the DFD because it simplifies the structured design
process as we shall realize after we practise solving a few problems.
We could have also as well done without the generate-winner-list data,
but this could have a bit complicated the design.

3. Observe in Figure 6.11 that w e have two separate stores for the
customer data and sales data. Should we have combined them into a
single data store? The answer is—No, we should not. If we had
combined them into a single data store, the structured design that
would be carried out based on this model would become complicated.
Customer data and sales data have very different characteristics. For
example, customer data once created, does not change. On the other
hand, the sales data changes frequently and also the sales data is
reset at the end of a year, whereas the customer data is not.

Example 6.4 (Trading-house Automation System (TAS)) A trading house wants
us to develop a computerized system that would automate various book-
keeping activities associated with its business. The following are the salient
features of the system to be developed:

The trading house has a set of regular customers. The customers place
orders with it for various kinds of commodities. The trading house
maintains the names and addresses of its regular customers. Each of
these regular customers should be assigned a unique customer
identification numbe r (CIN) by the computer. The customers quote
their CIN on every order they place.
Once order is placed, as per current practice, the accounts department
of the trading house first checks the credit-worthiness of the customer.
The credit-worthiness of the customer is determined by analysing the
history of his payments to different bills sent to him in the past. After
automation, this task has be done by the computer.
If a customer is not credit-worthy, his orders are not processed any
further and an appropriate order rejection message is generated for
the customer.
If a customer is credit-worthy, the items that he has ordered are
checked against the list of items that the trading house deals with. The
items in the order which the trading house does not deal with, are not
processed any further and an appropriate apology message for the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

customer for these items is generated.
The items in the customer’s order that the trading house deals with are
checked for availability in the inventory. I f the items are available in
the inventory in desired quantity, then:

– A bill is with the forwarding address of the customer is printed.
– A material issue slip is printed. The customer can produce this material
issue slip at the store house and take delivery of the items.

– Inventory data is adjusted to reflect the sale to the customer.

If any of the ordered items are not available in the inventory in
sufficient quantity to satisfy the order, then these out-of-stock items
along with the quantity ordered by the customer and the CIN are
stored in a “pending-order” file for further processing to be carried out
when the purchase department issues the “generate indent” command.
The purchase department should be allowed to periodically issue
commands to generate indents. When a command to generate indents
is issued, the system should examine the “pending-order” file to
determine the orders that are pending and determine the total
quantity required for each of the items. It should find out the addresses
of the vendors who supply these items by examining a file containing
vendor details and then should print out indents to these vendors.
The system should also answer managerial queries regarding the
statistics of different items sold over any given period of time and the
corresponding quantity sold and the price realised.

The context diagram for the trading house automation problem is shown in
Figure 6.13. The level 1 DFD in Figure 6.14.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 6.13: Context diagram for Example 6.4.

Figure 6.14: Level 1 DFD for Example 6.4.

Data dictionary for the DFD model of Example 6.4
response: [bill + material-issue-slip, reject-msg,apology-msg]
query: period /* query from manager regarding sales statistics*/
period: [date+date,month,year,day]
date: year + month + day year: integer
month: integer day: integer customer-id: integer
order: customer-id + {items + quantity}* + order#

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

accepted-order: order /* ordered items available in inventory */
reject-msg: order + message /* rejection message */
pending-orders: customer-id + order# + {items+quantity}*
customer-address: name+house#+street#+city+pin
name: string
house#: string
street#: string
city: string
pin: integer
customer-id: integer
customer-file: {customer-address}* + customer-id
bill: {item + quantity + price}* + total-amount + customer-address +

order#
material-issue-slip: message + item + quantity + customer-address
message: string
statistics: {item + quantity + price }*
sales-statistics: {statistics}* + date
quantity: integer
order#: integer /* unique order number generated by the program */
price: integer
total-amount: integer
generate-indent: command
indent: {item+quantity}* + vendor-address
indents: {indent}*
vendor-address: customer-address
vendor-list: {vendor-address}*
item-file: {item}*
item: string
indent-request: command

Observations: The following observations can be made from Example 6.4.
1. In a DFD, if two data stores deal with different types of data, e.g. one

type of data is invariant with time whereas another varies with time,
(e.g. vendor address, and inventory data) it is a good idea to represent
them as separate data stores.

If two types of data always get updated at the same time, they should be stored in a
single data store. Otherwise, separate data stores should be used for them.

The inventory data changes each time supply arrives and the inventory

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

is updated or an item is sold, whereas the vendor data remains
unchanged.

2. If we are developing the DFD model of a process which is already being
manually carried out, then the names of the registers being maintained
in the manual process would appear as data stores in the DFD model.
For example, if TAS is currently being manually carried out, then
normally there would registers corresponding to accepted orders,
pending orders, vendor list, etc.

3. We can observe that DFDs enable a software developer to develop the
data domain and functional domain model of the system at the same
time. As the DFD is refined into greater levels of detail, the analyst
performs an implicit functional decomposition. At the same time, the
DFD refinement automatically results in refinement of corresponding
data items.

4. The data that are maintained in physical registers in manual processing,
become data stores in the DFD representation. Therefore, to determine
which data should be represented as a data store, it is useful t o try to
imagine whether a set of data items would be maintained in a register in
a manual system.

Example 6.5 (Personal Library Software) Perform structured analysis for the
personal library software of Example 6.5.

The context diagram is shown in Figure 6.15.

Figure 6.15: Context diagram for Example 6.5.

The level 1 DFD is shown in Figure 6.16.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 6.16: Level 1 DFD for Example 6.5.

The level 2 DFD for the manageOwnBook bubble is shown in Figure 6.17.

Figure 6.17: Level 2 DFD for Example 6.5.

Data dictionary for the DFD model of Example 6.5
input-data: friend-reg-data + own-book-data + stat-request + borrowed-book-data

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

response: friend-reg-conf-msg + own-book-response + stat-response + borrowed-book-response
own-book-data: query-details + own-book-details + query-outstanding-books-option + return-own book-

details + reg-own-book-data
own-book-response: query-book-response + issue-book-msg + friend-details + return-book- msg +

serial#.
borrowed-book-data: borrowed-book-details + book-return-details + display-books-option borrowed-book-

response: reg-msg + unreg-msg + borrowed-books-list
friend-reg-data: name + address + landline# + mobile#
own-book-details: friend-reg-data + book-title + data-of-issue
return-own-book-details: book-title + date-of-return
friend-details: name + address + landline# + mobile# + book-list
borrowed-book-details: book-title + borrow-date
serial#: integer

Observation: Observe that since there are more than seven functional
requirements for the personal library software, related requirements have
been combined to have only five bubbles in the level 1 diagram. Only level 2
DFD has been shown, since the other DFDs are trivial and need not be drawn.

Shortcomings of the DFD model
DFD models suffer from several shortcomings. The important
shortcomings of DFD models are the following:

Imprecise DFDs leave ample scope to be imprecise. In the DFD model,
we judge the function performed by a bubble from its label. However,
a short label may not capture the entire functionality of a bubble. For
example, a bubble named find-book-position has only intuitive
meaning and does not specify several things, e.g. what happens when
some input information i s missing or is incorrect. Further, t he find-
book-position bubble may not convey anything regarding what happens
when the required book is missing.
Not-well defined control aspects are not defined by a DFD. For
instance, the order in which inputs are consumed and outputs are
produced by a bubble is not specified. A DFD model does not specify
the order in which the different bubbles are executed. Representation
of such aspects is very important for modelling real-time systems.
Decomposition: The method of carrying out decomposition to arrive at
the successive levels and the ultimate level to which decomposition is
carried out are highly subjective and depend on the choice and
judgment of the analyst. D u e to this reason, even for the same
problem, several alternative DFD representations are possible. Further,
many times it is not possible to say which DFD representation is

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

superior or preferable to another one.
Improper data flow diagram: The data flow diagramming technique
does not provide any specific guidance as to how exactly to decompose
a given function into its subfunctions and we have to use subjective
judgment to carry out decomposition.

6.3.3 Extending DFD Technique to Make it Applicable to Real-time
Systems

In a real-time system, some of the high-level functions are associated
with deadlines. Therefore, a function must not only produce correct
results but also should produce them by some prespecified time. For
real-time systems, execution time is an important consideration for
arriving at a correct design. Therefore, explicit representation of control
and event flow aspects are essential. One of the widely accepted
techniques for extending the DFD technique to real-time system
analysis is the Ward and Mellor technique [1985]. In the Ward and
Mellor notation, a type of process that handles only control flows is
introduced. These processes representing control processing are
denoted using dashed bubbles. Control flows are shown using dashed
lines/arrows.

Unlike Ward and Mellor, Hatley and Pirbhai [1987] show the dashed and
solid representations on separate diagrams. To be able to separate the data
processing and the control processing aspects, a control flow diagram (CFD)
is defined. This reduces the complexity of the diagrams. In order to link the
data processing and control processing diagrams, a notational reference
(solid bar) to a control specification is used. The CSPEC describes the
following:

The effect of an external event or control signal.
The processes that are invoked as a consequence of an event.

Control specifications represents the behavior of the system in two
different ways:

It contains a state transition diagram (STD). The STD is a sequential
specification of behaviour.
It contains a program activation table (PAT). The PAT is a
combinatorial specification of behaviour. PAT represents invocation

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

sequence of bubbles in a DFD.

6.4 STRUCTURED DESIGN
The aim of structured design is to transform the results of the structured
analysis (that i s , the DFD model) into a structure chart. A structure
chart represents the software architecture. The various modules making
up the system, the module dependency (i.e. which module calls which
other modules), and the parameters that are passed among the
different modules. The structure chart representation can be easily
implemented using some programming language. Since the main focus
in a structure chart representation is on module structure of a software
and the interaction among the different modules, the procedural
aspects (e.g. how a particular functionality is achieved) are not
represented.

The basic building blocks using which structure charts are designed are as
following:
Rectangular boxes: A rectangular box represents a module. Usually, every
rectangular box is annotated with the name of the module it represents.
Module invocation arrows: An arrow connecting two modules implies that
during program execution control is passed from one module to the other in
the direction of the connecting arrow. However, just by looking at the
structure chart, we cannot say whether a modules calls another module just
once or many times. Also, just by looking at the structure chart, we cannot
tell the order in which the different modules are invoked.
Data flow arrows: These are small arrows appearing alongside the module
invocation arrows. The data flow arrows are annotated with the
corresponding data name. Data flo w arrows represent the fact that the
named data passes from one module to the other in the direction of the
arrow.
Library modules: A library module is usually represented by a rectangle with
double edges. Libraries comprise the frequently called modules. Usually,
when a module is invoked by many other modules, it is made into a library
module.
Selection: The diamond symbol represents the fact that one module of several
modules connected with the diamond symbol i s invoked depending on the
outcome of the condition attached with the diamond symbol.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Repetition: A loop around the control flow arrows denotes that the respective
modules are invoked repeatedly.

In any structure chart, there should be one and only one module at the top,
called the root. There should be at most one control relationship between any
two modules in the structure chart. This means that if module A invokes
module B, module B cannot invoke module A. The main reason behind this
restriction is that we can consider the different modules of a structure chart
to be arranged in layers or levels. The principle of abstraction does not allow
lower-level modules to be aware of the existence of the high-level modules.
However, it is possible for t wo higher-level modules to invoke the same
lower-level module. An example of a properly layered design and another of a
poorly layered design are shown in Figure 6.18.

Figure 6.18: Examples of properly and poorly layered designs.

Flow chart versus structure chart
We are all familiar with the flow chart representation of a program. Flow
chart is a convenient technique to represent the flo w of control in a
program. A structure chart differs from a flow chart in three principal
ways:

It is usually difficult to identify the different modules of a program from
its flow chart representation.
Data interchange among different modules is not represented in a flow
chart.
Sequential ordering of tasks that i s inherent to a flow chart is
suppressed in a structure chart.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

6.4.1 Transformation of a DFD Model into Structure Chart
Systematic techniques are available to transform the DFD representation
of a problem into a module structure represented by as a structure
chart. Structured design provides two strategies to guide transformation
of a DFD into a structure chart:

Transform analysis
Transaction analysis

Normally, one would start with the level 1 DFD, transform it into module
representation using either the transform or transaction analysis and then proceed
toward the lower level DFDs.

At each level of transformation, it is important to first determine whether
the transform or the transaction analysis is applicable to a particular DFD.

Whether to apply transform or transaction processing?
Given a specific DFD of a model, how does one decide whether to apply
transform analysis or transaction analysis? For this, one would have to
examine the data input to the diagram. The data input to the diagram
can be easily spotted because they are represented by dangling arrows.
If all the data flow into the diagram are processed in similar ways (i.e. if
all the input data flow arrows are incident on the same bubble in the
DFD) then transform analysis is applicable. Otherwise, transaction
analysis is applicable. Normally, transform analysis is applicable only to
very simple processing.

Please recollect that the bubbles are decomposed until it represents a very
simple processing that can be implemented using only a few lines of code.
Therefore, transform analysis is normally applicable at the lower levels of a
DFD model. Each different way in which data is processed corresponds to a
separate transaction. Each transaction corresponds to a functionality that lets
a user perform a meaningful piece of work using the software.

Transform analysis
Transform analysis identifies the primary functional components
(modules) and the input and output data for these components. The
first step in transform analysis is to divide the DFD into three types of
parts:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

• Input.
• Processing.
• Output.
The input portion in the DFD includes processes that transform input data

from physical (e.g, character from terminal) to logical form (e.g. internal
tables, lists, etc.). Each input portion is called an afferent branch.

The output portion of a DFD transforms output data from logical form to
physical form. Each output portion is called an efferent branch. The remaining
portion of a DFD is called central transform.

In the next step of transform analysis, the structure chart is derived by
drawing one functional component each for the central transform, the
afferent and efferent branches. These are drawn below a root module, which
would invoke these modules.

Identifying the input and output parts requires experience and skill. One
possible approach is to trace the input data until a bubble is found whose
output data cannot be deduced from its inputs alone. Processes which
validate input are not central transforms. Processes which sort input or filter
data from it are central tansforms. T h e first level o f structure chart is
produced by representing each input and output unit as a box and each
central transform as a single box.

In the third step of transform analysis, the structure chart is refined by
adding subfunctions required by each of the high-level functional components.
Many levels of functional components may be added. This process of breaking
functional components into subcomponents is called factoring. Factoring
includes adding read and write modules, error-handling modules, initialisation
and termination process, identifying consumer modules etc. The factoring
process is continued until all bubbles in the DFD are represented in the
structure chart.
Example 6.6 Draw the structure chart for the RMS software of Example 6.1.

By observing the level 1 DFD of Figure 6.8, we can identify validate-input as
the afferent branch and write-output as the efferent branch. The remaining
(i.e., compute-rms) as the central transform. By applying the step 2 and step
3 of transform analysis, we get the structure chart shown in Figure 6.19.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 6.19: Structure chart for Example 6.6.

Example 6.7 Draw the structure chart for the tic-tac-toe software of
Example 6.2.

The structure chart for the Tic-tac-toe software is shown in Figure 6.20.
Observe that the check-game-status bubble, though produces some outputs.
i s not really responsible for converting logical data to physical data. On the
other hand, it carries out the processing involving checking game status. That
is the main reason, why we have considered it as a central transform and not
as an efferent type of module.

Transaction analysis
Transaction analysis is an alternative to transform analysis and is useful while
designing transaction processing programs. A transaction allows the user to
perform some specific type of work by using the software. For example, ‘issue
book’, ‘return book’, ‘query book’, etc., are transactions.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 6.20: Structure chart for Example 6.7.

As in transform analysis, first all data entering into the DFD need to be
identified. In a transaction-driven system, different data items may pass
through different computation paths through the DFD. This is in contrast to a
transform centered system where each data item entering the DFD goes
through the same processing steps. Each different way in which input data is
processed is a transaction. A simple way to identify a transaction is the
following. Check the input data. The number of bubbles on which the input
data to the DFD are incident defines the number of transactions. However,
some transactions may not require any input data. These transactions can be
identified based on the experience gained from solving a large number of
examples.

For each identified transaction, trace the input data to the output. All the
traversed bubbles belong to the transaction. These bubbles should be
mapped to the same module on the structure chart. In the structure chart,
draw a root module and below this module draw each identified transaction
as a module. Every transaction carries a tag identifying its type. Transaction
analysis uses this tag to divide the system into transaction modules and a
transaction-center module.
Example 6.8 Draw the structure chart for the Supermarket Prize Scheme
software of Example 6.3.

The structure chart for the Supermarket Prize Scheme software is shown in
Figure 6.21.
Example 6.9 Draw the structure chart for the trade-house automation system
(TAS) software of Example 6.4.

The structure chart for the trade-house automation system (TAS) software of

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Example 6.4 is shown in Figure 6.22.
By observing the level 1 DFD of Figure 6.14, we can see that the data input

to the diagram are handled by different bubbles and therefore transaction
analysis is applicable to this DFD. Input data to this DFD are handled in three
different ways (accept-order, accept- indent-request, and handle-query), we
have three different transactions corresponding to these as shown in Figure
6.22.

Figure 6.21: Structure chart for Example 6.8.

Figure 6.22: Structure chart for Example 6.9.

Word of caution

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

We should view transform and transaction analyses as guidelines, rather
than rules. We should apply these guidelines in the context of the
problem and handle the pathogenic cases carefully.

Example 6.10 Draw the structure chart for the personal library software of
Example 6.6.

The structure chart for the personal library software is shown in Figure
6.23.

Figure 6.23: Structure chart for Example 6.10.

6.5 DETAILED DESIGN
During detailed design the pseudo code description of the processing and
the different data structures are designed for the different modules of
the structure chart. These are usually described in the form of module
specifications (MSPEC). MSPEC is usually written using structured
English. The MSPEC for the non-leaf modules describe the different
conditions under which the responsibilities are delegated to the lower-
level modules. The MSPEC for the leaf-level modules should describe in
algorithmic form how the primitive processing steps are carried out. To
develop the MSPEC of a module, it is usually necessary to refer to the
DFD model and the SRS document to determine the functionality of the
module.

6.6 DESIGN REVIEW

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

After a design is complete, the design is required to be reviewed. The
review team usually consists of members with design, implementation,
testing, and maintenance perspectives, who may or may not be the
members of the development team. Normally, members of the team
who would code the design, and test the code, the analysts, and the
maintainers attend the review meeting. The review team checks the
design documents especially for the following aspects:

Traceability: Whether each bubble of the DFD can be traced to some module
in the structure chart and vice versa. They check whether each functional
requirement in the SRS document can be traced to some bubble in the DFD
model and vice versa.
Correctness: Whether all the algorithms and data structures of the detailed
design are correct.
Maintainability: Whether the design can be easily maintained in future.

Implementation: Whether the design can be easily and efficiently be
implemented.

After the points raised by the reviewers is addressed by the designers, the
design document becomes ready for implementation.

SUMMARY

In this chapter, we discussed a sample function-oriented software
design methodology called structured analysis/structured design
(SA/SD) which incorporates features of some important design
methodologies.
Methodologies like SA/SD give us a recipe for developing a good design
according to the different goodness criteria we had discussed in
Chapter 5. item SA/SD consists of two important parts—structured
analysis and structured design.
The goal of structured analysis is to perform a functional
decomposition of the system. Results of structured analysis is
represented using data flow diagrams (DFDs). The DFD representation
is difficult to implement using a traditional programming language. The
DFD representation can be systematically be transformed to structure
chart representation. The structure chart representation can be easily
implemented using a conventional programming language.
During structured design, the DFD representation obtained during

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

structured analysis is transformed into a structure chart representation.
Several CASE tools are available to support the software design
process carried out using the important function-oriented design
methodologies. In addition to laying out the DFDs, structure charts,
maintaining the data dictionary, and helping in traceability analysis,
these CASE tools can also perform some elementary consistency
checking, e.g., they can usually check whether a DFD is balanced or
not.

EXERCISES
1. Choose the correct option:

(a) A data flow diagram represents:
(i) The conditions based on which a data may be processed
(ii) The order in which different activities are carried out
(iii) The transformation of data through processing stations
(iv) The order in which various functions of a program are invoked

(b) A DFD depicts which of the following?
(i) Flow of data
(ii) Flow of control
(iii) Flow of statements
(iv) None of the above

(c) Which of the following statements is not true of data flow diagrams
(DFDs)?
(i) Hierarchical diagram.
(ii) Represent code structure
(iii) Do not represent decisions and control flows.
(iv) Represent functional decomposition.

(d) In a procedural design approach, during the detailed design stage,
which of the following is undertaken?
(i) Module structure is designed
(ii) Data flow representation is developed
(iii) Data structures and algorithms for the individual modules are
developed
(iv) Structure chart is developed

2. What do you understand by the term “top-down decomposition” in the
context of function-oriented design?

3. Distinguish between a data flow diagram (DFD) and a flow chart.
4. Differentiate between structured analysis and structured design in the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

context of function-oriented design.
5. Point out the important differences between a structure chart and a flow

chart as design representation techniques.
6. What do you mean by t he term data dictionary in the context of

structured analysis?
How is a data dictionary useful during software development and
maintenance?

7. Construct the DFD representation for the following program:

8. Explain how a DFD model of software can be created from its source
code.

9. What do you understand by the terms “structured analysis” and
“structured design”?

What are the main objectives of “structured analysis” and “structured
design”?

10. Explain how the DFD model can help one understand the working of a
software system.

11. State whether the following statement is TRUE o r FALSE. “The
essence of any good function-oriented design principle is to map similar
functions into a module.” Give reasons behind your answers.

12. Identify the correct statement. Give reasoning behind your choice.
(a) A DFD model essentially represents the data and control

relationships among program elements.
(b) A DFD model of a system usually comprises many DFDs.
(c) The DFD model is the design model of a system.
(d) A DFD model cannot represent a system’s file data storage.

13. What do you mean by balancing a DFD? Illustrate your answer with a
suitable example.

14. What are the main shortcomings of data flow diagram (DFD) as a tool
for performing structured analysis?

15. Why is design reviews important? Suppose you are required to review
a SA/SD document, make a list of items that can be used as a checklist
for carrying out the review.

16. What do you understand by design review? What kinds of mistakes are
normally pointed out by the reviewers?

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

17. (a) Draw a labelled DFD for the following time management software.
Clearly show the context diagram and its hierarchical decompositions up
to level 2. (Note: Context diagram is the Level 0 DFD).
A company needs to develop a time management system for its
executives. The software should let the executives register their daily
appointment schedules. The information to be stored includes person(s)
with whom meeting is arranged, venue, the time and duration of the
meeting, and the purpose (e.g., for a specific project work). When a
meeting involving many executives needs to be organised, the system
should automatically find a common slot in the diaries of the concerned
executives, and arrange a meeting (i.e., make relevant entries in the
diaries of all the concerned executives) at that time. It should also
inform the concerned executives about the scheduled meeting through
e-mail. If no common slot is available, TMS should help the secretary to
rearrange the appointments of the executives in consultation with the
concerned executives for making room for a common slot. To help the
executives check their schedules for a particular day the system should
have a very easy-to-use graphical interface. Since the executives and the
secretaries have their own desktop computers, the time management
software should be able to serve several remote requests
simultaneously. Many of the executives are relative novices in computer
usage. Everyday morning the time management software should e-mail
every executive his appointments for the day. Besides registering their
appointments and meetings, the executives might mark periods for
which they plan to be on leave. Also, executives might plan out the
important jobs they need to do on any day at different hours and post it
in their daily list of engagements. Other features to be supported by the
TMS are the following—TMS should be able to provide several types of
statistics such as which executive spent how much time on meetings. For
which project how many meetings were organised for what duration and
how many man-hours were devoted to it. Also, it should be able to
display for any given period of time the fraction of time that on the
average each executive spent on meetings.

(b) Using the DFD you have developed for Part (a) of this question,
develop the structured design for the time management software.

18. A hotel has a certain number of rooms. Each room can be either single
bed or double bed type and may be AC or non-AC type. The rooms have
different rates depending on whether they are of single or double, AC or

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Non-AC types. The room tariff however may vary during different parts of
the year depending up on the occupancy rate. For this, the computer
should be able to display the average occupancy rate for a given month,
so that the manager can revise the room tariff for the next month either
upwards or downwards by a certain percentage. Perform structured
analysis and structured design for this Hotel Automation Software—
software that would automate the book keeping activities of a 5-star
hotel.
Guests can reserve rooms in advance or can reserve rooms on the spot
depending upon availability of rooms. The receptionist would enter data
pertaining to guests such as their arrival time, advance paid,
approximate duration of stay, and the type of the room required.
Depending on this data and subject to the availability of a suitable room,
the computer would allot a room number to the guest and assign a
unique token number to each guest. If the guest cannot be
accommodated, the computer generates an apology message. The hotel
catering services manager would input the quantity and type of food
items as and when consumed by the guest, the token number of the
guest, and the corresponding date and time. When a customer prepares
to check-out, the hotel automation software should generate the entire
bill for the customer and also print the balance amount payable by him.
During check-out, guests can opt to register themselves for a frequent
guests programme. Frequent guests should be issued an identity number
which helps them to get special discounts on their bills.

19. Perform structured analysis and structured design (SA/SD) for a
software to be developed for automating various book keeping activities
of a small book shop. From a discussion with the owner of the book
shop, the following user requirements for this Book-shop Automation
Software (BAS)—have been arrived at:
BAS should help the customers query whether a book is in stock. The
users can query the availability of a book either by using the book title or
by using the name of the author. If the book is not currently being sold
by the book-shop, then the customer is asked to enter full details of the
book for procurement of the book in future. The customer can also
provide his e-mail address, so that he can be intimated automatically by
the software as and when the book copies are received. If a book is in
stock, the exact number of copies available and the rack number in
which the book is located should be displayed. If a book is not in stock,

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

the query for the book is used to increment a request field for the book.
The manager can periodically view the request field of the books to
arrive at a rough estimate regarding the current demand for different
books. BAS should maintain the price o f various books. As soon as a
customer selects his books for purchase, the sales clerk would enter the
ISBN numbers of the books. BAS should update the stock, and generate
the sales receipt for the book. BAS should allow employees to update
the inventory whenever new supply arrives. Also upon request by the
owner of the book shop, BAS should generate sales statistics (viz., book
name, publisher, ISBN number, number of copies sold, and the sales
revenue) for any period. The sales statistics will help the owner to know
the exact business done over any period of time and also to determine
inventory level required for various books. The inventory level required
for a book is equal to the number of copies of the book sold over a
period of one week multiplied by the average number of weeks it takes
to procure the book from its publisher. Every day the book shop owner
would give a command for the BAS to print the books which have fallen
below the threshold and the number of copies to be procured along with
the full address of the publisher.

20. Perform structured analysis and structured design for the following City
Corporation Automation Software (CCAS) to be developed for automating
various book keeping activities associated with various responsibilities of
the Municipal Corporation of a large city.
A city corporation wishes to develop a web-site using which the residents
can get information on various facilities being provided by the corporate
to the citizens. Since the city population exceeds 5 lakh, the maximum
number of concurrent clicks can be upto 10 clicks per second. The
corporation also plans to use the same web site for its road maintenance
activity.
A city corporation has branch offices at different suburbs of the city.
Residents would raise repair requests for different roads of the city on
line. The supervisor at each branch office should be able to view all new
repair requests pertaining to his area. Soon after a repair request is
raised, a supervisor visits the road and studies the severity of road
condition. Depending on the severity of the road condition and the type
of the locality (e.g., commercial area, busy area, relatively deserted
area, etc.), he determines the priority for carrying out this repair work.
The supervisor also estimates the raw material requirement for carrying

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

out the repair work, the types and number of machines required, and the
number and types of personnel required. The supervisor enters this
information through a special login in the web site. Based on this data,
the system should schedule the repair of the road depending on the
priority of the repair work and subject to the availability of raw material,
machines, and personnel. This schedule report is used by the supervisor
to direct different repair work. The manpower and machine that are
available are entered by the city corporation administrator. He can
change these data any time. Of course, any change to the available
manpower and machine would require a reschedule of the projects. The
progress of the work is entered periodically by the supervisor which can
be seen by the citizens in the web site.
The mayor of the city can request for various road repair statistics such
as the number and type of repairs carried out over a period of time and
the repair work outstanding at any point of time and the utilisation
statistics of the repair manpower and machine over any given period of
time.

21. Perform structured analysis and structured design for developing the
following Restaurant Automation System using the SA/SD technique.
A restaurant owner wants to computerise his order processing, billing,
and accounting activities. H e also expects the computer to generate
statistical report about sales of different items. A major goal of this
computerisation is to make supply ordering more accurate so that the
problem of excess inventory is avoided as well as the problem of non-
availability of ingredients required to satisfy orders for some popular
items is minimised. The computer should maintain the prices of all the
items and also support changing the prices by the manager. Whenever
any item is sold, the sales clerk would enter the item code and the
quantity sold. The computer should generate bills whenever food items
are sold. Whenever ingredients are issued for preparation of food items,
the data is to be entered into the computer. Purchase orders are
generated on a daily basis, whenever the stock for any ingredient falls
below a threshold value. The computer should calculate the threshold
value for each item based on the average consumption of this ingredient
for the past three days and assuming that a minimum of two days stock
must be maintained for all ingredients. Whenever the ordered
ingredients arrive, the invoice data regarding the quantity and price is
entered. If sufficient cash balance is available, the computer should print

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

cheques immediately against invoice. Monthly sales receipt and
expenses data should be generated whenever the manger would request
to see them.

22. Perform structured analysis and design for the following Judiciary
Information System (JIS) software.
The attorney general’s office has requested us to develop a Judiciary
Information System (JIS), to help handle court cases and also to make
the past court cases easily accessible to the lawyers and judges. For
each court case, the name of the defendant, defendant’s address, the
crime type (e.g., theft, arson, etc.), when committed (date), where
committed (location), name of the arresting officer, and the date of the
arrest are entered by the court registrar. Each court case is identified by
a unique case identification number (CIN) which is generated by the
computer. The registrar assigns a date of hearing for each case. For this
the registrar expects the computer to display the vacant slots on any
working day during which the case can be scheduled. Each time a case is
adjourned, the reason for adjournment is entered by the registrar and he
assigns a new hearing date. If hearing takes place on any day for a case,
the registrar enters the summary of the court proceedings and assigns a
new hearing date. Also, on completion of a court case, the summary of
the judgment is recorded and the case is closed but the details of the
case is maintained for future reference. Other data maintained about a
case include the name of the presiding judge, the public prosecutor, the
starting date, and the expected completion date of a trial. The judges
should be able to browse through the old cases for guidance on their
judgment. The lawyers should also be permitted to browse old cases,
but should be charged for each old case they browse. Using the JIS
software, the Registrar of the court should be able to query the
following:
(a) The currently pending court cases. In response to this query, the

computer should print out the pending cases sorted by CIN. For each
pending case, the following data should be listed—the date in which
the case started, the defendant’s name, address, crime details, the
lawyer’s name, the public prosecutor’s name, and the attending
judge’s name.

(b) The cases that have been resolved over any given period. The
output in this case should chronologically list the starting date of the
case, the CIN, the date on which the judgment was delivered, the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

name of the attending judge, and the judgment summary.
(c) The cases that are coming up for hearing on a particular date. (d)

The status of any particular case (cases are identified by CIN).
23. The different activities of the library of our institute pertaining to the

issue and return of the books by the members of the library and various
queries regarding books as listed below are to be automated. Perform
structured analysis and structured design for this Library Information
System (LIS) software:

The library has 10,000 books. Each book is assigned a
unique identification number (called ISBN number). The
Library clerk should be able to enter the details of the book
into the LIS through a suitable interface.
There are four categories of members of the library—
undergraduate students, post graduate students, research
scholars, and faculty members.
Each library member is assigned a unique library
membership code number.
Each undergraduate student can issue up to 2 books for 1
month duration.
Each postgraduate student can issue up to 4 books for 1
month duration.
Each research scholar can issue up to 6 books for 3 months
duration.
Each faculty member can issue up to 10 books for six
months duration.
The LIS should answer user queries regarding whether a
particular book is available. If a book is available, LIS should
display the rack number in which the book is available and
the number of copies available.
LIS registers each book issued to a member. When a
member returns a book, LIS deletes the book from the
member’s account and makes the book available for future
issue.
Members should be allowed to reserve books which have
been issued. When such a reserved book is returned, LIS
should print a slip for the concerned member to get the book
issued and should disallow issue of the book to any other

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

member for a period of seven days or until the member who
has reserved the books gets it issued.
When a member returns a book, LIS prints a bill for the
penalty charge for overdue books. LIS calculates the penalty
charge by multiplying the number of days the book is
overdue by the penalty rate.
LIS prints reminder messages for the members against
whom books are over due, upon a request by the Librarian.
LIS should allow the Librarian to create and delete member
records. Each member should be allocated a unique
membership identification number which the member can
use to issue, return, and reserve books.

24. Perform the SA/SD for the following word processing software.

The word processing software should be able to read text
from an ASCII file or HTML file and store the formatted text
as HTML files in the disk.
The word processing software should ask the user about the
number of characters in an output line of the formatted text.
The user should be allowed to select any number between 1
and 132.
The word processing software should process the input text
in the following way.

– Each output line is to contain exactly the number of characters
specified by the user (including blanks).

– The word processing software is to both left and right justify the text
so that there are no blanks at the left- and right-hand ends of lines
except the first and possibly the last lines of paragraphs. The word
processing software should do this by inserting extra blanks between
words.

– The input text from the ASCII file should consist of words separated
by one or more blanks and a special character PP, which denotes the
end of a paragraph and the beginning of another.

– The first line of each paragraph should be indented by five spaces
and should be right justified.

– The last line of each paragraph should be left justified.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The user should be able to browse through the document
and add, modify or delete words. He/she should also be able
to mark any word as bold, italic, superscript, or subscript.
The user can request to see the number of characters,
words, lines, and paragraphs used in the document.
The user should be able to save his documents under a
name specified by him.

25. It is required to develop a graphics editor software package using
which one can create/modify several types of graphics entities. In
summary, the graphics editor should support the following features:
(Those who are not familiar with any graphics editor, please look at the
Graphics Drawing features available in either MS-Word or PowerPoint
software. You can also examine any other Graphical Drawing package
accessible to you. An understanding of the standard features of a
Graphics Editor will help you understand the different features required.)

The graphics editor should support creating several types of
geometric objects such as circles, ellipses, rectangles, lines,
text, and polygons.
Any created object can b e selecte d by clicking a mouse
button on the object. A selected object should be shown in a
highlighted color.
A selected object can be edited, i.e., its associated
characteristics such as its geometric shape, location, color,
fill style, line width, line style, etc. can be changed. For texts,
the text content can be changed.
A selected object can be copied, moved, or deleted.
The graphics editor should allow the user to save his created
drawings on the disk under a name he would specify. The
graphics editor should also support loading previously
created drawings from the disk.
The user should be able to define any rectangular area on
the screen to be zoomed to fill the entire screen.
A fit screen function makes the entire drawing fit the screen
by automatically\ adjusting the zoom and pan values.
A pan function should allow the displayed drawing to be
panned along any direction by a specified amount.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The graphics editor should support grouping. A group is
simply a set of drawing objects including other groups which
when grouped behave as a single entity. This feature is
especially useful when you wish to manipulate several
entities in the same way. A drawing object can be a direct
member of at most one group. It should be possible to
perform several editing operations on a group such as move,
delete, and copy.
A set of 10 clip boards should be provided to which one can
copy various types of selected entities (including groups) for
future use in pasting these at different places when required.

26. Perform SA/SD for the following Software component cataloguing
software.
Software component cataloguing software: The software component
cataloguing software consists of a software components catalogue and
various functions defined on this components catalogue. The software
components catalogue should hold details of the components which are
potentially reusable. The reusable components can be either design or
code. The design might have been constructed using different design
notations such as UML,ERD,structured design, etc. Similarly, the code
might have been written using different programming languages. A
cataloguer may enter components in the catalogue, may delete
components from the catalogue, and may associate reuse information
with a catalogue component in the form of a set of key words. A user of
the catalogue may query about the availability of a component using
certain key words to describe the component. In order to help manage
the component catalogue (i.e., periodically purge the unused
components) the cataloguing software should maintain information such
as how many times a component has been used, and how many times
the component has come up in a query but not used. Since the number
of components usually tend to be very high, it is desirable to be able to
classify the different types of components hierarchically. A user should
be able to browse the components in each category.

27. The manager of a supermarket wants us to develop an automation
software. The supermarket stocks a set of items. Customers pick up their
desired items from the different counters in required quantities. The
customers present these items to the sales clerk. The sales clerk enters

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

the code number of these items along with the respective quantity/units.
Perform structured analysis and structured design for developing this
Supermarket Automation Software (SAS).

SAS should at the end of a sales transaction print the bill
containing the serial number of the sales transaction, the
name of the item, code number, quantity, unit price, and
item price. The bill should indicate the total amount payable.
SAS should maintain the inventory of the various items of the
supermarket. The manager upon query should be able to see
the inventory details. In order to support inventory
management, the inventory of an item should be decreased
whenever an item is sold. SAS should also support an option
by which an employee can update the inventory when new
supply arrives.
SAS should support printing the sales statistics for every item
the supermarket deals with for any particular day or any
particular period. The sales statistics should indicate the
quantity of an item sold, the price realised, and the profit.
The manager of the supermarket should be able to change
the price at which an item is sold as the prices of the
different items vary on a day-to-day basis.

28. A transport company wishes to computerise various book keeping
activities associated with its operations. Perform structured analysis and
structured design for developing the Transport Company Computerisation
(TCC) software:

A transport company owns a number of trucks.
The transport company has its head office located at the
capital and has branch offices at several other cities.
The transport company receives consignments of various
sizes at (measured in cubic meters) its different offices to be
forwarded to different branch offices across the country.
Once the consignment arrives at the office of the transport
company, the details of the volume, destination address,
sender address, etc., are entered into the computer. The
computer would compute the transport charge depending

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

upon the volume of the consignment and its destination and
would issue a bill for the consignment.
Once the volume of any particular destination becomes 500
cubic meters, the Computerisation system should
automatically allot the next available truck.
A truck stays with the branch office until the branch office
has enough cargo to load the truck fully.
The manager should be able to view the status of different
trucks at any time.
The manager should be able to view truck usage over a
given period of time.
When a truck is available and the required consignment is
available for dispatch, the computer system should print the
details of the consignment number, volume, sender’s name
and address, and the receiver’s name and address to be
forwarded along with the truck.
The manager of the transport company can query the status
of any particular consignment and the details of volume of
consignments handled to any particular destination and the
corresponding revenue generated.
The manager should also be able to view the average
waiting period for different consignments. This statistics is
important for him since he normally orders new trucks when
the average waiting period for consignments becomes high
due to non- availability of trucks. Also, the manager would
like to see the average idle time of the truck in the branch
for a given period for future planning.

29. Draw level 0 (context level) and level 1 data flow diagram for the
following students’ academic record management software.

A set of courses are created. Each course consists of a
unique course number, number of credits, and the syllabus.
Students are admitted to courses. Each students’ details
include his roll number, address, semester number and the
courses registered for the semester.
The marks of student for various units he credited are keyed
in.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Once the marks are keyed in, the semester weighted
average (SWA) is calculated.
The recent marks of the student are added to his previous
marks and a weighted average based on the credit points for
various units is calculated.
The marks for the current semester are formatted and
printed.
The SWA appears on the report.
A check must be made to determine if a student should be
placed on the Vice- Chancellor’s list. This is determined
based on whether a student scores an SWA of 85 or higher.
If the SWA is lower than 50, the student is placed on a
conditional standing.

30. Perform structured analysis and structured design (SA/SD) for the
following CASE tool for Structured Analysis Software to be developed for
automating various activities associated with developing a CASE tool for
structured software analysis.

The case tool should support a graphical interface and the
following features.
The user should be able to draw bubbles, data stores, and
entities and connect them using data flow arrows. The data
flow arrows are annotated by the corresponding data names.
Should support editing the data flow diagram.
Should be able to create the diagram hierarchically.
The user should be able to determine balancing errors
whenever required.
The software should be able to create the data dictionary
automatically.
Should support printing the diagram on a variety of printers.
Should support querying the data items and function names.
The diagrams matching the query should be shown.

31. Perform structured analysis and structured design (SA/SD) for a
software to be developed for automating various activities associated
with developing a CASE tool for structured software design. The
summary of the requirements for this CASE tool for Structured Design are

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

the following:

The case tool should support a graphical interface and the
following features.
It should be possible to import the DFD model developed by
another program. The user should be able to apply the
transform and transaction analysis to the imported DFD
model.
The user should be able to draw modules, control arrows,
and data flow arrows. Also symbol for library modules should
be provided. The data flow arrows are annotated with the
corresponding data name.
The modules should be organised in hierarchical levels.
The user should be able to modify his design. Please note
that when he deletes a data flow arrow, its annotated data
name automatically gets deleted.
For large software, modules may be hierarchically organised
and clicking on a module should be able to show its internal
organisation.
The user should be able to save his design and also be able
to load previously created designs.

32. The local newspaper and magazine delivery agency has asked us to
develop a software for him to automate various clerical activities
associated with his business. Perform the structured analysis and design
for this Newspaper Agency Automation Software.

This software is to be used by the manager of the news
agency and his delivery persons.
For each delivery person, the system must print each day the
publications to be delivered to each address.
The customers usually subscribe one or more news papers
and magazines. They are allowed to change their
subscription notice by giving one week’s advance notice.
Customers should be able to initiate new subscriptions and
suspend subscription for a particular item either temporarily
or permanently through a web browser. Considering the
large customer base, at least 10 concurrent customer

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

accesses should be supported.
For each delivery person, the system must print each day the
publications to be delivered to each address.
The system should also print for the news agent the
information regarding who received what and a summary
information of the current month.
At the beginning of every month bills are printed by the
system to be delivered to the customers. These bills should
be computed by the system automatically.
The customers may ask for stopping the deliveries to them
for certain periods when they go out of station.
Customers may request to subscribe new
newspapers/magazines, modify their subscription list, or stop
their subscription altogether.
Customers usually pay their monthly dues either by cheque
or cash. Once the cheque number or cash received is entered
in the system, receipt for the customer should be printed.
If any customer has any outstanding due for one month, a
polite reminder message is printed for him and his
subscription is discontinued if his dues remain outstanding
for periods of more than two months.
The software should compute and print out the amount
payable to each delivery boy. Each delivery boy gets 2.5 per
cent of the value of the publications delivered by him.

33. Perform SA/SD for the following University Department Information
System. This software concerns automating the activities of department
offices of universities. Department offices in different universities do a lot
of book-keeping activities the software to be developed targets to
automate these activities.

Various details regarding each student such as his name,
address, course registered, etc. are entered at the time he
takes admission.
At the beginning of every semester, students do course
registration. The information system should allow the
department secretary to enter data regarding student course
registrations. As the secretary enters the roll number of each

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

student, the computer system should bring up a form for the
corresponding student and should keep track of courses he
has already completed and the courses he has back-log, etc.
At the end of the semester, the instructors leave their
grading information at the office which the secretary enter in
the computer. The information system should be able to
compute the grade point average for each student for the
semester and his cumulative grade point average (CGPA)
and print the grade sheet for each student.
The information system also keep s track of a inventories of
the Department, such as equipments, their location,
furnitures, etc.
The Department has an yearly grant and the Department
spends it in buying equipments, books, stationery items, etc.
Also, in addition to the annual grant that the Department
gets from the University, it gets funds from different
consultancy service it provides to different organisations. It
is necessary that the Department information system keeps
track of the Department accounts.
The information system should also keep track of the
research projects of the Department, publications by the
faculties, etc. These information are keyed in by the
secretary of the Department.
The information system should support querying the up-to-
date details about every student by inputting his roll
number. It should also support querying the details of the
cash book account. The output of this query should include
the income, expenditure, and balance.

34. Perform SA/SD to develop a software to automate the activities of a
small automobile spare parts shop. The small automobile spare parts
shop sells the spare parts for a vehicles of several makes and models.
Also, each spare part is typically manufactured by several small
industries. To stream line the sales and supply ordering, the shop owner
has asked us to develop the following motor part shop software. Perform
the SA/SD for this Motor Part Shop Software (MPSS).
The motor parts shop deals with large number of motor parts of various
manufacturers and various vehicle types. Some of the motor parts are

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

very small and some are of reasonably large size. The shop owner
maintains different parts in wall mounted and numbered racks.
The shop owner maintains as few inventory for each item as reasonable,
to reduce inventory overheads after being inspired by the just-in-time
(JIT) philosophy.
Thus, one important problem the shop owner faces is to be able to order
items as soon as the number of items in the inventory reduces below a
threshold value. The shop owner wants to maintain parts to be able to
sustain selling for about one week. To calculate the threshold value for
each item, the software must be able to calculate the average number of
parts sales for one week for each part.
At the end of each day, the shop owner would request the computer to
generate the items to be ordered. The computer should print out the
part number, the amount required and the address of the vendor
supplying the part.
The computer should also generate the revenue for each day and at the
end of the month, the computer should generate a graph showing the
sales for each day of the month.

35. Perform structured analysis and structured design for the following
Medicine Shop

Automation (MSA) software:
A retail medicine shop deals with a large number of
medicines procured from various manufacturers. The shop
owner maintains different medicines in wall mounted and
numbered racks.
The shop owner maintains as few inventory for each item as
reasonable, to reduce inventory overheads after being
inspired by the just-in-time (JIT) philosophy.
Thus, one important problem the shop owner faces is to be
able to order items as soon as the number of items in the
inventory reduces below a threshold value. The shop owner
wants to maintain medicines to be able to sustain selling for
about one week. To calculate the threshold value for each
item, the software must be able to calculate the average
number of medicines sales for one week for each part.
At the end of each day, the shop owner would request the
computer to generate the items to be ordered. The

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

computer should print out the medicine description, the
quantity required, and the address of the vendor supplying
the medicine. The shop owner should be able to store the
name, address, and the code numbers of the medicines that
each vendor deals with.
Whenever new supply arrives, the shop owner would enter
the item code number, quantity , batch number, expiry date,
and the vendor number. The software should print out a
cheque favouring the vendor for the items supplied.
When the shop owner procures new medicines it had not
dealt with earlier, he should be able to enter the details of
the medicine such as the medicine trade name, generic
name, vendors who can supply this medicine, unit selling
and purchasing price. The computer should generate a code
number for this medicine which the shop owner would paste
the code number in the rack where this medicine would be
stored. The shop owner should be able to query about a
medicine either using its generic name or the trade name
and the software should display its code number and the
quantity present.
At the end of every day the shop owner would give a
command to generate the list of medicines which have
expired. It should also prepare a vendor-wise list of the
expired items so that the shop owner can ask the vendor to
replace these items. Currently, this activity alone takes a
tremendous amount of labour on the part of the shop owner
and is a major motivatour for the automation endeavour.
Whenever any sales occurs, the shop owner would enter the
code number of each medicine and the corresponding
quantity sold. The MSA should print out the cash receipt.
The computer should also generate the revenue and profit
for any given period. It should also show vendor-wise
payments for the period.

36. The IIT students’ Hall Management Center (HMC) has requested us to
develop the following software to automate various book-keeping
activities associated with its day- to-day operations.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

After a student takes admission, he/she presents a note
from the admission unit, along with his/her name,
permanent address, contact telephone number, and a
photograph. He/she is then allotted a hall, and also a
specific room number. A letter indicating this allotted room is
issued to the concerned student.
Students incur mess charges every month. The mess
manager would input to the software the total charges for
each student in a month on mess account.
Each room has a fixed room rent. The newly constructed
halls have higher rent compared to some of the older halls.
Twin sharing rooms have lower rent.
Each hall provides certain amenities to the students such as
reading rooms, play rooms, TV room, etc. A fixed amount is
levied on each student on this count.
The total amount collected from each student of a hall
towards mess charges is handed over to the mess manager
every month. For this, the computer needs to print a sheet
with the total amount due to each mess manager is printed.
Printed cheques are issued to each manager and signatures
are obtained from them on the sheet.
Whenever a student comes to pay his dues, his total due is
computed as the sum of mess charge, amenity charge, and
room rent.
The students should be able to raise various types of
complaints using a web browser in their room or in the Lab.
The complaints can be repair requests such as fused lights,
non-functional water taps, non-functional water filters, room
repair, etc. They can also register complaints regarding the
behaviour of attendants, mess staff, etc. For this round-the-
clock operation of the software is required.
The HMC receives an annual grant from the Institute for staff
salary and the upkeep of the halls and gardens. The HMC
chairman should be provided support for distribution of the
grant among the different halls. The Wardens of different
halls should be able to enter their expenditure details
against the allocations.
The controlling warden should be able to view the overall

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

room occupancy.
The warden o f each hall should be able t o find out the
occupancy of his hall. He should also be able to view the
complaints raised by the students and post his action taken
report (ATR) to each complaint.
The halls employ attendants and gardeners. These
temporary employees receive a fixed pay on a per day basis.
The Hall clerk enters any leave taken by an attendant or a
gardener from at the terminal located at the hall office. At
the end of every month a consolidated list of salary payable
to each employee of the hall along with cheques for each
employee is printed out.
The HMC incurs petty expenses such as repair works carried
out, newspaper and magazine subscriptions, etc. It should
be possible to enter these expenses.
Whenever a new staf f is recruited his details including his
daily pay is entered. Whenever a staff leaves, it should be
possible to delete his records.
The warden should be able to view the statement of
accounts any time. The warden would take a print out of the
annual consolidated statement of accounts, sign and submit
it to the Institute administration for approval and audit
verification.

37. IIT security software: The security office of IIT is in need of a software
to control and monitor the vehicular traffic into and out of the campus.
The functionalities required of the software are as follows—Each vehicle
in the IIT campus would be registered with the system. For this, each of
the faculty, sta ff, and students owning one or more vehicles would have
to fill up a form at the security offic e detailing the vehicle registration
numbers, models, and other relevant details for the vehicles that they
own. These data would be entered into the computer by a security staff
after a due diligence check.
Each time a vehicle enters or leaves the campus, a camera mounted
near the check gate would determine the registration number of an
incoming (or outgoing) vehicle and the model of the vehicle and input
into the system. If the vehicle is a campus vehicle, then the check gate
should lift automatically to let it in or out, as the case may be. Various

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

details regarding the entry and exit o f a campus vehicle such as its
number, owner, date and time of entry/exit would be stored in the
database for statistical purposes. For each outside vehicle entering the
campus, the driver would be required t o fill-up a form detailing the
purpose of entry. This information would immediately be entered by the
security personnel at the gate and along with this information, the
information obtained from the camera such as the vehicle’s model
number, registration number, and photograph would be stored in the
database. When an outside vehicle leaves the campus, the exit details
such as date and time of exit would automatically be registered in the
database. For any external vehicle that remains inside the campus for
more than 8 hours, the driver would be stopped by the security
personnel manning the gate, queried to satisfaction, and the response
would be entered into the system.
Considering that there have been several incidents of speeding and
rough driving in the past, the security personnel manning various traffic
intersections and other sensitive points of the campus woul d be
empowered to telephone the registration number of an errant vehicle to
the main gate. The security personnel at the main gate would enter this
information into the computer. The driver of an errant vehicle would be
quizzed at the check gate during exit and the vehicle’s future entry
would be barred if the response is not found to be satisfactory. For each
errant campus vehicle, the driver would be quizzed during the next exit,
and if the response is not found to be satisfactory, a letter should get
issued to the dean (campus affairs) (detailing the date, time, traffic
point at which the incident occurred, and the nature of the offence) to
deal with the concerned staff or student, as the case might be.
The security officer should be able to view the statistics pertaining to the
total number of vehicles going in and coming out of the campus (over a
day, month or year) and the total number of vehicles currently inside the
campus has left campus, and if it indeed has, its time of departure
should be displayed. The security officer can query whether a particular
vehicle is currently inside the campus. The security officer can also query
the total number of vehicles owned by the residents of the campus.
Since campus security is a critical operation, adequate safety against
cyber attacks on the security software should be ensured. Also,
considering the criticality of the operation, down times of more than 5
minutes would normally not be unacceptable.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Implementation simplification: While writing code, the commands for the
check gate need only be displayed on the terminal and the inputs from
the camera can be simulated through keyboard entry.

38. Courier company computerisation (CCC) software: A courier company
wishes to computerise various book keeping activities associated with its
daily operation. The courier company has branches in most important
towns in India. It is proposed that the different branch offices be
equipped with a computer and printer each. The developed software
would be deployed on the computer at each branch office and linked
though the Internet. The other details are as follows:

A t each of its branch office and other retail outlets, the
courier company receives consignments of various weights
and sizes (measured in cubic meters). The charges are at
present Rs. 5,000 per cubic meter for distances upto 500 km.
For larger distances, 10 per cent additional charge is levied
for every 100 km or part there of. For packets weighing more
than 100 kg per cubic meter, an additional 10 per cent levy
is charged for every 20 kg/cubic meter. For small articles and
letters, Rs. 50 per 100 gms is charged. At present, only those
packets having destination to a city where a branch office is
located is accepted.
When a customer tries to book a consignment at any of the
retail points or branch offices, the details of the consignment
such as its volume, weight, destination address, sender
address, etc. are entered into the computer by the sales
clerk. The computer would compute the charges for the
consignment and print a bill indicating a unique id indicating
the consignment number, which is assigned t o the
consignment. A customer should be able to track the delivery
status of the consignment on-line by using the unique id.
The courier company owns a number of trucks, which are
used for transporting consignments between branch offices.
When the volume of consignments for any particular
destination (branch office) becomes 500 cubic meters, the
system should automatically allot the next available truck
that is present at the branch office. Since, no consignment
should get unduly delayed, whenever a consignment cannot

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

be dispatched to its destination within 3 days of its receipt, it
should automatically be forwarded to any branch office that
is closer to the destination. When a truck is allocated for
dispatch of consignments to a branch office, the computer
system should print the details of the consignment number,
volume, sender’s name and address, and the receiver’s name
and address. This print out is to be carried by the truck
driver for monitoring and excise clearance purposes.
When a truck reaches a branch office, its arrival status is
updated. A truck stays with the branch office until the branch
office has enough cargo to load the truck to at least 80 per
cent of its capacity. The transport office at the branch office
can enter the fuel and repair charges for a truck.
The regular expenses of the courier company includes staff
salaries, rental charges for the branch offices, and truck
maintenance charges. The company judiciously uses its
profits to set up new branch offices and to buy additional
trucks.
The software should maintain the details of each employee
such as his name, address, telephone number, basic pay,
and other allowances. It should help the account manager at
each branch office to generate t h e pay slip of all the
employees every month and automatically credit the salaries
to their respective bank accounts.
All payments and receipts are entered into the system. A
consolidated profit-loss account (taking all the branches and
the entire operation into account) is expected to be prepared
by the system. The manager should be able to view branch-
wise revenue generated, consignments handled, expenses,
etc.
The manager should be able to view the status of different
trucks at any time, e.g. the branch office at which it is
waiting, or the two branch offices between which it is
currently transporting consignments.
The manager should be able to view truck usage (overall as
well as for individual trucks) over a given period of time. The
truck usage i s to be given in terms of load factor (average
capacity utilisation) and number of kilometers covered over

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

the given period.
The manager of the courier company can query the status of
any particular consignment and the details o f volume of
consignments transported between any two branches and
the corresponding revenue generated.
The manager should be able to view the average waiting
period for the consignments over a given period of time
(day, month, or year) and that for various source destination
pairs. This statistics is important for the manager, since he
normally orders new trucks when the average waiting period
for consignments becomes high due to non-availability of
trucks. Also, the manager would like to see the average idle
times of trucks over a given period time for future planning.
The courier company would like the software to be modular
and highly configurable, so that it can sell copies of the
software to other courier companies in the country.

39. Students’ auditorium management software: A college has a large (800
seating capacity) auditorium. The college has entrusted the
management of the auditorium to the students’ society. The students’
society needs the following software to efficiently manage the various
shows conducted in the auditorium and to keep track of the accounts.
The functionaries identified by the students’ society to be responsible for
the day-to-day operation of the software are the auditorium secretary
and the president of the society.
Various types of social and cultural events are conducted in the
auditorium. The auditorium secretary should have the overall authority
of scheduling the shows, selecting and authorising the show managers,
as well as the sales agents.
There are two categories of seats—balcony seats and ordinary seats.
Normally balcony seats are more expensive in any show. The show
manager fixes the prices of these two categories of seats for a specific
show, depending on the popularity of a show. The show manager also
determines the number of balcony and ordinary seats that can be put on
sale. For each show, some seats are offered as complimentary gifts to
important functionaries of the students’ society and to VIPs which need
to be entered into the system. The show manager also enters the show
dates, the number of shows on any particular date and the show timings.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

It is expected that the software would support a functionality to let the
show manager configure the different show parameters.
The auditorium secretary appoints a set of sales agents. The sales
agents get a commission of 1 per cent of the total sales that they make
for any show. The system should let the spectators query the availability
of different classes of seats for a show on-line. For the convenience of
the spectators, two ways of seat booking are supported. If a spectator
pays Rs. 1000, a unique 10 digit id is generated and given to him. He
can use this id to book seats for the shows on-line by using a web
browser. For each seat booked for a show using the unique id, he would
get a 10 per cent discount. A spectator can also book a seat for a single
show only through regular payment. Fo r on-line booking, a spectator
would indicate for the type of the seat required by him, the requested
seat should be booked if available, and the software should support
printing out the ticket showing the seat numbers allocated. A spectator
should be able to cancel his booking before 3 clear days of the show. In
this case, the ticket price is refunded to him after deducting Rs. 5 as the
booking charge per ticket. If a ticket is returned at least before 1 day of
a show, a booking charge of Rs. 10 is deducted for ordinary tickets and
Rs. 15 is deducted for balcony tickets. When a cancellation is made on
the day of the show, there is a 50 per cent deduction.
The show manager can at any time query about the percentage of seats
booked for various classes of seats and the amount collected for each
class. When a sales person makes a sale, the computer should record
the sales person’s id in the sales transaction. This information would
help in computing the total amount collected by each sales person and
the commission payable to each sales person. These data can be
queried by the show manager. Also, any one should be able to view the
various shows that are planned for the next one month and the rates of
various categories of seats for a show by using a web browser. The show
manager should be able to view the total amount collected for his show
as well as the sales agent-wise collection figures.
The accounts clerk should be able to enter the various types of
expenditures incurred for a show including payment to artists and
auditorium maintenance charges. The computer should prepare a
balance sheet for every show and a comprehensive up-to-date balance
sheet for every year. The different types of balance sheets should be
accessible to the president of the student society only. Since the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

software product should be as much low cost as possible, it is proposed
that the software should run on a high-end PC and built using free
system software such as Linux and Apache web server.

40. Travel agency management software: A travel agency requires to
automate various book-keeping activities associated with its operations.
The agency owns a fleet of vehicles and it rents these out to customers.
Currently the company has the following fleet of vehicles:

Ambassadors : 10 non-AC
Tata Indica : 30 AC
Tata Sumo : 5 AC
Maruti Omni : 10 non-AC
Maruti Esteem : 10 AC
Mahindra Xylo : 10 AC

Only regular customers would be allowed to avail the on-line booking
facility. To become a regular customer, a customer would need to
deposit Rs. 5000 with the travel agency and also provide hi s address,
phone number and few other details, which will be entered into the
computer.
When a regular customer makes an on-line request for hiring a vehicle,
he would be prompted to enter the date for which travel is required, the
destination, and duration for which the vehicle is required. He should
then be displayed the types of vehicles that are available, and the
charges. For every type of vehicle, there is a per hour charge, and a per
kilometer charge. These information would also be displayed. A car can
be rented for a minimum of 4 hours. Once a customer chooses a vehicle,
the number of the allotted vehicle and the driver’s mobile numbers
would be displayed.
After completion of travel, the customer would sign off the duty slip
containing necessary information such as duration of hire and the
kilometers covered and hand it over to the driver. This information would
be entered into the computer system by the driver within 24 hours of
completion of travel. The customer should be able to view the billing
information as soon as the information in the duty slip have been
entered into the computer. The amount chargeable to a customer is the
maximum of per hour charge for the car times the number of hours used,
plus the per kilometer charge times the number of kilometers run,

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

subject to a minimum amount decided by the charge for 4 hours use of
the car. An AC vehicle of a particular category is charged 25 per cent
more than a non-AC vehicle of the same category. There is a charge of
Rs. 500 for every night halt regardless of the type of the vehicle.
The travel agency acquires new vehicles at regular intervals. It is
necessary to support a functionality using which the manager would be
able to add a vehicle to the fleet of the vehicles as and when a new
vehicle is procured. Old cars are condemned and sold off.
It should be possible to delete the car from the fleet and add the sales
proceeds to the account. A car which is currently with the company can
be in one of three states—it may have gone for repair, it may be
available, it may be rented out.
The manager should be able to view the following types of statistics—
the price of the car, average amount of money spent on repairs for the
car, average demand, revenue earned by renting out the car, and fuel
consumption of the car. Based on these statistics, the company may take
a decision about which vehicles are more profitable. The statistics can
also be used to decide the rental charges for different types of vehicles.

41. Students hall management center: The IIT students’ Hall Management
Center (HMC) has requested us to develop t he following software to
automate various book- keeping activities associated with its day to day
operations.

After a student takes admission, he/she would present a
note from the admission unit to the clerk at HMC, along with
his/her name, permanent address, contact telephone
number, and a photograph. He/she is then allotted a hall,
and also a specific room number. A letter indicating this
allotted room should be issued to the concerned student.
Students incur mess charges every month. The mess
manager would input to the software the total charges for
each student in a month on mess account.
Each room has a fixed room rent. The rooms are either
single-seated or twin- sharing. The newly constructed halls
have higher rent compared to some of the older halls. Twin
sharing rooms have lower rent.
Each hall provides certain amenities to the students such as
reading rooms, play rooms, TV room, etc. A fixed amount is

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

levied on each student on this count.
The total amount collected from each student of a hall
towards mess charges is handed over to the mess manager
every month. For this, the computer needs to print a sheet
indicating the total amount due to each mess manager.
Printed cheques are issued to each manager and signatures
are obtained from each on the sheet.
Whenever a student comes to pay his dues, his total due
should b e computed as the sum of mess charge, amenity
charge, and room rent and displayed. The amount would be
paid by the student either in cash or cheque, and this would
be entered by the accounts clerk into the system.
The students should be able to raise various types of
complaints using a web browser in their room or in the Lab.
The complaints can be repair requests such as fused lights,
non-functional water taps, non-functional water filters,
specific room repair, etc. They can also register complaints
regarding the behaviour of attendants, mess staff, etc. For
this, round-the-clock operation of the software is required
and the down-time should be negligible. Considering that
about 10,000 students live in hostels, the response time of
the web site should be acceptable even under 1000
simultaneous clicks.
The HMC receives an annual grant from the Institute for
upkeep of the halls, gardens, and providing amenities to the
students. T he HMC chairman should be provided with a
functionality that would support distribution of the grant
among the different halls and cheques should be printed
based on the grants made to the halls. The wardens of
different halls should be able to enter their expenditure
details against the allocations.
The controlling warden should be able to view the overall
room occupancy.
The warden of each hall should be able to find out the total
occupancy of his hall and the number of vacant seats. He
should also be able to view the complaints raised by the
students and post his action taken report (ATR) to each
complaint.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The halls employ attendants and gardeners. These
temporary employees receive a fixed pay on a per day basis.
The Hall clerk enters any leave taken by an attendant or a
gardener from at the terminal located at the hall office. At
the end of every month a consolidated list of salary payable
to each employee of the hall along with cheques for each
employee is printed out.
The HMC incurs petty expenses such as repair works carried
out, news paper and magazine subscriptions, etc. It should
be possible to enter these expenses should be debited from
its yearly grants.
Whenever a new staf f is recruited his details including his
daily pay is entered. Whenever a staff leaves, it should be
possible to delete his records. Upon a specific command from
the controlling warden, the salaries for various employees of
the HMC and halls should be computed and the salary slips
and cheques should be printed for distribution to the
employees.
The warden should be able to view the statement of
accounts any time. The warden would take a print out of the
annual consolidated statement of accounts, sign and submit
it to the Institute administration for approval and audit
verification.

The software should be very secure to prevent the possibility of various
types of frauds and financial irregularities.

42. Develop SA/SD diagrams for the following software required by a video
rental store.

The store has a large collection of video CDs and DVDs in
VHS and MP4 format as well as music CDs.
A person can become member by depositing Rs. 1000 and
filling up name, address, and telephone number. A member
can cancel his membership and take back his deposit, if he
has no dues outstanding against him.
Whenever the store purchases a new item, the details such
as date of procurement and price are entered. The daily
rental charge is also entered by the manager. After passage

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

of a year, the daily rental charge is automatically halved.
A member can take on loan at most one video CD and one
music CD each time. The details are entered by a store clerk
and a receipt indicating the daily rental charge is printed.
Whenever a member returns his loaned item, the amount to
be paid is displayed. After the amount is paid, the items are
marked returned.
If a customer loses or damages any item, the full price of the
item is charged to him and the item is removed from the
inventory.
If an item lies unissued for more than a year, it is sold to the
members at 10 per cent of the purchase price and the item
is removed from the inventory.
The manager can at any time check the profit/loss account.

43. Develop the SA/SD diagrams for the following Elevator Controller
software.
The controller software of the elevator gets inputs from lift users through
the push button switches mounted inside the elevator and near the lift
door at each floor. The controller generates output by giving commands
to the motor controller and the lift door controller. At each floor, only
two switches are installed. The switches are marked with up and down
arrows indicating the request to go either in the up or down direction.
Inside the lift, there is a panel of switches, with one switch labelled for
each floor. Also there is an emergency stop switch. A user at a floor can
request for the lift and indicate the required direction of travel by
pressing the appropriate button. The requests for the lift arriving from
various floors are queued by the controller and it serves the request in a
shortest distance first manner, if the lift is idle. Once the lift stops at a
floor, the user can press a swit ch labelled with the floor number to
request the lift to go to that floor. After the floor request button is
pressed, the lift controller times out after one minute and then starts to
close the lift door. The successful closing of the lift door is indicated by
the signals generated by a contact sensor. The lift starts to move in the
required direction after the lift doors have completely closed. A user
inside the lift can stop the lift doors from closing by pressing the
emergency stop switch before the lift starts to move. Once the lift starts
to move, pressing the emergency stop switch has no effect. At each

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

floor, there is a touch sensor that indicates to the controller that a lift
has reached the floor and the controller commands the motor to stop
after a required floor is reached. After 30 seconds of reaching a floor, the
lift door is opened by issuing a command to the door controller. If there
is a power failure any time during a lift’s movement, the lift reverts to a
safe mode in which it shuts down the motor and a mechanical backup
arrangement slides the lift to the ground floor and the manual door
opening handle is enabled, which the user can use to open the lift doors.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Chapter
7

OBJECT MODELLING USING UML

In recent years, the object-oriented software development style has
become very popular and is at present being widely used in industry as
well as in academic circles. Since its inception in the early eighties, the
object technology has made rapid progress. From a modest beginning in
the early eighties, the advancements to the object technology gathered
momentum in the nineties and the technology is now nearing maturity.
Considering the widespread use and popularity of the object technology
in both industry and academia, it is important to learn this technology
well.

It is well known that mastering an object-oriented programming language
such as Java or C++ rarely equips one with the skills necessary to develop
good quality object-oriented software—it is important to learn the object-
oriented design skills well. Once a good design has been arrived at, it is easy
to code it using an object-oriented language. It has now even become
possible to automatically generate much of the code from the design by using
a CASE tool. In order to arrive at a satisfactory object-oriented design (OOD)
solution to a problem, it is necessary to create several types of models. But,
one may ask: “What has modelling got anything to do with designing?” Let us
answer this question in the following:

A model is constructed by focusing only on a few aspects of the problem and
ignoring the rest. The model of a problem is called an analysis model. On the other
hand, the model of the solution (code) is called the design model. The design model
is usually obtained by carrying out iterative refinements to the analysis model using a
design methodology.

Note that any design is a model of the solution, whereas any model of the
problem is an analysis model. In this chapter, we shall discuss how to
document a model using a modelling language. In the subsequent chapter,
we shall discuss a design process that can be used to iteratively refine an

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

analysis model into a design model.
In the context of model construction, we need to carefully understand the

distinction between a modelling language and a design process, since we
shall use these two terms frequently in our discussions.
Modelling language: A modelling language consists of a set of notations
using which design and analysis models are documented.
Design process: A design process addresses the following issue: “Given a
problem description, how to systematically work out the design solution to
the problem?” In other words, a design process consists of a step by step
procedure (or recipe) using which a problem description can be converted
into a design solution. A design process is, at times, also referred to as a
design methodology. In this text, we shall use the terms design process and
design methodology interchangeably.

A model can be documented using a modelling language such as unified
modelling language (UML). Over the last decade, UML has become
immensely popular. UML has also been accepted by ISO as a standard for
modelling object-oriented systems. In this Chapter, we primarily discuss the
syntax and semantics of UML. However, before discussing the nitty- gritty of
the syntax and semantics of UML, we review a few basic concepts and
terminologies that have come to be associated with object-orientation.

7.1 BASIC OBJECT-ORIENTATION CONCEPTS
The principles of object-orientation have been founded on a few simple
concepts. These concepts are pictorially shown in Figure 7.1. After discussing
these basic concepts, we examine a few related technical terms.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 7.1: Important concepts used in the object-oriented approach.

7.1.1 Basic Concepts
A few important concepts that form the corner stones of the object-
oriented paradigm have pictorially been shown in Figure 7.1. In the
following sections and subsections, we discuss these concepts in more
detail.

Objects
In the object-oriented approach, it is convenient to imagine the working
of a software in terms of a set of interacting objects. This is analogous
to the way object manipulations take place in a real-world manual
system for getting some work done. For example, consider a manually
operated library system. For issuing a book, an issue register needs to
be filled up and then the return date needs to be stamped on the book.
In an object-oriented library automation software, analogous activities
involving the book object and the issue register object take place.

Each object in an object-oriented program usually represents a tangible
real-world entity such as a library member, a book, an issue register, etc.
However while solving a problem, it becomes advantageous at times to
consider certain conceptual entities (e.g., a scheduler, a controller, etc.) as
objects as well. This simplifies the solution and helps to arrive at a good
design.

A key advantage of considering a system as a set of objects is the
following:

When the system is analysed, developed, and implemented in terms of objects, it
becomes easy to understand the design and the implementation of the system, since
objects provide an excellent decomposition of a large problem into small parts.

Each object essentially consists of some data that is private to the object
and a set of functions (termed as operations or methods) that operate on
those data. This aspect has pictorially been illustrated in Figure 7.2. Observe
that the data of the object can only be accessed by the methods of the
object. Consequently, the only access point to the data for the external
objects is through the invocation of the methods of the object. In fact, the
methods of an object have the sole authority to operate on the data that is
private to the object. In other words, no object can directly access the data of
any other object.Therefore, each object can be thought of as hiding its
internal data from other objects. However, an object can access the private

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

data of another object by invoking the methods supported by that object.
This mechanism of hiding data from other objects is popularly known as the
principle of data hiding o r da ta abstraction. Data hiding promotes high
cohesion and low coupling among objects, and therefore is considered to be
an important principle that can help one to arrive at a reasonably good
design.

As already mentioned, each object stores some data and supports certain
operations on the stored data. As an example, consider the libraryMember
object of a library automation application. The private data of a
libraryMember object can be the following:

• name of the member
• membership number
• address
• phone number
• e-mail address
• date when admitted as a member
• membership expiry date
• books outstanding

The operations supported by a libraryMember object can be the following:
• issue-book
• find-books-outstanding
• find-books-overdue
• return-book
• find-membership-details

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 7.2: A model of an object

The data stored internally in an object are called its attributes, and the
operations supported by an object are called its methods.

Though the terminologies associated with object-orientation are simple and
well-defined, a word of caution here: the term ‘object’ is often used rather
loosely in the literature and also in this text. Often an ‘object’ would mean a
single entity. However, at other times, we shall use it to refer to a group of
similar objects (class). In this text, usually the context of use would resolve
the ambiguity, if any.

Is it really true that an object-oriented program consists of
objects only?

So far, we claimed that an object-oriented program consists of objects
only and the program execution involves through interaction of these
objects. However, a program written using in the present programming
languages such as Java, C++, etc. work through interaction of objects
and primitive data. These programming languages consider that
primitive data are not objects and distinctions are made between these
in several ways. To get perspective on this, we need to examine a bit of
programming history.

The first object-oriented programming language was Smalltalk. It was
developed in the 1970s at the Xerox research center in USA. It was a pure
object-oriented language in the sense that applications developed in this
language consisted of objects only. In other words, no distinction was made

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

between objects and instances of primitive types of data (int, float, etc.). This
was intended to gain better programmer acceptance. Small talk did not find
widespread acceptance among the programmers, since it required the
programmers to learn and use an entirely different program development
paradigm. However, in the later generation programming languages such as
C++ and Java, instances of primitive data types were treated differently from
objects. For example, in these languages, objects are passed as reference
arguments to methods, whereas primitive data types are passed by value.
The motivation behind this distinction was to make the object-oriented
languages appear as a small extension to procedural languages rather than
bringing in any radically new approach. In this light, C++ was designed to
retain the procedural approach of C and only extend it with the object-
orientation constructs. Of course, different object-oriented constructs were
translated into C code by a preprocessor. This made it easy for the procedural
programmers to migrate to C++. This was possibly an important reason why
C++ gained much more popularity compared to a pure object-oriented
programming language. At present, object-oriented programming languages
such as Java and C++ distinguish primitive data types from objects and treat
them very differently.

Class
Similar objects constitute a class. That is, all the objects constituting a
class possess similar attributes and methods. For example, the set of all
library members would constitute the class LibraryMember in a library
automation application. In this case, each library member object has
attributes such as member name, membership number, member
address, etc. and also has methods such as issue-book, return-
book, etc. Once we define a class, it can be used as a template for
object creation.

Let us now investigate the important question as to whether a class is an
abstract data type (ADT). To be able to answer this question, we must first
be aware of the basic definition of an ADT. We first discuss the same in a
nutshell. There are two things that are inherent to an ADT—abstract data and
data type. In programming language theory, a data type identifies a group of
variables having a particular behaviour. A data type can be instantiated to
create a variable. For example, int is a type in C++ language. When we
write an instruction int i; we actually create an instance of int. From this, we
can infer the following—An ADT is a type where the data contained in each

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

instantiated entity is abstracted (hidden) from other entities. Let us now
examine whether a class supports the two mechanisms of an ADT.
Abstract data: The data of an object can be accessed only through its
methods. In other words, the exact way data is stored internally (stack,
array, queue, etc.) in the object is abstracted out (not known to the other
objects).
Data type: In programming language terminology, a data type defines a
collection of data values and a set of predefined operations on those values.
Thus, a data type can be instantiated to create a variable of that type. We
can instantiate a class into objects. Therefore, a class is a data type.

It can be inferred from the above discussions that a class is an ADT. But, an
ADT need not be a class, since to be a class they need to support the
inheritance and other object-orientation properties.
Methods

The operations (such as create, issue, return, etc.) supported by
an object are implemented in the form of methods. Notice that we are
distinguishing between the terms operation and method. Though the
terms ‘operation’ and ‘method’ are sometimes used interchangeably,
there is a technical difference between these two terms which we
explain in the following.

An operation is a specific responsibility of a class, and the responsibility is
implemented using a method. However, it is at times useful to have multiple
methods to implement a responsibility. In this case, all the methods share
the same name (that is, the name of the operation), but parameter list of
each method is required to be different for enabling the compiler to
determine the exact method to be bound on a method call. We therefore say
that in this case, the method name is overloaded with multiple
implementations of the operation. As an example, consider the following.
Suppose one of the responsibilities of a class named Circle is to create
instances of itself. Assume that the class provides three definitions for the
create operation—int create(), int create(int radius) and int
create(float x, float y, int radius);. In this case, we say that
create is an overloaded method.

The implementation of a responsibility of a class through multiple methods with the
same method name is called method overloading.

Methods are the only means available to other objects in a software for
accessing and manipulating the data of another object. The set of valid

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

messages to an object constitutes its protocol. Let us now try to understand
the distinction between a message and a method.

In Smalltalk, an object could request the services (i.e., invoke methods) of
other objects by sending messages to them. The idea was that the
mechanism of message passing would lead to weak coupling among objects.
Though this was an important feature of Smalltalk, yet the programmers who
were trying to migrate from procedural programming to object-oriented
programming, found it to be a paradigm shift and therefore difficult to accept.
Subsequently, C++ implemented message passing by method invocation
(similar to a function call). This was rapidly accepted by the programmers.
Later object-oriented languages such as Java have followed the same trait of
retaining the method invocation feature, that is normally associated with the
procedural languages.

7.1.2 Class Relationships
Classes in a programming solution can be related to each other in the
following four ways:

• Inheritance
• Association and link
• Aggregation and composition
• Dependency

In the following subsection, we discuss these different types of relationships
that can exist among classes.

Inheritance
The inheritance feature allows one to define a new class by incrementally
extending the features of an existing class. The original class is called the
base class (also called superclass o r parent class) and the new class
obtained through inheritance is called the derived class (also called a
subclass or a child class). The derived class is said to inherit the features of
the base class. An example of inheritance has been shown in Figure 7.3. In
Figure 7.3, observe that the classes Faculty, Students, and Staff
have been derived from the base class LibraryMember through an
inheritance relationship (note the special type of arrow that has been used to
draw it). The inheritance relation between library member and faculty can
alternatively be expressed as the following—A faculty i s a type of library
member. So, the inheritance relationship is also at times called is a relation.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 7.3: Library information system example.

A base class is said to be a generalisation of its derived classes. This means
that the base class should contain only those properties (i.e., data and
methods) that are common to all its derived classes. For example, in Figure
7.3 each of the derived classes supports the issue-book method, and this
method is supported by the base class as well. In other words, each derived
class is a specialised base class that extends the base class functionalities in
certain ways.

Each derived class can be considered as a specialisation of its base class because it
modifies or extends the basic properties of the base class in certain ways. Therefore,
the inheritance relationship can be viewed as a generalisation-specialisation
relationship.

Observe that in Figure 7.3 the classes Faculty, Student, and Staff
are all special types of library members. Several things are common among
the members. These include attributes such as membership id, member
name and address, date on which books issued out, etc. However, for the
different categories of members, the issue procedure differs since different
types members are issued books for different durations. We can convey as
much by saying that the classes Faculty, Staff, and Students are
special types of LibraryMember classes. Using the inheritance relationship,
different classes can be arranged in a class hierarchy (or class tree) as shown
in Figure 7.3.

In addition to inheriting all the data and methods of the base class, a
derived class usually defines some new data and methods. A derived class
may even redefine a method which already exists in the base class.
Redefinition of a method which already exists in its base class is termed as

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

method overriding.

When a new definition of a method that existed in the base class is provided in a
derived class, the method is said to be overridden in the derived class.

The inheritance relationship existing among certain classes in a library
automation system is shown in Figure 7.3. As shown, LibraryMember is the
base class for the derived classes Faculty, Student, and Staff.
Similarly, Student is the base class for the derived classes Undergrad,
Postgrad, and Research. Each derived class inherits all the data and
methods of the base class, and defines some additional data and methods or
modifies some of the inherited data and methods. The inheritance
relationship has been represented in Figure 7.3 using a directed arrow drawn
from a derived class to its base class. We now illustrate how the method of a
base class is overridden by the derived classes. In Figure 7.3, the base class
LibraryMember might define the following data—member name,
address, and library membership number. Though faculty, student,
and staff classes inherit these data, they need to redefine their respective
issueBook methods because for the specific library that we are modelling, the
number of books that can be borrowed and the duration of loan are different
for different categories of library members.

Inheritance is a basic mechanism that every object-oriented programming
language needs to support. If a language supports ADTs, but does not
support inheritance, then it is called an object-based language and not
object-oriented. An example of an object-based programming language is
Ada.

Now let us try to understand why do we need the inheritance relationship in
the first place. Can’t we program as well without using the inheritance
relationship?

Two important advantages of using the inheritance mechanism in programming
include code reuse and simplicity of program design.

Let us examine how code reuse and simplicity of design come about while
using the inheritance mechanism. If certain methods or data are present in
several classes, then instead of defining these methods and data in each of
the classes separately, these methods and data are defined only once in the
base class and then inherited by each of its subclasses. For example, in the
Library Information System example of Figure 7.4, each category of member
(that is, Faculty, Student, and Staff) need to store the following data

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

—member-name, member-address, and membership-number.
Therefore, these data are defined in the base class LibraryMember and are
inherited by all it’s subclasses. Another advantage that accrues from the use
of the inheritance mechanism is the conceptual simplification brought about
through the reduction of the number of independent features of the different
classes and incremental understanding of the different classes becomes
possible. Thus, inheritance can be considered as a use of the abstraction
mechanism we discussed in Chapter 1. The class at the root of an inheritance
hierarchy (e.g. LibraryMember in Figure 7.3) is the simplest to understand—
as it has the least number of data and method members compared to all
other classes in the hierarchy. The classes at the leaf-level of the inheritance
hierarchy have the maximum number of features (data and method
members) because they inherit features of all their ancestors, and therefore
turn out to be the toughest to understand.

In a large class hierarchy, it is easier to first understand the root class and
then to recursively understand its children classes in the hierarchy until the
leaf level classes are reached.

Figure 7.4: An example of multiple inheritance.

Multiple inheritance
Construction of the class relationships for a given problem consists of
identifying and representing four types of relations—inheritance,
composition/aggregation, association, and dependency. However, at times it
may so happen that some features of a class are similar to one class and a
few other features of the class are similar to those of another class. In this
case, it would be useful if the class could be allowed to inherit features from
both the classes. Using the multiple inheritance feature, a class can inherit

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

features from multiple base classes.

Multiple inheritance is a mechanism by which a subclass can inherit attributes and
methods from more than one base class.

Consider the following example of a class that is derived from two base
classes through the use of the multiple inheritance mechanism. In this
example, in an academic institute research students can also be employed as
staff of the institute, then some of the characteristics of the Research class
are similar to the Student class (e.g., every student would have a roll
number) while some other characteristics (e.g., having a basic salary and
employee number, etc.) might be similar to the Staff class. Using multiple
inheritance the class Research can inherit features from both the classes
Student and Staff. In Figure 7.4, we have shown the class Research to
be derived from both the Student and Staff classes by drawing inheritance
arrows to both the parent classes of the Research class.

Association and link
Association is a common type of relation among classes. When two
classes are associated, they can take each others help (i.e. invoke each
others methods) to serve user requests. More technically, we can say
that if one class is associated with another bidirectionally, then the
corresponding objects of the two classes know each others ids
(identities). As a result, it becomes possible for the object of one class
to invoke the methods of the corresponding object of the other class.

Consider the following example. A Student can register in one
Elective subject. In this example, the class Student is associated with
the class ElectiveSubject. Therefore, an ElectiveSubject object (e.g.
MachineLearning) would know the ids of all Student objects that have
registered for the Subject and can invoke their methods such as printName,
printRoll and enterGrade. This relationship has been represented in
Figure 6(a). When an object knows some other object, it must internally store
its id. For example, for an object of ElectiveSubject class e1 to invoke
t he printName() method one of the registered students s1 , it must
execute the code s1 .printName(). Thus, it should have stored the id s1 of
the registered student as an attribute. The association relationship can either
be bidirectional or unidirectional. That is, both the associated classes know
each other (store each others ids). We have graphically shown this

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

association between Student class and ElectiveSubject in Figure 7.5(a).
Consider another example of association between two classes: Library

Member borrows Books. Here, borrows is the association between the class
LibraryMember and the class Book. The association relation would imply that
given a book, it would be possible to determine the borrower and vice versa.

n-ary association
Binary association between classes is very commonly encountered in design
problems. However, there can be situations where three or more different
classes can be involved in an association. As an example of a ternary
association, consider the following—A person books a ticket for a certain
show. Here, an association exists among the classes Person, Ticket, and
Show. This example of ternary association relationship has pictorially been
shown in Figure 7.5(b).

Figure 7.5: Example of (a) binary (b) ternary (c) unary association.

A class can have an association relationship with itself. This is called
recursive association or unary association. As an example, consider the
following—two students may be friends. Here, an association named
friendship exists among pairs of objects of the Student class. This has
pictorially been shown in Figure 7.5(c).

In unary association, two (or more) different objects of the same class are linked by
the association relationship.

When two classes are associated, the relationship between two objects of
the corresponding classes is called a link.

An association describes a group of similar links. Alternatively, we can say that a link
can be considered as an instance of an association relation. Let us now try to identify
the association relation from the text description of a problem.

Example 7.1 Consider the following extract from a problem description.
Identify the association relation among classes and the corresponding

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

association links among objects from an analysis of the description. "A
person works for a company. Ram works for Infosys. Hari
works for TCS."

Answer: In this example, an association relationship named works for exists
between the classes Person a n d Company. R a m works for Infosys, this
implies that a link exists between the object Ram and the object Infosys.
Similarly, a works for link exists between the objects Hari and TCS.

During a run of the system, new links can get formed among the objects of
the associated classes and some existing links may get dissolved. Note that
some objects may not have any association link to any of the objects of the
associated class. Some objects of the associated classes may have not have
links. For example in course of time, Ram may resign from Infosys and join
Wipro. In this case, the link between Ram and Infosys breaks and a link
between Ram and Wipro gets formed. But, suppose Ram does not join any
other job after leaving Infosys. In this case, Ram does not have works for link
with any Company object. Thus, links are time varying (or dynamic) in
nature. Association relationship between two classes is static in nature.

If two classes are associated, then the association relationship exists at all points of
time. In contrast, links between objects are dynamic in nature. Links between the
objects of the associated classes can get formed and dissolved as the program
executes.

An association between two classes simply means that zero or more links
may be present among the objects of the associated classes at any time
during execution.

Mathematically, a link can be considered to be a tuple. Consider the
following example. “Amit has borrowed the book Graph Theory.” Here, a link
named borrowed has got established between the objects Amit and the
Graph Theory book. This link can also be expressed as the ordered pair of
object instances {Amit,Graph Theory}.

Composition and aggregation
Composition and aggregation represent part/whole relationships among
objects. Objects which contain other objects are called composite objects. As
an example, consider the following—A Book object can have upto
ten Chapters. In this case, a Book object is said to be composed of upto
ten Chapter objects. The composition/aggregation relationship can also be
read as follows—A Book has upto ten Chapter objects (shown in Figure

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

7.6). For this reason, the composition/aggregation relationship is also known
a s has a relationship. Aggregation/composition can occur in a hierarchy of
levels. That is, an object contained in another object may itself contain some
other object. Composition and aggregation relationships cannot be reflexive.
That is, an object cannot contain an object of the same type as itself.

Figure 7.6: Example of aggregation relationship.

Dependency
A class is said to be dependent on another class, if any changes to the latter
class necessitates a change to be made to the dependent class.

A dependency relation between two classes shows that any change made to the
independent class would require the corresponding change to be made to the
dependent class.

Dependencies among classes may arise due to various causes. Two
important reasons for dependency to exist between two classes are the
following:

A method of a class takes an object of another class as an argument.
A class implements an interface class. In this case, dependency arises
due to the following reason. If some properties of the interface class
are changed, then a change becomes necessary to the class
implementing the interface class as well.

Abstract class
Classes that are not intended to produce instances of themselves are called
abstract classes. In other words, an abstract class cannot be instantiated. If
an abstract class cannot be instantiated to create objects, then what is the
use of defining an abstract class? Abstract classes merely exist so that
behaviour common to a variety of classes can be factored into one common
location, where they can be defined once. Definition of an abstract class helps
to push reusable code up in the class hierarchy, thereby enhancing code
reuse.

By using abstract classes, code reuse can be enhanced and the effort required to
develop software brought down.

Abstract classes usually support generic methods. These methods help to

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Abstract classes usually support generic methods. These methods help to
standardise the method names and input and output parameters in the
derived classes. The subclasses of the abstract classes are expected to
provide the concrete implementations for these methods. For example, in a
library automation software Issuable can be an abstract class (see Figure
7.7) and the concrete classes Book, Journal, and CD are derived from the
Issuable class. The Issuable class may define several generic methods
such as issue. Since the issue procedures for books, journals, and CDs
would be different, the issue method would have to be overridden in the
Book, Journal, and CD classes. Though this does not help in code reuse,
but helps to have standardised implementations of the issue method across
different concrete classes. Observe that Issuable is an abstract class and
cannot be instantiated. On the other hand, Book, Journal, and CD are
concrete classes and can be instantiated to create objects.

Figure 7.7: An example of an abstract class.

7.1.3 How to Identify Class Relationships?
Suppose we want to write the code for a simple programming problem.
How do we identify the classes and their relationships from this
description, so that we can write the necessary code? This can be done
by a careful analysis of the sentences given in the problem description.
The nouns in a sentence often denote the classes. On the other hand,
the relationships among classes are usually indicated by the presence of
certain key words. In the following, we give examples of a few key
words (shown in italics) that indicate the specific relationships among
two classes A and B:

Composition

B is a permanent part of A
A is made up of Bs

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

A is a permanent collection of Bs

Aggregation

B is a part of A
A contains B
A is a collection of Bs

Inheritance

A is a kind of B
A is a specialisation of B
A behaves like B

Association

A delegates to B
A needs help from B
A collaborates with B. Here collaborates with can be any of a large
variety of collaborations that are possible among classes such as
employs, credits, precedes, succeeds, etc.

7.1.4 Other Key Concepts
We now discuss a few other key concepts used in the object-oriented
program development approaches:

Abstraction
Let us first recapitulate how the abstraction mechanism works (we had
already discussed this basic mechanism in Section 1.3.2). Abstraction is the
selective examination of certain aspects of a problem while ignoring all the
remaining aspects of a problem. In other words, the main purpose of using
the abstraction mechanism is to consider only those aspects of the problem
that are relevant to a given purpose and to suppress all aspects of the
problem that are not relevant.

The abstraction mechanism allows us to represent a problem in a simpler way by
considering only those aspects that are relevant to some purpose and omitting all
other details that are irrelevant.

Many different abstractions of the same problem can be constructed

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Many different abstractions of the same problem can be constructed
depending on the purpose for which the abstractions are made. The
abstraction mechanism cannot only help the development engineers to
understand and appreciate a problem better while working out a solution, but
can also help better comprehension of a system design by the maintenance
team. Abstraction is supported in two different ways in an object-oriented
designs (OODs). These are the following:
Feature abstraction: A class hierarchy can be viewed as defining several
levels (hierarchy) of abstraction, where each class is an abstraction of its
subclasses. That is, every class is a simplified (abstract) representation of its
derived classes and retains only those features that are common to all its
children classes and ignores the rest of the features. Thus, the inheritance
mechanism can be thought of as providing feature abstraction.

Data abstraction: An object itself can be considered as a data abstraction
entity, because it abstracts out the exact way in which it stores its various
private data items and it merely provides a set of methods to other objects to
access and manipulate these data items. In other words, we can say that
data abstraction implies that each object hides (abstracts away) from other
objects the exact way in which it stores its internal information. This helps in
developing good quality programs, as it causes objects to have low coupling
with each other, since they do not directly access any data belonging to each
other. Each object only provides a set of methods, which other objects can
use for accessing and manipulating this private information of the object. For
example, a stack object might store its internal data either in the form of an
array of values or in the form of a linked list. Other objects would not know
how exactly this object has stored its data (i.e. data is abstracted) and how it
internally manipulates its data. What they would know is the set of methods
such as push, pop, and top-of-stack that it provides to the other objects for
accessing and manipulating the data.

An important advantage of the principle of data abstraction is that it reduces coupling
among various objects, Therefore, it leads to a reduction of the overall complexity of
a design, and helps in easy maintenance and code reuse.

Abstraction is a powerful mechanism for reducing the perceived complexity
of software designs. Analysis of the data collected from several software
development projects shows that software productivity is inversely
proportional to the perceived software complexity. Therefore, implicit use of
abstraction, as it takes place in object-oriented development, is a promising

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

way of increasing productivity of the software developers.

Encapsulation
The data of an object is encapsulated within its methods. To access the
data internal to an object, other objects have to invoke its methods,
and cannot directly access the data. This concept is schematically
shown in Figure 7.8. Observe from Figure 7.8 that there is no way for an
object to access the data private to another object, other than by
invoking its methods. Encapsulation offers the following three important
advantages:

Figure 7.8: Schematic representation of the concept of encapsulation.
Protection from unauthorised data access: The encapsulation
feature protects an object’s variables from being accidentally corrupted
by other objects. This protection includes protection from unauthorised
access and also protection from the problems that arise from concurrent
access to data such as deadlock and inconsistent values.

Data hiding: Encapsulation implies that the internal structure data of an
object are hidden, so that all interactions with the object are simple and
standardised. This facilitates reuse of a class across different projects.
Furthermore, if the internal data or the method body of a class are modified,
other classes are not affected. This leads to easier maintenance and bug
correction.
Weak coupling: Since objects do not directly change each others internal

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

data, they are weakly coupled. Weak coupling among objects enhances
understandability of the design since each object can be studied and
understood in isolation from other objects.

Polymorphism
Polymorphism literally means poly (ma ny) morph i s m (forms).
Remember that in Chemistry, diamond, graphite, and coal are called
polymorphic forms of carbon. That is, though diamond, coal, and
graphite are essentially carbon, they behave very differently. In an
analogous manner in the object-oriented paradigm, polymorphism
denotes that an object may respond (behave) very differently even
when the same operation is invoked on it depending on the exact
polymorphic object to which the call gets bound.

There are two main types of polymorphisms in object-orientation:
Static polymorphism: Static polymorphism occurs when multiple methods
implement the same operation. In this type of polymorphism, when a method
is called (same method name but different parameter types), different
behaviour (actions) would be observed. This type of polymorphism is also
referred to as static binding, because the exact method to be bound on a
method call is determined at compiled-time (statically). Let us try to
understand static binding through the following example. Suppose a class
named Circle has three definitions for the create operation—int create(),
int create(int radius), and int create(float x, float y,
int radius). Recollect that when multiple methods implement the same
operation, then the mechanism used is called method overloading. (Notice
the difference between an operation and a method.) When the same
operation (e.g. create) is implemented by multiple methods, the method
name is said to be overloaded. One definition of the create operation does
not take any argument (create()) and creates a circle with default
parameters. The second definition takes the center point and the radius
radius of the circle as its parameters (create(float x, float y,
float radius). Assume that in both the above cases, the fill style would
be set to the default value “no fill”. The third definition of the create
operation takes the center point, the radius, and a fill style as its input. When
the create method is invoked, depending on the parameters given in the
invocation, the matching method can be easily determined during compilation
by examining the parameter list of the call and the call would get be statically
bound. If create method is invoked with no parameters, then a default circle

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

would be created. If only the center and radius are supplied, then an
appropriate circle would be created with no fill type, and so on. The definition
of the Circle class with the overloaded create method is shown in Figure
7. 9 . Dynamic polymorphism: Dynamic polymorphism is also called
dynamic binding. In dynamic binding,the exact method that would be invoked
(bound) on a method call can only be known at the run time (dynamically)
and cannot be determined at compile time. That is, the exact behaviour that
would be produced on a method call cannot be predicted at compile time and
can only be observed at run time.

Figure 7.9: Circle class with overloaded create method.

Let us now explain how dynamic binding works in object-oriented
programs. Dynamic binding is based on two important concepts:

Assignment of an object to another compatible object.
Method overriding in a class hierarchy.

Assignment to compatible of objects
In object-orientation, objects of the derived classes are compatible with
the objects of the base class. That is, an object of the derived class can
be assigned to an object of the base class, but not vice versa. Also an
object cannot be assigned to an object of a sibling class or an object of
a totally unrelated class for obvious reasons. This is an important
principle in object-orientation and is known as the Liskov Substitution
principle. To understand this principle, recollect that a derived class
defines some extra attributes and assignment of an object of the base
class to an object of the derived class can leave those attributes
undefined.

Method overriding
We have already explained the method overriding principle in which a

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

derived class provides a new definition to a method of the base class.
Let us now understand how dynamic binding works by making use of the

above two mechanisms. Suppose we have defined a class hierarchy of
different geometric shapes for a graphical drawing package as shown in
Figure 7.10. As can be seen from the figure, Shape is an abstract class and
the classes Circle, Rectangle, and Line are directly derived from it
and further the classes Ellipse, Square and Cube have been derived to
form an inheritance hierarchy. Now, suppose the draw method is declared in
the Shape class and is overridden in each derived class. Further, suppose a
set of different types of Shape objects have been created one by one. By
Liskov’s substitution principle, the created Shape objects can be stored in an
array of type Shape. If the different types of geometric objects making up a
drawing are stored in an array of type Shape, then a call to the draw method
for each object would take care to display the appropriate drawing element.
That is, the same draw call to a Shape object would take care of drawing the
appropriate drawing object. Observe that due to dynamic binding, a call to
the draw method of the shape class takes care of displaying the appropriate
drawing object residing in the shape array. This is illustrated in the code
segment shown in Figure 7.11.

Figure 7.10: Class hierarchy of geometric objects.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 7.11: Traditional code versus object-oriented code incorporating the dynamic binding feature.

We analyse the advantage of polymorphism by comparing the code
segments of an object-oriented program and a traditional program for
drawing various graphic objects on the screen (shown in Figure 7.11). Using
dynamic binding, a programmer can invoke the generic method of an object
and leave the exact way in which this message would be handled would be
decided‘ depending on the object that is currently assigned to the receiving
object. With dynamic binding, new derived objects can be added with
minimal changes to a program.

The principal advantage of dynamic binding is that it leads to elegant programming
and facilitates code reuse and maintenance.

It can be easily seen from Figure 7.11 that the use of dynamic binding, the
object-oriented code is much more concise, understandable, and intellectually
appealing as compared to equivalent procedural code. Further, suppose that
in the example program segment, it is later found necessary to handle a new
graphics drawing primitive, say ellipse. Then, the procedural code has to be
changed by adding a new if-then-else clause. However, in case of an object-
oriented program, the code need not change, only a new class called Ellipse
has to be derived in the Shape hierarchy.

We can now summarise the mechanism of dynamic binding as follows:

Even when the method of an object of the base class is invoked, an appropriate
overridden method of a derived class would be invoked depending on the exact
object that may have been assigned at the run-time to the object of the base class.

Genericity

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Genericity
Genericity is the ability to parameterise class definitions. For example,
while defining a class stack of different types of elements such as
integer stack, character stack, floating-point stack, etc.; genericity
permits us to define a generic class of type stack and later instantiate it
either as an integer stack, a character stack, or a floating-point stack as
may be required. This can be achieved by assigning a suitable value to
a parameter used in the generic class definition.

7.1.5 Related Technical Terms
In the following, we discuss a few terms related to object-orientation as
follows:

Persistence
Objects usually get destroyed once a program completes its execution.
Persistent objects are stored permanently. That is, they live across
different executions. An object can be made persistent by maintaining
copies of the object in a secondary storage or in a database.

Agents
A passive object is one that performs some action only when requested
through invocation of some of its methods. An agent (also called an
active object), on the other hand, monitors events occurring in the
application and takes actions autonomously. Agents are used in
applications such as monitoring exceptions. For example, in a database
application such as accounting, an agent may monitor the balance
sheet and would alert the user whenever inconsistencies arise in a
balance sheet due to some improper transaction taking place.

Widget
The term widget stands for window object. A widget is a primitive object
used for graphical user interface (GUI) design. More complex graphical
user interface design primitives (widgets) can be derived from the basic
widget using the inheritance mechanism. A widget maintains internal
data such as the geometry of the window, back ground and fore ground
colors of the window, cursor shape and size, etc. The methods
supported by a widget manipulate the stored data and carry out
operations such as resize window, iconify window, destroy window, etc.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Widgets are becoming the standard components of GUI design. This has
given rise to the technique of component-based user interface
development. We shall discuss more about widgets and component-
based user interface development in Chapter 9 where we discuss GUI
design.

7.1.6 Advantages and Disadvantages of OOD
As is true for any other technique, OOD has its own peculiar set of
advantages and disadvantages. We briefly review these in the
following.

Advantages of OOD
In the last couple of decades since OOD has come into existence, it has
found widespread acceptance in industry as well as in academic circles.
The main reason for the popularity of OOD is that it holds out the
following promises:

Code and design reuse
Increased productivity
Ease of testing and maintenance
Better code and design understandability enabling development of
large programs

Out of all the above mentioned advantages, it is usually agreed that the
chief advantage of OOD is improved productivity—which comes about due to
a variety of factors, such as the following:

Code reuse by the use of predeveloped class libraries
Code reuse due to inheritance
Simpler and more intuitive abstraction, i.e., better management of
inherent problem and code complexity
Better problem decomposition

Several research results indicate that when companies start to develop
software using the object-oriented paradigm, the first few projects incur
higher costs than the traditionally developed projects. This is possibly due to
getting used to a new technique and building up the class libraries that can
be reused in the subsequent projects. After completion of a few projects, cost

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

saving becomes possible. According to experience reports, well-established
object-oriented development environment can help to reduce development
costs by as much as 20 per cent to 50 per cent over a traditional
development environment.

Disadvantages of OOD
The following are some of the prominent disadvantages inherent to the
object paradigm:

The principles of abstraction, data hiding, inheritance, etc. do incur run
time overhead due to the additional code that gets generated on
account of these features. This causes an project-oriented program to
run a little slower than an equivalent procedural program.
An important consequence of object-orientation is that the data that is
centralised in a procedural implementation, gets scattered across
various objects in an object-oriented implementation. Therefore, the
spatial locality of data becomes weak and this leads to higher cache
miss ratios and consequently to larger memory access times. This
finally shows up as increased program run time.

As we can see, increased run time is the principal disadvantage of object-
orientation and higher productivity is the major advantage. In the present
times, computers have become remarkably fast, and a small run time
overhead is not an issue at all. Consequently, the advantages of OOD
overshadow the disadvantages.

7.2 UNIFIED MODELLING LANGUAGE (UML)
As the name itself implies, UML is a language for documenting models.
As is the case with any other language, UML has its syntax (a set of
basic symbols and sentence formation rules) and semantics (meanings
of basic symbols and sentences). It provides a set of basic graphical
notations (e.g. rectangles, lines, ellipses, etc.) that can be combined in
certain ways to document the design and analysis results.

It is important to remember that UML is neither a system design or
development methodology by itself, nor is tied to any specific methodology.
UML is merely a language for documenting models. Before the advent of UML,
every design methodology not only prescribed entirely different design steps,
but each was tied to some specific design modelling language. For example,

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

OMT methodology had its own design methodology and had its own unique
set of notations. So was the case with Booch’s methodology, and so on. This
situation made it hard for someone familiar with one methodology to
understand the design solutions developed and documented using another
methodology. In general, reuse of design solutions across different
methodologies was hard. UML was intended to address this problem that was
inherent to the modelling techniques that existed.

UML can be used to document object-oriented analysis and design results that have
been obtained using any methodology.

One of the objectives of the developers of UML was to keep the notations
of UML independent of any specific design methodology, so that it can be
used along with any specific design methodology. In this respect, UML is
different from its predecessors (e.g., OMT, Booch’s methodology, etc.) where
the notations supported by the modelling languages were closely tied to the
corresponding design methodologies.

7.2.1 Origin of UML
In the late eighties and early nineties, there was a proliferation of
object-oriented design techniques and notations. Many of these had
become extremely popular and were widely used. However, the
notations they used and the specific design paradigms that they
advocated, differed from each other in major ways. With so many
popular techniques to choose from, it was not very uncommon to find
different project teams in the same organisation using different
methodologies and documenting their object-oriented analysis and
design results using different notations. These diverse notations used
for documenting design solutions gave arise to a lot of confusion among
the team members and made it extremely difficult to reuse designs
across projects and communicating ideas across project teams.

UML was developed to standardise the large number of object-oriented
modelling notations that existed in the early nineties. The principal ones in
use those days include the following:

OMT [Rumbaugh 1991]
Booch’s methodology [Booch 1991]
OOSE [Jacobson 1992]
Odell’s methodology [Odell 1992]

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Shlaer and Mellor methodology[Shlaer 1992]

Needless to say that UML has borrowed many concepts from these
modeling techniques. Concepts and notations from especially the first three
methodologies have heavily been drawn upon. The influence of various object
modeling techniques on UML is shown schematically in Figure 7.12. As shown
in Figure 7.12, OMT had the most profound influence on UML.

Figure 7.12: Schematic representation of the impact of different object modelling techniques on UML.

UML was adopted by object management group (OMG) as a de facto
standard in 1997. Actually, OMG is not a standards formulating body, but is
an association of industries that tries to facilitate early formulation of
standards. OMG aims to promote consensus notations and techniques with
the hope that if the usage becomes wide-spread, then they would
automatically become standards. For more information on OMG, see
www.omg.org. With widespread use of UML, ISO adopted UML a standard
(ISO 19805) in 2005, and with this UML has become an official standard; this
has further enhanced the use of UML.

UML is more complex than its antecedents. This is only natural and
expected because it is intended to be more comprehensive and applicable to
a wider gamut of problems than any of the notations that existed before UML.
UML contains an extensive set of notations to help document several aspects
(views) of a design solution through many types of diagrams. UML has
successfully been used to model both large and small problems. The elegance
of UML, its adoption by OMG, and subsequently by ISO as well as a strong
industry backing have helped UML to find wide spread acceptance. UML is
now being used in academic and research institutions as well as in large

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

http://www.omg.org/

number of software development projects world-wide. It is interesting to note
that the use of UML is not restricted to the software industry alone. As an
example of UML’s use outside the software development problems, some car
manufacturers are planning to use UML for their “build-to-order” initiative.

Many of the UML notations are difficult to draw by hand on a paper and are
best drawn using a CASE tool such as Rational Rose© (see www.rational.com
) or MagicDraw (www.magicdraw.com). Now several free UML CASE tools
are also available on the web. Most of the available CASE tools help to refine
an initial object model to final design, and these also automatically generate
code templates in a variety of languages, once the UML models have been
constructed.

7.2.2 Evolution of UML
Since the release of UML 1.0 in 1997, UML continues to evolve (see Figure
7.13) with feedback from practitioners and academicians to make it
applicable to different system development situations. Almost every year
several new releases (shown as UML 1.X in Figure 7.13) were announced. A
major milestone in the evolution of UML was the release of UML 2.0 in the
year 2007. Since the use of embedded applications is increasing rapidly, there
was popular demand to extend UML to support the special concepts and
notations required to develop embedded applications. UML 2.0 was an
attempt to make UML applicable to the development of concurrent and
embedded systems. For this, many new features such as events, ports, and
frames in sequence diagrams were introduced. We briefly discuss these
developments in this chapter.

Figure 7.13: Evolution of UML.

What is a model?

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Before we discuss the features of UML in detail, it is important to understand
what exactly is meant by a model, and why is it necessary to create a model.

A model is an abstraction of a real problem (or situation), and is constructed by
leaving out unnecessary details. This reduces the problem complexity and makes it
easy to understand the problem (or situation).

A model is a simplified version of a real system. It is useful to think of a
model as capturing aspects important for some application while omitting (or
abstracting out) the rest. As we had already pointed out in Chapter 1, as the
size of a problem increases, the perceived complexity increases exponentially
due to human cognitive limitations. Therefore, to develop a good
understanding of any problem, it is necessary to construct a model of the
problem. Modelling has turned out to be a very essential tool in software
design and helps to effectively handle the complexity in a problem. These
models that are first constructed are the models of the problem. A design
methodology essentially transform these analysis models into a design model
through iterative refinements.

Different types of models are obtained based on the specific aspects of the
actual system that are ignored while constructing the model. To understand
this, let us consider the models constructed by an architect of a large
building. While constructing the frontal view of a large building (elevation
plan), the architect ignores aspects such as floor plan, strength of the walls,
details of the inside architecture, etc. While constructing the floor plan, he
completely ignores the frontal view (elevation plan), site plan, thermal and
lighting characteristics, etc. of the building.

A model in the context of software development can be graphical, textual,
mathematical, or program code-based. Graphical models are very popular
because they are easy to understand and construct. UML is primarily a
graphical modeling tool. However, there are certain modelling situations
(discussed later in this Chapter), for which in addition to the graphical UML
models, separate textual explanations are required to accompany the
graphical models.

Why construct a model?
An important reason behind constructing a model is that it helps to
manage the complexity in a problem and facilitates arriving at good
solutions and at the same time helps to reduce the design costs. The
initial model of a problem is called an analysis model. The analysis
model of a problem can be refined into a design model using a design

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

methodology. Once models of a system have been constructed, these
can be used for a variety of purposes during software development,
including the following:

Analysis
Specification
Design
Coding
Visualisation and understanding of an implementation.
Testing, etc.

Since a model can be used for a variety of purposes, it is reasonable to
expect that the models would vary in detail depending on the purpose for
which these are being constructed. For example, a model developed for initial
analysis and specification should be very different from the one used for
design. A model that is constructed for analysis and specification would not
show any of the design decisions that would be made later on during the
design stage. On the other hand, a model constructed for design purposes
should capture all the design decisions. Therefore, it is a good idea to
explicitly mention the purpose for which a model has been developed.

We now discuss the different types of UML diagrams and the notations used
to develop these diagrams.

7.3 UML DIAGRAMS
In this section, we discuss the diagrams supported by UML 1.0. Later in
Section 7.9.2, we discuss the changes to UML 1.0 brought about by UML 2.0.
UML 1.0 can be used to construct nine different types of diagrams to capture
five different views of a system. Just as a building can be modelled from
several views (or perspectives) such as ventilation perspective, electrical
perspective, lighting perspective, heating perspective, etc.; the different UML
diagrams provide different perspectives of a software system to be developed
and facilitate a comprehensive understanding of the system. Each perspective
focuses on some specific aspect and ignores the rest. Some may ask, why
construct several models from different perspectives—why not just construct
one model that captures all perspectives? The answer to this is the following:

If a single model is made to capture all the required perspectives, then it would be as
complex as the original problem, and would be of little use.

Once a system has been modelled from all the required perspectives, the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Once a system has been modelled from all the required perspectives, the
constructed models can be refined to get the actual implementation of the
system.

UML diagrams can capture the following views (models) of a system:

User’s view
Structural view
Behaviourial view
Implementation view
Environmental view

Figure 7.14 shows the different views that the UML diagrams can
document. Observe that the users’ view is shown as the central view. This is
because based on the users’ view, all other views are developed and all views
need to conform to the user’s view. Most of the object oriented analysis and
design methodologies, including the one we are going to discuss in Chapter 8
require us to iterate among the different views several times to arrive at the
final design. We first provide a brief overview of the different views of a
system which can be documented using UML. In the subsequent sections, the
diagrams used to realize the important views are discussed.

Figure 7.14: Different types of diagrams and views supported in UML.

Users’ view

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

This view defines the functionalities made available by the system to its
users.

The users’ view captures the view of the system in terms of the functionalities offered
by the system to its users.

The users’ view is a black-box view of the system where the internal
structure, the dynamic behaviour of different system components, the
implementation etc. are not captured. The users’ view is very different from
all other views in the sense that it is a functional model1 compared to all
other views that are essentially object models.2

The users’ view can be considered as the central view and all other views
are required to conform to this view. This thinking is in fact the crux of any
user centric development style. It is indeed remarkable that even for object-
oriented development, we need a functional view. That is because, after all,
a user considers a system as providing a set of functionalities.

Structural view
The structural view defines the structure of the problem (or the solution) in
terms of the kinds of objects (classes) important to the understanding of the
working of a system and to its implementation. It also captures the
relationships among the classes (objects).

The structural model is also called the static model, since the structure of a system
does not change with time.

Behaviourial view
The behaviourial view captures how objects interact with each other in
time to realise the system behaviour. The system behaviour captures
the time-dependent (dynamic) behaviour of the system. It therefore
constitutes the dynamic model of the system.

Implementation view
This view captures the important components of the system and their
interdependencies. For example, the implementation view might show
the GUI part, the middleware, and the database part as the different
parts and also would capture their interdependencies.

Environmental view

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

This view models how the different components are implemented on
different pieces of hardware.

For any given problem, should one construct all the views using all the
diagrams provided by UML? The answer is No. For a simple system, the use
case model, class diagram, and one of the interaction diagrams may be
sufficient. For a system in which the objects undergo many state changes, a
state chart diagram may be necessary. For a system, which is implemented
on a large number of hardware components, a deployment diagram may be
necessary. So, the type of models to be constructed depends on the problem
at hand. Rosenberg provides an analogy [Ros 2000] saying that “Just like you
do not use all the words listed in the dictionary while writing a prose, you do
not use all the UML diagrams and modeling elements while modeling a
system.”

7.4 USE CASE MODEL
The use case model for any system consists of a set of use cases.

Intuitively, the use cases represent the different ways in which a system can be used
by the users.

A simple way to find all the use cases of a system is to ask the question
—“What all can the different categories of users do by using the system?”
Thus, for the library information system (LIS), the use cases could be:

• issue-book
• query-book
• return-book
• create-member
• add-book, etc.
Roughly speaking, the use cases correspond to the high-level functional

requirements that we discussed in Chapter 4. We can also say that the use
cases partition the system behaviour into transactions, such that each
transaction performs some useful action from the user’s point of view. Each
transaction, to complete, may involve multiple message exchanges between
the user and the system.

The purpose of a use case is to define a piece of coherent behaviour
without revealing the internal structure of the system. The use cases do not
mention any specific algorithm to be used nor the internal data
representation, internal structure of the software. A use case typically

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

involves a sequence of interactions between the user and the system. Even
for the same use case, there can be several different sequences of
interactions. A use case consists of one main line sequence and several
alternate sequences. The main line sequence represents the interactions
between a user and the system that normally take place. The mainline
sequence is the most frequently occurring sequence of interaction. For
example, in the mainline sequence of the withdraw cash use case supported
by a bank ATM would be—the user inserts the ATM card, enters password,
selects the amount withdraw option, enters the amount to be withdrawn,
completes the transaction, and collects the amount. Several variations to the
main line sequence (called alternate sequences) may also exist. Typically, a
variation from the mainline sequence occurs when some specific conditions
hold. For the bank ATM example, consider the following variations or
alternate sequences:

• Password is invalid.
• The amount to be withdrawn exceeds the account balance.
The mainline sequence and each of the alternate sequences corresponding

to the invocation of a use case is called a scenario of the use case.

A use case can be viewed as a set of related scenarios tied together by a common
goal. The main line sequence and each of the variations are called scenarios or
instances of the use case. Each scenario is a single path of user events and system
activity.

Normally, each use case is independent of the other use cases. However,
implicit dependencies among use cases may exist because of dependencies
that may exist among use cases at the implementation level due to factors
such as shared resources, objects, or functions. For example, in the Library
Automation System example, renew-book a nd reserve-book are two
independent use cases. But, in actual implementation of renew-book, a check
is to be made to see if any book has been reserved by a previous execution
of the reserve-book use case. Another example of dependence among use
cases is the following. In the Bookshop Automation Software, update-
inventory and sale-book are two independent use cases. But, during
execution of sale-book there is an implicit dependency on update-
inventory. Since when sufficient quantity is unavailable in the inventory,
sale-book cannot operate until the inventory is replenished using update-
inventory.

The use case model is an important analysis and design artifact. As already

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

mentioned, other UML models must conform to this model in any use case-
driven (also called as the user-centric) analysis and development approach. It
should be remembered that the “use case model” is not really an object-
oriented model according to a strict definition of the term.

In contrast to all other types of UML diagrams, the use case model represents a
functional or process model of a system.

7.4.1 Representation of Use Cases
A use case model can be documented by drawing a use case diagram
and writing an accompanying text elaborating the drawing. In the use
case diagram, each use case is represented by an ellipse with the name
of the use case written inside the ellipse. All the ellipses (i.e. use cases)
of a system are enclosed within a rectangle which represents the
system boundary. The name of the system being modeled (e.g., library
information system) appears inside the rectangle.

The different users of the system are represented by using stick person
icons. Each stick person icon is referred to as an actor. 3 An actor is a role
played by a user with respect to the system use. It is possible that the same
user may play the role of multiple actors. An actor can participate in one or
more use cases. The line connecting an actor and the use case is called the
communication relationship. It indicates that an actor makes use of the
functionality provided by the use case.

Both human users and external systems can be represented by stick person
icons. When a stick person icon represents an external system, it is annotated
by the stereotype <<external system>>.

At this point, it is necessary to explain the concept of a stereotype in UML.
One of the main objectives of the creators of the UML was to restrict the
number of primitive symbols in the language. It was clear to them that when
a language has a large number of primitive symbols, it becomes very difficult
to learn use. To convince yourself, consider that English with 26 alphabets is
much easier to learn and use compared to the Chinese language that has
thousands of symbols. In this context, the primary objective of stereotype is
to reduce the number of different types of symbols that one needs to learn.

The stereotype construct when used to annotate a basic symbol, can give slightly
different meaning to the basic symbol— thereby eliminating the need to have several
symbols whose meanings differ slightly from each other.

Just as you stereotype your friends as studious, jovial, serious, etc.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Just as you stereotype your friends as studious, jovial, serious, etc.
stereotyping can be used to give special meaning to any basic UML construct.
We shall, later on, see how other UML constructs can be stereotyped. We can
stereotype the stick person icon symbol to denote an external system. If the
developers of UML had assigned a separate symbol to denote things such as
an external system, then the number of basic symbols one would have to
learn and remember while using UML would have increased significantly. This
would have certainly made learning and using UML much more difficult.

You can draw a rectangle around the use cases, called the system
boundary box, to indicates the scope of your system. Anything within the box
represents functionality that is in scope and anything outside the box is not.
However, drawing the system boundary is optional.

We now give a few examples to illustrate how use cases of a system can be
documented.
Example 7 .2 The use case model for the Tic-tac-toe game software is
shown in Figure 7.15. This software has only one use case, namely, “play
move”. Note that we did not name the use case “get-user-move”, as “get-
user-move” would be inappropriate because this would represent the
developer’s perspective of the use case. The use cases should be named from
the users’ perspective.

Figure 7.15: Use case model for Example 7.2.

Text description
Each ellipse in a use case diagram, by itself conveys very little
information, other than giving a hazy idea about the use case.
Therefore, every use case diagram should be accompanied by a text
description. The text description should define the details of the
interaction between the user and the computer as well as other
relevant aspects of the use case. It should include all the behaviour

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

associated with the use case in terms of the mainline sequence, various
alternate sequences, the system responses associated with the use
case, the exceptional conditions that may occur in the behaviour, etc.
The behaviour description is often written in a conversational style
describing the interactions between the actor and the system. The text
description may be informal, but some structuring is helpful. The
following are some of the information which may be included in a use
case text description in addition to the mainline sequence, and the
alternate scenarios.

Contact persons: This section lists of personnel of the client organisation
with whom the use case was discussed, date and time of the meeting, etc.
Actors: In addition to identifying the actors, some information about actors
using a use case which may help the implementation of the use case may be
recorded.
Pre-condition: The preconditions would describe the state of the system
before the use case execution starts.
Post-condition: This captures the state of the system after the use case has
successfully completed.
Non-functional requiremen t s : This could contain the important
constraints for the design and implementation, such as platform and
environment conditions, qualitative statements, response time requirements,
etc.
Exceptions, error situations: This contains only the domain-related errors
such as lack of user’s access rights, invalid entry in the input fields, etc.
Obviously, errors that are not domain related, such as software errors, need
not be discussed here.
Sample dialogs: These serve as examples illustrating the use case.
Specific user interface requiremen t s : These contain specific
requirements for the user interface of the use case. For example, it may
contain forms to be used, screen shots, interaction style, etc.
Document references: This part contains references to specific domain-
related documents which may be useful to understand the system operation.
Example 7.3 The use case diagram of the Super market prize scheme
described in example 6.3 is shown in Figure 7.16.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 7.16: Use case model for Example 7.3.

Text description
U1: register-customer: Using this use case, the customer can register
himself by providing the necessary details.

Scenario 1: Mainline sequence
1. Customer: select register customer option
2 . System: display prompt to enter name, address, and

telephone number.
3. Customer: enter the necessary values
4: System: display the generated id and the message that

the customer has successfully been registered.

Scenario 2: At step 4 of mainline sequence
4 : System: displays the message that the customer has

already registered.

Scenario 3: At step 4 of mainline sequence
4 : System: displays message that some input information

have not been entered. The system displays a prompt to
enter the missing values.

U2: register-sales: Using this use case, the clerk can register the details of
the purchase made by a customer.
Scenario 1: Mainline sequence

1. Clerk: selects the register sales option.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

2. System: displays prompt to enter the purchase details
and the id of the customer.

3. Clerk: enters the required details.
4 : System: displays a message of having successfully

registered the sale.

U3: select-winners. Using this use case, the manager can generate the
winner list.
Scenario 2: Mainline sequence

1. Manager: selects the select-winner option.
2 . System: displays the gold coin and the surprise gift

winner list.

7.4.2 Why Develop the Use Case Diagram?
If you examine a use case diagram, the utility of the use cases
represented by the ellipses would become obvious. They along with the
accompanying text description serve as a type of requirements
specification of the system and the model based on which all other
models are developed. In other words, the use case model forms the
core model to which all other models must conform. But, what about
the actors (stick person icons)? What way are they useful to system
development? One possible use of identifying the different types of
users (actors) is in implementing a security mechanism through a login
system, so that each actor can invoke only those functionalities to
which he is entitled to. Another important use is in designing the user
interface in the implementation of the use case targetted for each
specific category of users who would use the use case. Another possible
use is in preparing the documentation (e.g. users’ manual) targeted at
each category of user. Further, actors help in identifying the use cases
and understanding the exact functioning of the system.

7.4.3 How to Identify the Use Cases of a System?
Identification of the use cases involves brain storming and reviewing the
SRS document. Typically, the high-level requirements specified in the
SRS document correspond to the use cases. In the absence of a well-
formulated SRS document, a popular method of identifying the use
cases is actor-based. This involves first identifying the different types of
actors and their usage of the system. Subsequently, for each actor the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

different functions that they might initiate or participate are identified.
For example, for a Library Automation System, the categories of users
can be members, librarian, and the accountant. Each user typically
focuses on a set of functionalities. Foe example, the member typically
concerns himself with book issue, return, and renewal aspects. The
librarian concerns himself with creation and deletion of the member and
book records. The accountant concerns itself with the amount collected
from membership fees and the expenses aspects.

7.4.4 Essential Use Case versus Real Use Case
Essential use cases are created during early requirements elicitation.
These are also early problem analysis artifacts. They are independent
of the design decisions and tend to be correct over long periods of time.

Real use cases describe the functionality of the system in terms of its actual
current design committed to specific input/output technologies. Therefore,
the real use cases can be developed only after the design decisions have
been made. Real use cases are a design artifact. However, sometimes
organisations commit to development contracts that include the detailed user
interface specifications. In such cases, there is no distinction between the
essential use case and the real use case.

7.4.5 Factoring of Commonality among Use Cases
It is often desirable to factor use cases into component use cases. All use
cases need not be factored. In fact, factoring of use cases are required
under two situations as follows:

Complex use cases need to be factored into simpler use cases. This
would not only make the behaviour associated with the use case much
more comprehensible, but also make the corresponding interaction
diagrams more tractable. Without decomposition, the interaction
diagrams for complex use cases may become too large to be
accommodated on a single standard-sized (A4) paper.
Use cases need to be factored whenever there is common behaviour
across different use cases. Factoring would make it possible to define
such behaviour only once and reuse it wherever required.

It is desirable to factor out common usage such as error handling from a set
of use cases. This makes analysis of the class design much simpler and

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

elegant. However, a word of caution here. Factoring of use cases should not
be done except for achieving the above two objectives. From the design point
of view, it is not advantageous to break up a use case into many smaller
parts just for the sake of it. UML offers three factoring mechanisms as
discussed further.

Generalisation
Use case generalisation can be used when you have one use case that is
similar to another, but does something slightly differently or something more.
Generalisation works the same way with use cases as it does with classes.
The child use case inherits the behaviour and meaning of the present use
case. The notation is the same too (See Figure 7.17). It is important to
remember that the base and the derived use cases are separate use cases
and should have separate text descriptions.

Figure 7.17: Representation of use case generalisation.

Includes
The includes relationship in the older versions of UML (prior to UML 1.1)
was known as the uses relationship. The includes relationship implies
one use case includes the behaviour of another use case in its sequence
of events and actions. The includes relationship is appropriate when you
have a chunk of behaviour that is similar across a number of use cases.
The factoring of such behaviour will help in not repeating the
specification and implementation across different use cases. Thus, the
includes relationship explores the issue of reuse by factoring out the
commonality across use cases. It can also be gainfully employed to

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

decompose a large and complex use case into more manageable parts.
As shown in Figure 7.18, the includes relationship is represented using a

predefined stereotype <<include>>. In the includes relationship, a base use
case compulsorily and automatically includes the behaviour of the common
use case. As shown in example Figure 7.19, the use cases issue-book and
renew-book both include check-reservation use case. The base use
case may include several use cases. In such cases, it may interleave their
associated common use cases together. The common use case becomes a
separate use case and independent text description should be provided for it.

Figure 7.18: Representation of use case inclusion.

Figure 7.19: Example of use case inclusion.

Extends
The main idea behind the extends relationship among use cases is that it
allows you show optional system behaviour. An optional system behaviour is
executed only if certain conditions hold, otherwise the optional behaviour is
not executed. This relationship among use cases is also predefined as a
stereotype as shown in Figure 7.20.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 7.20: Example of use case extension.

T h e extends relationship is similar to generalisation. But unlike
generalisation, the extending use case can add additional behaviour only at
an extension point only when certain conditions are satisfied. The extension
points are points within the use case where variation to the mainline
(normal) action sequence may occur. The extends relationship is normally
used to capture alternate paths or scenarios.

Organisation
When the use cases are factored, they are organised hierarchically. The high-
level use cases are refined into a set of smaller and more refined use cases
as shown in Figure 7.21. Top-level use cases are super-ordinate to the refined
use cases. The refined use cases are sub-ordinate to the top-level use cases.
Note that only the complex use cases should be decomposed and organised
in a hierarchy. It is not necessary to decompose the simple use cases.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 7.21: Hierarchical organisation of use cases.

The functionality of a super-ordinate use case is traceable to its
subordinate use cases. Thus, the functionality provided by the super-ordinate
use cases is composite of the functionality of the sub-ordinate use cases.

At the highest level of the use case model, only the fundamental use cases
are shown. The focus is on the application context. Therefore, this level is
also referred to as the context diagram. In the context diagram, the system
limits are emphasised. In the top-level diagram, only those use cases with
which external users interact are shown. The topmost use cases specify the
complete services offered by the system to the external users of the system.
The subsystem-level use cases specify the services offered by the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

subsystems. Any number of levels involving the subsystems may be utilized.
In the lowest level of the use case hierarchy, the class-level use cases specify
the functional fragments or operations offered by the classes.

7.4.6 USE CASE PACKAGING
Packaging is the mechanism provided by UML to handle complexity. When we
have too many use cases in the top-level diagram, we can package the
related use cases so that at best 6 or 7 packages are present at the top level
diagram. Any modeling element that becomes large and complex can be
broken up into packages. Please note that you can put any element of UML
(including another package) in a package diagram. The symbol for a package
is a folder. Just as you organise a large collection of documents in a folder,
you organise UML elements into packages. An example of packaging use
cases is shown in Figure 7.22.

Figure 7.22: Use case packaging.

7.5 CLASS DIAGRAMS
A class diagram describes the static structure of a system. It shows how
a system is structured rather than how it behaves. The static structure
of a system comprises a number of class diagrams and their
dependencies. The main constituents of a class diagram are classes and

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

their relationships—generalisation, aggregation, association, and
various kinds of dependencies. We now discuss the UML syntax for
representation of the classes and their relationships.

Classes
The classes represent entities with common features, i.e., attributes and
operations. Classes are represented as solid outline rectangles with
compartments. Classes have a mandatory name compartment where
the name is written centered in boldface. The class name is usually
written using mixed case convention and begins with an uppercase (e.g.
LibraryMember). Object names on the other hand, are written using a
mixed case convention, but starts with a small case letter (e.g.,
studentMember). Class names are usually chosen to be singular
nouns. An example of various representations of a class are shown in
Figure 7.23.

Classes have optional attributes and operations compartments. A class may
appear on several diagrams. Its attributes and operations are suppressed on
all but one diagram. But, one may wonder why there are so many
representations for a class! The answer is that these different notations are
used depending on the amount of information about a class is available. At
the start of the design process, only the names of the classes is identified.
This is the most abstract representation for the class. Later in the design
process the methods for the class and the attributes are identified and the
other more concrete notations are used.

Figure 7.23: Different representations of the LibraryMember class.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Attributes
An attribute is a named property of a class. It represents the kind of data
that an object might contain. Attributes are listed with their names, and
may optionally contain specification of their type (that is, their class,
e.g., Int, Book, Employee, etc.), an initial value, and constraints.
Attribute names are written left-justified using plain type letters, and
the names should begin with a lower case letter.

Attribute names may be followed by square brackets containing a
multiplicity expression, e.g. sensorStatus[10]. The multiplicity expression
indicates the number of attributes per instance of the class. An attribute
without square brackets must hold exactly one value. The type of an attribute
is written by following the attribute name with a colon and the type name,
(e.g., sensorStatus[1]:Int).

The attribute name may be followed by an initialisation expression. The
initialisation expression can consist of an equal sign and an initial value that
is used to initialise the attributes of the newly created objects, e.g.
sensorStatus[1]:Int=0.
Operation: The operation names are typically left justified, in plain type, and
always begin with a lower case letter. Abstract operations are written in
italics.4 (Remember that abstract operations are those for which the
implementation is not provided during the class definition.) The parameters
of a function may have a kind specified. The kind may be “in” indicating that
the parameter is passed into the operation; or “out” indicating that the
parameter is only returned from the operation; or “inout” indicating that the
parameter is used for passing data into the operation and getting result from
the operation. The default is “in”.

An operation may have a return type consisting of a single return type
expression, e.g., issueBook(in bookName):Boolean. An operation may have a
class scope (i.e., shared among all the objects of the class) and is denoted by
underlining the operation name.

Often a distinction is made between the terms operation and method. An
operation is something that is supported by a class and invoked by objects of
other classes. There can be multiple methods implementing the same
operation. We have pointed out earlier that this is called static polymorphism.
The method names can be the same; however, it should be possible to
distinguish among the methods by examining their parameters. Thus, the
t e rms opera t ion a n d method are distinguishable only when there is

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

polymorphism. When there is only a single method implementing an
operation, the terms method and operation are indistinguishable and can be
used interchangeably.

Association
Association between two classes is represented by drawing a straight line
between the concerned classes. Figure 7.24 illustrates the graphical
representation of the association relation. The name of the association is
written along side the association line. An arrowhead may be placed on the
association line to indicate the reading direction of the association. The
arrowhead should not be misunderstood to be indicating the direction of a
pointer implementing an association. On each side of the association relation,
the multiplicity is noted as an individual number or as a value range. The
multiplicity indicates how many instances of one class are associated with the
other. Value ranges of multiplicity are noted by specifying the minimum and
maximum value, separated by two dots, e.g. 1..5. An asterisk is used as a
wild card and means many (zero or more). The association of Figure 7.24
should be read as “Many books may be borrowed by a LibraryMember”.
Usually, associations (and links) appear as verbs in the problem statement.

Figure 7.24: Association between two classes.

Associations are usually realised by assigning appropriate reference
attributes to the classes involved. Thus, associations can be implemented
using pointers from one object class to another. Links and associations can
also be implemented by using a separate class that stores which objects of a
class are linked to which objects of another class. Some CASE tools use the
role names of the association relation for the corresponding automatically
generated attribute.

Aggregation
Aggregation is a special type of association relation where the involved
classes are not only associated to each other, but a whole-part
relationship exists between them. That is, the aggregate object not
only knows the addresses of its parts and therefore invoke the methods
of its parts, but also takes the responsibility of creating and destroying

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

its parts. An example of aggregation, a book register is an aggregation
of book objects. Books can be added to the register and deleted as and
when required.

Aggregation is represented by an empty diamond symbol at the aggregate
end of a relationship. An example of the aggregation relationship has been
shown in Fig 7.25. The figure represents the fact that a document can be
considered as an aggregation of paragraphs. Each paragraph can in turn be
considered as aggregation of lines. Observe that the number 1 is annotated
at the diamond end, and a * is annotated at the other end. This means that
one document can have many paragraphs. On the other hand, if we wanted
to indicate that a document consists of exactly 10 paragraphs, then we would
have written number 10 in place of the (*).

The aggregation relationship cannot be reflexive (i.e. recursive). That is, an
object cannot contain objects of the same class as itself. Also, the
aggregation relation is not symmetric. That is, two classes A and B cannot
contain instances of each other. However, the aggregation relationship can
be transitive. In this case, aggregation may consist of an arbitrary number of
levels. As an example of a transitive aggregation relationship, please see
Figure 7.25.

Figure 7.25: Representation of aggregation.

Composition
Composition is a stricter form of aggregation, in which the parts are
existence-dependent on the whole. This means that the life of the parts
cannot exist outside the whole. In other words, the lifeline of the whole
and the part are identical. When the whole is created, the parts are
created and when the whole is destroyed, the parts are destroyed.

A typical example of composition is an order object where after placing the
order, no item in the order cannot be changed. If any changes to any of the
order items are required after the order has been placed, then the entire
order has to be cancelled and a new order has to be placed with the changed
items. In this case, as soon as an order object is created, all the order items
in it are created and as soon as the order object is destroyed, all order items
in it are also destroyed. That is, the life of the components (order items) is
the same as the aggregate (order). The composition relationship is

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

represented as a filled diamond drawn at the composite-end. An example of
the composition relationship is shown in Figure 7.26.

Figure 7.26: Representation of composition.

Aggregation versus Composition: Both aggregation and composition
represent part/whole relationships. When the components can dynamically be
added and removed from the aggregate, then the relationship is aggregation.
If the components cannot be dynamically added/delete then the components
are have the same life time as the composite. In this case, the relationship is
represented by composition.

As an example, consider the example of an order consisting many order
items. If the order once placed, the items cannot be changed at all. In this
case, the order is a composition of order items. However, if order items can
be changed (added, delete, and modified) after the order has been placed,
then aggregation relation can be used to model it.

Inheritance
The inheritance relationship is represented by means of an empty arrow
pointing from the subclass to the superclass. The arrow may be directly
drawn from the subclass to the superclass. Alternatively, when there
are many subclasses of a base class, the inheritance arrow from the
subclasses may be combined to a single line (see Figure 7.27) and is
labelled with the aspect of the class that is abstracted.

The direct arrows allow flexibility in laying out the diagram and can easily
be drawn by hand. The combined arrows emphasise the collectivity of the
subclasses, when specialisation has been done on the basis of some
discriminator. In the example of Figure 7.27, issuable and reference are the
discriminators. The various subclasses of a superclass can then be
differentiated by means of the discriminator. The set of subclasses of a class
having the same discriminator is called a partition. It is often helpful to
mention the discriminator during modelling, as these become documented
design decisions.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 7.27: Representation of the inheritance relationship.

Dependency
A dependency relationship is shown as a dotted arrow (see Figure 7.28)
that is drawn from the dependent class to the independent class.

Figure 7.28: Representation of dependence between classes.

Constraints
A constraint describes a condition or an integrity rule. Constraints are
typically used to describe the permissible set of values of an attribute,
to specify the pre- and post-conditions for operations, to define certain
ordering of items, etc. For example, to denote that the books in a
library are sorted on ISBN number we can annotate the book class with
the constraint

{sorted}. UML allows you to use any free form expression to describe
constraints. The only rule is that they are to be enclosed within braces.
Constraints can be expressed using informal English. However, UML also
provides object constraint language (OCL) to specify constraints. In OCL the
constraints are specified a semi-formal language, and therefore it is more
amenable to automatic processing as compared to the informal constraints
enclosed within {}. The interested reader is referred to [Rumbaugh1999].

Object diagrams
Object diagrams shows the snapshot of the objects in a system at a point in

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

time. Since it shows instances of classes, rather than the classes themselves,
it is often called as an instance diagram. The objects are drawn using
rounded rectangles (see Figure 7.29).

Figure 7.29: Different representations of a LibraryMember object.

An object diagram may undergo continuous change as execution proceeds.
For example, links may get formed between objects and get broken. Objects
may get created and destroyed, and so on. Object diagrams are useful to
explain the working of a system.

7.6 INTERACTION DIAGRAMS
When a user invokes one of the functions supported by a system, the
required behaviour is realised through the interaction of several objects in the
system. Interaction diagrams, as their name itself implies, are models that
describe how groups of objects interact among themselves through message
passing to realise some behaviour.

Typically, each interaction diagram realises the behaviour of a single use case.

Sometimes, especially for complex use cases, more than one interaction
diagrams may be necessary to capture the behaviour. An interaction diagram
shows a number of example objects and the messages that are passed
between the objects within the use case.

There are two kinds of interaction diagrams—sequence diagrams and
collaboration diagrams. These two diagrams are equivalent in the sense that

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

any one diagram can be derived automatically from the other. However, they
are both useful. These two actually portray different perspectives of
behaviour of a system and different types of inferences can be drawn from
them. The interaction diagrams play a major role in any effective object-
oriented design process. We discuss this issue in Chapter 8.

Sequence diagram
A sequence diagram shows interaction among objects as a two
dimensional chart. The chart is read from top to bottom. The objects
participating in the interaction are shown at the top of the chart as
boxes attached to a vertical dashed line. Inside the box the name of the
object is written with a colon separating it from the name of the class
and both the name of the object and the class are underlined. This
signifies that we are referring any arbitrary instance of the class. For
example, in Figure 7.30 :Book represents any arbitrary instance of the
Book class.

An object appearing at the top of the sequence diagram signifies that the
object existed even before the time the use case execution was initiated.
However, if some object is created during the execution of the use case and
participates in the interaction (e.g., a method call), then the object should be
shown at the appropriate place on the diagram where it is created.

The vertical dashed line is called the object’s lifeline. Any point on the
lifeline implies that the object exists at that point. Absence of lifeline after
some point indicates that the object ceases to exist after that point in time,
particular point of time. Normally, at the point if an object is destroyed, the
lifeline of the object is crossed at that point and the lifeline for the object is
not drawn beyond that point. A rectangle called the activation symbol is
drawn on the lifeline of an object to indicate the points of time at which the
object is active. Thus an activation symbol indicates that an object is active
as long as the symbol (rectangle) exists on the lifeline. Each message is
indicated as an arrow between the lifelines of two objects. The messages are
shown in chronological order from the top to the bottom. That is, reading the
diagram from the top to the bottom would show the sequence in which the
messages occur.

Each message is labelled with the message name. Some control
information can also be included. Two important types of control information
are:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

A condition (e.g., [invalid]) indicates that a message is sent, only if the
condition is true.
An iteration marker shows that the message is sent many times to
multiple receiver objects as would happen when you are iterating over
a collection or the elements of an array. You can also indicate the basis
of the iteration, e.g., [for every book object].

Figure 7.30: Sequence diagram for the renew book use case

The sequence diagram for the book renewal use case for the Library
Automation Software is shown in Figure 7.30. Observe that the exact objects
which participate to realise the renew book behaviour and the order in which
they interact can be clearly inferred from the sequence diagram. The
development of the sequence diagram in the development methodology
(discussed in Chapter 8) would help us to determine the responsibilities that
must be assigned to the different classes; i.e., what methods should be
supported by each class.

Collaboration diagram
A collaboration diagram shows both structural and behavioural aspects

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

explicitly. This is unlike a sequence diagram which shows only the
behavioural aspects. The structural aspect of a collaboration diagram
consists of objects and links among them indicating association. In this
diagram, each object is also called a collaborator. The behavioural
aspect is described by the set of messages exchanged among the
different collaborators.

The link between objects is shown as a solid line and can be used to send
messages between two objects. The message is shown as a labelled arrow
placed near the link. Messages are prefixed with sequence numbers because
they are the only way to describe the relative sequencing of the messages in
this diagram.

The collaboration diagram for the example of Figure 7.30 is shown in Figure
7.31. Use of the collaboration diagrams in our development process would be
to help us to determine which classes are associated with which other
classes.

Figure 7.31: Collaboration diagram for the renew book use case.

7.7 ACTIVITY DIAGRAM
The activity diagram is possibly one modelling element which was not
present in any of the predecessors of UML. No such diagrams were
present either in the works of Booch, Jacobson, or Rumbaugh. It has
possibly been based on the event diagram of Odell [1992] though the
notation is very different from that used by Odell.

The activity diagram focuses on representing various activities or chunks of
processing and their sequence of activation. The activities in general may not

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

correspond to the methods of classes. An activity is a state with an internal
action and one or more outgoing transitions which automatically follow the
termination of the internal activity. If an activity has more than one outgoing
transitions, then exact situation under which each is executed must be
identified through appropriate conditions.

Activity diagrams are similar to the procedural flow charts. The main
difference is that activity diagrams support description of parallel activities
and synchronisation aspects involved in different activities.

Parallel activities are represented on an activity diagram by using swim
lanes. Swim lanes enable you to group activities based on who is performing
them, e.g., academic department vs. hostel office. Thus swim lanes subdivide
activities based on the responsibilities of some components. The activities in
a swim lanes can be assigned to some model elements, e.g. classes or some
component, etc. For example, in Figure 7.32 the swim lane corresponding to
the academic section, the activities that are carried out by the academic
section and the specific situation in which these are carried out are shown.

Figure 7.32: Activity diagram for student admission procedure at IIT.

Activity diagrams are normally employed in business process modelling.
This is carried out during the initial stages of requirements analysis and
specification. Activity diagrams can be very useful to understand complex

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

processing activities involving the roles played by many components. Besides
helping the developer to understand the complex processing activities, these
diagrams can also be used to develop interaction diagrams which help to
allocate activities (responsibilities) to classes.

The student admission process in IIT is shown as an activity diagram in
Figure 7.32. This shows the part played by different components of the
Institute in the admission procedure. After the fees are received at the
account section, parallel activities start at the hostel office, hospital, and the
Department. After all these activities complete (this is a synchronisation issue
and is represented as a horizontal line), the identity card can be issued to a
student by the Academic section.

7.8 STATE CHART DIAGRAM
A state chart diagram is normally used to model how the state of an
object changes in its life time. State chart diagrams are good at
describing how the behaviour of an object changes across several use
case executions. However, if we are interested in modelling some
behaviour that involves several objects collaborating with each other,
state chart diagram is not appropriate. We have already seen that such
behaviour is better modelled using sequence or collaboration diagrams.
State chart diagrams are based on the finite state machine (FSM)
formalism. An FSM consists of a finite number of states corresponding to
those of the object being modelled. The object undergoes state
changes when specific events occur. The FSM formalism existed long
before the object-oriented technology and has been used for a wide
variety of applications. Apart from modelling, it has even been used in
theoretical computer science as a generator for regular languages.

Why state chart?
A major disadvantage of the FSM formalism is the state explosion
problem. The number of states becomes too many and the model too
complex when used to model practical systems. This problem is
overcome in UML by using state charts. The state chart formalism was
proposed by David Harel [1990]. A state chart is a hierarchical model of
a system and introduces the concept of a composite state (also called
nested state).

Actions are associated with transitions and are considered to be processes
that occur quickly and are not interruptible. Activities are associated with

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

states and can take longer. An activity can be interrupted by an event.

Basic elements of a state chart
The basic elements of the state chart diagram are as follows:

Initial state: This represented as a filled circle.
Final state: This is represented by a filled circle inside a larger circle.
State: These are represented by rectangles with rounded corners.
Transition: A transition is shown as an arrow between two states. Normally,
the name of the event which causes the transition is places along side the
arrow. You can also assign a guard to the transition. A guard is a Boolean
logic condition. The transition can take place only if the guard evaluates to
true. The syntax for the label of the transition is shown in 3 parts—
[guard]event/action.

An example state chart for the order object of the Trade House Automation
software is shown in Figure 7.33. Observe that from Rejected order state,
there is an automatic and implicit transition to the end state. Such transitions
are called pseudo transitions.

7.9 POSTSCRIPT
UML has gained rapid acceptance among practitioners and academicians over
a short time and has proved its utility in arriving at good design solutions to
software development problems.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 7.33: State chart diagram for an order object.

In this text, we have kept our discussions on UML to a bare minimum and
have concentrated only on those aspects that are necessary to solve
moderate sized traditional software design problems.

Before concluding this chapter, we give an overview of some of the aspects
that we had chosen to leave out. We first discuss the package and
deployment diagrams. Since UML has undergone a significant change with the
release of UML 2.0 in 2003. We briefly mention the highlights of the
improvements brought about UML 2.0 over the UML 1.X which was our focus
so far. This significant revision was necessitated to make UML applicable to
the development of software for emerging embedded and telecommunication
domains.

7.9.1 Package, Component, and Deployment Diagrams
In the following subsections we provide a brief overview of the package,
component, and deployment diagrams:

Package diagram
A package is a grouping of several classes. In fact, a package diagram can be

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

used to group any UML artifacts. We had already discussed packaging of use
cases in Section 7.4.6. Packages are popular way of organising source code
files. Java packages are a good example which can be modelled using a
package diagram. Such package diagrams show the different class groups
(packages) and their inter dependencies. These are very useful to document
organisation of source files for large projects that have a large number of
program files. An example of a package diagram has been shown in Figure
7.34.

Figure 7.34: An example package diagram.

Note, that a package may contain further packages.

Component diagram
A component represents a piece of software that can be independently
purchased, upgraded, and integrated into an existing software. A
component diagram can be used to represent the physical structure of
an implementation in terms of the various components of the system. A
component diagram is typically used to achieve the following purposes:

• Organise source code to be able to construct executable releases.
• Specify dependencies among different components.
A package diagram can be used to provide a high-level view of each

component in terms the different classes it contains.

Deployment diagram
The deployment diagram shows the environmental view of a system.
That is, it captures the environment in which the software solution is
implemented. In other words, a deployment diagram shows how a

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

software system will be physically deployed in the hardware
environment. That is, which component will execute on which hardware
component and how they will they communicate with each other. Since
the diagram models the run time architecture of an application, this
diagram can be very useful to the system’s operation staff.

The environmental view provided by the deployment diagram is important
for complex and large software solutions that run on hardware systems
comprising multiple components. In this case, deployment diagram provides
an overview of how the different components are distributed among the
different hardware components of the system.

7.9.2 UML 2.0
UML 1.X lacked a few specialised capabilities that made it difficult to use
in some non- traditional domains. Some of the features that
prominently lacked in UML 1.X include lack of support for representation
of the following—concurrent execution of methods, development
domain, asynchronous messages, events, ports, and active objects. In
many applications, including the embedded and telecommunication
software development, capability to model timing requirements using a
timing diagram was urgently required to make UML applicable in these
important segments of software development. Further, certain changes
were required to support interoperability among UML-based CASE tools
using XML metadata interchange (XMI).

UML 2.0 defines thirteen types of diagrams, divided into three categories as
follows:
Structure diagrams: These include the class diagram, object diagram,
component diagram, composite structure diagram, package diagram, and
deployment diagram.
Behaviour diagrams: These diagrams include the use case diagram,
activity diagram, and state machine diagram.
Interaction diagrams: These diagrams include the sequence diagram,
communication diagram, timing diagram, and interaction overview diagram.
The collaboration diagram of UML 1.X has been renamed in UML 2.0 as
communication diagram. This renaming was necessary as the earlier name
was somewhat misleading, it shows the communications among the classes
during the execution of a use case rather than showing collaborative problem
solving.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Though a large number of new features have been introduced in UML 2.0
as compared to 1.X, in the following subsections, we discuss only two of the
enhancements in UML2.0 through combined fragments and composite
structure diagram.

Combined fragments in sequence diagrams
A combined fragment is a construct that has been introduced in UML 2.0
to allow description of various control and logic structures in a more
visually apparent and concise manner. It also allows representation of
concurrent execution behaviour such as that takes place in a
mutithreaded execution situation.

Let us now understand the anatomy of a combined fragment and its use. A
combined fragment divides a sequence diagram into a number of areas or
fragments that have different behaviour (see Figure 7.35). A combined
fragment appears over an area of a sequence diagram to make certain
control and logic aspects visually clear. As shown in Figure 7.35, a combined
fragment consists of many fragments and an operator shown at the top left
corner. Each fragment can be associated with a guard (a Boolean
expression). We now discuss these components of a combined fragment:
Fragment: A fragment in a sequence diagram is represented by a box, and
encloses a portion of the interactions within a sequence diagram. Each
fragment is also known as an interaction operand. An interaction operand
may contain an optional guard condition, which is also called an interaction
constraint. The behaviour specified in an interaction operand is executed only
if its guard condition evaluates to true.

Figure 7.35: Anatomy of a combined fragment in UML 2.0.

Operator: A combined fragment is associated with one operator called
interaction operator that is shown at the top left corner of the fragment.
The operator indicates the type of fragment. The type of logic operator
along with the guards in the fragment defines the behaviour of the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

combined fragment. A combined fragment can also contain nested
combined fragments or interaction uses containing additional
conditional structures that represent more complex structures that
affect the flow of messages.

Some of the important operators of a combined fragment are the following:
a l t: This operator indicates that among multiple fragments, only the one
whose guard is true will execute.
opt: An optional fragment that will execute only if the guard is true.
par: This operator indicated that various fragments can execute at the same
time.
loop: A loop operator indicates that the various fragments may execute
multiple times and the guard indicates the basis of iteration, meaning that
the execution would continue until the guard turns false.
region: It defines a critical region in which only one thread can execute.

An example of a combined fragment has been shown in Figure 7.36.

Composite structure diagram
The composite structure diagram lets you define how a class is defined
by a further structure of classes and the communication paths between
these parts. Some new core constructs such as parts, ports and
connectors are introduced.

Part: The concept of parts makes possible the description of the internal
structure of a class.
Port: The concept of a port makes it possible to describe connection points
formally. These are addressable, which means that signals can be sent to
them.
Connector: Connectors can be used to specify the communication links
between two or more parts.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 7.36: An example sequence diagram showing a combined fragment in UML 2.0.

SUMMARY

In this chapter, we first reviewed some important concepts associated
with object-orientation.
One of the primary advantages of object-orientation is increased
productivity of the software development team. The reason why
object-oriented projects achieve dramatically higher levels of
productivity can be attributed primarily due to reuse of predefined
classes and partly reuse achieved due to inheritance, and the
conceptual simplicity brought about by the object approach.
Object modelling is very important in analysing, designing, and
understanding systems. UML has rapidly gained popularity and is
poised to become a standard in object modelling.
UML can be used to construct five different views of a system using
nine different kinds of diagrams. However, it is not mandatory to
construct all views of a system using all types of diagrams in a
modelling effort. The types of models to be constructed depends on
the problem at hand.
We discussed the syntax and semantics of some important types of
diagrams which can be constructed using UML.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

In Chapter 8, we discuss an object-oriented system development
process that uses UML as a model documentation tool.

EXERCISES
1. Choose the correct option:

(a) The packing of data and functions into a single unit in a program is
known as:
(i) polymorphism
(ii) abstraction
(iii) encapsulation
(iv) inheritance

(b) Consider the statement—“An employee is either a worker or a
manager.” Assuming that Employee and Manager to be two classes,
what can be said about the relationship between these two classes?
(i) Association
(ii) Generalisation-specialisation
(iii) Containment
(iv) Polymorphism

(c) Which one of the following can be said about an abstract data type
(ADT):
(i) Same as an abstract class
(ii) A data type that cannot be instantiated
(iii) A data type that can only be used through the operations defined
on it
(iv) Same as a collection of data items

(d) Which of the following can be said to represent the relationship
between a class and its public parent class?
(i) ”...is a...”
(ii) ”...has a...”
(iii) ”...is implemented as a...”
(iv) ”...uses a...”

(e) Which of the following sentences most closely describes “multiple
inheritance”?
(i) Where two classes inherit from each other
(ii) When a base class has two or more derived classes
(iii) When a child class has two or more parent classes
(iv) When a child class has both an “is a” and a “has a” relationship
with its parent

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

class
(f) Which one of the following best characterised inheritance?

(i) It is same as encapsulation.
(ii) Aggregation of information.
(iii) Generalisation and specialisation.
(iv) Polymorphism

(g) How is inheritance useful?
(i) It prevents inherited properties from being lost
(ii) It minimises the amount of code which has to be written
(iii) It creates elegant tree structures
(iv) It divides objects up into useful classes

(h) Consider the sentence: A book has one or more pages. Which of the
following concepts characterise it best ?
(i) Inheritance
(ii) Specialisation
(iii) Association
(iv) Composition

(i) Which of the following indicated is a kind of relationship?
(i) Aggregation
(ii) Association
(iii) Dependency
(iv) Inheritance

(j) A sequence diagram is:
(i) A time-line illustrating a typical sequence of calls between object
function members
(ii) A call tree illustrating all possible sequences of calls between class
function
members
(iii) A time-line illustrating the changes in inheritance and instantiation
relationships between classes and objects over time
(iv) A tree illustrating inheritance and relationships between classes
(v) A directed acyclic graph illustrating inheritance and instantiation
relationships between classes and objects

(k) Which UML diagrams should you use when allocating use case
behaviour to classes?
(i) sequence and communication diagrams
(ii) use case and activity diagrams
(iii) sequence and activity diagrams

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(iv) class and composite structure diagrams
(l) Which of the following is a characteristic of a good object-oriented

design:
(i) Deep class hierarchy
(ii) Large number of methods per class
(iii) Large number of message exchanges per use case
(iv) Moderate number of methods per class

(m) How do abstract and concrete classes differ from each other?
(i) Abstract classes represent intangible concepts in the application
domain, whereas concrete classes represent physical things.
(ii) Abstract classes are superclasses, whereas concrete classes are
subclasses. (iii) Abstract classes have no instances, whereas concrete
classes have instances.
(iv) Abstract classes are a special type of concrete classes.

(n) Which one of the following false about encapsulation?
(i) Encapsulation helps in reuse since it is not necessary for other
developers to know how a software component works internally.
(ii) Encapsulation means that software components can work more
efficiently.
(iii) Encapsulation means that there is no need for software developers
to document their work.
(iv) Encapsulation hinders reuse.

2. With the help of a suitable example explain how the inheritance feature
of the object oriented paradigm helps in code reuse?

3. Can association relationship among classes be unary? If your answer is
“yes”, give an example of a unary association among classes. If your
answer is “no”, explain why such relationships cannot exist.

4. Is a class an abstract data type (ADT)? Justify your answer.
5. Give meaningful examples of each of the following types of relations

among classes. Only class diagram and a line of explanation is required
in each case.

(a) Single inheritance
(b) Multiple inheritance
(c) Association
(d) Aggregation
(e) Dependency

6. Consider the following sentences taken from various information
descriptions to software development problems. From an analysis of the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

sentences, identify the classes and relations among them that can be
inferred from the sentences. Represent your answer using UML class
diagrams:
(a) A square is a polygon

(b) Shyam is a student
(c) Every student has a name
(d) 100 paisa is one rupee
(e) Students live in hostels
(f) Every student is a member of the library
(g) A student can renew his borrowed books
(h) A college has many students
(i) A linked list consists of many nodes such that each node is a
successor of some node and is the predecessor of some node.

7. With the help of a suitable example explain how polymorphism helps in
developing easily maintainable and intuitively appealing code.

8. What do you understand by method overloading in the context of
object-oriented programming? How is method overloading useful?

9. Can C++ and Java be considered as pure object-oriented programming
languages? Justify your answer.

10. Explain the concept of dynamic binding as used in object-oriented
languages using a simple illustrative example. How is dynamic binding
useful program development?

11. What are the reasons behind the increased productivity that is noted
when a development team adopts the object-oriented paradigm as
against adopting a procedural paradigm?

12. Discuss the advantages and disadvantages of adopting an object-
oriented style of software development.

13. In the context of object-orientation, distinguish between an operation
and a method. Is it true that each operation must be implemented by a
unique method?

14. What is the difference between method overloading and method
overriding? Explain your answer by using a suitable example.

15. Inheritance and composition (object embedding) can be considered to
be similar in the sense that both require a copy of the component(base)
to be embedded(linked) in the compound(derived) object. Is it possible
to use object embedding (i.e., composite objects) to realise the features
of inheritance and vice versa ? Justify your answer by using suitable
examples.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

16. What do you understand by encapsulation and abstraction in the
context of object- orientation? How is encapsulation any different
compared to abstraction?

17. What is the difference between method overloading and method
overriding? Explain the mechanisms of method overloading and method
overriding using suitable examples.

18. What are the different system views that can be modelled using UML?
What are the different UML diagrams which can be used to capture each
of the views? Do you need to develop all the views of a system using all
the modelling diagrams supported by UML? Justify your answer.

19. What is the difference between a use case and a scenario? Identify at
least three scenarios of the withdraw cash use case of a bank ATM.

20. Why do you think UML requires several models from different
perspectives to be constructed—would it not be a good idea to have just
one model that captures all the required perspectives?

21. State TRUE o r FALSE of the following. Support your answer with
proper reasoning:
(a) An object oriented design cannot be implemented using a procedural

programming language.
(b) Any language directly supporting abstract data types (ADTs) can be

called as an object-oriented language.
(c) In contrast to an abstract class, a concrete class should define all its

data and methods in the class definition itself without inheriting any of
them.

(d) An object-oriented language can be used to implement function-
oriented designs.

(e) The inheritance relationship describes the has a relationship among
the classes.

(f) Inheritance feature of the object oriented paradigm helps in code
reuse.

(g) Inheritance relationship between two classes can be considered as a
generalisation- specialisation relationship.

(h) Object embedding (i.e., composite objects) can be used to realise
inheritance relationship.

(i) Aggregation relationship between classes is antisymmetric.
(j) The aggregation relationship can be recursively defined, i.e an object

can contain instances of itself.
(k) State chart diagrams in UML are normally used to model how some

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

behaviour of a system is realised through the co-operative actions of
several objects.

(l) Multiple inheritance is the feature by which many subclasses can
inherit features of one base class.

(m) Class diagrams developed using UML can serve as the functional
specification of a system.

(n) An important advantage of polymorphism is facilitation of reuse.
(o) A static object-oriented model should capture attributes and

methods of classes and in what order the different methods invoke
each other.

(p) In a UML class diagram, the aggregation relationship defines an
equivalence relationship an objects.

(q) Abstract classes and Interface classes (as used in UML, Java, etc.)
are equivalent concepts.

(r) The aggregation relationship can be considered to be a special type
of association relationship.

(s) The aggregation relationship can be reflexive.
(t) The aggregation relationship cannot be reflexive but is transitive.
(u) Normally, you use one interaction diagram per class to represent

how the behaviour of an object of the class changes over its life time.
(v) It is possible that more than one methods in a class implement the

same operation. (w) The chronological order of the messages in an
interaction diagram cannot be determined from an inspection of the
diagram.

(x) The interaction diagrams can be effectively used to describe how the
behaviour of an object changes across execution of several use cases.

(y) From the UML sequence diagram for a use case, it would be possible
to infer the various scenarios in the use case.

22. State TRUE o r FALSE of the following. Support your answer with
proper reasoning:
(a) An object-oriented program that does not use the inheritance

mechanism in the class definitions, cannot display dynamic binding.
(b) The inheritance mechanism can be thought of as providing feature

abstraction.
(c) A state chart diagram is useful for describing behaviour that involves

multiple objects cooperating with each other to achieve some
behaviour.

(d) The implementation of a use case in terms of specific method calls is

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

depicted in a sequence diagram.
(e) The terms method and operation are equivalent concepts and can be

used interchangeably.
(f) The effort to test and debug an object-oriented program can be

reduced by reducing the number of message exchanges among
objects.

23. What do you understand by the term encapsulation in the context of
software design?
What are the advantages of encapsulation?

24. What do you understand by data abstraction? How does data
abstraction help in reducing the coupling in a design solution?

25. What are the different types of relationships that might exist among
the classes in an object-oriented design? Give examples of each.

26. What do you understand by association relation among classes. Give
either real life or programming examples of unary, binary, and ternary
association among classes.

27. What do you mean by an abstract class? Give an example of an
abstract class. Abstract classes cannot have instances. What is then the
use of defining abstract classes?

28. What are the different types of models of a problem that can be
constructed using UML?
Why is it necessary to construct more than one type of model of a
problem?

29. (a) Point out the main differences between an object-oriented
language (e.g., C++) and a procedural language (e.g., C).
(b) Can an object-oriented design be implemented using a procedural
language? Can a traditional function-oriented design be implemented
using an object-oriented language? Write the reason behind your
answer.

30. What basic features a programming language needs to support in order
to be called as an object oriented language? How is an object oriented
programming language different from a traditional procedural
programming language such as C or PASCAL?

31. What is the difference between a use case and a scenario? Identify all
scenarios of the withdraw cash use case of a standard bank ATM.

32. What is the difference between a sequence diagram and a
collaboration diagram? In what context would you use each?

33. What is a stereotype in UML? Explain with some example situations

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

where these can be used?
34. How can you specify different constraints on the modelling elements in

UML? For example, how can you specify that all books are kept
alphabetically sorted in a library?

35. What is the difference between static and dynamic models in the
context of object- oriented modelling of systems? Identify the UML
diagrams which provide these two models respectively.

36. In modelling of systems using UML, how are the classification of users
of a system into various types of actors and their representation in the
use case diagram helpful in system development?

37. Draw a class diagram using the UML syntax to represent the fact that
an orderRegister consists of many orders. Each order consists of up to
ten order items. Each order item contains the name of the item, its
quantity and the date by which it is required. Each order item is
described by an item order specification object having details of an order
item such as its unit price, name and address of the manufacturer, and
the warranty period and terms of warranty.

38. Draw a class diagram using the UML syntax to represent the following
aspects concerning a library. An issuable can either be a book or a CD.
Books can be either reference books or text books. The details of various
issuables are maintained in a register called the issuable register. The
library has many members whose details are maintained in a member
register. A member can issue upto 10 text books for a month. A member
can also issue two CDs for a week.

39. Draw a class diagram using the UML syntax to represent the fact that
the fleet of vehicles at a travel agency consists of vehicles of the types
Tata Indica, Maruti van, and Mahindra Xylo. The regular customers of
the travel agency can rent any vehicle they want. The details of the
customers such as the name, address, and phone number are
maintained by the agency.

40. Draw a class diagram using the UML syntax to represent the fact that
the book register of a library contains details of the all the books in the
library. The details for each book includes its title, author, ISBN number,
price, date of procurement, price, and date of last loan, person to whom
loaned. A book can either be a reference or issue type book. The
reference books are to be referred inside the library and cannot be
loaned out, whereas issue books can be taken on loan by a member.
The member register contains the details of all members of the library.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The details that are maintained for a member include member name,
address, telephone number, date of joining library and books
outstanding. Each library member can take on loan at most five issue
books.

41. Draw a class diagram using the UML syntax to represent the following.
An engineering college offers B.Tech degrees in three branches—
Electronics, Electrical, and Computer science and engineering. Each
branch can admit 30 students each year. For a student to complete,
B.Tech degree he/she has to clear all the 30 core courses and at least 10
of the elective courses.

42. Explain briefly how are the principles of decomposition and abstraction
used in the object-oriented paradigm.

43. How is the activity diagram useful during system development? What
are the important ways in which an activity diagram differs from a flow
chart?

44. Mention the important shortcomings of UML 1.X. How has the UML 2.0
overcome these?

45. Develop the use case model for a word processor software such as MS-
WORD.

46. Develop the use case model for a standard bank ATM.
1 A functional model captures the functions supported by the system.
2 An object model captures the objects in the system and their interrelations.

3 A more appropriate name for the stick person icon could have been ‘role’ rather than ‘actor’. It
appears that the apparent anomaly in the technical term used in referring to the stick person icon
was caused by a wrong translation from the original Swedish document of Jacobson.

4 Many UML symbols are only suitable for drawing using a CASE tool and difficult to draw manually
by hand. For example, italic names are very difficult to write by hand. When the UML diagram is
to be drawn by hand, stereotypes such as <<abstract>> or constraints such as {abstract} can
be used in place of difficult to draw symbols.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Chapter
8

OBJECT-ORIENTED SOFTWARE
DEVELOPMENT

In this Chapter, we shall build upon the object-modelling concepts
introduced in the last Chapter to discuss an object-oriented analysis and
design (OOAD) methodology. We shall realise that object-oriented
analysis and design (OOAD) techniques advocate a radically different
approach compared to the traditional function-oriented design
approaches. Recall our discussions in Chapters 5 and 6, where we had
pointed out that the traditional function-oriented design approaches
essentially suggest that while developing a system, all the
functionalities that the system needs to support should be identified
and implemented. In contrast, the OOAD paradigm suggests that the
objects (i.e., entities) associated with a problem should be identified
and implemented.

In the function-oriented design approach, a simple way to identify the
functions performed by the system is to examine all the verbs occurring in the
problem description—since verbs (such as create, edit, search, etc.) represent
activities (or functions) performed by a system. Verb analysis is, in fact, an
effective way to identify the functions of a system. On the other hand, the
entities (or objects) occurring in a problem (such as book, member, register,
etc. in a library automation software) can be identified by examining the
nouns occurring in the problem description. Grady Booch summed up this
fundamental difference between the function-oriented and object-oriented
design approaches [1991] by saying:
... read the specification of the software you want to build. Underline the
verbs if you are after procedural code, the nouns if you aim for an object
oriented program.
Since the early nineties, a large number of object-oriented analysis and

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

design (OOAD) techniques have been proposed by researchers. Out of these,
the most prominent ones possibly have been the Booch’s approach by Grady
Booch [1991], object modelling technique (OMT) by Rumbaugh and Blaha et
al. [1991], Object-Oriented Analysis (OOA) by Coad and Yourdon[1991], and
Objectory by Jacobson [1999]. All these OOAD techniques, in addition to
identifying the different objects necessary to implement a system, also design
the internal details of the objects. Further, the relationships existing among
different objects are identified and represented in a design model, so that it
becomes easy to code the design using a programming language. All OOAD
methodologies essentially start by performing object-oriented analysis (OOA)
to first develop an analysis model and then seamlessly refine this into a
design model.

Object-oriented analysis (OOA) versus object-oriented
design (OOD)

Before discussing the details of OOA and OOD, let us understand the
primary differences between their intents and the performed activities.

The term object-oriented analysis (OOA) refers to developing an initial
model of a software product from an analysis of its requirements
specification.

Analysis involves constructing a model (called the analysis model) by
analysing and elaborating the user requirements documented in the SRS
document rather than determining how to define a solution that can be easily
implemented. While developing the analysis model, implementation-specific
decisions (such as in what sequence the classes would invoke each others’
methods, specific hardware used, database used, etc.) are avoided.
Therefore, the analysis model remains valid, even if the implementation
aspects change later. However, it is very difficult to directly translate an
analysis model into code. On the other hand, a design model can be easily
translated into code. At present, many computer aided software engineering
(CASE) tools support automatic generation of code templates from design
models, thereby greatly reducing the programmer’s work.

We now explain the difference between an analysis model and a design
model through a simple example. Consider that one of the functionalities of a
trade-house automation software is “display sales statistics,” then the
analysis model would involve representing various concepts identifiable in the
description of this function such as the input data, the output data and the
processing required. On the other hand, the design solution should address

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

how exactly (by which classes and method interactions) would the sales
statistics be computed.

In the procedural approach, a marked difference is easily noticed between
the analysis and design activities. The analysis activities concern developing
the data flow model using DFD notation, whereas the design activities
concern developing the design using the structure chart notation. Even the
notations used to document the respective models1 are different. In contrast,
in the object-oriented approach, the transition from analysis to design
activities is gradual and there is no clear demarcation between when analysis
activities end and design activities start. Also, identical notations are used to
document both analysis and design results.

An OOAD methodology
In this chapter, we shall discuss a generic methodology for developing
object-oriented designs starting from initial problem descriptions. This
methodology consists of first constructing a use case model from the
initial problem analysis. Subsequently, the domain model is constructed.
These two analysis models are iteratively refined into a design model.
The design model can straight away be implemented using a
programming language. It must, however, be kept in mind that though
the design methodology that we shall discuss is easy to master, it is
useful only to solve simple problems. However, once we are able to
understand this simple design method, approaches for solving more
complex problems can be comprehended with only incremental effort.

This chapter is organised as follows. We first discuss design patterns. We
subsequently introduce an object-oriented analysis and design methodology
which is to a large extent based on the unified process [Jacobson 1999] and
the work of Rosenberg [2000]. Subsequently, we illustrate the working of the
discussed methodology through a few examples.

8.1 PATTERNS
The concept of a pattern was first originated in the field of Architecture,
where large buildings are designed in specific pattern solutions. This
concept has now been absorbed in the area of object-oriented design to
provide a very powerful mechanism for design reuse.

Design patterns and their role in OOAD
While working out the design solution to a problem, experienced

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

designers consciously or unconsciously reuse solutions that they might
have worked out in the past. Such reuse of the design solutions is
systematised by the concept of patterns. In fact, patterns allow
commonly accepted solutions to be reused by everybody familiar with
the patterns. We shall soon see that while working out the design
solution to a problem, a knowledge of some important design patterns
can go a long way to improve the design quality and at the same time
reduce the total effort.

But, what are design patterns?

Design patterns are commonly accepted solutions to some problems that recur during
designing different applications.

Design patterns are nowadays being used extensively and have been found
to make the design process efficient. Use of patterns reduces the number of
design iterations, and at the same time improves the quality of the final
design solution. This makes a thorough study of the patterns worthwhile.
Once we become familiar with a few important patterns, we can spot them in
the designs we try to work out and shall be able to reuse the pattern
solutions.

8.1.1 Basic Pattern Concepts
Every non-trivial problem consists of a large number of subproblems.
Solving a problem therefore involves solving all its subproblems. In fact,
while solving any two problems, several subproblems that are common
between the two can be identified. Further, a few subproblems repeat
across a large number of problems. This opens up the possibility
arriving at good solutions with reduced efforts by mastering the
commonly accepted solutions to a few important subproblems that
repeat across different problems. This in fact, captures the central idea
behind patterns.

In the context of software design, patterns document solutions to certain
problems that are reusable during the designs of different applications. While
working out the solution to a design problem, once we identify a pattern, we
can straightaway use the documented pattern solution, if we have
understood it well. We can now state the basic idea behind patterns as
follows:

The basic idea behind patterns is that if you can master a few important patterns,
you can easily spot them in application development problems and effortlessly use

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

the pattern solutions.

As we shall see, pattern solutions do not really espouse any revolutionary
design ideas, but are created based on sound common sense and application
of the fundamental design principles. You might then wonder “If patterns are
really based on commonsense, then what is the point learning patterns?
Wouldn’t one mechanically arrive at similar solutions any way?” In reality, it is
observed that while grappling with the nitty gritty of complex design
problems, designers often forget commonsense—and tend to make their
design solutions unnecessarily complex, inflexible, and inefficient. On the
other hand, if you are familiar with a few important patterns, you can easily
spot them and mechanically use the pattern solutions in your designs. Thus, a
pattern serves as a guide for creating a “good” designs. Also, use of patterns
significantly increases the productivity of the designers, by reducing design
iterations and at the same time improving the quality of the final design. In
view of the inherent advantages, experienced designers usually make
themselves familiar with hundreds of patterns.

Patterns can be viewed as helping designers to make certain important design
decisions. At a basic level, patterns can also be viewed as well-documented and well
thought-out building blocks for software design.

But, who creates the patterns? Patterns are created and documented by
people who spot repeating themes across designs. Once patterns are created
and documented, they can be used by different designers. Therefore, we can
consider patterns as a highly effective means to capture and transfer design
knowledge across different design problems. Patterns also have come to form
a standard vocabulary that is used for communicating design ideas in a
professional environment.

In addition to providing model solutions, patterns document clear
specifications of the problems, and also explain the circumstances in which a
solution would work and would not work. A pattern documentation usually
consists of four important parts:

• The problem.
• The context in which the problem occurs.
• The solution.
• The context within which the solution would work and would not work.
In the following subsections, we discuss a few important concepts about

patterns. In the subsequent section, we provide an overview of a few
important patterns.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

8.1.2 Types of Patterns
Different types of patterns have been identified for use in different
stages of design. Starting from use in very high-level designs termed as
architectural designs, pattern solutions have been defined for use in
concrete designs and even in code.We discuss some basic concepts
about these three types of patterns as follows.

Architectural patterns: The architectural patterns identify and provide
solutions to problems that are identifiable while carrying out architectural (or
very high-level) designs. Architectural designs concern the overall structure of
software systems. Architectural designs cannot directly be translated to code,
but form the basis for more detailed design. Each architectural pattern
suggests a set of predefined subsystems, specifies their responsibilities, and
includes rules and guidelines for organising the relationships among them.
Architectural designs are usually constructed for very large problems.
Naturally therefore, architectural patterns are relevant while working out the
high-level solutions to very large problems.
Design patterns: A design pattern usually suggests a scheme for structuring
the classes in a design solution and defines the required interactions among
those classes. In other words, a design pattern describes some commonly
recurring structure of communicating classes that can be used to solve some
general design problems. Design pattern solutions are typically described in
terms of classes, their instances, their roles and collaborations. In this text,
we restrict ourselves to design patterns only and discuss a few important
design patterns in Section 8.2
Idioms: Idioms are a set of low-level patterns that are programming
language-specific.

An idiom describes how to implement a solution to a particular problem using the
features of a given programming language.

In any natural language such as English, an idiom means a group of words
that together have a meaning that is different from the one obtained by a
simple juxtaposition of the dictionary definitions of the individual words.
Examples of English idioms are “raining cats and dogs,” “at a stone’s throw,”
etc. Idioms help to write good pieces of prose with substantially reduced
efforts. While composing a prose, the linguists effortlessly incorporate idioms
into their writing to improve the quality of the prose and at the same time
achieve reduction in the time and effort taken to compose the prose. When a

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

linguist wants to say that it is raining very heavily, he almost mechanically
writes “It is raining cats and dogs.” without really having to think of the
specific word combinations to use: such as whether to say “It is raining
mouses and elephants”, etc. Similarly for accessing the different elements of
an array of size 100, a C programmer would write the code segment:
for(i=0;i<100;i++){...} without having to think and decide whether to
use a while loop, whether to start the loop with the variable i initialised to 1,
etc. Good programmers know several idioms. As soon as they see a
requirement while working out a programming solution, the required idiom
occurs to them instantly and relieves them from having to struggle to select
of the exact constructs to use in the program and at the same time improves
the quality of the program and reduces the bug detection and correction
iterations.

Comparison of different types of patterns
The main differences among the three kinds of patterns discussed above
lie in the levels of abstraction and details they deal with. Architectural
patterns are high-level strategies that concern the overall solutions to
large-scale problems. Design patterns are solutions for specific parts of
medium-scale problems and recommend certain structures and
behaviour of the participating entities. Idioms are paradigm-specific and
language-specific programming solutions that recommend using
appropriate code segments for solving low-level programming
problems. In this text, we restrict ourselves to design patterns only.

8.1.3 More Pattern Concepts
We now discuss a few other important pattern concepts in the following
subsections.

Patterns versus algorithms
Beginners often confuse between patterns and algorithms and ask questions
such as—“Are patterns and algorithms identical concepts? After all, both
target to provide reusable solutions to problems!” In fact, patterns and
algorithms are in some respects similar since both attempt to provide
reusable solutions. However, algorithms primarily focus on solving problems
with reduced space and/or time requirements, whereas patterns focus on
understandability and maintainability of design and easier development.

In contrast to algorithms, patterns are more concerned with aspects such as

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

maintainability and ease of development rather than space and time efficiency.

Pros and cons of design patterns
Before using design patterns during OOAD, it is desirable to be familiar
with the pros advantages and cons disadvantages of design patterns.

The following are the main pros strengths of design patterns:

Design patterns provide a common vocabulary that helps to improve
communication among the developers.
Design patterns help to capture and disseminate expert knowledge.
Use of design patterns help designers to produce designs that are
flexible, efficient, and easily maintainable.
Design patterns guide developers to arrive at correct design decisions
and help them to improve the quality of their designs.
Design patterns reduce the number of design iterations, and help
improve the designer productivity.

Important cons shortcomings of design patterns are the following:

Design patterns do not directly lead to code reuse. Since a design
pattern is tailored for a specific circumstance of reuse, and therefore it
is difficult to associate a fixed code segment with a pattern.
At present no methodology is available that can be used to select the
right design pattern at the right point during a design exercise.

Antipattern
If a pattern represents a best practice, then an antipattern represents
lessons learned from a bad design. The following are two types of
antipatterns that are popular:

• Those that describe bad solutions to problems, thereby leading to bad
situations.

• Those that describe how to avoid bad solutions to problems.
Antipatterns are valuable because they help us to recognise why a

particular design alternative might seem at first like an attractive solution,
but later on lead to complicacies and finally turn out to be a poor solution.
After we become familiar with the important antipatterns, we can consciously
try to avoid them while solving a problem.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

We mention here only a few interesting antipatterns without discussing
them in detail, since we feel that they are out of the scope of this text.
Input kludge: This concerns failing to specify and implement a mechanism
for handling invalid inputs.
Magic pushbutton: This concerns coding implementation logic directly
within the code of the user interface, rather than performing them in separate
classes.
Race hazard: This concerns failing to see the consequences of all the
different ordering of events that might take place in practice.

8.2 SOME COMMON DESIGN PATTERNS
It is important to become familiar with at least the important patterns,
since after you understand these patterns well, you should be able to
spot these patterns while solving problems and then you would be able
to effortlessly use the commonly accepted solutions captured by the
patterns. Also, a familiarity with the pattern terminologies would help
you to master the vocabulary needed to discuss alternate pattern
solutions with your colleagues while working out design solutions. For
example, your colleague might while reviewing your design suggest a
way to improve your design by saying “Why not use MVC pattern in the
part of your design concerned with handling user inputs?”

It should be remembered that patterns offer generic solutions that usually
need to be fine tuned in the context of specific problems. We, however, take
the liberty of discussing design patterns in the context of solutions to specific
design problems for ease of understanding. Though a large number of design
patterns have been proposed so far, the ones by Larman and gang of four or
GoF (proposed by Erich Gamma, Richard Helm, Ralph Johnson and John
Vlissides) are extremely popular. We now describe a few important design
patterns from these authors.

EXPERT
Problem: When a certain activity needs to be performed, which class
should be made responsible for doing it?

Solution: Assign responsibility to the information expert—the class that has
all (or most of) the information necessary to fulfill the required responsibility.
The expert pattern expresses the common intuition that objects should do
things related to the information they store. The class and collaboration

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

diagrams for the solution to a problem as to which class should compute the
total cost of a sale transaction is shown in Figure 8.1.

Figure 8.1: Expert pattern: (a) Class diagram (b) Collaboration diagram

Explanation: In the example given in Figure 8.1, a sale transaction
consists of many sale items. Each saleItem object is associated with an
itemSpecification object. The itemSpecification object among other
things indicates the unit price for the item. In this situation, which
object should compute the total price for a sale transaction? Let us
consider the different options that are available. Should the
saleTransaction object, the saleItem object, or the itemSpecification
object be given the responsibility to compute the price of a sale
transaction? If we assign the responsibility to the saleItem object to
compute the transaction price, then it would need several information
from the saleTransaction object such as the number of items sold for
various items and could also need the prices for the other items from
the corresponding itemSpecification objects for this computation. This
would require a large number of data exchanges among the objects to
occur, and lead to a poor quality solution. Similarly, itemSpecification
would be a poor choice for computing the total cost payable for a sale
transaction, since the object lacks most of the information required to
compute the total cost of the transaction. It can easily be seen that the
saleTransaction object has most of the information required for the
computation, and should be assigned the responsibility to compute the
total price. It is the information expert, as far as the exact items and
quantities sold are concerned.

CREATOR
Problem: Which class should be responsible for creating a new instance
of a certain class?

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Solution: Assign a class C1 the responsibility to create an instance of class
C2, if one or more of the following are true:

C1 is an aggregator of objects of type C2.
C1 contains objects of type C2.
C1 closely uses objects of type C2.
C1 has the data that would be required to initialise the objects of type
C2, when they are created.

Explanation: An aggregator object needs to create all its component
objects, since the aggregator needs to maintain the addresses of its
component objects. Any other object needing some information from a
component would have to request the aggregator to retrieve the
information. Occasionally, in an object-oriented programming problem,
an object may need to be created which is not a part of any aggregate
object. In this case, the object should be created by the one that has
the required initialization parameters, or the one that would work most
closely with the object.

Facade pattern2

Problem: How should the services be requested from a service package
by client classes (i.e., classes outside the package)?

Context in which the problem occurs: A package, as already discussed in
Chapter 7, is a cohesive set of classes. That is, the classes in a package have
strongly related responsibilities. For example, an RDBMS interface package
would contain classes to provide services that an application programmer can
invoke to perform various operations on the RDBMS.
Solution: A separate class (such as DBfacade) should be created to provide
a common interface to the services provided by the classes in the package.
Explanation: Let us understand the necessity and importance of a facade
class using a simple analogy. Consider a lecture hall complex. Suppose all
students are required to enter the lecture hall complex through the main
entrance only. In this case, when some general information such as
cancellation of some lecture on a certain date is to be brought to the notice
of all the students, displaying one notice at the entrance should be enough.
But, consider the situation where the students enter the lecture hall complex
through multiple entrances, and are even allowed to jump into the class

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

rooms through the different windows of various class rooms. In this case,
notices have to be displayed at all possible points of entry of the students.
Similarly, in the context of a service package, when (the type or number of)
the parameters of some method of a class in the package changes, all classes
that invoke the method have to be changed. However, when outside objects
(clients) invoke services through a facade class, the change can be absorbed
in the facade class and changes to the client classes can be avoided. Also,
use of a facade class reduces the complexity of service invocation, since client
classes need not be aware of the specific classes that implement the services.
The discussed advantages of a facade class can be easily observed from the
schematic representations shown in Figure 8.2.

Figure 8.2: Service invocation with and without using a facade class.

MODEL VIEW SEPARATION PATTERNS
Problem: How should the non-GUI classes communicate with the GUI
classes and vice versa?

Context in which the problem occurs: This is a very commonly occurring
pattern which can be identified in almost every design problem. Here, view is
a synonym for the presentation layer objects (or GUI objects). and model is a
synonym for the domain layer (non-GUI) objects, The domain layer objects
are responsible for actually providing the required service, whereas the
presentation layer objects are responsible for handling only the interactions
(input/output) with the user.
Solution: Depending on the context, the solution provided by either of
observer pattern, model-view-controller(MVS)pattern, or the publish-

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

subscribe pattern (discussed subse- quently) can be used.
Explanation: Whenever any interaction between a model object and a view
object is required, the model object should be loosely coupled to the view
objects. This would help to make reuse of the model objects easy. Also, the
view objects normally undergo changes much more frequently as compared
to the model objects. Each change to a view object should not require
changes to be made to the model objects.

When information is required to be displayed synchronously, a pull from
above solution is satisfactory. However, this solution does not work
satisfactorily for asynchronous information display. When information is
produced asynchronously by a model object, the view object would not know
when exactly would new information be available so that request for it can be
made. Also, polling (periodically requesting information to check if new
information has become available) is not a satisfactory solution on efficiency
considerations.

There are many situations in which information is required to be displayed
asynchronously. Consider a software that monitors the stock market
quotations continuously and alerts the user when the required stock
quotations reach some prespecified threshold value. This software would pop-
up an alert message as soon as any of the stock quotation reaches its
threshold value. In this case, the alert message pops up asynchronously. The
GUI would not be able to pull this information since it won’t know the precise
time when a threshold would be reached. There are numerous other
examples where such asynchronous display is required, and include a network
intrusion monitor, a computer fault monitor, etc.

The main idea behind the model-view separation pattern is to achieve
loose coupling between the model and view objects, so that the complexity of
design is reduced and reuse of the model objects is enhanced. There are
several variations of model-view separation pattern that are useful in
different situations of interaction between the model and the view objects. In
the following subsection, we discuss the following three important model-
view separation patterns.

OBSERVER PATTERN
Problem: When a model object is accessed by several view objects,
how should the interactions between the model and the view objects be
structured?

Solution: Observers should register themselves with the model object. The

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

model object would maintain a list of the registered observers. When a
change occurs to the model object, it would notify all the registered
observers. Each observer can then query the model object to get any specific
information about the changes that it might require. This pattern therefore
uses both the push and the pull modes. The interaction diagram for this
pattern is shown in Figure 8.3.

Figure 8.3: Interaction diagram for the observer pattern.

Explanation: The observer pattern solution achieves loose coupling
between the model and observer objects. Also, it achieves decoupling
among the observers themselves, they need not be aware of each
other. Once an observer has been informed of a change, it may query
the model for some specific piece of information.

The observer pattern has the following limitations:

The model objects incur a substantial overhead to support registration
of the observers, and also to respond to the queries from the
observers. This is detrimental to performance of the model objects,
especially when the number of observers is large.
The two-stage process (notification and query) reduces coupling
between the model and observer objects. However, selective
notification to only the interested observers would make this solution
very inefficient, since unnecessary message exchanges may occur
when different observers are interested in different types of events.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

MODEL-VIEW-CONTROLLER (MVC) PATTERN
Problem: How should the GUI objects interact with the model objects?

Solution: The GUI objects need to be separated into view and controller
types. The controller objects are responsible for collecting the data input by a
user. The controller would pass the collected information onto the model
object. The model object would notify the view and controller objects
regarding the change in model state. The class and collaboration diagrams
for the MVC pattern have been shown in Figures 8.4 and 8.5 respectively.

Figure 8.4: Class structure for the MVC pattern.

Figure 8.5: Interaction model for the MVC pattern.

Explanation: When a controller object collects input data and passes
those onto a model object, the state of the model object may change.
When the state of the model changes, it can send an update message
to all dependent view and controller objects. The purpose of the model
object notifying the view object is obvious (that is, to refresh the
display with the updated information). The controller object also needs
to be notified, since the new model object state may need dimming
certain menu options, or even closing certain control objects. Benefits of
this pattern include loose coupling between the view and model objects
and a clear separation between the code that handles inputs, that
displays data, and that processes the application’s data.

This is useful in situations where multiple views of the same data needs to
be presented. In particular, this pattern is useful in applications in which the
model object can change its state asynchronously and multiple consistent
views of the model object need to be displayed effectively. As a simple
example, the MVC pattern can be used when for the same input data several

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

different representations such as line plot, bar chart, and pie chart
representations need to be shown. In this case, whenever the model changes
its data or properties, all dependent views are automatically updated.

PUBLISH-SUBSCRIBE PATTERN
The publish-subscribe pattern is a more general form of the observer
pattern and overcomes many of the shortcomings of the observer
pattern.

Problem: When a given model object is accessed by a large number of view
objects, and the model state changes asynchronously, how should the
interaction be structured?
Solution: This pattern suggests that an event notification system should be
implemented through which the publisher (model objects) can indirectly
notify the subscribers as soon as the necessary information becomes
available. An event manager class can be defined which keeps track of the
subscribers and the types of events they are interested in. An event is
published by the publisher by sending a message to the event manager
object. The event manager notifies all registered subscribers usually via a
parameterised message (called a callback).

The publish-subscribe pattern has been schematically shown in Figure 8.6.
Observe that the GUI objects have subscribed to the event e1 with the
corresponding event manager. As soon as a model object publishes the event
e1, the corresponding event manager would notify (callback) the GUI objects
that have subscribed to the event.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 8.6: Interaction model of the publish-subscribe pattern.

Explanation: The the publish-subscribe pattern requires creating an event
manager class for each type of event that the model objects may create. A
subscriber may register its interest for a class of events by subscribing to the
corresponding event manager classes. Events generated by publishers are
selectively notified to subscribers. The selection is achieved by defining event
manager classes. As soon as an event occurs, the event manager passes the
information to all those who have subscribed to the event. For example,
when a publisher generates an event e1, the corresponding event manager is
notified of the same. All subscribers that previously subscribed to the event
e1 would receive an asynchronous notification of the occurrence of e1. The
subscriber may respond to the event by associating a specific handler with

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

each class of events. The event manager is responsible for registering
subscriptions, receiving events from models, filtering events, and passing
them to the interested subscribers (see Figure 8.7). Depending on the specific
system, the event manager may be implemented in various ways, e.g., by a
centralised server, by distributed co-operating servers, or possibly collectively
by the publishers. The interaction diagram is shown in Figure 8.7.

Figure 8.7: A schematic representation of the publish-subscribe pattern.

Compared to the observer pattern, this pattern frees the model object from
handling the registration of observer objects and notification objects. Thus,
this pattern has obvious advantage over the observer pattern, especially
when the number of observers is large. Modern object-oriented languages
support several event manager classes. For example, Java provides the
EventListener interface for such purposes.

INTERMEDIARY (OR PROXY) PATTERN
Problem: How should a client object invoke the services of a server
object?

Context in which the problem occurs: The terms client and server refer
here to the objects existing across a network. The clients are consumers of
services and the servers are the providers of services.
Solution: A proxy object should be created at the client side. The proxy
object would act as local sit-in for the remote server object. The client should
make all its service requests to the proxy, the proxy would in turn transmit
the service request to the appropriate server, obtain the response, and
deliver it to the client object.
Explanation: The proxy hides the details of the network transmission. The
proxy is responsible for determining the server address, communicating the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

client request to the server, obtaining the server response and seamlessly
passing that to the client. The proxy can also augment (or filter) information
that is exchanged between the client and the server. For example, a proxy
may compress or encrypt a message while sending it to the server and
uncompress or decrypt a message on receipt. The proxy should have the
same interface as the remote server object, so that a client can feel that it is
interacting directly with the remote server object. Thus in effect, the proxy
object hides (abstracts out) the complexities of network transmissions.

8.3 AN OBJECT-ORIENTED ANALYSIS AND DESIGN (OOAD)
METHODOLOGY

The design process that we are going to discuss here starts with the
analysis activities. The results of the analysis activities are be refined
into a design model through several iterations. Considering that the
unified process is very popular for object-oriented software
development, we first set the context regarding the phase of the unified
process in which the discussed design methodology is applicable. An
overview of the analysis and design methodology is presented in
Section 8.3.2. We subsequently discuss the analysis and design process
in more detail and finally work out solutions to a few example problems
to illustrate its use.

8.3.1 Unified Process
Unified process is incremental in iterative process model for object-
oriented software development that has gained acceptance among the
practitioners and academicians. The first book to describe the unified
process was titled “The Unified Software Development Process” and
was published in 1999 by Ivar Jacobson, Grady Booch and James
Rumbaugh. Since then, various authors unaffiliated with the erstwhile
Rational Software Corporation have published books and articles using
the name unified process, whereas authors affiliated with Rational
Software Corporation have favoured the name rational unified process
(RUP).

The unified process is an extensible framework which needs to be
customised for specific types of projects.

The two main characteristics of the unified process are: use case-driven and iterative.

The term use case-driven implies that use cases (customer’s view) of the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

system is considered to be the central and most important view. The use
case view should be the first one to be constructed and should be refined
iteratively into an implementation.

The use case model is the central model. All models that are constructed in the
subsequent design activities must conform to the use case model.

As shown in Figure 8.8, the unified process involves iterating over the
following four distinct phases as follows:

Figure 8.8: Unified process model.

Inception: During this phase, the scope of the project is defined and
prototypes may be developed to form a clear idea about the project.

Elaboration: In this phase, the functional and the non-functional
requirements are captured. The preliminary use case and the domain model
are developed during this phase.
Construction: During this phase, the design and implementation activities
are carried out. Full text descriptions of use cases are written and each use
case is taken up for the start of a new iteration. System features are
implemented in a series of short iterations and are tested. Each iteration
results in an executable release of the software.
Transition: During this phase, the product is installed in the user’s
environment and maintained.

The design process that we have discussed in Section 3.2 is undertaken
during the elaboration and construction phases of the unified process.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

8.3.2 Overview of the OOAD Methodology
The object-oriented analysis and design (OOAD) methodology that we are
going to discuss has schematically been shown in Figure 8.9. As shown in
Figure 8.9, the use case model is the first model to be developed. As pointed
out in Section 8.3.1, in any user-centric development process such as the
unified process, all developed models must conform to the use case model.
Therefore, the use case model plays a crucial role in the design process, and
needs to be developed first. As shown in Figure 8.9, the domain model is
constructed next through an analysis of the use case model and the SRS
document. The domain model is refined into a class diagram through a
number of iterations involving the interaction diagrams. Once the class
diagram has been constructed, it can easily be translated to code. Many CASE
tools support generation of code skeleton from the class diagram.

Figure 8.9: An object-oriented analysis and design process.

Throughout the analysis and design process, a glossary is continually and
consciously created and maintained. A glossary is a dictionary of terms which
can help in understanding the various terms (or concepts) used in the
constructed model. The terms listed in the glossary are essentially concept
names. The glossary (or model dictionary) lists and defines all the terms that
require explanation in order to improve communication and to reduce the risk
of misunderstanding. Maintaining the glossary is an ongoing activity through
out the project as shown in Figure 8.9.

8.3.3 Use Case Model Development
We had pointed out in Chapter 7 that a use case model, in essence, captures
the high-level user requirements of the system to be developed. For every

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

use case, the details of all the scenarios of user interactions with the system
are captured in an accompanying text description. In this section we address
how should one go about to develop the use case model for a given problem?
The use cases can easily be identified from the SRS document. In fact, the
high- level functional requirements normally correspond to the use cases. But,
it often turns out that most practical problems have too many use cases.
Therefore, these use cases have to be appropriately packaged. However, how
can one determine the package structure of use cases? It is worth noting that
there is a close correspondence with the structure of the GUI, the
organisation of the users’ manual into sections, and the packaging of the use
cases.

An overriding principle while identifying and packaging use cases is that there should
be a strong correlation between the GUI prototype, the contents of the users’ manual
and the use case model of the system.

We explain what this correlation usually means through an example.
Consider a text editor software (such as the openOffice, MS-Word, or Word-
perfect, etc.) that can be used to create various kinds of text documents. The
top-level menu options for such a word processing software would be File
operations, Edit, View, Insert, Tools, etc. Each of these high-level menu
options can be considered to be a container for a set of functions and usually
represented using a package in the use case diagram. For example, the File
menu may contain functions such as—load file, store file, save, save as, print,
etc. The Edit menu may contain the functionalities for cut, paste, select,
group, etc.

Each of the menu options in the top-level menu of the GUI would usually correspond
to a package in the use case diagram.

A few of the functions under a menu option can themselves contain
functions in the sense that clicking them would open up a submenu. Such
submenu would correspond to a package in the first-level packages in the use
case diagram.

The way use cases are grouped into packages also has a strong correlation
with the organisation of the users’ manual into chapters and sections. The
users manual would can exactly the same chapters as the first-level packages
of the use case diagram (or the top-level menu organisation in the GUI). The
sections of a chapter would correspond to the packages in the corresponding
first-level package, etc. As an example, for the case of the word processing
software, the different chapters of the users’ manual would be arranged into

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

File operations, Edit, View, and Tool operations, etc., corresponding to the
GUI menu structure and also the use case packages.

Considering the close correspondence of the users’ manual and the GUI
prototype with the use case organisation, it can be advantageous to develop
the users’ manual first and then develop the use case model based on this.
This provides a convenient summary of what use case-driven development
means.

Normally, carrying out the GUI prototyping in parallel with the development
of the SRS document (as shown in Figure 8.9) is considered an excellent
approach. This involves iterating the presentation aspects of the system with
the user. After achieving closure on different screens, the corresponding use
case model can be developed. Even though a close correspondence should
exist between the GUI prototype and the use case model, the use cases
should not be too tightly tied to the GUI. For example, the use cases should
not make any reference to the type of the GUI element appearing on the
screen, e.g., radioButton, pushButton, etc. This is necessary because, the
type of the user interface components used may change frequently during
software development and more so during later maintenance. However, the
functionalities provided by the system do not change so often.

A use case is most effectively named from the perspective of the user. It
should be named using present tense verb phrases, and should be in active
voice, e.g., admit patient, issue book, generate report, etc.,
rather than patient admission, book issual, report
generation, etc.

Common mistakes committed in use case model
development

The following are some common mistakes that beginners commit during
use case model development. We are listing these mistakes with the
hope that you will consciously try not to commit these and the related
types of mistakes while developing use case models:

Clutter: Too many use cases at the top-level use case diagram make it very
difficult to understand the model. When large number of use cases are
present in the top-level of the use case diagram, they should be organised
into packages. Packages are an effective way to manage complexities. Each
use case package should correspond to one chapter or section of the users’
manual or a top-level menu choice in the GUI.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Too detailed: Often beginners confuse substeps of use cases with separate
use cases. For example, One should may inappropriately define a use case
print receipt, whereas it should only be a sub-step of the withdraw cash use
case. A use case model in which the subfunctions of a high-level function are
represented as full use cases would make the later analysis and design tasks
difficult.
Omitting text description: Omitting text description of use cases makes it
very difficult for any one to gain full understanding of the use case behaviour
and also makes it very difficult to design the system.
Overlooking some alternate scenarios: It is necessary to capture all
alternate scenarios of each use case. Overlooked scenarios can later show up
as missing functionalities or bugs.

8.3.4 Domain Modelling
Domain modelling is also known as conceptual modelling. A conceptual model
depicts the concepts3 (o r objects) that are easily identifiable from the
problem description. A domain model usually contains three types of objects
—objects that correspond to physical entities in the problem description,
objects that would handle the user interface (also called boundary objects),
and objects that are entirely conceptual (also called controller objects).

The objects identified during domain analysis can be classified into three types:
• Boundary objects
• Controller objects
• Entity objects

Examples of physical (entity) objects in a library automation software are
book, book register, member register, library member , etc. Examples of a
conceptual object and a boundary object can be issue book controller, and
issue book user interface, respectively. A domain model should also capture
the relationships that may easily be identified among these objects.

A domain model can be considered to be the first-cut class diagram and is
obtained from an analysis of the problem description. In a domain model, no
methods or attributes are associated with classes and only the names of the
classes are represented. The methods (responsibilities) and data (attributes)
are usually not represented. The methods and attributes are identified and
represented later in the design process.

In the following subsections, we will discuss the important characteristics of
these three different types of objects that are identified during construction of

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

a domain model.

While boundary and controller objects can be mechanically identified from an
inspection of the use case diagram, identification of entity objects requires practice.
So, we can say that the crux of the domain modelling activity is to identify the entity
objects judiciously.

We first discuss how the boundary and conceptual object are identified from
an inspection of the use case diagram. Subsequently, we discuss a
methodology to identify the entity objects.

Boundary ob jects
The boundary objects are those with which the actors interact. The
boundary objects include screens, menus, forms, dialogs, etc. The
boundary objects are mainly responsible for evaluating user interactions
through suitable graphical user interfaces (GUIs). These objects
normally do not include any processing logic. However, they may be
responsible for validating inputs, formatting outputs, etc. We can say in
other words that the main responsibilities of a boundary object can be
to read inputs from the user, validate the inputs, format the outputs,
and display the results.

The boundary objects were earlier being called as the interface objects.
However, the term interface class is now being used with a different meaning
(as pointed out in Chapter 7) for UML and also for Java and COM/DCOM.

The initial identification of the boundary classes can be made by defining one
boundary class per actor/use case pair.

You might wonder that when two or more different actors are associated
with a use case (for example, the register customer use case in Figure
8.16) why should two different boundary classes be used? The reason behind
this is that different categories of users have different privileges and different
levels of familiarity with the software package. For example, the clerk would
everyday use the interface and would need an efficient interface rather than
a very user-friendly but slow interface.

Later on during the design process, a boundary class may be split into two
or more classes if it is found to be performing a large and complex set of
tasks. Two boundary classes may be combined into a single one, if they have
similar responsibilities.

Entity ob jects

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The entity objects normally hold information such as data tables and
files (e.g., Book, BookRegister, LibraryMember, etc.). Among
all the three types of classes we discussed, the entity classes are the
only classes that can store data permanently or semi-permanently. The
entity objects usually store data across use case executions and
therefore need to outlive use case executions. Usually the entity objects
act like “dumb servers”. This means that these objects carry out only
simple processing on their stored data such as update, store, search,
retrieve, etc. Such primitive operations on data usually do not change
often with time. Therefore, entity objects undergo much less changes
during the operation phase of the software compared to the other types
of objects and are said to be more stable than the other types of
objects.

A popular methodology to identify the entity classes is discussed in Section
8.3.5.

Controller ob jects
Typically, every use case execution involves several interactions among a
group of objects. Each object involved in the execution of a use case plays its
part (performs certain actions) to help complete the execution of the use
case. In this context, usually a controller object co-ordinates the activities of
a set of collaborating objects to deliver the results corresponding to an actor
request.

For every use case, a separate controller object should be created and given the
responsibility to handle actor requests.

For every invocation of a use case by the same (or different) actor, a
separate controller object should be instantiated from the corresponding
controller class. When an actor invokes a use case, the same controller object
should handle all the interactions with that actor This way, it becomes
possible to easily maintain the necessary information about the state of
execution of the use case by an actor. The state information maintained by a
controller can be used to identify the out-of-sequence actor requests (e.g.,
whether the print voucher request is received before arrange payment
request), and it can then take appropriate actions. The name “controller” is
appropriate since this object co-ordinates (or controls) the activities of
several objects for serving a user request.

A controller object typically orchestrates the activities of a set of entity

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

classes to implement the behaviour of a use case and also manages the user
interactions through a set of boundary classes (see Figure 8.10). From Figure
8.10 it can be seen that the controller accepts inputs and displays outputs to
the users through two boundary classes (Boundary 1 and Boundary 2), it also
co-ordinates the activities of the entity classes (Entity 1, Entity 2, and Entity
3) to realise the behaviour associated with the use case.

Figure 8.10: A typical realisation of a use case through the collaboration of boundary, controller, and
entity objects.

A few questions that may arise in our minds concerning the controller
classes can be as follows:

What is the advantage of using a controller class?
A controller object effectively decouples the boundary and entity objects
from one another, reducing design complexity and making the system
tolerant to changes of the user interface and processing logic. The
controller objects embody most of the business processing logic
required for the realisation of the use case (the business logic may
change from time to time). For this reason, we can like a controller
object with a manager who commands and oversees the activities of a
set of workers. When the business logic changes, only the controller and
boundary objects may change, entity objects do not.

What is the role of a controller ob ject?
For every use case, a controller object is given the charge of realising the
behaviour associated with the use case by making use of the services of the
required entity and boundary classes. For example, the controller of the
renewBook use case in a library automation system may first request to
retrieve and supply the exact books that have been borrowed by the user, it

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

would then ask the user to make a selection of the books that need to be
renewed through the boundary class. It would then request the
BookRegister to check whether any one has reserved the requested books,
in such a case it would inform the user that it would not be possible to renew
the book. Otherwise, it would request the BookRegister to renew the book
and display the information to the user. Thus, the controller is the intelligent
class that knows the exact subtasks to be completed to deliver the required
results when a client invokes a use case. The controller orders different
objects to complete the different subtasks. In the OOAD terminology, a
controller class is said to “realise the corresponding use case.”

The controller class can be considered as the intelligent class and the other (entity
and boundary) classes as the dumb classes that are driven by the controller class.

Is exactly one controller classes required per use case?
As we have already mentioned, each use case is normally realised using
one controller object. However, very simple use cases can be realised
without using any controller object, i.e., through boundary and entity
objects only. This is often true for trivial use cases that perform only
some simple operations that can be done either by the boundary class
itself or with the help of a single entity class. More complex use cases
that need to implement significant business logic may require more
than one controller object to realise the use case. A complex use case
can have several controller objects with responsibilities such as
transaction manager, resource co-ordinator, and error handler. For
every invocation of a use case, a separate instance of the corresponding
controller class needs to be created. For example, the use cases require
the controller object to transit through a number of states. Therefore,
the exact state of controller for every instance of execution of a use
case needs to be tracked. In such cases, one controller object might
have to be created for each execution of the use case.

In our methodology, in the initial solution, one controller class is created for
every use case. Later, if it is determined that a controller class has very
superficial or trivial responsibilities, it can be omitted from the design. If it is
found to be too complex, it might be split into a number of controller classes.

What if some classes are missed in the domain model?
For creating a domain model, the recommended strategy is to quickly
create a rough conceptual model where the emphasis is on finding the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

obvious concepts (objects) expressed in the requirements while
deferring a detailed investigation. Of course, for complex problems, it is
possible that some classes can be missed by the designer. Later during
the design process, the conceptual model is incrementally refined and
extended. In this process, some classes that were missed in the class
model would be identified and incorporated, and some of the classes
that have too many responsibilities may be split into multiple classes,
and even some classes not considered necessary may be deleted. The
methods and the attributes of the classes as well as the class
relationships would be established and added later on.

8.3.5 Identification of Entity Ob jects
In any object-oriented design methodology, identification of entity
objects is a crucial step. In fact, the quality of the final design depends
to a great extent on the appropriateness and the completeness of the
identified entity objects. However, to date, no systematic step-by-step
methodology exists for identification of entity objects, though the
boundary and controller classes are easily identified and can be
determined almost mechanically from an analysis of the use case
diagram. Several semi-formal and informal approaches have been
proposed for identification of the entity objects. All these techniques
require application of common sense and several subjective judgments
need to be made based on past experience while applying the object
identification techniques. Various object identification techniques can be
classified into the following broad classes:

• Grammatical analysis of the problem description.
• Derivation from data flow.
• Derivation from the entity relationship (E − R) diagram.
A widely accepted object identification approach is the grammatical

analysis approach that was proposed by Grady Booch[1991]. In Booch’s
grammatical analysis approach, the nouns occurring in the extended problem
description (processing narrative) are mapped to objects and the verbs are
mapped to methods. The extended problem description is the function (black
box) description of the input data, output data, and the processing that needs
to be done on the input to get the output. The approaches for identification of
entity classes based on derivation from the data flow diagram and entity-
relationship model can be used to refine the results obtained using the
Booch’s object identification methodology.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

8.3.6 Booch’s Ob ject Identification Method
Booch’s object identification approach requires a processing narrative of
the given problem to be first developed. The processing narrative is an
overall description of the problem and also a discussion on how the
given problem can be solved. Out of the objects identified from the
processing narrative, if an object is concerned with implementing a
solution, then it is said to be a part of the solution space. Otherwise, if
an object is necessary only to describe the problem, then it is said to be
a part of the problem space. The objects are identified through lexical
analysis of the processing narrative by noting down the nouns (name
words) in the processing narrative. Of course, many of the nouns listed
from the processing objective may not be objects. From this list of
nouns, synonym of a noun should of course be straight away
eliminated.

It should be noted that several of the nouns may not correspond to objects.
The following are some criteria that can be used to eliminate some of the
nouns that have been identified through a grammatical analysis of the
processing narrative and converge on the actual set of objects:
Users: There can be various categories of users (actors) of a software and
these users normally appear as name words in the problem description. The
actors themselves and the interactions among the actors should be excluded
from the entity identification exercise. However, sometimes there may be a
need to maintain information about an actor within the system. Only in such
cases, classes corresponding to the names of the actors should be
considered. Such classes sometimes are called surrogates. For example, in
t he library information system (LIS) we would need to store information
about each library member such as his name, address, identification number,
phone number, etc. This is independent of the fact that the library member
also plays the role of an actor of the system.
True name word: An imperative procedure name, i.e., noun form of a verb
actually represents an action and should not be considered as an object. For
example, cash withdrawal in the processing description of an ATM refers to
withdrawing cash and is an action and not a noun, and therefore can be
deleted from the list of nouns.
Retained information: Every entity object must have some attributes
(stored data) associated with it and the methods of the entity object should
operate on this data. It would be very unusual if we have an object that has

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

only a set of methods and no retained information. These retained
information is the private data of the object that we discussed earlier. If an
object does not contain any private data, it cannot normally be expected to
be an entity object. Thus, if we cannot associate any meaningful attribute
with an object, we should eliminate it from the list of nouns. For example,
consider the following statement in a processing narrative—The results are
displayed on computer screen. Here, computer screen cannot be an object
since we cannot associate any information to be stored on a computer screen
for later processing.
Multiple attributes: Usually objects have multiple attributes and support
multiple methods. It is very rare to find useful objects which store only a
single data element or support only a single method, because an object
having only a single data element or method is usually implemented as the
part of another object. Thus, if we cannot associate multiple attributes and
methods with a noun, we should conveniently exclude it from the list of
nouns. Consider the statement: “Each student has a phone number.” Here, a
phone number should not be made an entity object since we cannot associate
any information other than the phone number with the phone object.
Common operations: Once we determine a set of operations that can be
identified for one potential object, these operations should apply to all
occurrences of the same object. Only then should we define the noun as a
class. We have already seen that an attribute or operation defined for a class
must apply to each instance of the class. If some of the attributes or
operations apply only to some specific instances of the class, then we need to
have one or more subclasses for these special objects. Consider the
statement—“Resident students need to be assigned a hostel room, whereas
for non-resident students the local contact phone number and the local
address needs to be stored.” Here, we need two classes: resident student
and non-resident student that need to be derived from a student class, since
these two types need to have different attributes and operations, though
some operations and attributes would be similar.

Although the grammatical approach is simple and intuitively appealing, yet
through a naive use of this approach, it is very difficult to achieve high quality
results if the approach is used naively. In particular, it is very difficult to come
up with useful abstractions simply by doing grammatical analysis of the
problem description. Useful abstractions usually result from clever factoring of
the problem description into independent and intuitively correct elements.
However, the grammatical approach can serve as a rough guide that one

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

needs to use with some thought rather than by letter.

Other helpful guidelines
The following are a few more helpful guidelines to identify entity objects
from the processing narrative:

Aggregate objects: Entity classes normally occur as aggregate objects. This
is because the data to be stored is typically distributed among several
objects. For example, student objects may be aggregated into a student
register, book objects may be aggregated into a book register, etc.
Correspond to data stores in DFD: Often, the entity objects roughly
correspond to the data stores in a well-designed DFD. Thus, the DFD model,
if available, can help identify the entity objects.
Registers in physical world: The entity objects usually correspond to the
registers that needed to be maintained in the manual working of the system,
For example, in a library, normally book registers and member registers are
maintained. These can be considered as corresponding to aggregate entity
objects.
Example 8.1 Let us identify the entity objects of the following Tic-tac-toe
software:

Tic-tac-toe is a computer game in which a human player and the computer
make alternate moves on a 3 × 3 square. A move consists of marking a
previously unmarked square. A player who first places three consecutive
marks along a straight line (i.e., along a row, column, or diagonal) on the
square wins. As soon as either the human player or the computer wins, a
message congratulating the winner should be displayed. If neither player
manages to get three consecutive marks along a straight line, and all the
squares on the board are filled up, then the game is drawn. The computer
always tries to win a game.

If we perform a grammatical analysis of this problem statement, we will
come up with the nouns that have been italicised. However, on closer
examination we can eliminate the synonyms from the identified nouns. The
list of nouns after eliminating the synonyms are the following—Tic-tac-toe,
computer game, human player, move, square, mark, straight line, board, row,
column, and diagonal.

From this list of possible objects, we can eliminate nouns like human player
as it is the actor. Also, we can eliminate the nouns square, game, computer,
Tic-tac-toe, straight line, row, column, and diagonal, as we cannot associate

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

any data and methods with them. We can also eliminate the noun move from
the list of potential objects since it is an imperative verb and actually
represents an action. Thus, we should be left with only one meaningful object
—board.

Once we become a little experienced in object identification after solving a
few problems, it would not normally necessary to really identify all nouns in
the problem description by underlining them or actually listing them down,
and systematically eliminating the non-objects to arrive at the final set of
objects. We can with some experience identify the set of objects by carefully
reading the problem description and analysing it mentally.

8.3.7 Interaction Modelling
Recall from our discussions in Chapter 7 that the behaviour associated
with a use case is realised through the interaction of several objects.
These interactions are co-ordinated by the controller object. The
interactions occurring among a group of objects to realise a use case is
captured through an interaction diagram. The primary goals of
interaction modelling are the following:

To allocate the responsibility of a use case realisation among the
boundary, entity, and controller objects. The responsibilities for each
class is reflected as an operation (method) to be supported by that
class.
To show for each use case the detailed interaction that occur over time
among the associated objects to complete the execution of the use
case.

We had already seen in Chapter 7 that interaction modelling is captured
through UML sequence and collaboration diagrams. However, collaboration
diagrams can be obtained mechanically from sequence diagrams. Therefore,
it is usually sufficient to develop the sequence diagrams alone. You normally
need to do one sequence diagram for each use case. That is, for each use
case (consisting possibly of many scenarios) only a separate sequence
diagram should be designed to capture the interactions occurring among the
associated objects. Later in the design process, an interaction diagram can be
split into two or more separate diagrams, if the interaction diagram gets too
complicated or cannot be accommodated legibly on a standard size paper. In
such cases, the use case would have to be split into simpler use cases as

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

discussed in Section 7.4.4, and the interaction diagrams done for the simplest
use cases.

8.3.8 Class-Responsibility-Collaborator (CRC) Cards
Class-Responsibility-Collaborator (CRC) approach was pioneered by Ward
Cunningham and Kent Beck at the research laboratory of Tektronix at
Portland,Oregon,USA. The interaction diagram of a simple use case usually
involves capturing the collaboration among a few objects. For such simple use
cases, the interaction diagrams can easily be drawn from an inspection of the
use case description. However, designing interaction diagrams for more
complex use cases may involve collaboration of many objects and the
interactions among these objects can be difficult to comprehend for an
individual. Developing the interaction diagram for such use cases may require
participation of a team of developers through the use of CRC cards.

In the CRC card approach, a number of team members participate to assign
responsibilities to the classes involved in a use case realisation.

CRC cards are essentially index cards that are used to assign
responsibilities to classes. One CRC card is prepared for each class
represented in the domain model. On each of these cards, the responsibility
of each class is written in brief as and when they are identified. The objects
with which this object needs to collaborate for fulfilling its responsibility are
also written.

CRC cards are usually developed in small group sessions where people role
play being various classes. Each person holds the CRC card of the classes he
is playing the role of. The cards are deliberately made small (4 inch ×6 inch)
so that each class can have only limited number of responsibilities. A
responsibility is the high level description of the part that a class needs to
play in the realisation of a use case A responsibility would normally be a
single method, but may also be implemented by several methods. The
different use cases are taken up one by one. Starting from the initiation of
the use case by the actor, the interactions with the user are analysed and the
specific tasks that need to be performed by the system are determined. The
team members role-playing for the classes determine if their class should
take up the responsibility by considering the pros and cons. An example CRC
card for the BookRegister class of the Library Automation System is shown
in Figure 8.11.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 8.11: CRC card for the BookRegister class.

Once you have assigned the responsibility to classes using CRC cards, you
can develop the interaction diagrams by flipping through the CRC cards.

8 . 4 APPLICATIONS OF THE ANALYSIS AND DESIGN
PROCESS

We now demonstrate how the analysis and design process can be used
by applying them on two example problems.

Example 8.2 Consider the Tic-tac-toe computer game outlined in Example
6.2 of Chapter 6. A step-by-step workout of this example is as follows:

The use case model is shown in Figure 8.12.

Figure 8.12: Use case model for Example 8.2.

The initial domain model is shown in Figure 8.13(a).
The domain model after adding the boundary and control classes is
shown in Figure 8.13(b).

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 8.13: (a) Initial domain model (b) Refined domain model for Example 8.2.

Interaction diagram for the play move use case is shown in Figure
8.14. Note that the expert pattern is used while determining which
class should be responsible for (i.e., contain) the checkWinner
method, the controller or the boundary class? The Board class has all
the necessary information, based on which the winner can be
determined. Therefore the board class has been made to support the
checkWinner method.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 8.14: Sequence diagram for the play move use case of Example 8.2.

Class diagram is shown in Figure 8.15. The messages of the interaction
diagram of the play move use case has been populated as the methods
of the corresponding classes.

Figure 8.15: Class diagram for Example 8.2.

Example 8.3 Consider the Supermarket prizes scheme software discussed in
Example 6.3. The step-by-step analysis and design workout of this problem is
as follows:

The use case model is shown in Figure 8.16.

Figure 8.16: Use case model for Example 8.3.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The initial domain model is shown in Figure 8.17 (a).
The domain model after adding the boundary and control classes is
shown in Figure 8.17 (b).

Figure 8.17: (a) Initial domain model (b) Refined domain model for Example 8.3.

Sequence diagram for the select winner list use case Figure 8.18.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 8.18: Sequence diagram for the select winner list use case of Example 8.3.

Sequence diagram for the register use case is shown in Figure 8.19.

Figure 8.19: Sequence diagram for the register customer use case of Example 8.3.

Sequence diagram for the register sales use case Figure 8.20. In this
use case, since the responsibility of the RegisterSalesController
is trivial, the controller class can be deleted and the sequence diagram

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

has been redrawn in Figure 8.21 after incorporating this change.

Figure 8.20: Sequence diagram for the register sales use case of Example 8.3.

Figure 8.21: Refined sequence diagram for the register sales use case of Example 8.3.

Class diagram is shown in Figure 8.22. Observe that the messages of
the sequence diagrams (Figs. 8.18 to 8.20) of the different use cases
have been populated as the methods of the corresponding classes.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 8.22: Class diagram for Example 8.3.

8.5 OOD GOODNESS CRITERIA
We have seen that several subjective judgments are made while arriving at
an object-oriented design (OOD) solution. Depending on the exact judgment,
several alternative design solutions to the same problem are possible. In
order to be able to determine which of several alternative design solutions is
better, we need to identify some criteria to determine which of two
alternative designs is preferable. The following are some of the accepted
criteria for judging the goodness of a design:

Coupling: Excessive coupling between objects is detrimental to modular
design and prevents reuse. The number of messages between two
objects or among a group of objects should be minimum. Increase in
the number of message exchanges between two objects results in
increasing the coupling between them.

Cohesion: Cohesion in the design should be high. In OOD, we are concerned
about cohesion at three levels:
Cohesiveness of the individual methods: Cohesiveness of each individual
method in a class is desirable. This requires that each method should perform
only a certain well-defined function. This is desirable since it assures that the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

methods of an object do actions for which the object is naturally responsible,
i.e., it assures that no action has been improperly mapped to an object.
Cohesiveness of the data and methods within a class: The classes in a
hierarchy should be coherent. For example, from the base class Issuable in a
library, only issuable items should be derived. It would be highly
inappropriate to derive a LibraryMember class from the Issuable class.
Cohesiveness of an entire class hierarchy: Cohesiveness of methods within a
class is desirable since it promotes encapsulation of the objects.
Hierarchy and factoring guidelines: A base class should not have too
many subclasses. If too many subclasses are derived from a single base class,
then it becomes difficult to understand the design. In fact, there should
approximately be no more than 7 ± 2 classes derived from a base class at
any level.
Keeping message protocols simple Complex message protocols are an
indication of excessive coupling among objects. If a message requires more
than 3 parameters, then it is an indication of inferior design.
Number of methods: Classes having a large number of methods are likely
to be more application-specific and also difficult to comprehend—limiting the
possibility of their reuse. Therefore, classes should not have too many
methods. In fact, the number of methods can be used as a measure of the
complexity of a class. Maintaining and debugging classes having more than
about seven methods can be problematic.
Depth of the inheritance tree: The deeper a class is in the class
inheritance hierarchy, the greater is the number of methods it is likely to
inherit. The height of the inheritance tree therefore should not be very large.
Usually, the complexity of classes in a class hierarchy increase from the root
(base) class towards the leaf classes in the class hierarchy.
Number of messages per use case: The number of messages per use
case can be high, when either few objects interact by generating too many
messages or large number of objects interact during the execution of the use
case. If the methods of a large number of objects are invoked in a chain
action in response to a single message, testing and debugging becomes
complicated. If the execution of a use case shows a failure, detecting the
error (bug) would be very difficult since the error can potentially exist in any
of the participating objects. Further, there could be too much overhead
incurred due to message passing and different classes possibly perform too
little work. Each object essentially “passes the buck,” rather than doing any

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

meaningful piece of work. Therefore, a single use case should not result in
excessive message generation and transmission in a system.
Response for a class (RFC): The response for a class (RFC) is defined as
the maximum number of methods and constructors of other objects that an
instance of this class invokes. Please note that if the same method is called
more than once, then it is counted only once. A class which calls more than
about seven different methods is susceptible to errors.

SUMMARY

Patterns are reusable solutions to recurring problems. We can spot a
pattern in a problem if we are familiar with it. We discussed a few well-
known patterns.
We discussed a generic object-oriented analysis and design process.
This analysis and design process requires first constructing the use
case and domain models and then iterating through the interaction
diagram to obtain the final class diagram.
Even though we described a step-by-step methodology for object-
oriented analysis and design; a good design can only be obtained
through several iterations, trying out several alternative solutions.
Practice of solving a large number of problems is particularly useful in
arriving at a good design to a problem.
We discussed the characteristics of a good design solution and defined
some metrics that can be used to judge a design solution.

EXERCISES
1. Choose the correct option:

(a) When using informal (natural language) description of a
programming problem, which parts of the description will represent
objects?
(i) All of the nouns and some of the verbs.
(ii) All of the verbs and some of the nouns.
(iii) Some of the nouns.
(iv) Some of the verbs

(b) Which of the following parameters for a class correlates positively
with the quality of the design solution:
(i) Response for a class (RFC)

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(ii) Depth of inheritance tree (DIT)
(iii) Number of messages per use case
(iv) Cohesiveness of data ad methods in a class

(c) Which of the following is a characteristic of a good object-oriented
design:
(i) Deep class hierarchy
(ii) Large number of methods per class
(iii) Large number of message exchanges per use case
(iv) Moderate number of methods per class

2. What is the difference between object oriented analysis (OOA) and
object oriented design (OOD)?

3. What is a pattern in the context of software development? Explain why
patterns are considered to be an effective form of software reuse. What
are the limitations of this approach for software reuse?

4. Which problem does the facade design pattern attempt to solve? What
solutions does it offer?

5. Do you need to develop all the views of a system using all the modeling
diagrams supported by UML? Justify your answer.

6. What are design patterns? What are the advantages of using design
patterns? Name some popular design patterns.

7. What is unified process? What are the different phases of the unified
process? What activities are carried out during each phase of the unified
process?

8. Algorithms such as sorting are famed as reusable solutions to problems.
Since patterns provide reusable solutions, is it correct to say that
patterns are essentially algorithms? Explain your answer.

9. Why is “push from below” model of interaction between a GUI object
with either a controller or domain object is not a good idea? What
solution does MVC pattern offer in this regard?

10. State whether the following statements are TRUE o r FALSE. Give
reasons behind your answers.
(a) Deep class hierarchies are signs of an object-oriented design done

well.
(b) A large number of message exchanges among objects during the

realisation of a use case indicates effective delegation of
responsibilities and is a sign of good design.

(c) The difficulty of understanding a class in a class hierarchy increases

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

from the root to the leaves in a class hierarchy.
11. Define the term cohesion in the context of object-oriented software

design.
12. What are some of the important criteria based on which it would be

possible to determine which of two object-oriented design solutions to a
problem is better?

13. Explain the differences between an architectural pattern, a design
pattern, and an idiom in the context of object-oriented software
development.

14. What is an anti-pattern? How antipatterns are helpful in arriving at a
good design solution to a problem?

15. Briefly outline the important steps involved in developing a software
system using a popular object-oriented design methodology.

16. Perform the object-oriented design for the development of the Hotel
automation software (problem number 6.13) of Chapter 6.

17. Perform the object-oriented design for the development of the Road
Repair and Tracking Software (RRTS) (problem number 6.15) of
Chapter 6.

18. Perform the object-oriented design for the development of the Book
shop Automation Software (BAS) (problem number 6.14) of
Chappter 6.

19. Perform the object-oriented design for the development of the Library
Information System (LIS) softwa r e (problem number 6.18) of
Chapter 6.

20. Perform object-oriented design for developing the following
simulation software:
A factory has a certain category of machines that require frequent
adjustments and repair. Each category of machine fails uniformly after
continuous operation and the failure profile of the different categories of
machines is given by its mean time to failure (MTTF). A certain number
of adjusters are employed to keep the machines running. A service
manager co-ordinates the activities of the adjusters. The service
manager maintains a queue of inoperative machines. If there are
machines waiting to be repaired, the service manager assigns the
machine at the front of the queue to the next available adjuster.
Likewise, when some adjusters are not busy, the service manager
maintains a queue of idle adjusters and assigns the adjuster at the front

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

of the queue to the next machine that breaks down.
At any given time, one of the two queues will be empty. Thus, the
service manager needs to maintain only a single queue, which when it is
not empty contains only machines or only adjusters. The factory
management wishes to get as much as possible out of its machines and
adjusters. It is therefore interested in machine utilisation—the
percentage of time a machine is up and running and the adjuster
utilisation—the percentage of time an adjuster is busy. The goal of our
simulation is then to see how the average machine and adjuster
utilisation depend on such factors as the number of machines, the
number of adjusters, the reliability of the machines in terms of mean
time to failure (MTTF), and the productivity of the adjusters.

21. Consider the following Elevator Control Problem.
A software system (Elevator Controller) must control a set of 4 elevators
for a building with 10 floors. Each elevator contains a set of buttons,
each corresponding to a desired floor. These are called floor request
buttons, since they indicate a request to go to a specific floor. Each
elevator as well has a current floor indicator above the door. Each floor
has two buttons for requesting elevators called elevator request buttons
because they request an elevator. The elevator controller will receive all
the signals from the passengers and decide on the control actions to be
fed to the elevators
Each floor has a sliding door for each shaft arranged so that two door
halves meet in the center when closed. When the elevator arrives at the
floor, the doors opens at the same time the door on the elevator opens.
The floor does have both pressure and optical sensors to prevent closing
when an obstacle is between the two doors halves. If an obstruction is
detected by either sensor, the door shall open. The door shall
automatically close after a timeout period of five second after the door
opens. The detection of an obstruction shall restart the door closure time
after an obstruction is removed. There is a speaker on each floor that
announces the arrival of an elevator.
On each floor, there are two elevator request buttons, one for UP and
one for DOWN. On each floor above each elevator door, there is an
indicator specifying the current floor of the elevator and another
indicator for its current direction. The system shall respond to an
elevator request by sending the nearest elevator that is either idle or
already going in the requested direction. If no elevators are currently

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

available, the request shall be pending until an elevator meets the
previously mentioned criterion. Once pressed, the request buttons are
backlit to indicate that a request is pending. Pressing an elevator request
button when a request for that direction is already pending, shall have
no effect. When an elevator arrives to handle the request (i.e., it is
slated to go in the selected direction), then the door shall stop closing
and the door closure timer shall be reset.
To enhance safety, a cable tension sensor monitors the tension on the
cable controlling the elevator. In the event of a failure (measured
tension falls below a critical value), then four external locking clamps
connected to running tracks in the shaft stop the elevator and hold it in
place.
(a) Develop the domain model.
(b) Develop state chart model for the classes possessing significant

number of states and behaviour.
1 Recall that during structured analysis a DFD model is developed and during structured design the
DFD model is converted to structure chart representation.

2 Dictionary meaning of facade: The frontal appearance of a building.

3 The dictionary meaning of concept is idea, thing, object.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Chapter
9

USER INTERFACE DESIGN

The user interface portion of a software product is responsible for all
interactions with the user. Almost every software product has a user
interface (can you think of a software product that does not have any
user interface?). In the early days of computer, no software product had
any user interface. The computers those days were batch systems and
no interactions with the users were supported. Now, we know that
things are very different—almost every software product is highly
interactive. The user interface part of a software product is responsible
for all interactions with the end-user. Consequently, the user interface
part of any software product is of direct concern to the end-users. No
wonder then that many users often judge a software product based on
its user interface. Aesthetics apart, an interface that is difficult to use
leads to higher levels of user errors and ultimately leads to user
dissatisfaction. Users become particularly irritated when a system
behaves in an unexpected ways, i.e., issued commands do not carry out
actions according to the intuitive expectations of the user. Normally,
when a user starts using a system, he builds a mental model of the
system and expects the system behaviour to conform to it. For
example, if a user action causes one type of system activity and
response under some context, then the user would expect similar
system activity and response to occur for similar user actions in similar
contexts. Therefore, sufficient care and attention should be paid to the
design of the user interface of any software product.

Systematic development of the user interface is also important from
another consideration. Development of a good user interface usually takes
significant portion of the total system development effort. For many
interactive applications, as much as 50 per cent of the total development
effort is spent on developing the user interface part. Unless the user interface

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

is designed and developed in a systematic manner, the total effort required
to develop the interface will increase tremendously. Therefore, it is necessary
to carefully study various concepts associated with user interface design and
understand various systematic techniques available for the development of
user interface.

In this chapter, we first discuss some common terminologies and concepts
associated with development of user interfaces. Then, we classify the
different types of interfaces commonly being used. We also provide some
guidelines for designing good interfaces, and discuss some tools for
development of graphical user interfaces (GUIs). Finally, we present a GUI
development methodology.

9.1 CHARACTERISTICS OF A GOOD USER INTERFACE
Before we start discussing anything about how to develop user
interfaces, it is important to identify the different characteristics that
are usually desired of a good user interface. Unless we know what
exactly is expected of a good user interface, we cannot possibly design
one. In the following subsections, we identify a few important
characteristics of a good user interface:

Speed of learning: A good user interface should be easy to learn. Speed of
learning is hampered by complex syntax and semantics of the command issue
procedures. A good user interface should not require its users to memorise
commands. Neither should the user be asked to remember information from
one screen to another while performing various tasks using the interface.
Besides, the following three issues are crucial to enhance the speed of
learning:

— U s e of metaphors1 and intuitive command names: Speed of
learning an interface is greatly facilitated if these are based on some day-
to-day real-life examples or some physical objects with which the users
are familiar with. The abstractions of real-life objects or concepts used in
user interface design are called metaphors. If the user interface of a text
editor uses concepts similar to the tools used by a writer for text editing
such as cutting lines and paragraphs and pasting it at other places, users
can immediately relate to it. Another popular metaphor is a shopping cart.
Everyone knows how a shopping cart is used to make choices while
purchasing items in a supermarket. If a user interface uses the shopping
cart metaphor for designing the interaction style for a situation where

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

similar types of choices have to be made, then the users can easily
understand and learn to use the interface. Also, learning is facilitated by
intuitive command names and symbolic command issue procedures.

— Consistency: Once, a user learns about a command, he should be able
to use the similar commands in different circumstances for carrying out
similar actions. This makes it easier to learn the interface since the user
can extend his knowledge about one part of the interface to the other
parts. Thus, the different commands supported by an interface should be
consistent.

— Component-based interface: Users can learn an interface faster if the
interaction style of the interface is very similar to the interface of other
applications with which the user is already familiar with. This can be
achieved if the interfaces of different applications are developed using
some standard user interface components. This, in fact, is the theme of
the component-based user interface discussed in Section 9.5.

The speed of learning characteristic of a user interface can be determined
by measuring the training time and practice that users require before they
can effectively use the software.
Speed of use: Speed of use of a user interface is determined by the time
and user effort necessary to initiate and execute different commands. This
characteristic of the interface is some times referred to as productivity
support of the interface. It indicates how fast the users can perform their
intended tasks. The time and user effort necessary to initiate and execute
different commands should be minimal. This can be achieved through careful
design of the interface. For example, an interface that requires users to type
in lengthy commands or involves mouse movements to different areas of the
screen that are wide apart for issuing commands can slow down the
operating speed of users. The most frequently used commands should have
the smallest length or be available at the top of a menu to minimise the
mouse movements necessary to issue commands.
Speed of recall: Once users learn how to use an interface, the speed with
which they can recall the command issue procedure should be maximised.
This characteristic is very important for intermittent users. Speed of recall is
improved if the interface is based on some metaphors, symbolic command
issue procedures, and intuitive command names.
Error prevention: A good user interface should minimise the scope of
committing errors while initiating different commands. The error rate of an
interface can be easily determined by monitoring the errors committed by an

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

average users while using the interface. This monitoring can be automated by
instrumenting the user interface code with monitoring code which can record
the frequency and types of user error and later display the statistics of
various kinds of errors committed by different users. Consistency of names,
issue procedures, and behaviour of similar commands and the simplicity of
the command issue procedures minimise error possibilities. Also, the interface
should prevent the user from entering wrong values.
Aesthetic and attractive: A good user interface should be attractive to use.
An attractive user interface catches user attention and fancy. In this respect,
graphics-based user interfaces have a definite advantage over text-based
interfaces.
Consistency: The commands supported by a user interface should be
consistent. The basic purpose of consistency is to allow users to generalise
the knowledge about aspects of the interface from one part to another. Thus,
consistency facilitates speed of learning, speed of recall, and also helps in
reduction of error rate
Feedback: A good user interface must provide feedback to various user
actions. Especially, if any user request takes more than few seconds to
process, the user should be informed about the state of the processing of his
request. In the absence of any response from the computer for a long time, a
novice user might even start recovery/shutdown procedures in panic. If
required, the user should be periodically informed about the progress made in
processing his command.
Support for multiple skill levels: A good user interface should support
multiple levels of sophistication of command issue procedure for different
categories of users. This is necessary because users with different levels of
experience in using an application prefer different types of user interfaces.
Experienced users are more concerned about the efficiency of the command
issue procedure, whereas novice users pay importance to usability aspects.
Very cryptic and complex commands discourage a novice, whereas elaborate
command sequences make the command issue procedure very slow and
therefore put off experienced users. When someone uses an application for
the first time, his primary concern is speed of learning. After using an
application for extended periods of time, he becomes familiar with the
operation of the software. As a user becomes more and more familiar with an
interface, his focus shifts from usability aspects to speed of command issue
aspects. Experienced users look for options such as “hot-keys”, “macros”, etc.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Thus, the skill level of users improves as they keep using a software product
and they look for commands to suit their skill levels.
Error recovery (undo facility): While issuing commands, even the expert
users can commit errors. Therefore, a good user interface should allow a user
to undo a mistake committed by him while using the interface. Users are
inconvenienced if they cannot recover from the errors they commit while
using a software. If the users cannot recover even from very simple types of
errors, they feel irritated, helpless, and out of control.
User guidance and on-line help: Users seek guidance and on-line help
when they either forget a command or are unaware of some features of the
software. Whenever users need guidance or seek help from the system, they
should be provided with appropriate guidance and help.

9.2 BASIC CONCEPTS
In this section, we first discuss some basic concepts in user guidance and
on-line help system. Next, we examine the concept of a mode-based
and a modeless interface and the advantages of a graphical interface.

9.2.1 User Guidance and On-line Help
Users may seek help about the operation of the software any time while
using the software. This is provided by the on-line help system. This is
different from the guidance and error messages which are flashed
automatically without the user asking for them. The guidance messages
prompt the user regarding the options he has regarding the next
command, and the status of the last command, etc.

On-line help system: Users expect the on-line help messages to be tailored
to the context in which they invoke the “help system”. Therefore, a good on-
line help system should keep track of what a user is doing while invoking the
help system and provide the output message in a context-dependent way.
Also, the help messages should be tailored to the user’s experience level.
Further, a good on-line help system should take advantage of any graphics
and animation characteristics of the screen and should not just be a copy of
the user’s manual.
Guidance messages: The guidance messages should be carefully designed
to prompt the user about the next actions he might pursue, the current status
of the system, the progress so far made in processing his last command, etc.
A good guidance system should have different levels of sophistication for

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

different categories of users. For example, a user using a command language
interface might need a different type of guidance compared to a user using a
menu or iconic interface (These different types of interfaces are discussed
later in this chapter). Also, users should have an option to turn off the
detailed messages.
Error messages: Error messages are generated by a system either when
the user commits some error or when some errors encountered by the system
during processing due to some exceptional conditions, such as out of
memory, communication link broken, etc. Users do not like error messages
that are either ambiguous or too general such as “invalid input or system
error”. Error messages should be polite. Error messages should not have
associated noise which might embarrass the user. The message should
suggest how a given error can be rectified. If appropriate, the user should be
given the option of invoking the on-line help system to find out more about
the error situation.

9.2.2 Mode-based versus Modeless Interface
A mode is a state or collection of states in which only a subset of all user
interaction tasks can be performed. In a modeless interface, the same
set of commands can be invoked at any time during the running of the
software. Thus, a modeless interface has only a single mode and all the
commands are available all the time during the operation of the
software. On the other hand, in a mode-based interface, different sets
of commands can be invoked depending on the mode in which the
system is, i.e., the mode at any instant is determined by the sequence
of commands already issued by the user.

A mode-based interface can be represented using a state transition
diagram, where each node of the state transition diagram would represent a
mode. Each state of the state transition diagram can be annotated with the
commands that are meaningful in that state.

9.2.3 Graphical User Interface (GUI) versus Text-based
User Interface

Let us compare various characteristics of a GUI with those of a text-
based user interface:

In a GUI multiple windows with different information can
simultaneously be displayed on the user screen. This is perhaps one of

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

the biggest advantages of GUI over text- based interfaces since the
user has the flexibility to simultaneously interact with several related
items at any time and can have access to different system information
displayed in different windows.
Iconic information representation and symbolic information
manipulation is possible in a GUI. Symbolic information manipulation
such as dragging an icon representing a file to a trash for deleting is
intuitively very appealing and the user can instantly remember it.
A GUI usually supports command selection using an attractive and
user-friendly menu selection system.
In a GUI, a pointing device such as a mouse or a light pen can be used
for issuing commands. The use of a pointing device increases the
efficacy of command issue procedure.
On the flip side, a GUI requires special terminals with graphics
capabilities for running and also requires special input devices such a
mouse. On the other hand, a text-based user interface can be
implemented even on a cheap alphanumeric display terminal. Graphics
terminals are usually much more expensive than alphanumeric
terminals. However, display terminals with graphics capability with bit-
mapped high-resolution displays and significant amount of local
processing power have become affordable and over the years have
replaced text-based terminals on all desktops. Therefore, the emphasis
of this chapter is on GUI design rather than text-based user interface
design.

9.3 TYPES OF USER INTERFACES
Broadly speaking, user interfaces can be classified into the following
three categories:

Command language-based interfaces
Menu-based interfaces
Direct manipulation interfaces

Each of these categories of interfaces has its own characteristic advantages
and disadvantages. Therefore, most modern applications use a careful
combination of all these three types of user interfaces for implementing the
user command repertoire. It is very difficult to come up with a simple set of

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

guidelines as to which parts of the interface should be implemented using
what type of interface. This choice is to a large extent dependent on the
experience and discretion of the designer of the interface. However, a study
of the basic characteristics and the relative advantages of different types of
interfaces would give a fair idea to the designer regarding which commands
should be supported using what type of interface. In the following three
subsections, we briefly discuss some important characteristics, advantages,
and disadvantages of using each type of user interface.

9.3.1 Command Language-based Interface
A command language-based interface—as the name itself suggests, is
based on designing a command language which the user can use to
issue the commands. The user is expected to frame the appropriate
commands in the language and type them appropriately whenever
required. A simple command language-based interface might simply
assign unique names to the different commands. However, a more
sophisticated command language-based interface may allow users to
compose complex commands by using a set of primitive commands.
Such a facility to compose commands dramatically reduces the number
of command names one would have to remember. Thus, a command
language-based interface can be made concise requiring minimal typing
by the user. Command language-based interfaces allow fast interaction
with the computer and simplify the input of complex commands.

Among the three categories of interfaces, the command language interface
allows for most efficient command issue procedure requiring minimal typing.
Further, a command language-based interface can be implemented even on
cheap alphanumeric terminals. Also, a command language-based interface is
easier to develop compared to a menu-based or a direct-manipulation
interface because compiler writing techniques are well developed. One can
systematically develop a command language interface by using the standard
compiler writing tools Lex and Yacc.

However, command language-based interfaces suffer from several
drawbacks. Usually, command language-based interfaces are difficult to learn
and require the user to memorise the set of primitive commands. Also, most
users make errors while formulating commands in the command language
and also while typing them. Further, in a command language-based interface,
all interactions with the system is through a key-board and cannot take
advantage of effective interaction devices such as a mouse. Obviously, for

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

casual and inexperienced users, command language-based interfaces are not
suitable.

Issues in designing a command language-based interface
Two overbearing command design issues are to reduce the number of
primitive commands that a user has to remember and to minimise the
total typing required. We elaborate these considerations in the
following:

The designer has to decide what mnemonics (command names) to use
for the different commands. The designer should try to develop
meaningful mnemonics and yet be concise to minimise the amount of
typing required. For example, the shortest mnemonic should be
assigned to the most frequently used commands.
The designer has to decide whether the users will be allowed to
redefine the command names to suit their own preferences. Letting a
user define his own mnemonics for various commands is a useful
feature, but it increases the complexity of user interface development.
The designer has to decide whether it should be possible to compose
primitive commands to form more complex commands. A sophisticated
command composition facility would require the syntax and semantics
of the various command composition options to be clearly and
unambiguously specified. The ability to combine commands is a
powerful facility in the hands of experienced users, but quite
unnecessary for inexperienced users.

9.3.2 Menu-based Interface
An important advantage of a menu-based interface over a command
language-based interface is that a menu-based interface does not
require the users to remember the exact syntax of the commands. A
menu-based interface is based on recognition of the command names,
rather than recollection. Humans are much better in recognising
something than recollecting it. Further, in a menu-based interface the
typing effort is minimal as most interactions are carried out through
menu selections using a pointing device. This factor is an important
consideration for the occasional user who cannot type fast.

However, experienced users find a menu-based user interface to be slower
than a command language-based interface because an experienced user can

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

type fast and can get speed advantage by composing different primitive
commands to express complex commands. Composing commands in a menu-
based interface is not possible. This is because of the fact that actions
involving logical connectives (and, or, etc.) are awkward to specify in a menu-
based system. Also, if the number of choices is large, it is difficult to design a
menu-based interfae. A moderate-sized software might need hundreds or
thousands of different menu choices. In fact, a major challenge in the design
of a menu-based interface is to structure large number of menu choices into
manageable forms. In the following, we discuss some of the techniques
available to structure a large number of menu items:
Scrolling menu: Sometimes the full choice list is large and cannot be
displayed within the menu area, scrolling of the menu items is required. This
would enable the user to view and select the menu items that cannot be
accommodated on the screen. However, in a scrolling menu all the
commands should be highly correlated, so that the user can easily locate a
command that he needs. This is important since the user cannot see all the
commands at any one time. An example situation where a scrolling menu is
frequently used is font size selection in a document processor (see Figure
9.1). Here, the user knows that the command list contains only the font sizes
that are arranged in some order and he can scroll up or down to find the size
he is looking for. However, if the commands do not have any definite ordering
relation, then the user would have to in the worst case, scroll through all the
commands to find the exact command he is looking for, making this
organisation inefficient.

Figure 9.1: Font size selection using scrolling menu.

Walking menu: Walking menu is very commonly used to structure a large
collection of menu items. In this technique, when a menu item is selected, it

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

causes further menu items to be displayed adjacent to it in a sub-menu. An
example of a walking menu is shown in Figure 9.2. A walking menu can
successfully be used to structure commands only if there are tens rather than
hundreds of choices since each adjacently displayed menu does take up
screen space and the total screen area is after all limited.

Figure 9.2: Example of walking menu.

Hierarchical menu: This type of menu is suitable for small screens with
limited display area such as that in mobile phones. In a hierarchical menu,
the menu items are organised in a hierarchy or tree structure. Selecting a
menu item causes the current menu display to be replaced by an appropriate
sub-menu. Thus in this case, one can consider the menu and its various sub-
menu to form a hierarchical tree-like structure. Walking menu can be
considered to be a form of hierarchical menu which is practicable when the
tree is shallow. Hierarchical menu can be used to manage large number of
choices, but the users are likely to face navigational problems because they
might lose track of where they are in the menu tree. This probably is the
main reason why this type of interface is very rarely used.

9.3.3 Direct Manipulation Interfaces
Direct manipulation interfaces present the interface to the user in the
form of visual models (i.e., icons2 or objects). For this reason, direct
manipulation interfaces are sometimes called as iconic interfaces. In
this type of interface, the user issues commands by performing actions
on the visual representations of the objects, e.g., pull an icon

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

representing a file into an icon representing a trash box, for deleting the
file.

Important advantages of iconic interfaces include the fact that the icons can
be recognised by the users very easily, and that icons are language-
independent. However, experienced users find direct manipulation interfaces
very for too. Also, it is difficult to give complex commands using a direct
manipulation interface. For example, if one has to drag an icon representing
the file to a trash box icon for deleting a file, then in order to delete all the
files in the directory one has to perform this operation individually for all files
—which could be very easily done by issuing a command like delete *.*.

9.4 FUNDAMENTALS OF COMPONENT-BASED GUI
DEVELOPMENT

Graphical user interfaces became popular in the 1980s. The main reason
why there were very few GUI-based applications prior to the eighties is
that graphics terminals were too expensive. For example, the price of a
graphics terminal those days was much more than what a high-end
personal computer costs these days. Also, the graphics terminals were
of storage tube type and lacked raster capability.

One of the first computers to support GUI-based applications was the Apple
Macintosh computer. In fact, the popularity of the Apple Macintosh computer
in the early eighties is directly attributable to its GUI. In those early days of
GUI design, the user interface programmer typically started his interface
development from the scratch. He would starting from simple pixel display
routines, write programs to draw lines, circles, text, etc. He would then
develop his own routines to display menu items, make menu choices, etc.
The current user interface style has undergone a sea change compared to the
early style.

The current style of user interface development is component-based. It
recognises that every user interface can easily be built from a handfuls of
predefined components such as menus, dialog boxes, forms, etc. Besides the
standard components, and the facilities to create good interfaces from them,
one of the basic support available to the user interface developers is the
window system. The window system lets the application programmer create
and manipulate windows without having to write the basic windowing
functions.

In the following subsections, we provide an overview of the window
management system, the component-based development style, and visual

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

programming.

9.4.1 Window System
Most modern graphical user interfaces are developed using some window
system. A window system can generate displays through a set of
windows. Since a window is the basic entity in such a graphical user
interface, we need to first discuss what exactly a window is.

Window: A window is a rectangular area on the screen. A window can be
considered to be a virtual screen, in the sense that it provides an interface to
the user for carrying out independent activities, e.g., one window can be used
for editing a program and another for drawing pictures, etc.

Figure 9.3: Window with client and user areas marked.

A window can be divided into two parts—client part, and non-client part.
The client area makes up the whole of the window, except for the borders
and scroll bars. The client area is the area available to a client application for
display. The non-client-part of the window determines the look and feel of
the window. The look and feel defines a basic behaviour for all windows, such
as creating, moving, resizing, iconifying of the windows. The window
manager is responsible for managing and maintaining the non-client area of a
window. A basic window with its different parts is shown in Figure 9.3.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Window management system (WMS)
A graphical user interface typically consists of a large number of
windows. Therefore, it is necessary to have some systematic way to
manage these windows. Most graphical user interface development
environments do this through a window management system (WMS). A
window management system is primarily a resource manager. It keeps
track of the screen area resource and allocates it to the different
windows that seek to use the screen. From a broader perspective, a
WMS can be considered as a user interface management system (UIMS)
—which not only does resource management, but also provides the
basic behaviour to the windows and provides several utility routines to
the application programmer for user interface development. A WMS
simplifies the task of a GUI designer to a great extent by providing the
basic behaviour to the various windows such as move, resize, iconify,
etc. as soon as they are created and by providing the basic routines to
manipulate the windows from the application program such as creating,
destroying, changing different attributes of the windows, and drawing
text, lines, etc.

A WMS consists of two parts (see Figure 9.4):
• a window manager, and
• a window system.
These components of the WMS are discussed in the following subsection.

Window manager and window system: The window manager is built on
the top of the window system in the sense that it makes use of various
services provided by the window system. The window manager and not the
window system determines how the windows look and behave. In fact,
several kinds of window managers can be developed based on the same
window system. The window manager can be considered as a special kind of
client that makes use of the services (function calls) supported by the window
system. The application programmer can also directly invoke the services of
the window system to develop the user interface. The relationship between
the window manager, window system, and the application program is shown
in Figure 9.4. This figure shows that the end-user can either interact with the
application itself or with the window manager (resize, move, etc.) and both
the application and the window manger invoke services of the window
manager.

Window manager is the component of WMS with which the end user interacts to do

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

various window-related operations such as window repositioning, window resizing,
iconification, etc.

Figure 9.4: Window management system.

It is usually cumbersome to develop user interfaces using the large set of
routines provided by the basic window system. Therefore, most user interface
development systems usually provide a high-level abstraction called widgets
for user interface development. A widget is the short form of a window
object. We know that an object is essentially a collection of related data with
several operations defined on these data which are available externally to
operate on these data. The data of an window object are the geometric
attributes (such as size, location etc.) and other attributes such as its
background and foreground colour, etc. The operations that are defined on
these data include, resize, move, draw, etc.

Widgets are the standard user interface components. A user interface is
usually made up by integrating several widgets. A few important types of
widgets normally provided with a user interface development system are
described in Section 9.4.2.

Component-based development
A development style based on widgets is called component-based (or
widget-based) GUI development style. There are several important
advantages of using a widget-based design style. One of the most

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

important reasons to use widgets as building blocks is because they
help users learn an interface fast. In this style of development, the user
interfaces for different applications are built from the same basic
components. Therefore, the user can extend his knowledge of the
behaviour of the standard components from one application to the
other. Also, the component-based user interface development style
reduces the application programmer’s work significantly as he is more of
a user interface component integrator than a programmer in the
traditional sense. In the following section, we will discuss some of these
popular widgets.

Visual programming
Visual programming is the drag and drop style of program development.
In this style of user interface development, a number of visual objects
(icons) representing the GUI components are provided by the
programming environment. The application programmer can easily
develop the user interface by dragging the required component types
(e.g., menu, forms, etc.) from the displayed icons and placing them
wherever required. Thus, visual programming can be considered as
program development through manipulation of several visual objects.
Reuse of program components in the form of visual objects is an
important aspect of this style of programming. Though popular for user
interface development, this style of programming can be used for other
applications such as Computer-Aided Design application (e.g., factory
design), simulation, etc. User interface development using a visual
programming language greatly reduces the effort required to develop
the interface.

Examples of popular visual programming languages are Visual Basic, Visual
C++, etc. Visual C++ provides tools for building programs with window-
based user interfaces for Microsoft Windows environments. In visual C++ you
usually design menu bars, icons, and dialog boxes, etc. before adding them to
your program. These objects are called as resources. You can design shape,
location, type, and size of the dialog boxes before writing any C++ code for
the application.

9.4.2 Types of Widgets
Different interface programming packages support different widget sets.
However, a surprising number of them contain similar kinds of widgets,

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

so that one can think of a generic widget set which is applicable to most
interfaces. The following widgets we have chosen as representatives of
this generic class.

Label widget: This is probably one of the simplest widgets. A label widget
does nothing except to display a label, i.e., it does not have any other
interaction capabilities and is not sensitive to mouse clicks. A label widget is
often used as a part of other widgets.
Container widget: These widgets do not stand by themselves, but exist
merely to contain other widgets. Other widgets are created as children of the
container widget. When the container widget is moved or resized, its children
widget also get moved or resized. A container widget has no callback routines
associated with it.
Pop-up menu: These are transient and task specific. A pop-up menu
appears upon pressing the mouse button, irrespective of the mouse position.
Pull-down menu : These are more permanent and general. You have to
move the cursor to a specific location and pull down this type of menu.
Dialog boxes: We often need to select multiple elements from a selection
list. A dialog box remains visible until explicitly dismissed by the user. A
dialog box can include areas for entering text as well as values. If an apply
command is supported in a dialog box, the newly entered values can be tried
without dismissing the box. Though most dialog boxes ask you to enter some
information, there are some dialog boxes which are merely informative,
alerting you to a problem with your system or an error you have made.
Generally, these boxes ask you to read the information presented and then
click OK to dismiss the box.
Push button: A push button contains key words or pictures that describe the
action that is triggered when you activate the button. Usually, the action
related to a push button occurs immediately when you click a push button
unless it contains an ellipsis (. . .). A push button with an ellipsis generally
indicates that another dialog box will appear.
Radio buttons: A set of radio buttons are used when only one option has to
be selected out of many options. A radio button is a hollow circle followed by
text describing the option it stands for. When a radio button is selected, it
appears filled and the previously selected radio button from the group is
unselected. Only one radio button from a group can be selected at any time.
This operation is similar to that of the band selection buttons that were
available in old radios.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Combo boxes: A combo box looks like a button until the user interacts with
it. When the user presses or clicks it, the combo box displays a menu of items
to choose from. Normally a combo box is used to display either one-of-many
choices when space is limited, the number of choices is large, or when the
menu items are computed at run-time.

9.4.3 An Overview of X-Window/MOTIF
One of the important reasons behind the extreme popularity of the X-window
system is probably due to the fact that it allows development of portable
GUIs. Applications developed using the X-window system are device-
independent. Also, applications developed using the X-window system
become network independent in the sense that the interface would work just
as well on a terminal connected anywhere on the same network as the
computer running the application is. Network-independent GUI operation has
been schematically represented in Figure 9.5. Here, A is the computer
application in which the application is running. B can be any computer on the
network from where you can interact with the application. Network-
independent GUI was pioneered by the X-window system in the mid-eighties
at MIT (Massachusetts Institute of Technology) with support from DEC
(Digital Equipment Corporation). Now-a-days many user interface
development systems support network-independent GUI development, e.g.,
the AWT and Swing components of Java.

Figure 9.5: Network-independent GUI.

The X-window functions are low level functions written in C language which

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

can be called from application programs. But only the very serious application
designer would program directly using the X-windows library routines. Built
on top of X-windows are higher level functions collectively called Xtoolkit,
which consists of a set of basic widgets and a set of routines to manipulate
these widgets. One of the most widely used widget sets is X/Motif. Digital
Equipment Corporation (DEC) used the basic X-window functions to develop
its own look and feel for interface designs called DECWindows. In the
following, we shall provide a very brief overview of the X-window system and
its architecture and the interested reader is referred to Scheifler et al. [1988]
for further study on graphical user interface development using X-windows
and Motif.

9.4.4 X Architecture
The X architecture is pictorially depicted in Figure 9.6. The different terms
used in this diagram are explained as follows:

Figure 9.6: Architecture of the X System.

Xserver: The X server runs on the hardware to which the display and
the key board are attached. The X server performs low-level graphics,
manages window, and user input functions. The X server controls
accesses to a bit-mapped graphics display resource and manages it.

X protocol. The X protocol defines the format of the requests between client
applications and display servers over the network. The X protocol is designed
to be independent of hardware, operating systems, underlying network

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

protocol, and the programming language used.
X library (Xlib). The Xlib provides a set of about 300 utility routines for
applications to call. These routines convert procedure calls into requests that
are transmitted to the server. Xlib provides low level primitives for developing
an user interface, such as displaying a window, drawing characters and
graphics on the window, waiting for specific events, etc.
Xtoolkit (Xt). The Xtoolkit consists of two parts: the intrinsics and the
widgets. We have already seen that widgets are predefined user interface
components such as scroll bars, menu bars, push buttons, etc. for designing
GUIs. Intrinsics are a set of about a dozen library routines that allow a
programmer to combine a set of widgets into a user interface. In order to
develop a user interface, the designer has to put together the set of
components (widgets) he needs, and then he needs to define the
characteristics (called resources) and behaviour of these widgets by using the
intrinsic routines to complete the development of the interface. Therefore,
developing an interface using Xtoolkit is much easier than developing the
same interface using only X library.

9.4.5 Size Measurement of a Component-based GUI
Lines of code (LOC) is not an appropriate metric to estimate and
measure the size of a component-based GUI. This is because, the
interface is developed by integrating several pre- built components. The
different components making up an interface might have been in
written using code of drastically different sizes. However, as far as the
effort of the GUI developer who develops an interface by integrating the
components may not be affected by the code size of the components he
integrates.

A way to measure the size of a modern user interface is widget points (wp).
The size of a user interface (in wp units) is simply the total number of
widgets used in the interface. The size of an interface in wp units is a
measure of the intricacy of the interface and is more or less independent of
the implementation environment. The wp measure opens up chances for
contracts on a measured amount of user interface functionality, instead of a
vague definition of a complete system. However, till now there is no reported
results to estimate the development effort in terms of the wp metric. An
alternate way to compute the size of GUI is to simply count the number of
screens. However, this would be inaccurate since a screen complexity can
range from very simple to very complex.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

9.5 A USER INTERFACE DESIGN METHODOLOGY
At present, no step-by-step methodology is available which can be
followed by rote to come up with a good user interface. What we
present in this section is a set of recommendations which you can use
to complement your ingenuity. Even though almost all popular GUI
design methodologies are user-centered, this concept has to be clearly
distinguished from a user interface design by users. Before we start
discussing about the user interface design methodology, let us
distinguish between a user-centered design and a design by users.

User-centered design is the theme of almost all modern user interface
design techniques. However, user-centered design does not mean
design by users. One should not get the users to design the interface,
nor should one assume that the user’s opinion of which design
alternative is superior is always right. Though users may have good
knowledge of the tasks they have to perrform using a GUI, but they
may not know the GUI design issues.
Users have good knowledge of the tasks they have to perform, they
also know whether they find an interface easy to learn and use but
they have less understanding and experience in GUI design than the
GUI developers.

9.5.1 Implications of Human Cognition Capabilities on User
Interface Design

An area of human-computer interaction where extensive research has
been conducted is how human cognitive capabilities and limitations
influence the way an interface should be designed. In the following
subsections, we discuss some of the prominent issues that have been
extensively reported in the literature.

Limited memory: Humans can remember at most seven unrelated items of
information for short periods of time. Therefore, the GUI designer should not
require the user to remember too many items of information at a time. It is
the GUI designer’s responsibility to anticipate what information the user will
need at what point of each task and to ensure that the relevant information is
displayed for the user to see. Showing the user some information at some
point, and then asking him to recollect that information in a different screen
where they no longer see the information, places a memory burden on the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

user and should be avoided wherever possible.
Frequent task closure: Doing a task (except for very trivial tasks) requires
doing several subtasks. When the system gives a clear feedback to the user
that a task has been successfully completed, the user gets a sense of
achievement and relief. The user can clear out information regarding the
completed task from memory. This is known as task closure. When the
overall task is fairly big and complex, it should be divided into subtasks, each
of which has a clear subgoal which can be a closure point.
Recognition rather than recall. Information recall incurs a larger memory
burden on the users and is to be avoided as far as possible. On the other
hand, recognition of information from the alternatives shown to him is more
acceptable.
Procedural versus ob ject-oriented: Procedural designs focus on tasks,
prompting the user in each step of the task, giving them very few options for
anything else. This approach is best applied in situations where the tasks are
narrow and well-defined or where the users are inexperienced, such as a
bank ATM. An object-oriented interface on the other hand focuses on objects.
This allows the users a wide range of options.

9.5.2 A GUI Design Methodology
The GUI design methodology we present here is based on the seminal
work of Frank Ludolph [Frank1998]. Our user interface design
methodology consists of the following important steps:

• Examine the use case model of the software. Interview, discuss, and
review the GUI issues with the end-users.
Task and object modelling.
Metaphor selection.
Interaction design and rough layout.
Detailed presentation and graphics design.
GUI construction.
Usability evaluation.

Examining the use case model
We now elaborate the above steps in GUI design. The starting point for
GUI design is the use case model. This captures the important tasks the
users need to perform using the software. As far as possible, a user

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

interface should be developed using one or more metaphors. Metaphors
help in interface development at lower effort and reduced costs for
training the users. Over time, people have developed efficient methods
of dealing with some commonly occurring situations. These solutions
are the themes of the metaphors. Metaphors can also be based on
physical objects such as a visitor’s book, a catalog, a pen, a brush, a
scissor, etc. A solution based on metaphors is easily understood by the
users, reducing learning time and training costs. Some commonly used
metaphors are the following:

White board
Shopping cart
Desktop
Editor’s work bench
White page
Yellow page
Office cabinet
Post box
Bulletin board
Visitor’s Book

Task and ob ject modelling
A task is a human activity intended to achieve some goals. Examples of
task goals can be as follows:

Reserve an airline seat
Buy an item
Transfer money from one account to another
Book a cargo for transmission to an address

A task model is an abstract model of the structure of a task. A task model
should show the structure of the subtasks that the user needs to perform to
achieve the overall task goal. Each task can be modeled as a hierarchy of
subtasks. A task model can be drawn using a graphical notation similar to the
activity network model we discussed in Chapter 3. Tasks can be drawn as
boxes with lines showing how a task is broken down into subtasks. An
underlined task box would mean that no further decomposition of the task is
required. An example of decomposition of a task into subtasks is shown in

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 9.7.

Figure 9.7: Decomposition of a task into subtasks.

Identification of the user objects forms the basis of an object-based design.
A user object model is a model of business objects which the end-users
believe that they are interacting with. The objects in a library software may
be books, journals, members, etc. The objects in the supermarket automation
software may be items, bills, indents, shopping list, etc. The state diagram
for an object can be drawn using a notation similar to that used by UML (see
Section 7.8). The state diagram of an object model can be used to determine
which menu items should be dimmed in a state. An example state chart
diagram for an order object is shown in Figure 9.8.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 9.8: State chart diagram for an order object.

Metaphor selection
The first place one should look for while trying to identify the candidate
metaphors is the set of parallels to objects, tasks, and terminologies of
the use cases. If no obvious metaphors can be found, then the designer
can fall back on the metaphors of the physical world of concrete
objects. The appropriateness of each candidate metaphor should be
tested by restating the objects and tasks of the user interface model in
terms of the metaphor. Another criterion that can be used to judge
metaphors is that the metaphor should be as simple as possible, the
operations using the metaphor should be clear and coherent and it
should fit with the users’ ‘common sense’ knowledge. For example, it
would indeed be very awkward and a nuisance for the users if the
scissor metaphor is used to glue different items.

Example 9.1 We need to develop the interface for a web-based pay-order
shop, where the users can examine the contents of the shop through a web
browser and can order them.

Several metaphors are possible for different parts of this problem as
follows:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Different items can be picked up from racks and examined. The user
can request for the catalog associated with the items by clicking on
the item.
Related items can be picked from the drawers of an item cabinet.
The items can be organised in the form of a book, similar to the way
information abo u t electronic components are organised in a
semiconductor hand book.

Once the users make up their mind about an item they wish to buy, they
can put them into a shopping cart.

Interaction design and rough layout
The interaction design involves mapping the subtasks into appropriate
controls, and other widgets such as forms, text box, etc. This involves
making a choice from a set of available components that would best
suit the subtask. Rough layout concerns how the controls, an other
widgets to be organised in windows.

Detailed presentation and graphics design
Each window should represent either an object or many objects that
have a clear relationship to each other. At one extreme, each object
view could be in its own window. But, this is likely to lead to too much
window opening, closing, moving, and resizing. At the other extreme,
all the views could be placed in one window side-by-side, resulting in a
very large window. This would force the user to move the cursor around
the window to look for different objects.

GUI construction
Some of the windows have to be defined as modal dialogs. When a
window is a modal dialog, no other windows in the application is
accessible until the current window is closed. When a modal dialog is
closed, the user is returned to the window from which the modal dialog
was invoked. Modal dialogs are commonly used when an explicit
confirmation or authorisation step is required for an action (e.g.,
confirmation of delete). Though use of modal dialogs are essential in
some situations, overuse of modal dialogs reduces user flexibility. In
particular, sequences of modal dialogs should be avoided.

User interface inspection

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Nielson [Niel94] studied common usability problems and built a check list
of points which can be easily checked for an interface. The following
check list is based on the work of Nielson [Niel94]:

Visibility of the system status: The system should as far as possible keep
the user informed about the status of the system and what is going on. For
example, it should not be the case that a user gives a command and keeps
waiting, wondering whether the system has crashed and he should reboot the
system or that the results shall appear after some more time.
Match between the system and the real world: The system should
speak the user’s language with words, phrases, and concepts familiar to that
used by the user, rather than using system-oriented terms.
Undoing mistakes: The user should feel that he is in control rather than
feeling helpless or to be at the control of the system. An important step
toward this is that the users should be able to undo and redo operations.
Consistency: The users should not have to wonder whether different words,
concepts, and operations mean the same thing in different situations.
Recognition rather than recall: The user should not have to recall
information which was presented in another screen. All data and instructions
should be visible on the screen for selection by the user.
Support for multiple skill levels: Provision of accelerators for experienced
users allows them to efficiently carry out the actions they most frequently
require to perform.
Aesthetic and minimalist design: Dialogs and screens should not contain
information which are irrelevant and are rarely needed. Every extra unit of
information in a dialog or screen competes with the relevant units and
diminishes their visibility.
Help and error messages: These should be expressed in plain language
(no codes), precisely indicating the problem, and constructively suggesting a
solution.
Error prevention: Error possibilities should be minimised. A key principle in
this regard is to prevent the user from entering wrong values. In situations
where a choice has to be made from among a discrete set of values, the
control should present only the valid values using a drop-down list, a set of
option buttons or a similar multichoice control. When a specific format is
required for attribute data, the entered data should be validated when the
user attempts to submit the data.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

SUMMARY

In this chapter, we first discussed some important concepts associated
with user interface design and suggested a few desirable properties
that a good user interface should possess.
The current user interface development-style is component-based.
Component-based user interfaces enhance speed of learning and also
reduce the interface development effort. Component-based interface
development makes the users familiar with standard ways of
interacting with an interface. The users can easily extend their
knowledge of interacting with one interface to another, thereby
reducing the learning time to a great extent.
We then identified several primitive components which can be used to
design graphical user interfaces.
We discussed the basic concepts associated with window management
systems and provided a brief overview of X-Window/Motif and Visual
programming.
We discussed the rudiments of a user interface design methodology
which can be used to supplement the ingenuity of a designer.

EXERCISES
1. Choose the correct option:

(a) Which of the following can be considered to provide the most
accurate measure of the size of a user interface:
(i) LOC of the GUI components
(ii) Number of scenarios
(iii) Number of windows
(iv) Sizes of input and output data

(b) Which of the following types of interfaces would the novice users find
the easiest to use?
(i) Direct manipulation interfaces
(ii) Menu-based interfaces
(iii) Command-based interfaces
(iv) Combination of menu and command interfaces

(c) Widgets in user interface terminology stand for:
(i) Window objects
(ii) Orphaned window
(iii) What you see is what you get

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(iv) Wily midget
2. List five desirable characteristics that a good user interface should

possess.
3. Compare the relative advantages of textual and graphical user

interfaces.
4. What is the difference between user guidance and on-line help system

in the user interface of a software system? Discuss the different ways in
which on-line help can be provided to a user while he is executing the
software.

5. (a) Compare the relative advantages of command language, menu-
based, and direct manipulation interfaces.
(b) Suppose you have been asked to design the user interface of a large

software product. Would you choose a menu-based, a direct
manipulation, a command language-based, or a mixture of all these
types of interfaces to develop the interface for your product? Justify
your choice.

6. State TRUE or FALSE of the following. Support your answer with proper
reasoning:
(a) Visual programming style is restricted to user interface development

only.
(b) A modeless user interface is preferred for a software product that

needs to support a large number of functionalities for the user.
(c) Novice users normally prefer command language interfaces over both

menu-based and iconic interfaces.
(d) For modern user interfaces, LOC is an accurate measure of the size

of the interface. (e) The look and feel of a window system is
essentially determined by the window manager.

7. Discuss why several popular software packages support a command
language in addition to menu-based and iconic user interfaces.

8. List the important advantages and disadvantages of a command
language interface.

9. List the important advantages and disadvantages of a menu-based
interface.

10. While developing the user interface for a software product, how can
you accomodate users with different skill levels.

11. Compare the relative advantages of scrolling menu, hierarchical menu,
and walking menu as techniques for organising user commands.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

12. What do you understand by an iconic interface? Explain how you can
issue commands using an iconic interface.

13. List the important advantages and disadvantages of a direct
manipulation interface.

14. List the important GUI components using which you can develop a
graphical user interface for any application.

15. What is the difference between a mode-based and a modeless user
interface? What are their relative advantages? Which one would you use
for developing the interface of a software product supporting a large
number of commands? Justify your answer.

16. What is a window manager? Mention at least two important
responsibilities of a window manager. Name some window managers
commonly used in the Linux system.

17. What is a window management system (WMS)? Represent the main
components of a WMS in a schematic diagram and briefly explain their
roles.

18. What are the advantages of using a window management system for
GUI design? Name some commercially available window management
systems.

19. Briefly discuss the architecture of the X window system. What are the
important advantages of using the X window system for developing
graphical user interfaces?

20. Write five sentences to highlight the important features of Visual C++?
21. What do you understand by a visual language? How do languages such

as Visual C++ and Visual Basic let you do component-based user
interface development?

22. What do you understand by component-based user interface
development? What are the advantages of component-based user
interface development?

23. Why a count of the different screens of the GUI of an application may
not be an accurate measure of the size of the user interface? Suggest a
more accurate measure of the size of the user interface of an
application. Explain how it overcomes the difficulties with the number of
screens measure.

24. Distinguish between a “user-centered design” and “design by users.”
Examine the pros and cons of these two approaches to user interface

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

design.
25. Suppose the customer feedback for a product that you have developed

is “too difficult to learn”. Explain how the speed of learning of the user
interface of the product can be increased.

26. Distinguish between procedural and object-oriented user interface.
Which type of interface is more usable? Justify your answer.

27. What do you understand by “look and feel” of a window. Which
component of an operating system determines the look and feel of the
windows. Explain your answer.

28. Design and develop a graphical user interface for the graphical editor
software described in Exercise 6.18.

29. Prepare a check list of at least five inspection items for effective
inspection of any user interface.

30. Study the user interface of some popular software products such as
Word, Powerpoint, Excel, OpenOffice, Gimp, etc. and identify the
metaphors used. Also, examine how tasks are broken up into subtasks
and closure achieved.

31. What do you understand by a metaphor in the context of user interface
design? Why is it advantageous to design a user interface based on
metaphors? List a few metaphors which can be used for user interface
design.

32. What do you understand by a modal dialog? Why are these required?
Why should the use of too many modal dialogs in an interface design be
avoided?

33. How does the human cognition capabilities and limitations influence
human-computer user interface designing?

34. Distinguish between a user-centric interface design and interface
design by users.

35. Is there any difference between designing a software and model
building based on the requirements of the software?

36. Define a metric using which the size of the user interface part of a
software can be measured.
1 Dictionary meaning: figure of speech in which a word or phrase literally denoting one kind of object
or idea is used in place of another to suggest a likeness or analogy between them as in drowning in
money.

2 Small pictures.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Chapter
10

CODING AND TESTING

In this chapter, we will discuss the coding and testing phases of the software
life cycle.

Coding is undertaken once the design phase is complete and the design documents
have been successfully reviewed.

In the coding phase, every module specified in the design document is
coded and unit tested. During unit testing, each module is tested in isolation
from other modules. That is, a module is tested independently as and when
its coding is complete.

After all the modules of a system have been coded and unit tested, the integration
and system testing phase is undertaken.

Integration and testing of modules is carried out according to an integration
plan. The integration plan, according to which different modules are
integrated together, usually envisages integration of modules through a
number of steps. During each integration step, a number of modules are
added to the partially integrated system and the resultant system is tested.
The full product takes shape only after all the modules have been integrated
together. System testing is conducted on the full product. During system
testing, the product is tested against its requirements as recorded in the SRS
document.

We had already pointed out in Chapter 2 that testing is an important phase
in software development and typically requires the maximum effort among all
the development phases. Usually, testing of a professional software is carried
out using a large number of test cases. It is usually the case that many of the
different test cases can be executed in parallel by different team members.
Therefore, to reduce the testing time, during the testing phase the largest
manpower (compared to all other life cycle phases) is deployed. In a typical
development organisation, at any time, the maximum number of software

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

engineers can be found to be engaged in testing activities. It is not very
surprising then that in the software industry there is always a large demand
for software test engineers. However, many novice engineers bear the wrong
impression that testing is a secondary activity and that it is intellectually not
as stimulating as the activities associated with the other development
phases.

Over the years, the general perception of testing as monkeys typing in random data
and trying to crash the system has changed. Now testers are looked upon as masters
of specialised concepts, techniques, and tools.

As we shall soon realize, testing a software product is as much challenging
as initial development activities such as specifications, design, and coding.
Moreover, testing involves a lot of creative thinking.

In this Chapter, we first discuss some important issues associated with the
activities undertaken in the coding phase. Subsequently, we focus on various
types of program testing techniques for procedural and object-oriented
programs.

10.1 CODING
The input to the coding phase is the design document produced at the end of
the design phase. Please recollect that the design document contains not only
the high-level design of the system in the form of a module structure (e.g., a
structure chart), but also the detailed design. The detailed design is usually
documented in the form of module specifications where the data structures
and algorithms for each module are specified. During the coding phase,
different modules identified in the design document are coded according to
their respective module specifications. We can describe the overall objective
of the coding phase to be the following.

The objective of the coding phase is to transform the design of a system into code in
a high-level language, and then to unit test this code.

Normally, good software development organisations require their
programmers to adhere to some well-defined and standard style of coding
which is called their coding standard. These software development
organisations formulate their own coding standards that suit them the most,
and require their developers to follow the standards rigorously because of the
significant business advantages it offers. The main advantages of adhering to
a standard style of coding are the following:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

A coding standard gives a uniform appearance to the codes written by
different engineers.
It facilitates code understanding and code reuse.
It promotes good programming practices.

A coding standard lists several rules to be followed during coding, such as
the way variables are to be named, the way the code is to be laid out, the
error return conventions, etc. Besides the coding standards, several coding
guidelines are also prescribed by software companies. But, what is the
difference between a coding guideline and a coding standard?

It is mandatory for the programmers to follow the coding standards. Compliance of
their code to coding standards is verified during code inspection. Any code that does
not conform to the coding standards is rejected during code review and the code is
reworked by the concerned programmer. In contrast, coding guidelines provide some
general suggestions regarding the coding style to be followed but leave the actual
implementation of these guidelines to the discretion of the individual developers.

After a module has been coded, usually code review is carried out to ensure
that the coding standards are followed and also to detect as many errors as
possible before testing. It is important to detect as many errors as possible
during code reviews, because reviews are an efficient way of removing errors
from code as compared to defect elimination using testing. We first discuss a
few representative coding standards and guidelines. Subsequently, we
discuss code review techniques. We then discuss software documentation in
Section 10.3.

10.1.1 Coding Standards and Guidelines
Good software development organisations usually develop their own
coding standards and guidelines depending on what suits their
organisation best and based on the specific types of software they
develop. To give an idea about the types of coding standards that are
being used, we shall only list some general coding standards and
guidelines that are commonly adopted by many software development
organisations, rather than trying to provide an exhaustive list.

Representative coding standards
Rules for limiting the use of globals: These rules list what types of
data can be declared global and what cannot, with a view to limit the
data that needs to be defined with global scope.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Standard headers for different modules: The header of different
modules should have standard format and information for ease of
understanding and maintenance. The following is an example of header
format that is being used in some companies:

Name of the module.
Date on which the module was created.
Author’s name.
Modification history.
Synopsis of the module. This is a small writeup about what the module
does.
Different functions supported in the module, along with their
input/output parameters.
Global variables accessed/modified by the module.

Naming conventions for global variables, local variables, and
constant identifiers: A popular naming convention is that variables
are named using mixed case lettering. Global variable names would
always start with a capital letter (e.g., GlobalData) and local variable
names start with small letters (e.g., localData). Constant names should
be formed using capital letters only (e.g., CONSTDATA).

Conventions regarding error return values and exception handling
mechanisms: The way error conditions are reported by different functions in
a program should be standard within an organisation. For example, all
functions while encountering an error condition should either return a 0 or 1
consistently, independent of which programmer has written the code. This
facilitates reuse and debugging.
Representative coding guidelines: The following are some representative
coding guidelines that are recommended by many software development
organisations. Wherever necessary, the rationale behind these guidelines is
also mentioned.
Do not use a coding style that is too clever or too difficult to
understand: Code should be easy to understand. Many inexperienced
engineers actually take pride in writing cryptic and incomprehensible code.
C l e ve r coding can obscure meaning of the code and reduce code
understandability; thereby making maintenance and debugging difficult and
expensive.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Avoid obscure side effects: The side effects of a function call include
modifications to the parameters passed by reference, modification of global
variables, and I/O operations. An obscure side effect is one that is not
obvious from a casual examination of the code. Obscure side effects make it
difficult to understand a piece of code. For example, suppose the value of a
global variable is changed or some file I/O is performed obscurely in a called
module. That is, this is difficult to infer from the function’s name and header
information. Then, it would be really hard to understand the code.
Do not use an identifier for multiple purposes: Programmers often use
the same identifier to denote several temporary entities. For example, some
programmers make use of a temporary loop variable for also computing and
storing the final result. The rationale that they give for such multiple use of
variables is memory efficiency, e.g., three variables use up three memory
locations, whereas when the same variable is used for three different
purposes, only one memory location is used. However, there are sev eral
things wrong with this approach and hence should be avoided. Some of the
problems caused by the use of a variable for multiple purposes are as follows:

Each variable should be given a descriptive name indicating its
purpose. This is not possible if an identifier is used for multiple
purposes. Use of a variable for multiple purposes can lead to confusion
and make it difficult for somebody trying to read and understand the
code.
Use of variables for multiple purposes usually makes future
enhancements more difficult. For example, while changing the final
computed result from integer to float type, the programmer might
subsequently notice that it has also been used as a temporary loop
variable that cannot be a float type.

Code should be well-documented: As a rule of thumb, there should
be at least one comment line on the average for every three source
lines of code.

Length of any function should not exceed 10 source lines: A lengthy
function is usually very difficult to understand as it probably has a large
number of variables and carries out many different types of computations. For
the same reason, lengthy functions are likely to have disproportionately
larger number of bugs.
Do not use GO TO statements: Use of GO TO statements makes a program

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

unstructured. This makes the program very difficult to understand, debug,
and maintain.

10.2 CODE REVIEW
Testing is an effective defect removal mechanism. However, testing is
applicable to only executable code. Review is a very effective technique
to remove defects from source code. In fact, review has been
acknowledged to be more cost-effective in removing defects as
compared to testing. Over the years, review techniques have become
extremely popular and have been generalised for use with other work
products.

Code review for a module is undertaken after the module successfully
compiles. That is, all the syntax errors have been eliminated from the
module. Obviously, code review does not target to design syntax errors in a
program, but is designed to detect logical, algorithmic, and programming
errors. Code review has been recognised as an extremely cost-effective
strategy for eliminating coding errors and for producing high quality code.

The reason behind why code review is a much more cost-effective strategy
to eliminate errors from code compared to testing is that reviews directly
detect errors. On the other hand, testing only helps detect failures and
significant effort is needed to locate the error during debugging.

The rationale behind the above statement is explained as follows.
Eliminating an error from code involves three main activities—testing,
debugging, and then correcting the errors. Testing is carried out to detect if
the system fails to work satisfactorily for certain types of inputs and under
certain circumstances. Once a failure is detected, debugging is carried out to
locate the error that is causing the failure and to remove it. Of the three
testing activities, debugging is possibly the most laborious and time
consuming activity. In code inspection, errors are directly detected, thereby
saving the significant effort that would have been required to locate the error.

Normally, the following two types of reviews are carried out on the code of
a module:

Code inspection.
Code walkthrough.

The procedures for conduction and the final objectives of these two review
techniques are very different. In the following two subsections, we discuss

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

these two code review techniques.

10.2.1 Code Walkthrough
Code walkthrough is an informal code analysis technique. In this technique,

a module is taken up for review after the module has been coded,
successfully compiled, and all syntax errors have been eliminated. A few
members of the development team are given the code a couple of days
before the walkthrough meeting. Each member selects some test cases and
simulates execution of the code by hand (i.e., traces the execution through
different statements and functions of the code).

The main objective of code walkthrough is to discover the algorithmic and logical
errors in the code.

The members note down their findings of their walkthrough and discuss
those in a walkthrough meeting where the coder of the module is present.

Even though code walkthrough is an informal analysis technique, several
guidelines have evolved over the years for making this naive but useful
analysis technique more effective. These guidelines are based on personal
experience, common sense, several other subjective factors. Therefore, these
guidelines should be considered as examples rather than as accepted rules to
be applied dogmatically. Some of these guidelines are following:

The team performing code walkthrough should not be either too big or
too small. Ideally, it should consist of between three to seven
members.
Discussions should focus on discovery of errors and avoid deliberations
on how to fix the discovered errors.
In order to foster co-operation and to avoid the feeling among the
engineers that they are being watched and evaluated in the code
walkthrough meetings, managers should not attend the walkthrough
meetings.

10.2.2 Code Inspection
During code inspection, the code is examined for the presence of some
common programming errors. This is in contrast to the hand simulation of
code execution carried out during code walkthroughs. We can state the
principal aim of the code inspection to be the following:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The principal aim of code inspection is to check for the presence of some common
types of errors that usually creep into code due to programmer mistakes and
oversights and to check whether coding standards have been adhered to.

The inspection process has several beneficial side effects, other than
finding errors. The programmer usually receives feedback on programming
style, choice of algorithm, and programming techniques. The other
participants gain by being exposed to another programmer’s errors.

As an example of the type of errors detected during code inspection,
consider the classic error of writing a procedure that modifies a formal
parameter and then calls it with a constant actual parameter. It is more lik ely
that such an error can be discovered by specifically looking for this kinds of
mistakes in the code, rather than by simply hand simulating execution of the
code. In addition to the commonly made errors, adherence to coding
standards is also checked during code inspection.

Good software development companies collect statistics regarding different
types of errors that are commonly committed by their engineers and identify
the types of errors most frequently committed. Such a list of commonly
committed errors can be used as a checklist during code inspection to look
out for possible errors.

Following is a list of some classical programming errors which can be
checked during code inspection:

Use of uninitialised variables.
Jumps into loops.
Non-terminating loops.
Incompatible assignments.
Array indices out of bounds.
Improper storage allocation and deallocation.
Mismatch between actual and formal parameter in procedure calls.
Use of incorrect logical operators or incorrect precedence among
operators.
Improper modification of loop variables.
Comparison of equality of floating point values.
Dangling reference caused when the referenced memory has not been
allocated.

10.2.3 Clean Room Testing
Clean room testing was pioneered at IBM. This type of testing relies

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

heavily on walkthroughs, inspection, and formal verification. The
programmers are not allowed to test any of their code by executing the
code other than doing some syntax testing using a compiler. It is
interesting to note that the term cleanroom was first coined at IBM by
drawing analogy to the semiconductor fabrication units where defects
are avoided by manufacturing in an ultra-clean atmosphere.

This technique reportedly produces documentation and code that is more
reliable and maintainable than other development methods relying heavily on
code execution-based testing. The main problem with this approach is that
testing effort is increased as walkthroughs, inspection, and verification are
time consuming for detecting all simple errors. Also testing- based error
detection is efficient for detecting certain errors that escape manual
inspection.

10.3 SOFTWARE DOCUMENTATION
When a software is developed, in addition to the executable files and the
source code, several kinds of documents such as users’ manual,
software requirements specification (SRS) document, design document,
test document, installation manual, etc., are developed as part of the
software engineering process. All these documents are considered a
vital part of any good software development practice. Good documents
are helpful in the following ways:

Good documents help enhance understandability of code. As a result,
the availability of good documents help to reduce the effort and time
required for maintenance.
Documents help the users to understand and effectively use the
system.
Good documents help to effectively tackle the manpower turnover1
problem. Even when an engineer leaves the organisation, and a new
engineer comes in, he can build up the required knowledge easily by
referring to the documents.
Production of good documents helps the manager to effectively track
the progress of the project. The project manager would know that
some measurable progress has been achieved, if the results of some
pieces of work has been documented and the same has been
reviewed.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Different types of software documents can broadly be classified into the
following:

Internal documentation: These are provided in the source code itself.
External documentation: These are the supporting documents such as SRS
document, installation document, user manual, design document, and test document.

We discuss these two types of documentation in the next section.

10.3.1 Internal Documentation
Internal documentation is the code comprehension features provided in
the source code itself. Internal documentation can be provided in the
code in several forms. The important types of internal documentation
are the following:

Comments embedded in the source code.
Use of meaningful variable names.
Module and function headers.
Code indentation.
Code structuring (i.e., code decomposed into modules and functions).
Use of enumerated types.
Use of constant identifiers.
Use of user-defined data types.

Out of these different types of internal documentation, which one is the
most valuable for understanding a piece of code?

Careful experiments suggest that out of all types of internal documentation,
meaningful variable names is most useful while trying to understand a piece of code.

The above assertion, of course, is in contrast to the common expectation
that code commenting would be the most useful. The research finding is
obviously true when comments are written without much thought. For
example, the following style of code commenting is not much of a help in
understanding the code.

a=10; /* a made 10 */

A good style of code commenting is to write to clarify certain non-obvious
aspects of the working of the code, rather than cluttering the code with trivial
comments. Good software development organisations usually ensure good
internal documentation by appropriately formulating their coding standards

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

and coding guidelines. Even when a piece of code is carefully commented,
meaningful variable names has been found to be the most helpful in
understanding the code.

10.3.2 External Documentation
External documentation is provided through various types of supporting
documents such as users’ manual, software requirements specification
document, design document, test document, etc. A systematic software
development style ensures that all these documents are of good quality
and are produced in an orderly fashion.

An important feature that is requierd of any good external documentation is
consistency with the code. If the different documents are not consistent, a lot
of confusion is created for somebody trying to understand the software. In
other words, all the documents developed for a product should be up-to-date
and every change made to the code should be reflected in the relevant
external documents. Even if only a few documents are not up-to-date, they
create inconsistency and lead to confusion. Another important feature
required for external documents is proper understandability by the category
of users for whom the document is designed. For achieving this, Gunning’s fog
index is very useful. We discuss this next.

Gunning’s fog index
Gunning’s fog index (developed by Robert Gunning in 1952) is a metric
that has been designed to measure the readability of a document. The
computed metric value (fog index) of a document indicates the number
of years of formal education that a person should have, in order to be
able to comfortably understand that document. That is, if a certain
document has a fog index of 12, any one who has completed his 12th
class would not have much difficulty in understanding that document.

The Gunning’s fog index of a document D can be computed as follows:

Observe that the fog index is computed as the sum of two different factors.
The first factor computes the average number of words per sentence (total
number of words in the document divided by the total number of sentences).
This factor therefore accounts for the common observation that long
sentences are difficult to understand. The second factor measures the
percentage of complex words in the document. Note that a syllable is a group

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

o f words that can be independently pronounced. For example, the word
“sentence” has three syllables (“sen”, “ten”, and “ce”). Words having more
than three syllables are complex words and presence of many such words
hamper readability of a document.
Example 10.1 Consider the following sentence: “The Gunning’s fog index is
based on the premise that use of short sentences and simple words makes a
document easy to understand.” Calculate its Fog index.

The fog index of the above example sentence is
0.4 � (23/1) + (4/23) � 100 = 26

If a users’ manual is to be designed for use by factory workers whose
educational qualification is class 8, then the document should be written such
that the Gunning’s fog index of the document does not exceed 8.

10.4 TESTING
The aim of program testing is to help realiseidentify all defects in a
program. However, in practice, even after satisfactory completion of the
testing phase, it is not possible to guarantee that a program is error
free. This is because the input data domain of most programs is very
large, and it is not practical to test the program exhaustively with
respect to each value that the input can assume. Consider a function
taking a floating point number as argument. If a tester takes 1sec to
type in a value, then even a million testers would not be able to
exhaustively test it after trying for a million number of years. Even with
this obvious limitation of the testing process, we should not
underestimate the importance of testing. We must remember that
careful testing can expose a large percentage of the defects existing in
a program, and therefore provides a practical way of reducing defects in
a system.

10.4.1 Basic Concepts and Terminologies
In this section, we will discuss a few basic concepts in program testing
on which our subsequent discussions on program testing would be
based.

How to test a program?
Testing a program involves executing the program with a set of test
inputs and observing if the program behaves as expected. If the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

program fails to behave as expected, then the input data and the
conditions under which it fails are noted for later debugging and error
correction. A highly simplified view of program testing is schematically
shown in Figure 10.1. The tester has been shown as a stick icon, who
inputs several test data to the system and observes the outputs
produced by it to check if the system fails on some specific inputs.
Unless the conditions under which a software fails are noted down, it
becomes difficult for the developers to reproduce a failure observed by
the testers. For examples, a software might fail for a test case only
when a network connection is enabled.

Figure 10.1: A simplified view of program testing.

Terminologies
As is true for any specialised domain, the area of software testing has
come to be associated with its own set of terminologies. In the
following, we discuss a few important terminologies that have been
standardised by the IEEE Standard Glossary of Software Engineering
Terminology [IEEE90]:

A mistake is essentially any programmer action that later shows up as
an incorrect result during program execution. A programmer may
commit a mistake in almost any development activity. For example,
during coding a programmer might commit the mistake of not
initializing a certain variable, or might overlook the errors that might
arise in some exceptional situations such as division by zero in an
arithmetic operation. Both these mistakes can lead to an incorrect
result.
An error is the result of a mistake committed by a developer in any of
the development activities. Among the extremely large variety of
errors that can exist in a program. One example of an error is a call
made to a wrong function.

The terms error, fault, bug, and defect are considered to be synonyms in the area of

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

program testing.

Though the terms error, fault, bug, and defect are all used interchangeably
by the program testing community. Please note that in the domain of
hardware testing, the term fault is used with a slightly different connotation
[IEEE90] as compared to the terms error and bug.
Example 10.2 Can a designer’s mistake give rise to a program error? Give
an example of a designer’s mistake and the corresponding program error.
Answer: Yes, a designer’s mistake give rise to a program error. For example,
a requirement might be overlooked by the designer, which can lead to it
being overlooked in the code as well.

A failure of a program essentially denotes an incorrect behaviour
exhibited by the program during its execution. An incorrect behaviour is
observed either as an incorrect result produced or as an inappropriate
activity carried out by the program. Every failure is caused by some
bugs present in the program. In other words, we can say that every
software failure can be traced to some bug or other present in the
code. The number of possible ways in which a program can fail is
extremely large. Out of the large number of ways in which a program
can fail, in the following we give three randomly selected examples:

– The result computed by a program is 0, when the correct result is 10.
– A program crashes on an input.
– A robot fails to avoid an obstacle and collides with it.

It may be noted that mere presence of an error in a program code may not
necessarily lead to a failure during its execution.
Example 10.3 Give an example of a program error that may not cause any
failure.
Answer: Consider the following C program segment:

In the above code, if the variable roll assumes zero or some negative value

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

under some circumstances, then an array index out of bound type of error
would result. However, it may be the case that for all allowed input values
the variable roll is always assigned positive values. Then, the else clause is
unreachable and no failure would occur. Thus, even if an error is present in
the code, it does not show up as an error since it is unreachable for normal
input values.
Explanation: An array index out of bound type of error is said to occur, when
the array index variable assumes a value beyond the array bounds.

A test case is a triplet [I , S, R], where I is the data input to the
program under test, S is the state of the program at which the data is
to be input, and R is the result expected to be produced by the
program. The state of a program is also called its execution mode. As
an example, consider the different execution modes of a certain text
editor software. The text editor can at any time during its execution
assume any of the following execution modes—edit, view, create, and
display. In simple words, we can say that a test case is a set of test
inputs, the mode in which the input is to be applied, and the results
that are expected during and after the execution of the test case.

A n example of a test case is—[input: “abc”, state: edit, result: abc is
displayed], which essentially means that the input abc needs to be applied in
the edit mode, and the expected result is that the string abc would be
displayed.

A test scenario is an abstract test case in the sense that it only
identifies the aspects of the program that are to be tested without
identifying the input, state, or output. A test case can be said to be an
implementation of a test scenario. In the test case, the input, output,
and the state at which the input would be applied is designed such that
the scenario can be executed. An important automatic test case design
strategy is to first design test scenarios through an analysis of some
program abstraction (model) and then implement the test scenarios as
test cases.
A test script is an encoding of a test case as a short program. Test
scripts are developed for automated execution of the test cases.
A test case is said to be a positive test case if it is designed to test
whether the software correctly performs a required functionality. A test

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

case is said to be negative test case, if it is designed to test whether
the software carries out something, that is not required of the system.
As one example each of a positive test case and a negative test case,
consider a program to manage user login. A positive test case can be
designed to check if a login system validates a user with the correct
user name and password. A negative test case in this case can be a
test case that checks whether the the login functionality validates and
admits a user with wrong or bogus login user name or password.
A test suite is the set of all test that have been designed by a tester
to test a given program.
Testability of a requirement denotes the extent to which it is possible
to determine whether an implementation of the requirement conforms
to it in both functionality and performance. In other words, the
testability of a requirement is the degree to which an implementation
of it can be adequately tested to determine its conformance to the
requirement.

Example 10.4 Suppose two programs have been written to implement
essentially the same functionality. How can you determine which of these is
more testable?
Answer: A program is more testable, if it can be adequately tested with less
number of test cases. Obviously, a less complex program is more testable.
The complexity of a program can be measured using several types of metrics
such as number of decision statements used in the program. Thus, a more
testable program should have a lower structural complexity metric.

A failure mode of a software denotes an observable way in which it
can fail. In other words, all failures that have similar observable
symptoms, constitute a failure mode. As an example of the failure
modes of a software, consider a railway ticket booking software that
has three failure modes—failing to book an available seat, incorrect
seat booking (e.g., booking an already booked seat), and system
crash.
Equivalent faults denote two or more bugs that result in the system
failing in the same failure mode. As an example of equivalent faults,
consider the following two faults in C language—division by zero and
illegal memory access errors. These two are equivalent faults, since
each of these leads to a program crash.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Verification versus validation
The objectives of both verification and validation techniques are very
similar since both these techniques are designed to help remove errors
in a software. In spite of the apparent similarity between their
objectives, the underlying principles of these two bug detection
techniques and their applicability are very different. We summarise the
main differences between these two techniques in the following:

Verification is the process of determining whether the output of one
phase of software development conforms to that of its previous phase;
whereas validation is the process of determining whether a fully
developed software conforms to its requirements specification. Thus,
the objective of verification is to check if the work products produced
after a phase conform to that which was input to the phase. For
example, a verification step can be to check if the design documents
produced after the design step conform to the requirements
specification. On the other hand, validation is applied to the fully
developed and integrated software to check if it satisfies the
customer’s requirements.
The primary techniques used for verification include review, simulation,
formal verification, and testing. Review, simulation, and testing are
usually considered as informal verification techniques. Formal
verification usually involves use of theorem proving techniques or use
of automated tools such as a model checker. On the other hand,
validation techniques are primarily based on product testing. Note that
we have categorised testing both under program verification and
validation. The reason being that unit and integration testing can be
considered as verification steps where it is verified whether the code is
a s per the module and module interface specifications. On the other
hand, system testing can be considered as a validation step where it is
determined whether the fully developed code is as per its requirements
specification.
Verification does not require execution of the software, whereas
validation requires execution of the software.
Verification is carried out during the development process to check if
the development activities are proceeding alright, whereas validation is
carried out to check if the right as required by the customer has been
developed.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

We can therefore say that the primary objective of the verification steps are to
determine whether the steps in product development are being carried out alright,
whereas validation is carried out towards the end of the development process to
determine whether the right product has been developed.

Verification techniques can be viewed as an attempt to achieve phase
containment of errors. Phase containment of errors has been
acknowledged to be a cost-effective way to eliminate program bugs,
and is an important software engineering principle. The principle of
detecting errors as close to their points of commitment as possible is
known as phase containment of errors. Phase containment of errors
can reduce the effort required for correcting bugs. For example, if a
design problem is detected in the design phase itself, then the problem
can be taken care of much more easily than if the error is identified,
say, at the end of the testing phase. In the later case, it would be
necessary not only to rework the design, but also to appropriately redo
the relevant coding as well as the system testing activities, thereby
incurring higher cost.

While verification is concerned with phase containment of errors, the aim of validation
is to check whether the deliverable software is error free.
We can consider the verification and validation techniques to be different

types of bug filters. To achieve high product reliability in a cost-effective
manner, a development team needs to perform both verification and
validation activities. The activities involved in these two types of bug
detection techniques together are called the “V and V” activities.

Based on the above discussions, we can conclude that:

Error detection techniques = Verification techniques + Validation techniques

Example 10.5 Is it at all possible to develop a highly reliable software, using
validation techniques alone? If so, can we say that all verification techniques
are redundant?
Answer: It is possible to develop a highly reliable software using validation
techniques alone. However, this would cause the development cost to
increase drastically. Verification techniques help achieve phase containment
of errors and provide a means to cost-effectively remove bugs.

10.4.2 Testing Activities

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Testing involves performing the following main activities:
Test suite design: The set of test cases using which a program is to be
tested is designed possibly using several test case design techniques. We
discuss a few important test case design techniques later in this Chapter.
Running test cases and checking the results to detect failures: Each
test case is run and the results are compared with the expected results. A
mismatch between the actual result and expected results indicates a failure.
The test cases for which the system fails are noted down for later debugging.
Locate error: In this activity, the failure symptoms are analysed to locate
the errors. For each failure observed during the previous activity, the
statements that are in error are identified.
Error correction: After the error is located during debugging, the code is
appropriately changed to correct the error.

The testing activities have been shown schematically in Figure 10.2. As can
be seen, the test cases are first designed, the test cases are run to detect
failures. The bugs causing the failure are identified through debugging, and
the identified error is corrected.Of all the above mentioned testing activities,
debugging often turns out to be the most time-consuming activity.

Figure 10.2: Testing process.

10.4.3 Why Design Test Cases?
Before discussing the various test case design techniques, we need to
convince ourselves on the following question. Would it not be sufficient to
test a software using a large number of random input values? Why design

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

test cases? The answer to this question—this would be very costly and at the
same time very ineffective way of testing due to the following reasons:

When test cases are designed based on random input data, many of the test cases do
not contribute to the significance of the test suite, That is, they do not help detect
any additional defects not already being detected by other test cases in the suite.

Testing a software using a large collection of randomly selected test cases
does not guarantee that all (or even most) of the errors in the system will be
uncovered. Let us try to understand why the number of random test cases in
a test suite, in general, does not indicate of the effectiveness of testing.
Consider the following example code segment which determines the greater
of two integer values x and y. This code segment has a simple programming
error:

if (x>y) max = x;
else max = x;

For the given code segment, the test suite {(x=3,y=2);(x=2,y=3)} can
detect the error, whereas a larger test suite {(x=3,y=2);(x=4,y=3);
(x=5,y=1)} does not detect the error. All the test cases in the larger test
suite help detect the same error, while the other error in the code remains
undetected. So, it would be incorrect to say that a larger test suite would
always detect more errors than a smaller one, unless of course the larger test
suite has also been carefully designed. This implies that for effective testing,
the test suite should be carefully designed rather than picked randomly.

We have already pointed out that exhaustive testing of almost any non-
trivial system is impractical due to the fact that the domain of input data
values to most practical software systems is either extremely large or
countably infinite. Therefore, to satisfactorily test a software with minimum
cost, we must design a minimal test suite that is of reasonable size and can
uncover as many existing errors in the system as possible. To reduce testing
cost and at the same time to make testing more effective, systematic
approaches have been developed to design a small test suite that can detect
most, if not all failures.

A minimal test suite is a carefully designed set of test cases such that each test case
helps detect different errors. This is in contrast to testing using some random input
values.

There are essentially two main approaches to systematically design test
cases:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Black-box approach
White-box (or glass-box) approach

In the black-box approach, test cases are designed using only the functional
specification of the software. That is, test cases are designed solely based on
an analysis of the input/out behaviour (that is, functional behaviour) and
does not require any knowledge of the internal structure of a program. For
this reason, black-box testing is also known as functional testing. On the
other hand, designing white-box test cases requires a thorough knowledge of
the internal structure of a program, and therefore white-box testing is also
called structural testing. Black- box test cases are designed solely based on
the input-output behaviour of a program. In contrast, white-box test cases
are based on an analysis of the code. These two approaches to test case
design are complementary. That is, a program has to be tested using the test
cases designed by both the approaches, and one testing using one approach
does not substitute testing using the other.

10.4.4 Testing in the Large versus Testing in the Small
A software product is normally tested in three levels or stages:

Unit testing
Integration testing
System testing

During unit testing, the individual functions (or units) of a program are
tested.

Unit testing is referred to as testing in the small, whereas integration and system
testing are referred to as testing in the large.

After testing all the units individually, the units are slowly integrated and
tested after each step of integration (integration testing). Finally, the fully
integrated system is tested (system testing). Integration and system testing
are known as testing in the large.

Often beginners ask the question—“Why test each module (unit) in
isolation first, then integrate these modules and test, and again test the
integrated set of modules—why not just test the integrated set of modules
once thoroughly?” The answer to this question is the following—There are
two main reasons to it. First while testing a module, other modules with
which this module needs to interface may not be ready. Moreover, it is

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

always a good idea to first test the module in isolation before integration
because it makes debugging easier. If a failure is detected when an
integrated set of modules is being tested, it would be difficult to determine
which module exactly has the error.

In the following sections, we discuss the different levels of testing. It should
be borne in mind in all our subsequent discussions that unit testing is carried
out in the coding phase itself as soon as coding of a module is complete. On
the other hand, integration and system testing are carried out during the
testing phase.

10.5 UNIT TESTING
Unit testing is undertaken after a module has been coded and reviewed.
This activity is typically undertaken by the coder of the module himself
in the coding phase. Before carrying out unit testing, the unit test cases
have to be designed and the test environment for the unit under test
has to be developed. In this section, we first discuss the environment
needed to perform unit testing.

Driver and stub modules
In order to test a single module, we need a complete environment to
provide all relevant code that is necessary for execution of the module.
That is, besides the module under test, the following are needed to test
the module:

The procedures belonging to other modules that the module under test
calls.
Non-local data structures that the module accesses.
A procedure to call the functions of the module under test with
appropriate parameters.

Modules required to provide the necessary environment (which either call
or are called by the module under test) are usually not available until they
too have been unit tested. In this context, stubs and drivers are designed to
provide the complete environment for a module so that testing can be carried
out.
Stub: The role of stub and driver modules is pictorially shown in Figure 10.3.
A stub procedure is a dummy procedure that has the same I/O parameters as
the function called by the unit under test but has a highly simplified

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

behaviour. For example, a stub procedure may produce the expected
behaviour using a simple table look up mechanism.

Figure 10.3: Unit testing with the help of driver and stub modules.

Driver: A driver module should contain the non-local data structures
accessed by the module under test. Additionally, it should also have the
code to call the different functions of the unit under test with
appropriate parameter values for testing.

10.6 BLACK-BOX TESTING
In black-box testing, test cases are designed from an examination of the
input/output values only and no knowledge of design or code is
required. The following are the two main approaches available to
design black box test cases:

Equivalence class partitioning
Boundary value analysis

In the following subsections, we will elaborate these two test case
design techniques.

10.6.1 Equivalence Class Partitioning
In the equivalence class partitioning approach, the domain of input values to
the program under test is partitioned into a set of equivalence classes. The
partitioning is done such that for every input data belonging to the same
equivalence class, the program behaves similarly.

The main idea behind defining equivalence classes of input data is that testing the
code with any one value belonging to an equivalence class is as good as testing the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

code with any other value belonging to the same equivalence class.

Equivalence classes for a unit under test can be designed by examining the
input data and output data. The following are two general guidelines for
designing the equivalence classes:

1. If the input data values to a system can be specified by a range of
values, then one valid and two invalid equivalence classes need to be
defined. For example, if the equivalence class is the set of integers in
the range 1 to 10 (i.e., [1,10]), then the invalid equivalence classes
are [−∞,0], [11,+∞].

2. If the input data assumes values from a set of discrete members of
some domain, then one equivalence class for the valid input values
and another equivalence class for the invalid input values should be
defined. For example, if the valid equivalence classes are {A,B,C},
then the invalid equivalence class is �-{A,B,C}, where � is the
universe of possible input values.

In the following, we illustrate equivalence class partitioning-based test case
generation through four examples.
Example 10.6 For a software that computes the square root of an input
integer that can assume values in the range of 0 and 5000. Determine the
equivalence classes and the black box test suite.
Answer: There are three equivalence classes—The set of negative integers,
the set of integers in the range of 0 and 5000, and the set of integers larger
than 5000. Therefore, the test cases must include representatives for each of
the three equivalence classes. A possible test suite can be: {–5,500,6000}.
Example 10.7 Design the equivalence class test cases for a program that
reads two integer pairs (m1, c1) and (m2, c2) defining two straight lines of
the form y=mx+c. The program computes the intersection point of the two
straight lines and displays the point of intersection.
Answer: The equivalence classes are the following:

• Parallel lines (m1 = m2, c1 � c2)
• Intersecting lines (m1 � m2)
• Coincident lines (m1 = m2, c1 = c2)
Now, selecting one representative value from each equivalence class, we

get the required equivalence class test suite {(2,2)(2,5),(5,5)(7,7), (10,10)

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(10,10)}.
Example 10.8 Design equivalence class partitioning test suite for a function
that reads a character string of size less than five characters and displays
whether it is a palindrome.
Answer: The equivalence classes are the leaf level classes shown in Figure
10.4. The equivalence classes are palindromes, non-palindromes, and invalid
inputs. Now, selecting one representative value from each equivalence class,
we have the required test suite: {abc,aba,abcdef}.

Figure 10.4: Equivalence classes for Example 10.6.

10.6.2 Boundary Value Analysis
A type of programming error that is frequently committed by programmers is
missing out on the special consideration that should be given to the values at
the boundaries of different equivalence classes of inputs. The reason behind
programmers committing such errors might purely be due to psychological
factors. Programmers often fail to properly address the special processing
required by the input values that lie at the boundary of the different
equivalence classes. For example, programmers may improperly use <
instead of <=, or conversely <= for <, etc.

Boundary value analysis-based test suite design involves designing test cases using
the values at the boundaries of different equivalence classes.

To design boundary value test cases, it is required to examine the
equivalence classes to check if any of the equivalence classes contains a
range of values. For those equivalence classes that are not a range of values

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(i.e., consist of a discrete collection of values) no boundary value test cases
can be defined. For an equivalence class that is a range of values, the
boundary values need to be included in the test suite. For example, if an
equivalence class contains the integers in the range 1 to 10, then the
boundary value test suite is {0,1,10,11}.
Example 10.9 For a function that computes the square root of the integer
values in the range of 0 and 5000, determine the boundary value test suite.
Answer: There are three equivalence classes—The set of negative integers,
the set of integers in the range of 0 and 5000, and the set of integers larger
than 5000. The boundary value-based test suite is: {0,-1,5000,5001}.
Example 10.10 Design boundary value test suite for the function described
in Example 10.6.
Answer: The equivalence classes have been showed in Figure 10.5. There is
a boundary between the valid and invalid equivalence classes. Thus, the
boundary value test suite is {abcdefg, abcdef}.

Figure 10.5: CFG for (a) sequence, (b) selection, and (c) iteration type of constructs.

10.6.3 Summary of the Black-box Test Suite Design
Approach

We now summarise the important steps in the black-box test suite
design approach:

Examine the input and output values of the program.
Identify the equivalence classes.
Design equivalence class test cases by picking one representative

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

value from each equivalence class.
Design the boundary value test cases as follows. Examine if any
equivalence class is a range of values. Include the values at the
boundaries of such equivalence classes in the test suite.

The strategy for black-box testing is intuitive and simple. For black-box
testing, the most important step is the identification of the equivalence
classes. Often, the identification of the equivalence classes is not
straightforward. However, with little practice one would be able to identify all
equivalence classes in the input data domain. Without practice, one may
overlook many equivalence classes in the input data set. Once the
equivalence classes are identified, the equivalence class and boundary value
test cases can be selected almost mechanically.

10.7 WHITE-BOX TESTING
White-box testing is an important type of unit testing. A large number of
white-box testing strategies exist. Each testing strategy essentially
designs test cases based on analysis of some aspect of source code and
is based on some heuristic. We first discuss some basic concepts
associated with white-box testing, and follow it up with a discussion on
specific testing strategies.

10.7.1 Basic Concepts
A white-box testing strategy can either be coverage-based or fault-
based.

Fault-based testing
A fault-based testing strategy targets to detect certain types of faults.
These faults that a test strategy focuses on constitutes the fault
model of the strategy. An example of a fault-based strategy is
mutation testing, which is discussed later in this section.

Coverage-based testing
A coverage-based testing strategy attempts to execute (or cover) certain
elements of a program. Popular examples of coverage-based testing
strategies are statement coverage, branch coverage, multiple condition
coverage, and path coverage-based testing.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Testing criterion for coverage-based testing
A coverage-based testing strategy typically targets to execute (i.e., cover)
certain program elements for discovering failures.

The set of specific program elements that a testing strategy targets to execute is
called the testing criterion of the strategy.

For example, if a testing strategy requires all the statements of a program
to be executed at least once, then we say that the testing criterion of the
strategy is statement coverage. We say that a test suite is adequate with
respect to a criterion, if it covers all elements of the domain defined by that
criterion.

Stronger versus weaker testing
We have mentioned that a large number of white-box testing strategies have
been proposed. It therefore becomes necessary to compare the effectiveness
of different testing strategies in detecting faults. We can compare two testing
strategies by determining whether one is stronger, weaker, or
complementary to the other.

A white-box testing strategy is said to be stronger than another strategy, if the
stronger testing strategy covers all program elements covered by the weaker testing
strategy, and the stronger strategy additionally covers at least one program element
that is not covered by the weaker strategy.

When none of two testing strategies fully covers the program elements
exercised by the other, then the two are called complementary testing
strategies. The concepts of stronger, weaker, and complementary testing are
schematically illustrated in Figure 10.6. Observe in Figure 10.6(a) that testing
strategy A is stronger than B since B covers only a proper subset of elements
covered by B. On the other hand, Figure 10.6(b) shows A and B are
complementary testing strategies since some elements of A are not covered
by B and vice versa.

If a stronger testing has been performed, then a weaker testing need not be carried
out.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 10.6: Illustration of stronger, weaker, and complementary testing strategies.

A test suite should, however, be enriched by using various complementary
testing strategies.

We need to point out that coverage-based testing is frequently used to check the
quality of testing achieved by a test suite. It is hard to manually design a test suite to
achieve a specific coverage for a non-trivial program.

10.7.2 Statement Coverage
The statement coverage strategy aims to design test cases so as to execute
every statement in a program at least once.

The principal idea governing the statement coverage strategy is that unless a
statement is executed, there is no way to determine whether an error exists in that
statement.

It is obvious that without executing a statement, it is difficult to determine
whether it causes a failure due to illegal memory access, wrong result
computation due to improper arithmetic operation, etc. It can however be
pointed out that a weakness of the statement- coverage strategy is that
executing a statement once and observing that it behaves properly for one

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

input value is no guarantee that it will behave correctly for all input values.
Never the less, statement coverage is a very intuitive and appealing testing
technique. In the following, we illustrate a test suite that achieves statement
coverage.
Example 10.11 Design statement coverage-based test suite for the
following Euclid’s GCD computation program:

int computeGCD(x,y)
int x,y;

{
1 while (x != y){
2 if (x>y) then
3 x=x-y;
4 else y=y-x;
5 }
6 return x;

}

Answer: To design the test cases for the statement coverage, the
conditional expression of the while statement needs to be made true and
the conditional expression of the if statement needs to be made both true
and false. By choosing the test set {(x = 3, y = 3), (x = 4, y = 3), (x = 3, y =
4)}, all statements of the program would be executed at least once.

10.7.3 Branch Coverage
A test suite satisfies branch coverage, if it makes each branch condition
in the program to assume true and false values in turn. In other words,
for branch coverage each branch in the CFG representation of the
program must be taken at least once, when the test suite is executed.
Branch testing is also known as edge testing, since in this testing
scheme, each edge of a program’s control flow graph is traversed at
least once.

Example 10.12 For the program of Example 10.11, determine a test suite to
achieve branch coverage.
Answer: The test suite {(x = 3, y = 3), (x = 3, y = 2), (x = 4, y = 3), (x =
3, y = 4)} achieves branch coverage.

It is easy to show that branch coverage-based testing is a stronger testing
than statement coverage-based testing. We can prove this by showing that
branch coverage ensures statement coverage, but not vice versa.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Theorem 10.1 Branch coverage-based testing is stronger than statement
coverage-based testing.
Proof: We need to show that (a) branch coverage ensures statement
coverage, and (b) statement coverage does not ensure branch coverage.

(a) Branch testing would guarantee statement coverage since every
statement must belong to some branch (assuming that there is no
unreachable code).

(b) To show that statement coverage does not ensure branch coverage, it
would be sufficient to give an example of a test suite that achieves
statement coverage, but does not cover at least one branch. Consider
the following code, and the test suite {5}.
if(x>2) x+=1;

The test suite would achieve statement coverage. However, it does not
achieve branch coverage, since the condition (x > 2) is not made false by any
test case in the suite.

10.7.4 Multiple Condition Coverage
In the multiple condition (MC) coverage-based testing, test cases are
designed to make each component of a composite conditional
expression to assume both true and false values. For example, consider
the composite conditional expression ((c1 .and.c2).or.c3). A test suite
would achieve MC coverage, if all the component conditions c1, c2 and
c3 are each made to assume both true and false values. Branch testing
can be considered to be a simplistic condition testing strategy where
only the compound conditions appearing in the different branch
statements are made to assume the true and false values. It is easy to
prove that condition testing is a stronger testing strategy than branch
testing. For a composite conditional expression of n components, 2n
test cases are required for multiple condition coverage. Thus, for
multiple condition coverage, the number of test cases increases
exponentially with the number of component conditions. Therefore,
multiple condition coverage-based testing technique is practical only if n
(the number of conditions) is small.

Example 10.13 Give an example of a fault that is detected by multiple
condition coverage, but not by branch coverage.
Answer: Consider the following C program segment:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

if(temperature>150 || temperature>50)
setWarningLightOn();

The program segment has a bug in the second component condition, it
should have been temperature<50. The test suite {temperature=160,
temperature=40} achieves branch coverage. But, it is not able to check that
setWarningLightOn(); should not be called for temperature values within
150 and 50.

10.7.5 Path Coverage
A test suite achieves path coverage if it exeutes each linearly
independent paths (o r basis paths) at least once. A linearly
independent path can be defined in terms of the control flow graph
(CFG) of a program. Therefore, to understand path coverage-based
testing strategy, we need to first understand how the CFG of a program
can be drawn.

Control flow graph (CFG)
A control flow graph describes how the control flows through the program.
We can define a control flow graph as the following:

A control flow graph describes the sequence in which the different instructions of a
program get executed.

In order to draw the control flow graph of a program, we need to first
number all the statements of a program. The different numbered statements
serve as nodes of the control flow graph (see Figure 10.5). There exists an
edge from one node to another, if the execution of the statement
representing the first node can result in the transfer of control to the other
node.

More formally, we can define a CFG as follows. A CFG is a directed graph
consisting of a set of nodes and edges (N, E), such that each node n � N
corresponds to a unique program statement and an edge exists between two
nodes if control can transfer from one node to the other.

We can easily draw the CFG for any program, if we know how to represent
the sequence, selection, and iteration types of statements in the CFG. After
all, every program is constructed by using these three types of constructs
only. Figure 10.5 summarises how the CFG for these three types of constructs
can be drawn. The CFG representation of the sequence and decision types of
statements is straight forward. Please note carefully how the CFG for the loop

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(iteration) construct can be drawn. For iteration type of constructs such as the
while construct, the loop condition is tested only at the beginning of the loop
and therefore always control flows from the last statement of the loop to the
top of the loop. That is, the loop construct terminates from the first
statement (after the loop is found to be false) and does not at any time exit
the loop at the last statement of the loop. Using these basic ideas, the CFG of
the program given in Figure 10.7(a) can be drawn as shown in Figure 10.7(b).

Figure 10.7: Control flow diagram of an example program.

Path
A path through a program is any node and edge sequence from the start
node to a terminal node of the control flow graph of a program. Please
note that a program can have more than one terminal nodes when it
contains multiple exit or return type of statements. Writing test cases to
cover all paths of a typical program is impractical since there can be an
infinite number of paths through a program in presence of loops. For
example, in Figure 10.5(c), there can be an infinite number of paths

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

such as 12314, 12312314, 12312312314, etc. If coverage of all paths is
attempted, then the number of test cases required would become
infinitely large. For this reason, path coverage testing does not try to
cover all paths, but only a subset of paths called linearly independent
pa ths (o r basis paths). Let us now discuss what are linearly
independent paths and how to determine these in a program.

Linearly independent set of paths (or basis path set)
A set of paths for a given program is called linearly independent set of paths
(or the set of basis paths or simply the basis set), if each path in the set
introduces at least one new edge that is not included in any other path in the
set. Please note that even if we find that a path has one new node compared
to all other linearly independent paths, then this path should also be included
in the set of linearly independent paths. This is because, any path having a
new node would automatically have a new edge. An alternative definition of
a linearly independent set of paths [McCabe76] is the following:

If a set of paths is linearly independent of each other, then no path in the set can be
obtained through any linear operations (i.e., additions or subtractions) on the other
paths in the set.

According to the above definition of a linearly independent set of paths, for
any path in the set, its subpath cannot be a member of the set. In fact, any
arbitrary path of a program, can be synthesized by carrying out linear
operations on the basis paths. Possibly, the name basis set comes from the
observation that the paths in the basis set form the “basis” for all the paths of
a program. Please note that there may not always exist a unique basis set for
a program and several basis sets for the same program can usually be
determined.

Even though it is straight forward to identify the linearly independent paths
for simple programs, for more complex programs it is not easy to determine
the number of independent paths. In this context, McCabe’s cyclomatic
complexity metric is an important result that lets us compute the number of
linearly independent paths for any arbitrary program. McCabe’s cyclomatic
complexity defines an upper bound for the number of linearly independent
paths through a program. Also, the McCabe’s cyclomatic complexity is very
simple to compute. Though the McCabe’s metric does not directly identify the
linearly independent paths, but it provides us with a practical way of
determining approximately how many paths to look for.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

10.7.6 McCabe’s Cyclomatic Complexity Metric
McCabe obtained his results by applying graph-theoretic techniques to
the control flow graph ofa program. McCabe’s cyclomatic complexity
defines an upper bound on the number of independent paths in a
program. We discuss three different ways to compute the cyclomatic
complexity. For structured programs, the results computed by all the
three methods are guaranteed to agree.

Method 1: Given a control flow graph G of a program, the cyclomatic
complexity V(G) can be computed as:

V(G) = E – N + 2
where, N is the number of nodes of the control flow graph and E is the
number of edges in the control flow graph.

For the CFG of example shown in Figure 10.7, E = 7 and N = 6. Therefore,
the value of the Cyclomatic complexity = 7 – 6 + 2 = 3.
Method 2: An alternate way of computing the cyclomatic complexity of a
program is based on a visual inspection of the control flow graph is as follows
—In this method, the cyclomatic complexity V (G) for a graph G is given by
the following expression:

V(G) = Total number of non-overlapping bounded areas + 1

In the program’s control flow graph G, any region enclosed by nodes and
edges can be called as a bounded area. This is an easy way to determine the
McCabe’s cyclomatic complexity. But, what if the graph G is not planar (i.e.,
how ever you draw the graph, two or more edges always intersect). Actually,
it can be shown that control flow representation of structured programs
always yields planar graphs. But, presence of GOTO’s can easily add
intersecting edges. Therefore, for non-structured programs, this way of
computing the McCabe’s cyclomatic complexity does not apply.

The number of bounded areas in a CFG increases with the number of
decision statements and loops. Therefore, the McCabe’s metric provides a
quantitative measure of testing difficulty and the ultimate reliability of a
program. Consider the CFG example shown in Figure 10.7. From a visual
examination of the CFG the number of bounded areas is 2. Therefore the
cyclomatic complexity, computed with this method is also 2+1=3. This
method provides a very easy way of computing the cyclomatic complexity of
CFGs, just from a visual examination of the CFG. On the other hand, the
method for computing CFGs can easily be automated. That is, the McCabe’s
metric computations methods 1 and 3 can be easily coded into a program

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

that can be used to automatically determine the cyclomatic complexities of
arbitrary programs.
Method 3: The cyclomatic complexity of a program can also be easily
computed by computing the number of decision and loop statements of the
program. If N is the number of decision and loop statements of a program,
then the McCabe’s metric is equal to N + 1.

How is path testing carried out by using computed
McCabe’s cyclomatic metric value?

Knowing the number of basis paths in a program does not make it any
easier to design test cases for path coverage, only it gives an indication
of the minimum number of test cases required for path coverage. For
the CFG of a moderately complex program segment of say 20 nodes
and 25 edges, you may need several days of effort to identify all the
linearly independent paths in it and to design the test cases. It is
therefore impractical to require the test designers to identify all the
linearly independent paths in a code, and then design the test cases to
force execution along each of the identified paths. In practice, for path
testing, usually the tester keeps on forming test cases with random
data and executes those until the required coverage is achieved. A
testing tool such as a dynamic program analyser (see Section 10.8.2) is
used to determine the percentage of linearly independent paths
covered by the test cases that have been executed so far. If the
percentage of linearly independent paths covered is below 90 per cent,
more test cases (with random inputs) are added to increase the path
coverage. Normally, it is not practical to target achievement of 100 per
cent path coverage, since, the McCabe’s metric is only an upper bound
and does not give the exact number of paths.

Steps to carry out path coverage-based testing
The following is the sequence of steps that need to be undertaken for
deriving the path coverage-based test cases for a program:

1. Draw control flow graph for the program.
2. Determine the McCabe’s metric V(G).
3. Determine the cyclomatic complexity. This gives the minimum number

of test cases required to achieve path coverage.
4. repeat

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Test using a randomly designed set of test cases.
Perform dynamic analysis to check the path coverage achieved.
until at least 90 per cent path coverage is achieved.

Uses of McCabe’s cyclomatic complexity metric
Beside its use in path testing, cyclomatic complexity of programs has
many other interesting applications such as the following:

Estimation of structural complexity of code: McCabe’s cyclomatic
complexity is a measure of the structural complexity of a program. The
reason for this is that it is computed based on the code structure (number of
decision and iteration constructs used). Intuitively, the McCabe’s complexity
metric correlates with the difficulty level of understanding a program, since
one understands a program by understanding the computations carried out
along all independent paths of the program.

Cyclomatic complexity of a program is a measure of the psychological complexity or
the level of difficulty in understanding the program.

In view of the above result, from the maintenance perspective, it makes
good sense to limit the cyclomatic complexity of the different functions to
some reasonable value. Good software development organisations usually
restrict the cyclomatic complexity of different functions to a maximum value
of ten or so. This is in contrast to the computational complexity that is based
on the execution of the program statements.
Estimation of testing effort: Cyclomatic complexity is a measure of the
maximum number of basis paths. Thus, it indicates the minimum number of
test cases required to achieve path coverage. Therefore, the testing effort
and the time required to test a piece of code satisfactorily is proportional to
the cyclomatic complexity of the code. To reduce testing effort, it is necessary
to restrict the cyclomatic complexity of every function to seven.
Estimation of program reliability: Experimental studies indicate there
exists a clear relationship between the McCabe’s metric and the number of
errors latent in the code after testing. This relationship exists possibly due to
the correlation of cyclomatic complexity with the structural complexity of
code. Usually the larger is the structural complexity, the more difficult it is to
test and debug the code.

10.7.7 Data Flow-based Testing
Data flow based testing method selects test paths of a program

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

according to the definitions and uses of different variables in a program.
Consider a program P . For a statement numbered S of P , let

DEF(S) = {X /statement S contains a definition of X } and
USES(S)= {X /statement S contains a use of X }

For the statement S: a=b+c;, DEF(S)={a}, USES(S)={b, c}. The definition
of variable X at statement S is said to be live at statement S1 , if there exists
a path from statement S to statement S1 which does not contain any
definition of X .

All definitions criterion is a test coverage criterion that requires that an
adequate test set should cover all definition occurrences in the sense that, for
each definition occurrence, the testing paths should cover a path through
which the definition reaches a use of the definition. All use criterion requires
that all uses of a definition should be covered. Clearly, all-uses criterion is
stronger than all-definitions criterion. An even stronger criterion is all
definition-use-paths criterion, which requires the coverage of all possible
definition-use paths that either are cycle-free or have only simple cycles. A
simple cycle is a path in which only the end node and the start node are the
same.

The definition-use chain (or DU chain) of a variable X is of the form [X, S,
S1], where S and S1 are statement numbers, such that X � DEF(S) and X �
USES(S1), and the definition of X in the statement S is live at statement S1 .
One simple data flow testing strategy is to require that every DU chain be
covered at least once. Data flow testing strategies are especially useful for
testing programs containing nested if and loop statements.

10.7.8 Mutation Testing
All white-box testing strategies that we have discussed so far, are
coverage-based testing techniques. In contrast, mutation testing is a
fault-based testing technique in the sense that mutation test cases are
designed to help detect specific types of faults in a program. In
mutation testing, a program is first tested by using an initial test suite
designed by using various white box testing strategies that we have
discussed. After the initial testing is complete, mutation testing can be
taken up.

The idea behind mutation testing is to make a few arbitrary changes to a
program at a time. Each time the program is changed, it is called a mutated
program and the change effected is called a mutant. An underlying
assumption behind mutation testing is that all programming errors can be

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

expressed as a combination of simple errors. A mutation operator makes
specific changes to a program. For example, one mutation operator may
randomly delete a program statement. A mutant may or may not cause an
error in the program. If a mutant does not introduce any error in the program,
then the original program and the mutated program are called equivalent
programs.

A mutated program is tested against the original test suite of the program.
If there exists at least one test case in the test suite for which a mutated
program yields an incorrect result, then the mutant is said to be dead, since
the error introduced by the mutation operator has successfully been detected
by the test suite. If a mutant remains alive even after all the test cases have
been exhausted, the test suite is enhanced to kill the mutant. However, it is
not this straightforward. Remember that there is a possibility of a mutated
program to be an equivalent program. When this is the case, it is futile to try
to design a test case that would identify the error.

An important advantage of mutation testing is that it can be automated to
a great extent. The process of generation of mutants can be automated by
predefining a set of primitive changes that can be applied to the program.
These primitive changes can be simple program alterations such as—deleting
a statement, deleting a variable definition, changing the type of an arithmetic
operator (e.g., + to -), changing a logical operator (and to or) changing the
value of a constant, changing the data type of a variable, etc. A major pitfall
of the mutation-based testing approach is that it is computationally very
expensive, since a large number of possible mutants can be generated.

Mutation testing involves generating a large number of mutants. Also each
mutant needs to be tested with the full test suite. Obviously therefore,
mutation testing is not suitable for manual testing. Mutation testing is most
suitable to be used in conjunction of some testing tool that should
automatically generate the mutants and run the test suite automatically on
each mutant. At present, several test tools are available that automatically
generate mutants for a given program.

10.8 DEBUGGING
After a failure has been detected, it is necessary to first identify the
program statement(s) that are in error and are responsible for the
failure, the error can then be fixed. In this Section, we shall summarise
the important approaches that are available to identify the error
locations. Each of these approaches has its own advantages and

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

disadvantages and therefore each will be useful in appropriate
circumstances. We also provide some guidelines for effective
debugging.

10.8.1 Debugging Approaches
The following are some of the approaches that are popularly adopted by
the programmers for debugging:

Brute force method
This is the most common method of debugging but is the least efficient
method. In this approach, print statements are inserted throughout the
program to print the intermediate values with the hope that some of
the printed values will help to identify the statement in error. This
approach becomes more systematic with the use of a symbolic
debugger (also called a source code debugger), because values of
different variables can be easily checked and break points and watch
points can be easily set to test the values of variables effortlessly.
Single stepping using a symbolic debugger is another form of this
approach, where the developer mentally computes the expected result
after every source instruction and checks whether the same is
computed by single stepping through the program.

Backtracking
This is also a fairly common approach. In this approach, starting from the
statement at which an error symptom has been observed, the source
code is traced backwards until the error is discovered. Unfortunately, as
the number of source lines to be traced back increases, the number of
potential backward paths increases and may become unmanageably
large for complex programs, limiting the use of this approach.

Cause elimination method
In this approach, once a failure is observed, the symptoms of the failure
(i.e., certain variable is having a negative value though it should be
positive, etc.) are noted. Based on the failure symptoms, the causes
which could possibly have contributed to the symptom is developed and
tests are conducted to eliminate each. A related technique of
identification of the error from the error symptom is the software fault
tree analysis.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Program slicing
This technique is similar to back tracking. In the backtracking approach,
one often has to examine a large number of statements. However, the
search space is reduced by defining slices. A slice of a program for a
particular variable and at a particular statement is the set of source
lines preceding this statement that can influence the value of that
variable [Mund2002]. Program slicing makes use of the fact that an
error in the value of a variable can be caused by the statements on
which it is data dependent.

10.8.2 Debugging Guidelines
Debugging is often carried out by programmers based on their ingenuity
and experience. The following are some general guidelines for effective
debugging:

Many times debugging requires a thorough understanding of the
program design. Trying to debug based on a partial understanding of
the program design may require an inordinate amount of effort to be
put into debugging even for simple problems.
Debugging may sometimes even require full redesign of the system. In
such cases, a common mistakes that novice programmers often make
is attempting not to fix the error but its symptoms.
One must be beware of the possibility that an error correction may
introduce new errors. Therefore after every round of error-fixing,
regression testing (see Section 10.13) must be carried out.

10.9 PROGRAM ANALYSIS TOOLS
A program analysis tool usually is an automated tool that takes either
the source code or the executable code of a program as input and
produces reports regarding several important characteristics of the
program, such as its size, complexity, adequacy of commenting,
adherence to programming standards, adequacy of testing, etc. We can
classify various program analysis tools into the following two broad
categories:

Static analysis tools
Dynamic analysis tools

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

These two categories of program analysis tools are discussed in the
following subsection.

10.9.1 Static Analysis Tools
Static program analysis tools assess and compute various characteristics
of a program without executing it. Typically, static analysis tools
analyse the source code to compute certain metrics characterising the
source code (such as size, cyclomatic complexity, etc.) and also report
certain analytical conclusions. These also check the conformance of the
code with the prescribed coding standards. In this context, it displays
the following analysis results:

To what extent the coding standards have been adhered to?
Whether certain programming errors such as uninitialised variables,
mismatch between actual and formal parameters, variables that are
declared but never used, etc., exist? A list of all such errors is
displayed.

Code review techniques such as code walkthrough and code inspection
discussed in Sections 10.2.1 and 10.2.2 can be considered as static analysis
methods since those target to detect errors based on analysing the source
code. However, strictly speaking, this is not true since we are using the term
static program analysis to denote automated analysis tools. On the other
hand, a compiler can be considered to be a type of a static program analysis
tool.

A major practical limitation of the static analysis tools lies in their inability
to analyse run-time information such as dynamic memory references using
pointer variables and pointer arithmetic, etc. In a high level programming
languages, pointer variables and dynamic memory allocation provide the
capability for dynamic memory references. However, dynamic memory
referencing is a major source of programming errors in a program.

Static analysis tools often summarise the results of analysis of every
function in a polar chart known as Kiviat Chart. A Kiviat Chart typically shows
the analysed values for cyclomatic complexity, number of source lines,
percentage of comment lines, Halstead’s metrics, etc.

10.9.2 Dynamic Analysis Tools
Dynamic program analysis tools can be used to evaluate several program

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

characteristics based on an analysis of the run time behaviour of a program.
These tools usually record and analyse the actual behaviour of a program
while it is being executed. A dynamic program analysis tool (also called a
dynamic analyser) usually collects execution trace information by
instrumenting the code. Code instrumentation is usually achieved by inserting
additional statements to print the values of certain variables into a file to
collect the execution trace of the program. The instrumented code when
executed, records the behaviour of the software for different test cases.

An important characteristic of a test suite that is computed by a dynamic analysis tool
is the extent of coverage achieved by the test suite.

After a software has been tested with its full test suite and its behaviour
recorded, the dynamic analysis tool carries out a post execution analysis and
produces reports which describe the coverage that has been achieved by the
complete test suite for the program. For example, the dynamic analysis tool
can report the statement, branch, and path coverage achieved by a test
suite. If the coverage achieved is not satisfactory more test cases can be
designed, added to the test suite, and run. Further, dynamic analysis results
can help eliminate redundant test cases from a test suite.

Normally the dynamic analysis results are reported in the form of a
histogram or pie chart to describe the structural coverage achieved for
different modules of the program. The output of a dynamic analysis tool can
be stored and printed easily to provide evidence that thorough testing has
been carried out.

10.10 INTEGRATION TESTING
Integration testing is carried out after all (or at least some of) the modules
have been unit tested. Successful completion of unit testing, to a large
extent, ensures that the unit (or module) as a whole works satisfactorily. In
this context, the objective of integration testing is to detect the errors at the
module interfaces (call parameters). For example, it is checked that no
parameter mismatch occurs when one module invokes the functionality of
another module. Thus, the primary objective of integration testing is to test
the module interfaces, i.e., there are no errors in parameter passing, when
one module invokes the functionality of another module.

The objective of integration testing is to check whether the different modules of a
program interface with each other properly.

During integration testing, different modules of a system are integrated in a

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

During integration testing, different modules of a system are integrated in a
planned manner using an integration plan. The integration plan specifies the
steps and the order in which modules are combined to realise the full system.
After each integration step, the partially integrated system is tested.

An important factor that guides the integration plan is the module
dependency graph.

We have already discussed in Chapter 6 that a structure chart (or module
dependency graph) specifies the order in which different modules call each
other. Thus, by examining the structure chart, the integration plan can be
developed. Any one (or a mixture) of the following approaches can be used to
develop the test plan:

Big-bang approach to integration testing
Top-down approach to integration testing
Bottom-up approach to integration testing
Mixed (also called sandwiched) approach to integration testing

In the following subsections, we provide an overview of these approaches
to integration testing.

Big-bang approach to integration testing
Big-bang testing is the most obvious approach to integration testing. In
this approach, all the modules making up a system are integrated in a
single step. In simple words, all the unit tested modules of the system
are simply linked together and tested. However, this technique can
meaningfully be used only for very small systems. The main problem
with this approach is that once a failure has been detected during
integration testing, it is very difficult to localise the error as the error
may potentially lie in any of the modules. Therefore, debugging errors
reported during big-bang integration testing are very expensive to fix.
As a result, big-bang integration testing is almost never used for large
programs.

Bottom-up approach to integration testing
Large software products are often made up of several subsystems. A
subsystem might consist of many modules which communicate among
each other through well-defined interfaces. In bottom-up integration
testing, first the modules for the each subsystem are integrated. Thus,
the subsystems can be integrated separately and independently.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The primary purpose of carrying out the integration testing a subsystem is
to test whether the interfaces among various modules making up the
subsystem work satisfactorily. The test cases must be carefully chosen to
exercise the interfaces in all possible manners.

In a pure bottom-up testing no stubs are required, and only test-drivers are
required. Large software systems normally require several levels of
subsystem testing, lower-level subsystems are successively combined to form
higher-level subsystems. The principal advantage of bottom- up integration
testing is that several disjoint subsystems can be tested simultaneously.
Another advantage of bottom-up testing is that the low-level modules get
tested thoroughly, since they are exercised in each integration step. Since the
low-level modules do I/O and other critical functions, testing the low-level
modules thoroughly increases the reliability of the system. A disadvantage of
bottom-up testing is the complexity that occurs when the system is made up
of a large number of small subsystems that are at the same level. This
extreme case corresponds to the big-bang approach.

Top-down approach to integration testing
Top-down integration testing starts with the root module in the structure
chart and one or two subordinate modules of the root module. After the
top-level ‘skeleton’ has been tested, the modules that are at the
immediately lower layer of the ‘skeleton’ are combined with it and
tested. Top-down integration testing approach requires the use of
program stubs to simulate the effect of lower-level routines that are
called by the routines under test. A pure top-down integration does not
require any driver routines. An advantage of top-down integration
testing is that it requires writing only stubs, and stubs are simpler to
write compared to drivers. A disadvantage of the top-down integration
testing approach is that in the absence of lower-level routines, it
becomes difficult to exercise the top-level routines in the desired
manner since the lower level routines usually perform input/output
(I/O) operations.

Mixed approach to integration testing
The mixed (also called sandwiched) integration testing follows a
combination of top-down and bottom-up testing approaches. In top-
down approach, testing can start only after the top-level modules have
been coded and unit tested. Similarly, bottom-up testing can start only

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

after the bottom level modules are ready. The mixed approach
overcomes this shortcoming of the top-down and bottom-up
approaches. In the mixed testing approach, testing can start as and
when modules become available after unit testing. Therefore, this is
one of the most commonly used integration testing approaches. In this
approach, both stubs and drivers are required to be designed.

10.10.1 Phased versus Incremental Integration Testing
Big-bang integration testing is carried out in a single step of integration.
In contrast, in the other strategies, integration is carried out over
several steps. In these later strategies, modules can be integrated
either in a phased or incremental manner. A comparison of these two
strategies is as follows:

In incremental integration testing, only one new module is added to
the partially integrated system each time.
In phased integration, a group of related modules are added to the
partial system each time.

Obviously, phased integration requires less number of integration steps
compared to the incremental integration approach. However, when failures
are detected, it is easier to debug the system while using the incremental
testing approach since the errors can easily be traced to the interface of the
recently integrated module. Please observe that a degenerate case of the
phased integration testing approach is big-bang testing.

10.11 TESTING OBJECT-ORIENTED PROGRAMS
During the initial years of object-oriented programming, it was believed
that object-orientation would, to a great extent, reduce the cost and
effort incurred on testing. This thinking was based on the observation
that object-orientation incorporates several good programming features
such as encapsulation, abstraction, reuse through inheritance,
polymorphism, etc., thereby chances of errors in the code is minimised.
However, it was soon realised that satisfactory testing object-oriented
programs is much more difficult and requires much more cost and effort
as compared to testing similar procedural programs. The main reason
behind this situation is that various object-oriented features introduce
additional complications and scope of new types of bugs that are

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

present in procedural programs. Therefore additional test cases are
needed to be designed to detect these. We examine these issues as
well as some other basic issues in testing object-oriented programs in
the following subsections.

10.11.1 What is a Suitable Unit for Testing
Object-oriented Programs?
For procedural programs, we had seen that procedures are the basic units of
testing. That is, first all the procedures are unit tested. Then various tested
procedures are integrated together and tested. Thus, as far as procedural
programs are concerned, procedures are the basic units of testing. Since
methods in an object-oriented program are analogous to procedures in a
procedural program, can we then consider the methods of object-oriented
programs as the basic unit of testing? Weyuker studied this issue and
postulated his anticomposition axiom as follows:

Adequate testing of individual methods does not ensure that a class has been
satisfactorily tested.

The main intuitive justification for the anticomposition axiom is the
following. A method operates in the scope of the data and other methods of
its object. That is, all the methods share the data of the class. Therefore, it is
necessary to test a method in the context of these. Moreover, objects can
have significant number of states. The behaviour of a method can be different
based on the state of the corresponding object. Therefore, it is not enough to
test all the methods and check whether they can be integrated satisfactorily.
A method has to be tested with all the other methods and data of the
corresponding object. Moreover, a method needs to be tested at all the
states that the object can assume. As a result, it is improper to consider a
method as the basic unit of testing an object-oriented program.

An object is the basic unit of testing of object-oriented programs.

Thus, in an object oriented program, unit testing would mean testing each
object in isolation. During integration testing (called cluster testing in the
object-oriented testing literature) various unit tested objects are integrated
and tested. Finally, system-level testing is carried out.

10.11.2 Do Various Ob ject-orientation Features Make
Testing Easy?

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

In this section, we discuss the implications of different object-orientation
features in testing.

Encapsulation: We had discussed in Chapter 7 that the encapsulation
feature helps in data abstraction, error isolation, and error prevention.
However, as far as testing is concerned, encapsulation is not an obstacle to
testing, but leads to difficulty during debugging. Encapsulation prevents the
tester from accessing the data internal to an object. Of course, it is possible
that one can require classes to support state reporting methods to print out
all the data internal to an object. Thus, the encapsulation feature though
makes testing difficult, the difficulty can be overcome to some extent through
use of appropriate state reporting methods.
Inheritance: The inheritance feature helps in code reuse and was expected
to simplify testing. It was expected that if a class is tested thoroughly, then
the classes that are derived from this class would need only incremental
testing of the added features. However, this is not the case.

Even if the base class class has been thoroughly tested, the methods inherited from
the base class need to be tested again in the derived class.

The reason for this is that the inherited methods would work in a new
context (new data and method definitions). As a result, correct behaviour of a
method at an upper level, does not guarantee correct behaviour at a lower
level. Therefore, retesting of inherited methods needs to be followed as a
rule, rather as an exception.
Dynamic binding: Dynamic binding was introduced to make the code
compact, elegant, and easily extensible. However, as far as testing is
concerned all possible bindings of a method call have to be identified and
tested. This is not easy since the bindings take place at run-time.
Object states: In contrast to the procedures in a procedural program,
objects store data permanently. As a result, objects do have significant
states. The behaviour of an object is usually different in different states. That
is, some methods may not be active in some of its states. Also, a method
may act differently in different states. For example, when a book has been
issued out in a library information system, the book reaches the issuedOut
state. In this state, if the issue method is invoked, then it may not exhibit its
normal behaviour.

In view of the discussions above, testing an object in only one of its states
is not enough. The object has to be tested at all its possible states. Also,

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

whether all the transitions between states (as specified in the object model)
function properly or not should be tested. Additionally, it needs to be tested
that no extra (sneak) transitions exist, neither are there extra states present
other than those defined in the state model. For state-based testing, it is
therefore beneficial to have the state model of the objects, so that the
conformance of the object to its state model can be tested.

10.11.3 Why are Traditional Techniques Considered Not
Satisfactory for Testing Object-oriented Programs?

We have already seen that in traditional procedural programs,
procedures are the basic unit of testing. In contrast, objects are the
basic unit of testing for object-oriented programs. Besides this, there
are many other significant differences as well between testing
procedural and object-oriented programs. For example, statement
coverage-based testing which is popular for testing procedural programs
is not meaningful for object-oriented programs. The reason is that
inherited methods have to be retested in the derived class. In fact, the
different object- oriented features (inheritance, polymorphism, dynamic
binding, state-based behaviour, etc.) require special test cases to be
designed compared to the traditional testing as discussed in Section
10.11.4. The various object-orientation features are explicit in the
design models, and it is usually difficult to extract from and analysis of
the source code. As a result, the design model is a valuable artifact for
testing object-oriented programs. Test cases are designed based on the
design model. Therefore, this approach is considered to be intermediate
between a fully white-box and a fully black-box approach, and is called
a grey-box approach. Please note that grey-box testing is considered
important for object-oriented programs. This is in contrast to testing
procedural programs.

10.11.4 Grey-Box Testing of Object-oriented Programs
As we have already mentioned, model-based testing is important for object-
oriented programs, as these test cases help detect bugs that are specific to
the object-orientation constructs.

For object-oriented programs, several types of test cases can be designed based on
the design models of object-oriented programs. These are called the grey-box test
cases.

The following are some important types of grey-box testing that can be

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The following are some important types of grey-box testing that can be
carried on based on UML models:

State-model-based testing
State coverage: Each method of an object are tested at each state of
the object.

State transition coverage: It is tested whether all transitions depicted in
the state model work satisfactorily.
State transition path coverage: All transition paths in the state model are
tested.

Use case-based testing
Scenario coverage: Each use case typically consists of a mainline
scenario and several alternate scenarios. For each use case, the
mainline and all alternate sequences are tested to check if any errors
show up.

Class diagram-based testing
Testing derived classes: All derived classes of the base class have to
be instantiated and tested. In addition to testing the new methods
defined in the derivec. lass, the inherited methods must be retested.

Association testing: All association relations are tested.
Aggregation testing: Various aggregate objects are created and tested.
Sequence diagram-based testing
Method coverage: All methods depicted in the sequence diagrams are
covered. Message path coverage: All message paths that can be
constructed from the sequence diagrams are covered.

10.11.5 Integration Testing of Object-oriented Programs
There are two main approaches to integration testing of object-oriented
programs:

• Thread-based
• Use based

Thread-based approach: In this approach, all classes that need to
collaborate to realise the behaviour of a single use case are integrated and
tested. After all the required classes for a use case are integrated and tested,

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

another use case is taken up and other classes (if any) necessary for
execution of the second use case to run are integrated and tested. This is
continued till all use cases have been considered.
Use-based approach: Use-based integration begins by testing classes that
either need no service from other classes or need services from at most a few
other classes. After these classes have been integrated and tested, classes
that use the services from the already integrated classes are integrated and
tested. This is continued till all the classes have been integrated and tested.

10.12 SYSTEM TESTING
After all the units of a program have been integrated together and tested,
system testing is taken up.

System tests are designed to validate a fully developed system to assure that it meets
its requirements. The test cases are therefore designed solely based on the SRS
document.

The system testing procedures are the same for both object-oriented and
procedural programs, since system test cases are designed solely based on
the SRS document and the actual implementation (procedural or object-
oriented) is immaterial.

There are essentially three main kinds of system testing depending on who
carries out testing:

1. Alpha Testing: Alpha testing refers to the system testing carried out
by the test team within the developing organisation.

2. Beta Testing: Beta testing is the system testing performed by a
select group of friendly customers.

3. Acceptance Testing: Acceptance testing is the system testing
performed by the customer to determine whether to accept the
delivery of the system.

In each of the above types of system tests, the test cases can be the same,
but the difference is with respect to who designs test cases and carries out
testing.

The system test cases can be classified into functionality and performance test cases.

Before a fully integrated system is accepted for system testing, smoke
testing is performed. Smoke testing is done to check whether at least the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

main functionalities of the software are working properly. Unless the software
is stable and at least the main functionalities are working satisfactorily,
system testing is not undertaken.

The functionality tests are designed to check whether the software satisfies
the functional requirements as documented in the SRS document. The
performance tests, on the other hand, test the conformance of the system
with the non-functional requirements of the system. We have already
discussed how to design the functionality test cases by using a black-box
approach (in Section 10.5 in the context of unit testing). So, in the following
subsection we discuss only smoke and performance testing.

10.12.1 Smoke Testing
Smoke testing is carried out before initiating system testing to ensure
that system testing would be meaningful, or whether many parts of the
software would fail. The idea behind smoke testing is that if the
integrated program cannot pass even the basic tests, it is not ready for
a vigorous testing. For smoke testing, a few test cases are designed to
check whether the basic functionalities are working. For example, for a
library automation system, the smoke tests may check whether books
can be created and deleted, whether member records can be created
and deleted, and whether books can be loaned and returned.

10.12.2 Performance Testing
Performance testing is an important type of system testing.

Performance testing is carried out to check whether the system meets the non-
functional requirements identified in the SRS document.

There are several types of performance testing corresponding to various
types of non-functional requirements. For a specific system, the types of
performance testing to be carried out on a system depends on the different
non-functional requirements of the system documented in its SRS document.
All performance tests can be considered as black-box tests.

Stress testing
Stress testing is also known as endurance testing. Stress testing
evaluates system performance when it is stressed for short periods of
time. Stress tests are black-box tests which are designed to impose a
range of abnormal and even illegal input conditions so as to stress the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

capabilities of the software. Input data volume, input data rate,
processing time, utilisation of memory, etc., are tested beyond the
designed capacity. For example, suppose an operating system is
supposed to support fifteen concurrent transactions, then the system is
stressed by attempting to initiate fifteen or more transactions
simultaneously. A real-time system might be tested to determine the
effect of simultaneous arrival of several high-priority interrupts.

Stress testing is especially important for systems that under normal
circumstances operate below their maximum capacity but may be severely
stressed at some peak demand hours. For example, if the corresponding non-
functional requirement states that the response time should not be more than
twenty secs per transaction when sixty concurrent users are working, then
during stress testing the response time is checked with exactly sixty users
working simultaneously.

Volume testing
Volume testing checks whether the data structures (buffers, arrays,
queues, stacks, etc.) have been designed to successfully handle
extraordinary situations. For example, the volume testing for a compiler
might be to check whether the symbol table overflows when a very
large program is compiled.

Configuration testing
Configuration testing is used to test system behaviour in various
hardware and software configurations specified in the requirements.
Sometimes systems are built to work in different configurations for
different users. For instance, a minimal system might be required to
serve a single user, and other extended configurations may be required
to serve additional users during configuration testing. The system is
configured in each of the required configurations and depending on the
specific customer requirements, it is checked if the system behaves
correctly in all required configurations.

Compatibility testing
This type of testing is required when the system interfaces with external
systems (e.g., databases, servers, etc.). Compatibility aims to check
whether the interfaces with the external systems are performing as
required. For instance, if the system needs to communicate with a large

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

database system to retrieve information, compatibility testing is
required to test the speed and accuracy of data retrieval.

Regression testing
This type of testing is required when a software is maintained to fix
some bugs or enhance functionality, performance, etc. Regression
testing is also discussed in Section 10.13.

Recovery testing
Recovery testing tests the response of the system to the presence of
faults, or loss of power, devices, services, data, etc. The system is
subjected to the loss of the mentioned resources (as discussed in the
SRS document) and it is checked if the system recovers satisfactorily.
For example, the printer can be disconnected to check if the system
hangs. Or, the power may be shut down to check the extent of data loss
and corruption.

Maintenance testing
This addresses testing the diagnostic programs, and other procedures
that are required to help maintenance of the system. It is verified that
the artifacts exist and they perform properly.

Documentation testing
It is checked whether the required user manual, maintenance manuals,
and technical manuals exist and are consistent. If the requirements
specify the types of audience for which a specific manual should be
designed, then the manual is checked for compliance of this
requirement.

Usability testing
Usability testing concerns checking the user interface to see if it meets
all user requirements concerning the user interface. During usability
testing, the display screens, messages, report formats, and other
aspects relating to the user interface requirements are tested. A GUI
being just being functionally correct is not enough. Therefore, the GUI
has to be checked against the checklist we discussed in Sec. 9.5.6.

Security testing

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Security testing is essential for software that handle or process
confidential data that is to be gurarded against pilfering. It needs to be
tested whether the system is fool-proof from security attacks such as
intrusion by hackers. Over the last few years, a large number of security
testing techniques have been proposed, and these include password
cracking, penetration testing, and attacks on specific ports, etc.

10.12.3 Error Seeding
Sometimes customers specify the maximum number of residual errors
that can be present in the delivered software. These requirements are
often expressed in terms of maximum number of allowable errors per
line of source code. The error seeding technique can be used to
estimate the number of residual errors in a software.

Error seeding, as the name implies, it involves seeding the code with some
known errors. In other words, some artificial errors are introduced (seeded)
into the program. The number of these seeded errors that are detected in the
course of standard testing is determined. These values in conjunction with
the number of unseeded errors detected during testing can be used to predict
the following aspects of a program:

The number of errors remaining in the product.
The effectiveness of the testing strategy.

Let N be the total number of defects in the system, and let n of these
defects be found by testing.

Let S be the total number of seeded defects, and let s of these defects be
found during testing. Therefore, we get:

Defects still remaining in the program after testing can be given by:

Error seeding works satisfactorily only if the kind seeded errors and their
frequency of occurrence matches closely with the kind of defects that actually
exist. However, it is difficult to predict the types of errors that exist in a
software. To some extent, the different categories of errors that are latent

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

and their frequency of occurrence can be estimated by analyzing historical
data collected from similar projects. That is, the data collected is regarding
the types and the frequency of latent errors for all earlier related projects.
This gives an indication of the types (and the frequency) of errors that are
likely to have been committed in the program under consideration. Based on
these data, the different types of errors with the required frequency of
occurrence can be seeded.

10.13 SOME GENERAL ISSUES ASSOCIATED WITH TESTING
In this section, we shall discuss two general issues associated with
testing. These are—how to document the results of testing and how to
perform regression testing.

Test documentation
A piece of documentation that is produced towards the end of testing is
the test summary report. This report normally covers each subsystem
and represents a summary of tests which have been applied to the
subsystem and their outcome. It normally specifies the following:

What is the total number of tests that were applied to a subsystem.
Out of the total number of tests how many tests were successful.
How many were unsuccessful, and the degree to which they were
unsuccessful, e.g., whether a test was an outright failure or whether
some of the expected results of the test were actually observed.

Regression testing
Regression testing spans unit, integration, and system testing. Instead, it
is a separate dimension to these three forms of testing. Regression
testing is the practice of running an old test suite after each change to
the system or after each bug fix to ensure that no new bug has been
introduced due to the change or the bug fix. However, if only a few
statements are changed, then the entire test suite need not be run —
only those test cases that test the functions and are likely to be
affected by the change need to be run. Whenever a software is changed
to either fix a bug, or enhance or remove a feature, regression testing is
carried out.

SUMMARY

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

In this chapter we discussed the coding and testing phases of the
software life cycle.
Most software development organisations formulate their own coding
standards and expect their engineers to adhere to them. On the other
hand, coding guidelines serve as general suggestions to programmers
regarding good programming styles, but the implementation of the
guidelines is left to the discretion to the individual engineers.
Code review is an efficient way of removing errors as compared to
testing, because code review identifies errors whereas testing
identifies failures. Therefore, after identifying failures, additional efforts
(debugging) must be done to locate and fix the errors.
Exhaustive testing of almost any non-trivial system is impractical. Also,
random selection of test cases is inefficient since many test cases
become redundant as they detect the same type of errors. Therefore,
we need to design an minimal set of test cases that would expose as
many errors as possible.
There are two well-known approaches to testing—black-box testing
and white-box testing. Black box testing is also known as functional
testing. Designing test cases for black box testing does not require any
knowledge about how the functions have been designed and
implemented. On the other hand, white-box testing requires
knowledge about internals of the software.
Object-oriented features complicate the testing process as test cases
have to be designed to detect bugs that are associated with these new
types of features that are specific to object-orientation programs.
We discussed some important issues in integration and system testing.
We observed that the system test suite is designed based on the SRS
document. The two major types of system testing are functionality
testing and performance testing. The functionality test cases are
designed based on the functional requirements and the performance
test cases are design to test the compliance of the system to test the
non-functional requirements documented in the SRS document.

EXERCISES
1. For each of the following questions, choose the correct option:

(a) When is code review performed during software life cycle?
(i) After unit testing
(ii) After coding and compiling

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(iii) During integration testing
(iv) During system testing

(b) Which one of the following assertions is true?
(i) Code inspection is carried out on tested and debugged code.
(ii) Code inspection and code walkthrough are essentially synonymous.
(iii) Adherence to coding standards are checked during code
inspection.
(iv) Code walkthrough makes code inspection redundant.

(c) Identify the synonyms from: error, bug, mistake, failure, and fault:
(i) error, bug, mistake, failure, and fault
(ii) error, bug, failure
(iii) error, bug, fault
(iv) bug, failure, fault

(d) Which one of the followings is not a recognised software testing
technique?
(i) Data-flow testing
(ii) Path testing
(iii) Syntax testing
(iv) Decision testing

(e) Unit testing of a software module does NOT require testing which
one of the following:
(i) Whether coding standards have been followed.
(ii) Whether the functions of the module are working as per design.
(iii) Whether all arithmetic statements of the module are working
properly. (iv) Whether all control statements are working properly.

(f) Which one of the following verification and validation (V and V)
activity targets to detect noncompliance to coding standard?
(i) Unit testing
(ii) Code inspection
(iii) Code walk through
(iv) System testing

(g) Code review does not target to detect which of the following types of
testing: (i) Algorithmic error
(ii) Syntax error
(iii) Programming error
(iv) Logic error

(h) McCabe’s cyclomatic complexity is defined in terms of which of the
following? (i) A syntax graph

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(ii) A data-flow diagram
(iii) A control flow diagram
(iv) A structure chart

(i) Which one of the followings is true about program verification?
(i) Checks that we are building the right system
(ii) Checks that we are building the system right
(iii) Performed by an independent test team
(iv) Ensures that the developed product is what the user really wants

(j) Which one of the following statements is not an objective of software
verification?
(i) Ensuring that product development steps are carried out correctly.
(ii) Ensuring that the correct product has been developed.
(iii) Achieving phase containment of errors.
(iv) Ensuring that the outputs produced at a stage conform to the
outputs of the previous phase.

(k) Which of the following does not help in achieving phase containment
of errors?
(i) System testing
(ii) Review
(iii) Prototyping
(iv) Simulation

(l) After a program has been modified, which one of the following
options characterizes the regression test cases?
(i) All test cases
(ii) Test cases that execute the modified statements
(iii) Test cases that execute the affected or modified statements
(iv) Test cases that execute the unaffected statements

(m) Which of the following is a black-box testing approach?
(i) Path testing
(ii) Boundary value testing
(iii) Mutation testing
(iv) Branch testing

(n) Which of the following is not a software verification technique?
(i) Review
(ii) Simulation
(iii) Unit testing
(iv) Theorem proving
(v) Model checking

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(vi) Inspection
(vii) Stress testing

(o) Why is it important to test boundary values while testing a function?
(i) It reduces test costs as boundary values are easily computed by
hand.
(ii) Debugging is easier when testing boundary values.
(iii) The correct execution of a function on all boundary values proves
that a function is correct.
(iv) In practice, programming the boundary conditions are error prone.

(p) Which of the following can be considered as a program validation
technique?
(i) Unit testing
(ii) Integration testing
(iii) Code review
(iv) Acceptance testing

(q) If branch coverage has been achieved on a unit under test, which of
the following coverage is implicitly implied?
(i) Path coverage
(ii) Multiple condition coverage
(iii) Statement coverage
(iv) Data flow coverage

(r) Which of the following attributes of a program can be inferred from
the cyclomatic complexity of a program?
(i) Computational complexity
(ii) Lines of code (LoC)
(iii) Executable code size
(iv) Understandability

2. For each of the following questions, choose the correct option:
(a) Which of the following statements about cyclomatic complexity

metric of a program is FALSE?
(i) It is a measure of the testing difficulty of the program.
(ii) It is a measure of understanding difficulty of the program.
(iii) It is a measure of the linearly independent paths in the program
(iv) It is a measure of the size of the program

(b) Alpha and Beta testing are considered to be which one of the
following types of testing?
(i) Regression testing
(ii) Unit testing

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(iii) Integration testing
(iv) Acceptance testing

(c) The purpose of error seeding is which one of the followings?
(i) Determine the origin of the bugs
(ii) Plant trojans
(iii) Determine the number of latent bugs
(iv) Plant insidious bugs before delivery to the customer

(d) When in the development cycle is code review carried out?
(i) After coding is complete and before the code is compiled.
(ii) After coding is complete and after the code is compiled.
(iii) After unit testing is over
(iv) After system testing is over

(e) If the condition expression in a conditional statement is composed of
n atomic conditions, what is the number of test cases required to
achieve multiple condition coverage?
(i) n
(ii) 2n
(iii) 2 × n
(iv) 2 × n + 1

(f) If two code segments have cyclomatic complexities of N1 and N2
respectively, what will be the Cyclomatic complexity of the
juxtaposition of the two code segments?
(i) N1 + N2
(ii) N1 + N2 + 1
(iii) N1 + N2 – 1
(iv) N1 � N2

(g) For a large programe which one of the following integration testing
strategy is rarely used:
(i) Big-bang
(ii) Top-down
(iii) Bottom-up
(iv) Mixed

(h) Which one of the followings is true of a pure top-down integration
testing process?
(i) Requires only stubs for testing
(ii) Requires only drivers for testing
(iii) Requires both stubs and drivers for testing
(iv) Requires neither stubs nor drivers for testing

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(i) Which of the following types of testing is not performed during
system testing?
(i) Stress testing
(ii) Functionality testing
(iii) Recovery testing
(iv) White-box testing

(j) The principal aim of code coverage analysis is to evaluate the quality
of:
(i) Product
(ii) Test cases
(iii) Coding
(iv) Design

(k) Which one of the following types of program models is normally used
to design integration test plan?
(i) CFG
(ii) DFD
(iii) Structure chart
(iv) State chart

(l) Which one of the following software tools will best help you
determine whether your test cases are fully exercising your code?
(i) Dynamic analyser
(ii) Static analyser
(iii) Parser
(iv) Profiler

(m) Which one of the following integration teting strategies requires
stubs to be designed?
(i) Big-bang
(ii) Top-down
(iii) Botoom-up
(iv) Phased bottom-up

(n) Which one of the following integration teting strategies requires
drivers to be designed?
(i) Big-bang
(ii) Top-down
(iii) Bottom-up
(iv) Phased top-down

(o) The purpose of error seeding is which one of the followings?
(i) Determine the root cause of the errors

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(ii) Appropriately incorporate Trojans
(iii) Appropriately incorporate Byzantine errors
(iv) Determine the number of latent errors

(p) Which one of the followings is usually the most important
consideration while codeing?
(i) Productivity
(ii) Readability
(iii) Brevity
(iv) Use of as less memory space as possible

3. Distinguish between an error and a failure in the context of program
testing. Testing detects which of these two? Justify your answer.

4. Would you consider an approach in which the tester tests a program
using a large number of random values satisfactory? Explain your
answer.

5. What are driver and stub modules in the context of integration and unit
testing of a software? Why are the stub and driver modules required?

6. State TRUE or FALSE of the following assertions. Support your answer
with proper reasoning:
(a) The effectiveness of a test suite in detecting errors in a system can

be determined by counting the number of test cases in the suite.
(b) Once the McCabe’s cyclomatic complexity of a program has been

determined, it is very easy to identify all the linearly independent
paths of the program.

(c) Use of static and dynamic program analysis tools is an effective
substitute for thorough testing.

(d) During code review you detect errors whereas during code testing
you detect failures.

(e) A pure top-down integration testing does not require the use of any
stub modules.

(f) Adherence to coding standards is checked during the system testing
stage.

(g) A program usually does not have one unique set of linearly
independent paths.

(h) The minimum number of test cases required for branch coverage-
based testing of a program can be greater than those required for path
coverage-based testing of the same program.

(i) Branch coverage-based testing is a stronger testing strategy
compared to path coverage-based testing.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(j) Out of all types of internal documentation (i.e., provided in the source
code), careful commenting is the most useful.

(k) Error and failure are synonymous in software testing terminology.
(l) Development of suitable driver and stub functions are essential for

carrying out effective system testing of a product.
(m) System testing can be considered to be a white-box testing of a

system.
(n) The main purpose of integration testing is to find errors in the body

of functions.
(o) Introduction of additional sequence type of statements in a program

cannot increase the cyclomatic complexity of the program.
(p) The terms software verification and software validation are

essentially synonyms.
(q) Code walkthrough for a module is normally carried out after unit test

is over.
(r) Code walkthrough for a module is normally carried out after the

module successfully compiles.
(s) During code walkthrough most of the syntax errors are identified.
(t) Code inspection targets to identify algorithmic errors.
(u) Cyclomatic complexity of a piece of code correlates well with the

difficulty of testing the code satisfactorily.
(v) Test coverage analysers are essentially static analysers.
(w) System testing of an object-oriented implementation of a system

would be considerably easier than that of a procedural implementation
of the same system.

(x) A satisfactory way to test object-oriented programs, is to test all the
methods supported by different classes individually and then by
performing adequate integration and system testing.

(y) A compiler can be considered as a static program analysis tool.
(z) While verification is concerned with phase containment of errors, the

aim of validation is that the final product be error free.
7. State TRUE or FALSE of the following assertions. Support your answer

with proper reasoning:
(a) Unit testing of different modules of a program are carried out during

the testing phase.
(b) If a stronger testing has been performed, then a weaker testing need

not be carried out.
(c) Static code analysers can easily detect all types of “array index out of

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

bound” type of errors.
(d) Performance testing is planned based on the functional requirements

of the product being tested.
(e) Cleanroom testing approach helps to substantially decrease the

overall testing effort.
(f) If a base class is thoroughly tested, then the inherited methods in the

derived class need not be tested.
(g) Equivalence class partitioning is a white-box testing strategy.
(h) The big-bang approach is preferred for integration testing of large

programs.
(i) Test stubs are simpler to write as compared to test drivers.
(j) Coding guidelines are specific suggestions to the programmers, which

they may or may not follow.
(k) Suppose the number of loop and conditional constructs used in a

program is n, then the cardinality of its basis path set would be 2*n −
1.

(l) If the black-box testing of a program has been successfully carried
out, then the white-box testing can be skipped and vice versa.

(m) Statement coverage is not considered to be a satisfactory testing of
a program unit.
Briefly explain the reason behind this. Give an example of a bug, that
would not be detected through statement coverage testing.

(n) The system testing procedure would be different depending on
whether object- oriented or procedural paradigm has been followed in
the program development.

(o) Testing detects failures whereas program inspection identifies errors.
8. What is the difference between black-box testing and white-box testing?

Give an example of a bug that is detected by the black-box test suite,
but is not detected by the white-box test suite, and vice versa.

9 . What is the difference between internal and external documentation?
What are the different ways of providing internal documentation? Out of
these, which is the most useful?

10. What is meant by structural complexity of a program? Define a metric
for measuring the structural complexity of a program. How is structural
complexity of a program different from its computational complexity?
How is structural complexity useful in program development?

11. Write a C function for searching an integer value from a large sorted
sequence of integer values stored in an array of size 100, using the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

binary search method.
(a) Build the control flow graph of your binary search function, and

hence determine its cyclomatic complexity.
(b) How is cyclomatic metric useful in designing test suite for path

coverage? (c) Design a test suite for testing your binary search
function.

12. What do you understand by positive and negative test cases? Give one
example of each.

13. Given a software and its requirements specification document, explain
how would you design the system test suite for the software.

14. What is a coding standard? Identify the problems that might occur if
the engineers of an organisation do not adhere to any coding standard?

15. What is the difference between a coding standard and a coding
guideline? Why are formulation and use of suitable coding standards and
guidelines considered important to a software development
organisation? Write down five important coding standards and coding
guidelines that you would recommend.

16. What do you understand by coding standard?
When during the development process is the compliance with coding
standards is checked?
List two coding standards each for
(i) enhancing readability of the code,
(ii) reuse of the code,
(iii) enhancing code maintainability.

17. What do you understand by testability of a program? Between the
programs written by two different programmers to essentially the same
programming problem, how can you determine which one is more
testable?

18. Discuss different types of code reviews. Explain when and how code
review meetings are conducted. Why is code review considered to be a
more efficient way to remove errors from code compared to testing?

19. Distinguish between software verification and software validation. Can
one be used in place of the other? Justify your answer. In which phase(s)
of the iterative waterfall SDLC are the verification and validation
activities performed?

20. What are the activities carried out during testing a software?
Schematically represent these activities. Which one of these activities

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

takes the maximum effort?
21. Which one of the following is the strongest structural testing technique

—statement coverage-based testing, branch coverage-based testing, or
multiple condition coverage-based testing? Justify your answer.

22. Prove that branch coverage-based testing technique is a stronger
testing technique compared to a statement coverage-based testing
technique.

23. Which is a stronger testing—data flow testing or path testing? Give the
reasonings behind your answer.

24. Briefly highlight the difference between code inspection and code
walkthrough. Compare the relative merits of code inspection and code
walkthrough.

25. What is meant by a code walkthrough? What are some of the
important types of errors checked during code walkthrough? Give one
example of each of these types of errors.

26. Answer the following. Show the steps of your computation, and justify
your answer in each case.
(a) Suppose a program contains N decision points, each of which has

two branches.
How many test cases are necessary for branch testing?

(b) If there are M choices at each decision point, how many test cases
are needed for branch testing? Is it possible to achieve branch
coverage using a smaller number of test cases than you have
answered depending on the branch conditions?

(c) A program consists of m sequence type of statements, n decision
statements, and p iterative statements. Determine the number of test
cases required to achieve decision coverage and path coverage
respectively.

(d) For a program containing N binary branches how many test cases are
necessary for path coverage?

(e) For a program containing N number of M-ary branches, how many
test cases are necessary for path coverage?

27. Suppose two programmers are assigned the same programming
problem and they develop this independently. Explain how can you
compare their programs with respect to:
(a) Path testing effort,
(b) Understanding difficulty

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(c) Number of latent bugs, and
(d) Reliability.

28. Usually large software products are tested at three different testing
levels, i.e.,, unit testing, integration testing, and system testing. What
would be the disadvantage of performing a thorough testing only after
the system has been completely developed, e.g., detect all the defects
of the product during system testing?

29. What do you understand by system testing? What are the different
kinds of system testing that are usually performed on large software
products?

30. Is system testing of object-oriented programs any different from that
for the procedural programs? Explain your answer.

31. Is integration testing of object-oriented programs any different from
that for the procedural programs? Explain your answer.

32. Using suitable examples, explain how test cases can be designed for
an object-oriented program from its class diagram.

33. Using suitable examples, explain how test cases can be designed for
an object-oriented program from its sequence diagrams.

34. Distinguish between alpha, beta, and acceptance testing. How are the
test cases designed for these tests? Are the test cases for the three
types of tests necessarily identical? Explain your answer.

35. Usability of a software product is tested during which type of testing:
unit, integration, or system testing? How is usability tested?

36. Suppose a developed software has successfully passed all the three
levels of testing, i.e., unit testing, integration testing, and system
testing. Can we claim that the software is defect free? Justify your
answer.

37. Distinguish among a test case, a test suite, a test scenario, and a test
script.

38. Distinguish between the static and dynamic analysis of a program.
Explain at least one metric that a static analysis tool reports and at least
one metric that a dynamic analysis tool reports. How are these metrics
useful?

39. What are the important results that are usually reported by a static
analysis tool and dynamic analysis tool when applied to a program under
development? How are these results useful?

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

40. What do you understand by automatic program analysis? Give a broad
classification of the different types of program analysis tools used during
program development. What are the different types of information
produced by each type of tool?

41. Design the black-box test suite for a function that checks whether a
character string (of up to twenty-five characters in length) is a
palindrome.

42. Design the black-box test suite for a function that takes the name of a
book as input and searches a file containing the names of the books
available in the Library and displays the details of the book if the book is
available in the library otherwise displays the message “book not
available”.

43. Why is it important to properly document a software? What are the
different ways of documenting a software product?

44. What do you understand by the clean room strategy? What are its
advantages?

45. How can you compute the cyclomatic complexity of a program? How is
cyclomatic complexity useful in program testing?

46. Suppose in order to estimate the number of latent errors in a program,
you seed it with hudred errors of different kinds. After testing the
software using its full test set, you discover only eighty of the introduced
errors. You discover fifteen other errors also. Estimate the number of
latent errors in the software. What are the limitations of the error
seeding method?

47. What is stress testing? Why is stress testing applicable to only certain
types of systems?

48. What do you understand by unit testing? Write the code for a module
that contains the functions to implement the functionality of a bounded
stack of hundred integers. The queue elements are loaded from and
stored into an Oracle database system—Assume that the stack support
the operations: push, pop, and is-empty. Design the unit test cases for
the module.

49. What do you understand by the term integration testing? Which types
of defects are uncovered during integration testing? What are the
different types of integration testing methods that can be used to carry
out integration testing of a large software product? Compare the merits
and demerits of these different integration testing strategies.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

50. Discuss how you would perform system testing of a software that
implements a bounded queue of positive integral elements. Assume that
the queue supports only the functions insert an element, delete an
element, and find an element.

51. What do you understand by side effects of a function call? Give one
example of a side effect. Why are obscure side effects undesirable?

52. What do you mean by regression testing? When is regression testing
carried out? Why is regression testing necessary? How are regression
test cases designed? How is regression testing performed?

53. Do you agree with the following statement—“System testing can be
considered a pure black-box test.” Justify your answer.

54. What do you understand by big-bang integration testing? How is big-
bang integration testing performed? What are the advantages and
disadvantages of the big-bang integration testing strategy? Describe at
least one situation where big-bang integration testing is desirable.

55. What is the relationship between cyclomatic complexity and program
comprehensibility?
Can you justify why such an apparent relationship exists?

56. Consider the following C function named bin-search:
/* num is the number the function searches in a presorted integer array
arr */

int bin_search(int num){
int min,max;

min =0;
max =100;
while(min!=max){
if(arr[(min+max)/2]>num)
max=(min+max)/2;
else if(arr[(min+max)/2]<num)
min=(min+max)/2;
else return((min+max)/2);

}
return(-1);

}

Design a test suite for the function bin-search that satisfies the following
white-box testing strategies (Show the intermediate steps in deriving the
test cases):
Statement coverage
Branch coverage
Condition coverage
Path coverage

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

57. Consider the following C function named sort.

/* sort takes an integer array and sorts it in ascending
order */

void sort(int a[], int n){
int i,j;

for(i=0;i<n-1;i++)
for(j=i+1;j<n;j++)
if(a[i]>a[j])
{
temp=a[i];
a[i]=a[j];
a[j]=temp;

}

}
(a) Determine the cyclomatic complexity of the sort function.
(b) Design a test suite for the function sort that satisfies the following

white-box testing strategies (Show the important steps in your test
suite design method).
i. Statement coverage
ii. Branch coverage
iii. Condition coverage
iv. Path coverage

58. Draw the control flow graph for the following function named find-
maximum. From the control flow graph, determine its cyclomatic
complexity.
int find-maximum(int i,int j, int k){
int max;

if(i>j) then
if(i>k) then max=i;

else max=k;
else if(j>k) max=j
else max=k;

return(max);
}

59. Suppose a C program has 240 sequence type of statements, 50

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

selection type of statements and 40 iteration type of statements,
determine the minimum number of test cases required for path testing.

60. Compute the Fog index of this question. What does the Fog index
signify? How is the Fog index useful in producing good software
documentation?

61. Identify the types of defects that you would be able to detect during
the following:
(a) Code inspection
(b) Code walkthrough

62. Design the black-box test suite for a function named quadratic-
solver. The quadratic-solver function accepts three floating point
numbers (a, b, c) representing a quadratic equation of the form ax2 + bx
+ c = 0. It computes and displays the solution.

63. Design the black-box test suite for a function that accepts four pairs of
floating point numbers representing four co-ordinate points. These four
co-ordinate points represent the centres of two circles and a point on the
circumference of each of the two circles. The function prints whether the
two circles are intersecting, one is contained within the other, or are
disjoint.

64. Design black-box test suites for a function called find-intersection.
The function find- intersection takes four real numbers m1, c1, m2, c2
as its arguments representing two straight lines y = m1x + c1 and y =
m2x + c2. It determines the points of intersection of the two lines.
Depending on the input values to the function, it displays any one of the
following messages:
• single point of intersection
• overlapping lines—infinite points of intersection
• parallel lines—no points of intersection
• invalid input values

65. Design black-box test suite for the following program. The program
accepts two pairs of co-ordinates (x1,y1),(x2,y2), (x3,y3), (x4,y4). The
first two points (x1,y1) and (x2,y2) represent the lower left and the
upper right points of the first rectangle. The second two points (x3,y3)
and (x4,y4) represent the lower left and the upper right points of the
second rectangle. It is assumed that the length and width of the
rectangle are parallel to either the x-axis or y-axis. The program
computes the points of intersection of the two rectangles and prints their

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

points of intersection.
66. Design black-box test suite for a program that accepts up to ten

simultaneous linear equations in up to ten independent variables and
displays the solution.

67. Design the black-box test suite for the following Library Automation
Software. The Library Automation Software accepts a string representing
the name of a book. It checks the library catalog, and displays whether
the book is listed in the catalog or not. If the book is listed in the
catalog, it displays the number of copies that are currently available in
the racks and the copies issued out.

68. Design the black-box test suite for a program that accepts two strings
and checks if the first string is a substring of the second string and
displays the number of times the first string occurs in the second string.
Assume that each of the two strings has size less than twenty
characters.

69. Design black-box test suite for a program that accepts a pair of points
defining a straight line and another point and a float number defining the
center of a circle and its radius. The program is intended to compute
their points of intersection and prints them.

70. What do you understand by an executable specification language? How
is it different from a traditional procedural programming language?
Name an executable specification language.

71. Among the different development phases of life cycle, testing typically
requires the largest manpower. Identify the main reasons behind the
large manpower requirement for the testing phase.

72. What do you understand by performance testing? What are the
different types of performance testing that should be performed for each
of the problems outlined in the questions ten–twenty of Chapter 6?

73. Identify the types of information that should be presented in the test
summary report.

74. What is the difference between top-down and bottom-up integration
testing approaches?
What are their advantages and disadvantages? Explain your answer
using an example.
Why is the mixed integration testing approach preferred by many
testers?

75. What do you understand by “code review effectiveness”? How can

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

review effectiveness for an organisation measured quantitatively?
76. What do you understand by cyclomatic complexity of a program? How

can it be measured? What are its applications in program development?
77. (a) What do you understand by static and dynamic analysis of

programs? How are static and dynamic program analysis results useful?
(b) What are the different program characteristics reported by a (i) static

analysis tool
(ii) dynamic analysis tool?

(c) Write an algorithm for a dynamic program analyser that would
compute and report the percentage of linearly independent paths
covered by the test suite. Explain your algorithm. What is the
computational complexity of your algorithm?

78. What are the different approaches to integration testing? Which
approach is the most preferred for large software systems? Why?

79. What are the different types of errors that integration testing target to
detect? Give two examples of such errors.

80. What is the difference between phased and incremental integration
testing? Compare the advantages and disadvantages of these two
approaches to integration testing.

81. Explain the difference between testing in the large and testing in the
small. What is the purpose of each?

82. Explain the key respects in which testing of procedural and object-
oriented programs differ. Do various object-oriented features make it
easier to test object-oriented programs? Substantiate your answer with
suitable examples.

83. Can an object-oriented program be tested by testing each of the
methods, then integrating the methods, and finally performing system
testing? If your answer is “yes”, explain how the individual methods can
be tested. If your answer is “no”, explain why not?

84. What are the implications of the inheritance, polymorphism, and
encapsulation features of an object-oriented program in satisfactory
testing of the program?

85. What do you understand by grey-box testing? Why is grey-box testing
considered important for testing object-oriented programs?

86. What are the different levels of testing object-oriented programs?
What is a suitable unit for testing object-oriented programs?

87. State the Weyukar’s anticomposition axiom. Give an intuitive

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

justification for the same.
88. How is integration testing of object-oriented programs carried out?

Explain the different integration testing strategies for object-oriented
programs.

89. What are alpha, beta, and acceptance testing? What are the
differences among these different types of testing a software product?
Explain your answer with respect to who carries out the test, when is the
test carried out, and the objective of the test.

Figure 10.8: Code segment C is obtained by juxtaposing the code segments A and B.

90. What do you understand by performance testing of a software product?
When is it performed? What is the objective of performance testing?
What are the different types of performance testing?

91. When is the non-functional requirements tested in the life-cycle of a
software product?
How are the different non-functional requirements tested? Explain your
answer with respect to various categories of non-functional
requirements.

92. What do you understand by test coverage analysis? What are the uses
of test coverage analysis? Define at least two test coverage metrics.

93. What do you understand by a symbolic debugger? How is debugging
performed by a symbolic debugger? What are the other popular
techniques for debugging?

94. What do you understand by data flow testing? How is data flow testing
performed? Is it possible to design data flow test cases manually?
Explain your answer.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

95. What is the difference between black-box and white-box testing?
During unit testing, can black-box testing be skipped, if one is planning
to perform a thorough white-box testing? Justify your answer.

96. Distinguish between the static and dynamic analysis of a program.
Explain at least one metric that a static analysis tool reports and at least
one metric that a dynamic analysis tool reports. How are these metrics
useful?

97. Suppose the cyclomatic complexities of code segments A and B (shown
in Figure 10.8) are m and n respectively. What would be the cyclomatic
complexity of the code segment C which has been obtained by
juxtaposing the code segments A and B?
1 Manpower turnover is the software industry jargon for denoting the unusually high rate at which
personnel attrition occurs (i.e., personnel leave an organisation).

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Chapter
11

SOFTWARE RELIABILITY AND
QUALITY MANAGEMENT

Reliability of a software product is an important concern for most users.
Users not only want the products they purchase to be highly reliable,
but for certain categories of products they may even require a
quantitative guarantee on the reliability of the product before making
their buying decision. This may especially be true for safety-critical and
embedded software products. However, as we discuss in this Chapter, it
is very difficult to accurately measure the reliability of any software
product. One of the main problems encountered while quantitatively
measuring the reliability of a software product is the fact that reliability
is observer-dependent. That is, different groups of users may arrive at
different reliability estimates for the same product. Besides this, several
other problems (such as frequently changing reliability values due to
bug corrections) make accurate measurement of the reliability of a
software product difficult. We investigate these issues in this chapter.
Even though no entirely satisfactory metric to measure the reliability of
a software product exists, we shall discuss some metrics that are being
used at present to quantify the reliability of a software product. We
shall also address the problem of reliability growth modelling and
examine how to predict when (and if at all) a given level of reliability
will be achieved. We shall also examine the statistical testing approach
to reliability estimation.

In this chapter, in addition to software reliability issues, we shall also
discuss various issues associated with software quality assurance (SQA).
Software quality assurance (SQA) has emerged as one of the most talked
about topics in recent years in software industry circle. The major aim of SQA
is to help an organisation develop high quality software products in a

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

repeatable manner. A software development organisation can be called
repeatable when its software development process is person-independent.
That is, the success of a project does not depend on who exactly are the
team members of the project. Besides, the quality of the developed software
and the cost of development are important issues addressed by SQA. In this
chapter, we first discuss a few important issues concerning software reliability
measurement and prediction before starting our discussion on software
quality assurance.

11.1 SOFTWARE RELIABILITY
The reliability of a software product essentially denotes its trustworthiness
or dependability. Alternatively, the reliability of a software product can
also be defined as the probability of the product working “correctly”
over a given period of time.

Intuitively, it is obvious that a software product having a large number of
defects is unreliable. It is also very reasonable to assume that the reliability
of a system improves, as the number of defects in it is reduced. It would have
been very nice if we could mathematically characterise this relationship
between reliability and the number of bugs present in the system using a
simple closed form expression. Unfortunately, it is very difficult to
characterise the observed reliability of a system in terms of the number of
latent defects in the system using a simple mathematical expression. To get
an insight into this issue, consider the following. Removing errors from those
parts of a software product that are very infrequently executed, makes little
difference to the perceived reliability of the product. It has been
experimentally observed by analysing the behaviour of a large number of
programs that 90 per cent of the execution time of a typical program is spent
in executing only 10 per cent of the instructions in the program. The most used
10 per cent instructions are often called the core1 of a program. The rest 90
per cent of the program statements are called non-core and are on the
average executed only for 10 per cent of the total execution time. It therefore
may not be very surprising to note that removing 60 per cent product defects
from the least used parts of a system would typically result in only 3 per cent
improvement to the product reliability. It is clear that the quantity by which
the overall reliability of a program improves due to the correction of a single
error depends on how frequently the instruction having the error is executed.
If an error is removed from an instruction that is frequently executed (i.e.,

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

belonging to the core of the program), then this would show up as a large
improvement to the reliability figure. On the other hand, removing errors
from parts of the program that are rarely used, may not cause any
appreciable change to the reliability of the product.

Based on the above discussion we can say that reliability of a product
depends not only on the number of latent errors but also on the the exact
location of the errors. Apart from this, reliability also depends upon how the
product is used, or on its execution profile. If the users execute only those
features of a program that are “correctly” implemented, none of the errors
will be exposed and the perceived reliability of the product will be high. On
the other hand, if only those functions of the software which contain errors
are invoked, then a large number of failures will be observed and the
perceived reliability of the system will be very low. Different categories of
users of a software product typically execute different functions of a software
product. For example, for a Library Automation Software the library members
would use functionalities such as issue book, search book, etc., on the other
hand the librarian would normally execute features such as create member,
create book record, delete member record, etc. So defects which show up for
the librarian, may not show up for the members. Suppose the functions of a
Library Automation Software which the library members use are error-free;
a nd functions used by the Librarian have many bugs. Then, these two
categories of users would have very different opinions about the reliability of
the software. Therefore,

Based on the above discussions, we can summarise the main reasons that
make software reliability more difficult to measure than hardware reliability:

The reliability improvement due to fixing a single bug depends on
where the bug is located in the code.
The perceived reliability of a software product is observer-dependent.
The reliability of a product keeps changing as errors are detected and
fixed.

In the following subsection, we shall discuss why software reliability
measurement is a harder problem than hardware reliability measurement.

11.1.1 Hardware versus Software Reliability
An important characteristic feature that sets hardware and software reliability
issues apart is the difference between their failure patterns.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Hardware components fail due to very different reasons as compared to software
components. Hardware components fail mostly due to wear and tear, whereas
software components fail due to bugs.

A logic gate may be stuck at 1 or 0, or a resistor might short circuit. To fix a
hardware fault, one has to either replace or repair the failed part. In contrast,
a software product would continue to fail until the error is tracked down and
either the design or the code is changed to fix the bug. For this reason, when
a hardware part is repaired its reliability would be maintained at the level
that existed before the failure occurred; whereas when a software failure is
repaired, the reliability may either increase or decrease (reliability may
decrease if a bug fix introduces new errors). To put this fact in a different
perspective, hardware reliability study is concerned with stability (for
example, the inter-failure times remain constant). On the other hand, the aim
of software reliability study would be reliability growth (that is, increase in
inter-failure times).

A comparison of the changes in failure rate over the product life time for a
typical hardware product as well as a software product are sketched in Figure
11.1. Observe that the plot of change of reliability with time for a hardware
component (Figure 11.1(a)) appears like a “bath tub”. For a software
component the failure rate is initially high, but decreases as the faulty
components identified are either repaired or replaced. The system then
enters its useful life, where the rate of failure is almost constant. After some
time (called product life time) the major components wear out, and the
failure rate increases. The initial failures are usually covered through
manufacturer’s warranty. A corollary of this observation (though a digression
from our topic of discussion) is that it may be unwise to buy a product (even
at a good discount to its face value) towards the end of its life time, That is,
one need not feel happy to buy a ten year old car at one tenth of the price of
a new car, since it would be near the rising edge of the bath tub curve, and
one would have to spend unduly large time, effort, and money on repairing
and end up as the loser. In contrast to the hardware products, the software
product show the highest failure rate just after purchase and installation (see
the initial portion of the plot in Figure 11.1 (b)). As the system is used, more
and more errors are identified and removed resulting in reduced failure rate.
This error removal continues at a slower pace during the useful life of the
product. As the software becomes obsolete no more error correction occurs
and the failure rate remains unchanged.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 11.1: Change in failure rate of a product.

11.1.2 Reliability Metrics of Software Products
The reliability requirements for different categories of software products
may be different. For this reason, it is necessary that the level of
reliability required for a software product should be specified in the
software requirements specification (SRS) document. In order to be
able to do this, we need some metrics to quantitatively express the
reliability of a software product. A good reliability measure should be
observer-independent, so that different people can agree on the degree
of reliability a system has. However, in practice, it is very difficult to
formulate a metric using which precise reliability measurement would
be possible. In the absence of such measures, we discuss six metrics
that correlate with reliability as follows:

Rate of occurrence of failure (ROCOF): ROCOF measures the frequency
of occurrence of failures. ROCOF measure of a software product can be
obtained by observing the behaviour of a software product in operation over
a specified time interval and then calculating the ROCOF value as the ratio of
the total number of failures observed and the duration of observation.
However, many software products do not run continuously (unlike a car or a
mixer), but deliver certain service when a demand is placed on them. For
example, a library software is idle until a book issue request is made.
Therefore, for a typical software product such as a pay-roll software,
applicability of ROCOF is very limited.
Mean time to failure (MTTF): MTTF is the time between two successive
failures, averaged over a large number of failures. To measure MTTF, we can
record the failure data for n failures. Let the failures occur at the time

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

instants t1, t2, ..., tn. Then, MTTF can be calculated as

.

It is important to note that only run time is considered in the time
measurements. That is, the time for which the system is down to fix the
error, the boot time, etc. are not taken into account in the time
measurements and the clock is stopped at these times.
Mean time to repair (MTTR): Once failure occurs, some time is required to
fix the error. MTTR measures the average time it takes to track the errors
causing the failure and to fix them.
Mean time between failure (MTBF): The MTTF and MTTR metrics can be
combined to get the MTBF metric: MTBF=MTTF+MTTR. Thus, MTBF of 300
hours indicates that once a failure occurs, the next failure is expected after
300 hours. In this case, the time measurements are real time and not the
execution time as in MTTF
Probability of failure on demand (POFOD): Unlike the other metrics
discussed, this metric does not explicitly involve time measurements. POFOD
measures the likelihood of the system failing when a service request is made.
For example, a POFOD of 0.001 would mean that 1 out of every 1000 service
requests would result in a failure. We have already mentioned that the
reliability of a software product should be determined through specific service
invocations, rather than making the software run continuously. Thus, POFOD
metric is very appropriate for software products that are not required to run
continuously.
Availability: Availability of a system is a measure of how likely would the
system be available for use over a given period of time. This metric not only
considers the number of failures occurring during a time interval, but also
takes into account the repair time (down time) of a system when a failure
occurs. This metric is important for systems such as telecommunication
systems, and operating systems, and embedded controllers, etc. which are
supposed to be never down and where repair and restart time are significant
and loss of service during that time cannot be overlooked.

Shortcomings of reliability metrics of software products
All the above reliability metrics suffer from several shortcomings as far
as their use in software reliability measurement is concerned. One of
the reasons is that these metrics are centered around the probability of

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

occurrence of system failures but take no account of the consequences
of failures. That is, these reliability models do not distinguish the
relative severity of different failures. Failures which are transient and
whose consequences are not serious are in practice of little concern in
the operational use of a software product. These types of failures can at
best be minor irritants. On the other hand, more severe types of failures
may render the system totally unusable. In order to estimate the
reliability of a software product more accurately, it is necessary to
classify various types of failures. Please note that the different classes
of failures may not be mutually exclusive. The classification is based on
widely different set of criteria. As a result, a failure type can at the
same time belong to more than one class. A scheme of classification of
failures is as follows:

Transient: Transient failures occur only for certain input values while
invoking a function of the system.
Permanent: Permanent failures occur for all input values while invoking a
function of the system.
Recoverable: When a recoverable failure occurs, the system can recover
without having to shutdown and restart the system (with or without operator
intervention).
Unrecoverable: In unrecoverable failures, the system may need to be
restarted.
Cosmetic: These classes of failures cause only minor irritations, and do not
lead to incorrect results. An example of a cosmetic failure is the situation
where the mouse button has to be clicked twice instead of once to invoke a
given function through the graphical user interface.

11.1.3 Reliability Growth Modelling
A reliability growth model is a mathematical model of how software reliability
improves as errors are detected and repaired.

A reliability growth model can be used to predict when (or if at all) a particular level
of reliability is likely to be attained. Thus, reliability growth modelling can be used to
determine when to stop testing to attain a given reliability level.

Although several different reliability growth models have been proposed, in
this text we will discuss only two very simple reliability growth models.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Jelinski and Moranda model
The simplest reliability growth model is a step function model where it is
assumed that the reliability increases by a constant increment each
time an error is detected and repaired. Such a model is shown in Figure
11.2. However, this simple model of reliability which implicitly assumes
that all errors contribute equally to reliability growth, is highly
unrealistic since we already know that correction of different errors
contribute differently to reliability growth.

Figure 11.2: Step function model of reliability growth.

Littlewood and Verall’s model
This model allows for negative reliability growth to reflect the fact that
when a repair is carried out, it may introduce additional errors. It also
models the fact that as errors are repaired, the average improvement
to the product reliability per repair decreases. It treats an error’s
contribution to reliability improvement to be an independent random
variable having Gamma distribution. This distribution models the fact
that error corrections with large contributions to reliability growth are
removed first. This represents diminishing return as test continues.

There are more complex reliability growth models, which give more
accurate approximations to the reliability growth. However, these models are
out of scope of this text.

11.2 STATISTICAL TESTING
Statistical testing is a testing process whose objective is to determine
the reliability of the product rather than discovering errors. The test
cases designed for statistical testing with an entirely different objective

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

from those of conventional testing. To carry out statistical testing, we
need to first define the operation profile of the product.

Operation profile: Different categories of users may use a software
product for very different purposes. For example, a librarian might use the
Library Automation Software to create member records, delete member
records, add books to the library, etc., whereas a library member might use
software to query about the availability of a book, and to issue and return
books. Formally, we can define the operation profile of a software as the
probability of a user selecting the different functionalities of the software. If
we denote the set of various functionalities offered by the software by {fi},
the operational profile would associate with each function {fi} with the
probability with which an average user would select {fi} as his next function
to use. Thus, we can think of the operation profile as assigning a probability
value pi to each functionality fi of the software.

How to define the operation profile for a product?
We need to divide the input data into a number of input classes. For
example, for a graphical editor software, we might divide the input into
data associated with the edit, print, and file operations. We then need
to assign a probability value to each input class; to signify the
probability for an input value from that class to be selected. The
operation profile of a software product can be determined by observing
and analysing the usage pattern of the software by a number of users.

11.2.1 Steps in Statistical Testing
The first step is to determine the operation profile of the software. The
next step is to generate a set of test data corresponding to the
determined operation profile. The third step is to apply the test cases to
the software and record the time between each failure. After a
statistically significant number of failures have been observed, the
reliability can be computed.

For accurate results, statistical testing requires some fundamental
assumptions to be satisfied. It requires a statistically significant number of
test cases to be used. It further requires that a small percentage of test
inputs that are likely to cause system failure to be included. Now let us
discuss the implications of these assumptions.

It is straight forward to generate test cases for the common types of inputs,
since one can easily write a test case generator program which can

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

automatically generate these test cases. However, it is also required that a
statistically significant percentage of the unlikely inputs should also be
included in the test suite. Creating these unlikely inputs using a test case
generator is very difficult.

Pros and cons of statistical testing
Statistical testing allows one to concentrate on testing parts of the
system that are most likely to be used. Therefore, it results in a system
that the users can find to be more reliable (than actually it is!). Also,
the reliability estimation arrived by using statistical testing is more
accurate compared to those of other methods discussed. However, it is
not easy to perform the statistical testing satisfactorily due to the
following two reasons. There is no simple and repeatable way of
defining operation profiles. Also, the the number of test cases with
which the system is to be tested should be statistically significant.

11.3 SOFTWARE QUALITY
Traditionally, the quality of a product is defined in terms of its fitness of
purpose. That is, a good quality product does exactly what the users
want it to do, since for almost every product, fitness of purpose is
interpreted in terms of satisfaction of the requirements laid down in the
SRS document. Although “fitness of purpose” is a satisfactory definition
of quality for many products such as a car, a table fan, a grinding
machine, etc.—“fitness of purpose” is not a wholly satisfactory definition
of quality for software products. To give an example of why this is so,
consider a software product that is functionally correct. That is, it
correctly performs all the functions that have been specified in its SRS
document. Even though it may be functionally correct, we cannot
consider it to be a quality product, if it has an almost unusable user
interface. Another example is that of a product which does everything
that the users wanted but has an almost incomprehensible and
unmaintainable code. Therefore, the traditional concept of quality as
“fitness of purpose” for software products is not wholly satisfactory.

Unlike hardware products, software lasts a long time, in the sense that it
keeps evolving to accommodate changed circumstances. The modern view of
a quality associates with a software product several quality factors (or
attributes) such as the following:
Portability: A software product is said to be portable, if it can be easily

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

made to work in different hardware and operating system environments, and
easily interface with external hardware devices and software products.
Usability: A software product has good usability, if different categories of
users (i.e., both expert and novice users) can easily invoke the functions of
the product.
Reusability: A software product has good reusability, if different modules of
the product can easily be reused to develop new products.
Correctness: A software product is correct, if different requirements as
specified in the SRS document have been correctly implemented.
Maintainability: A software product is maintainable, if errors can be easily
corrected as and when they show up, new functions can be easily added to
the product, and the functionalities of the product can be easily modified, etc.

McCall’s quality factors
McCall distinguishes two levels of quality attributes [McCall]. The higher-
level attributes, known as quality factor s or external attributes can only
be measured indirectly. The second-level quality attributes are called
quality criteria. Quality criteria can be measured directly, either
objectively or subjectively. By combining the ratings of several criteria,
we can either obtain a rating for the quality factors, or the extent to
which they are satisfied. For example, the reliability cannot be
measured directly, but by measuring the number of defects encountered
over a period of time. Thus, reliability is a higher-level quality factor
and number of defects is a low-level quality factor.

ISO 9126
ISO 9126 defines a set of hierarchical quality characteristics. Each
subcharacteristic in this is related to exactly one quality characteristic.
This is in contrast to the McCall’s quality attributes that are heavily
interrelated. Another difference is that the ISO characteristic strictly
refers to a software product, whereas McCall’s attributes capture
process quality issues as well.

The users as well as the managers tend to be interested in the higher-level
quality attributes (quality factors).

11.4 SOFTWARE QUALITY MANAGEMENT SYSTEM
A quality management system (often referred to as quality system) is

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

the principal methodology used by organisations to ensure that the
products they develop have the desired quality. In the following
subsections, we briefly discuss some of the important issues associated
with a quality system:

Managerial structure and individual responsibilities
A quality system is the responsibility of the organisation as a whole.
However, every organisation has a separate quality department to
perform several quality system activities. The quality system of an
organisation should have the full support of the top management.
Without support for the quality system at a high level in a company, few
members of staff will take the quality system seriously.

Quality system activities
The quality system activities encompass the following:

Auditing of projects to check if the processes are being followed.
Collect process and product metrics and analyse them to check if
quality goals are being met.
Review of the quality system to make it more effective.
Development of standards, procedures, and guidelines.
Produce reports for the top management summarising the
effectiveness of the quality system in the organisation.

A good quality system must be well documented. Without a properly
documented quality system, the application of quality controls and
procedures become ad hoc, resulting in large variations in the quality of the
products delivered. Also, an undocumented quality system sends clear
messages to the staff about the attitude of the organisation towards quality
assurance. International standards such as ISO 9000 provide guidance on
how to organise a quality system.

11.4.1 Evolution of Quality Systems
Quality systems have rapidly evolved over the last six decades. Prior to World
War II, the usual method to produce quality products was to inspect the
finished products to eliminate defective products. For example, a company
manufacturing nuts and bolts would inspect its finished goods and would
reject those nuts and bolts that are outside certain specified tolerance range.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Since that time, quality systems of organisations have undergone four stages
of evolution as shown in Figure 11.3. The initial product inspection method
gave way to quality control (QC) principles.

Quality control (QC) focuses not only on detecting the defective products and
eliminating them, but also on determining the causes behind the defects, so that the
product rejection rate can be reduced.

Figure 11.3: Evolution of quality system and corresponding shift in the quality paradigm.

Thus, quality control aims at correcting the causes of errors and not just
rejecting the defective products. The next breakthrough in quality systems,
was the development of the quality assurance (QA) principles.

The basic premise of modern quality assurance is that if an organisation’s processes
are good and are followed rigorously, then the products are bound to be of good
quality.

The modern quality assurance paradigm includes guidance for recognising,
defining, analysing, and improving the production process. Total quality
management (TQM) advocates that the process followed by an organisation
must continuously be improved through process measurements. TQM goes a
step further than quality assurance and aims at continuous process
improvement. TQM goes beyond documenting processes to optimising them
through redesign. A term related to TQM is business process re-engineering
(BPR), which is aims at re-engineering the way business is carried out in an
organisation, whereas our focus in this text is re-engineering of the software
development process. From the above discussion, we can say that over the
l a s t six decades or so, the quality paradigm has shifted from product
assurance to process assurance (see Figure 11.3).

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

11.4.2 Product Metrics versus Process Metrics
All modern quality systems lay emphasis on collection of certain product and
process metrics during product development. Let us first understand the basic
differences between product and process metrics.

Product metrics help measure the characteristics of a product being developed,
whereas process metrics help measure how a process is performing.

Examples of product metrics are LOC and function point to measure size,
PM (person- month) to measure the effort required to develop it, months to
measure the time required to develop the product, time complexity of the
algorithms, etc. Examples of process metrics are review effectiveness,
average number of defects found per hour of inspection, average defect
correction time, productivity, average number of failures detected during
testing per LOC, number of latent defects per line of code in the developed
product.

11.5 ISO 9000
International standards organisation (ISO) is a consortium of 63
countries established to formulate and foster standardisation. ISO
published its 9000 series of standards in 1987.

11.5.1 What is ISO 9000 Certification?
ISO 9000 certification serves as a reference for contract between
independent parties. In particular, a company awarding a development
contract can form his opinion about the possible vendor performance
based on whether the vendor has obtained ISO 9000 certification or
not. In this context, the ISO 9000 standard specifies the guidelines for
maintaining a quality system. We have already seen that the quality
system of an organisation applies to all its activities related to its
products or services. The ISO standard addresses both operational
aspects (that is, the process) and organisational aspects such as
responsibilities, reporting, etc. In a nutshell, ISO 9000 specifies a set of
recommendations for repeatable and high quality product development.
It is important to realise that ISO 9000 standard is a set of guidelines
for the production process and is not directly concerned about the
product it self.

ISO 9000 is a series of three standards—ISO 9001, ISO 9002, and ISO

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

9003.

The ISO 9000 series of standards are based on the premise that if a proper process is
followed for production, then good quality products are bound to follow
automatically.

The types of software companies to which the different ISO standards apply
are as follows:
ISO 9001: This standard applies to the organisations engaged in design,
development, production, and servicing of goods. This is the standard that is
applicable to most software development organisations.
ISO 9002: This standard applies to those organisations which do not design
products but are only involved in production. Examples of this category of
industries include steel and car manufacturing industries who buy the product
and plant designs from external sources and are involved in only
manufacturing those products. Therefore, ISO 9002 is not applicable to
software development organisations.
ISO 9003: This standard applies to organisations involved only in
installation and testing of products.

11.5.2 ISO 9000 for Software Industry
ISO 9000 is a generic standard that is applicable to a large gamut of
industries, starting from a steel manufacturing industry to a service
rendering company. Therefore, many of the clauses of the ISO 9000
documents are written using generic terminologies and it is very difficult
to interpret them in the context of software development organisations.
An important reason behind such a situation is the fact that software
development is in many respects radically different from the
development of other types of products. Two major differences between
software development and development of other kinds of products are
as follows:

Software is intangible and therefore difficult to control. It means that
software would not be visible to the user until the development is
complete and the software is up and running. It is difficult to control
and manage anything that you cannot see and feel. In contrast, in any
other type of product manufacturing such as car manufacturing, you
can see a product being developed through various stages such as
fitting engine, fitting doors, etc. Therefore, it becomes easy to

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

accurately determine how much work has been completed and to
estimate how much more time will it take.
During software development, the only raw material consumed is data.
In contrast, large quantities of raw materials are consumed during the
development of any other product. As an example, consider a steel
making company. The company would consume large amounts of raw
material such as iron-ore, coal, lime, manganese, etc. Not surprisingly
then, many clauses of ISO 9000 standards are concerned with raw
material control. These clauses are obviously not relevant for software
development organisations.

Due to such radical differences between software and other types of
product development, it was difficult to interpret various clauses of the
original ISO standard in the context of software industry. Therefore, ISO
released a separate document called ISO 9000 part-3 in 1991 to help
interpret the ISO standard for software industry. At present, official guidance
is inadequate regarding the interpretation of various clauses of ISO 9000
standard in the context of software industry and one has to keep on cross
referencing the ISO 9000-3 document.

11.5.3 Why Get ISO 9000 Certification?
There is a mad scramble among software development organisations for
obtaining ISO certification due to the benefits it offers. Let us examine
some of the benefits that accrue to organisations obtaining ISO
certification:

Confidence of customers in an organisation increases when the
organisation qualifies for ISO 9001 certification. This is especially true
in the international market. In fact, many organisations awarding
international software development contracts insist that the
development organisation have ISO 9000 certification. For this reason,
it is vital for software organisations involved in software export to
obtain ISO 9000 certification.
ISO 9000 requires a well-documented software production process to
be in place. A well- documented software production process
contributes to repeatable and higher quality of the developed software.
ISO 9000 makes the development process focused, efficient, and cost-
effective.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

ISO 9000 certification points out the weak points of an organisations
and recommends remedial action.
ISO 9000 sets the basic framework for the development of an optimal
process and TQM.

11.5.4 How to Get ISO 9000 Certification?
An organisation intending to obtain ISO 9000 certification applies to a
ISO 9000 registrar for registration. The ISO 9000 registration process
consists of the following stages:

Application stage: Once an organisation decides to go for ISO 9000
certification, it applies to a registrar for registration.
Pre-assessment: During this stage the registrar makes a rough assessment
of the organisation.
Document review and adequacy audit: During this stage, the registrar
reviews the documents submitted by the organisation and makes suggestions
for possible improvements.
Compliance audit: During this stage, the registrar checks whether the
suggestions made by it during review have been complied to by the
organisation or not.
Registration: The registrar awards the ISO 9000 certificate after successful
completion of all previous phases.
Continued surveillance: The registrar continues monitoring the
organisation periodically.

ISO mandates that a certified organisation can use the certificate for corporate
advertisements but cannot use the certificate for advertising any of its products.

This is probably due to the fact that the ISO 9000 certificate is issued for an
organisation’s process and not to any specific product of the organisation. An
organisation using ISO certificate for product advertisements faces the risk of
withdrawal of the certificate. In India, ISO 9000 certification is offered by BIS
(Bureau of Indian Standards), STQC (Standardisation, testing, and quality
control), and IRQS (Indian Register Quality System). IRQS has been
accredited by the Dutch council of certifying bodies (RVC).

11.5.5 Summary of ISO 9001 Requirements
A summary of the main requirements of ISO 9001 as they relate of

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

software development are as follows:
Section numbers in brackets correspond to those in the standard itself:

Management responsibility (4.1)

The management must have an effective quality policy.
The responsibility and authority of all those whose work affects quality
must be defined and documented.
A management representative, independent of the development
process, must be responsible for the quality system. This requirement
probably has been put down so that the person responsible for the
quality system can work in an unbiased manner.
The effectiveness of the quality system must be periodically reviewed
by audits.

Quality system (4.2)
A quality system must be maintained and documented.

Contract reviews (4.3)
Before entering into a contract, an organisation must review the contract
to ensure that it is understood, and that the organisation has the
necessary capability for carrying out its obligations.

Design control (4.4)

The design process must be properly controlled, this includes
controlling coding also. This requirement means that a good
configuration control system must be in place.
Design inputs must be verified as adequate.
Design must be verified.
Design output must be of required quality.
Design changes must be controlled.

Document control (4.5)

There must be proper procedures for document approval, issue and
removal.
Document changes must be controlled. Thus, use of some
configuration management tools is necessary.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Purchasing (4.6)
Purchased material, including bought-in software must be checked for
conforming to requirements.

Purchaser supplied product (4.7)
Material supplied by a purchaser, for example, client-provided software
must be properly managed and checked.

Product identification (4.8)
The product must be identifiable at all stages of the process. In software
terms this means configuration management.

Process control (4.9)

The development must be properly managed.
Quality requirement must be identified in a quality plan.

Inspection and testing (4.10)
In software terms this requires effective testing i.e., unit testing,
integration testing and system testing. Test records must be
maintained.

Inspection, measuring and test equipment (4.11)
If integration, measuring, and test equipments are used, they must be
properly maintained and calibrated.

Inspection and test status (4.12)
The status of an item must be identified. In software terms this implies
configuration management and release control.

Control of non-conforming product (4.13)
In software terms, this means keeping untested or faulty software out of
the released product, or other places whether it might cause damage.

Corrective action (4.14)
This requirement is both about correcting errors when found, and also
investigating why the errors occurred and improving the process to
prevent occurrences. If an error occurs despite the quality system, the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

system needs improvement.

Handling (4.15)
This clause deals with the storage, packing, and delivery of the software
product.

Quality records (4.16)
Recording the steps taken to control the quality of the process is
essential in order to be able to confirm that they have actually taken
place.

Quality audits (4.17)
Audits of the quality system must be carried out to ensure that it is
effective.

Training (4.18)
Training needs must be identified and met.

Various ISO 9001 requirements are largely common sense. Official guidance
on the

interpretation of ISO 9001 is inadequate at the present time, and taking
expert advice is usually worthwhile.

11.5.6 Salient Features of ISO 9001 Requirements
In subsection 11.5.5 we pointed out the various requirements for the ISO
9001 certification. We can summarise the salient features all the the
requirements as follows:

Document control: All documents concerned with the development of a
software product should be properly managed, authorised, and controlled.
This requires a configuration management system to be in place.
Planning: Proper plans should be prepared and then progress against these
plans should be monitored.
Review: Important documents across all phases should be independently
checked and reviewed for effectiveness and correctness.
Testing: The product should be tested against specification.
Organisational aspects: Several organisational aspects should be
addressed e.g., management reporting of the quality team.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

11.5.7 ISO 9000-2000
ISO revised the quality standards in the year 2000 to fine tune the
standards. The major changes include a mechanism for continuous
process improvement. There is also an increased emphasis on the role
of the top management, including establishing a measurable objectives
for various roles and levels of the organisation. The new standard
recognises that there can be many processes in an organisation.

11.5.8 Shortcomings of ISO 9000 Certification
Even though ISO 9000 is widely being used for setting up an effective
quality system in an organisation, it suffers from several shortcomings.
Some of these shortcoming of the ISO 9000 certification process are the
following:

ISO 9000 requires a software production process to be adhered to, but
does not guarantee the process to be of high quality. It also does not
give any guideline for defining an appropriate process.
ISO 9000 certification process is not fool-proof and no international
accredition agency exists. Therefore it is likely that variations in the
norms of awarding certificates can exist among the different
accredition agencies and also among the registrars.
Organisations getting ISO 9000 certification often tend to downplay
domain expertise and the ingenuity of the developers. These
organisations start to believe that since a good process is in place, the
development results are truly person-independent. That is, any
developer is as effective as any other developer in performing any
particular software development activity. In manufacturing industry
there is a clear link between process quality and product quality. Once
a process is calibrated, it can be run again and again producing quality
goods. Many areas of software development are so specialised that
special expertise and experience in these areas (domain expertise) is
required. Also, unlike in case of general product manufacturing,
ingenuity and effectiveness of personal practices play an important
part in determining the results produced by a developer. In other
words, software development is a creative process and individual skills
and experience are important.
ISO 9000 does not automatically lead to continuous process
improvement. In other words, it does not automatically lead to TQM.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

11.6 SEI CAPABILITY MATURITY MODEL
SEI capability maturity model (SEI CMM) was proposed by Software
Engineering Institute of the Carnegie Mellon University, USA. CMM is
patterned after the pioneering work of Philip Crosby who published his
maturity grid of five evolutionary stages in adopting quality practices in
his book “Quality is Free” [Crosby79].

The Unites States Department of Defence (US DoD) is the largest buyer of
software product. It often faced difficulties in vendor performances, and had
to many times live with low quality products, late delivery, and cost
escalations. In this context, SEI CMM was originally developed to assist the
U.S. Department of Defense (DoD) in software acquisition. The rationale was
to include the likely contractor performance as a factor in contract awards.
Most of the major DoD contractors began CMM-based process improvement
initiatives as they vied for DoD contracts. It was observed that the SEI CMM
model helped organisations to improve the quality of the software they
developed and therefore adoption of SEI CMM model had significant business
benefits. Gradually many commercial organisations began to adopt CMM as a
framework for their own internal improvement initiatives.

In simple words, CMM is a reference model for apprising the software
process maturity into different levels. This can be used to predict the most
likely outcome to be expected from the next project that the organisation
undertakes. It must be remembered that SEI CMM can be used in two ways—
capability evaluation and software process assessment. Capability evaluation
and software process assessment differ in motivation, objective, and the final
use of the result. Capability evaluation provides a way to assess the software
process capability of an organisation. Capability evaluation is administered by
the contract awarding authority, and therefore the results would indicate the
likely contractor performance if the contractor is awarded a work. On the
other hand, software process assessment is used by an organisation with the
objective to improve its own process capability. Thus, the latter type of
assessment is for purely internal use by a company.

The different levels of SEI CMM have been designed so that it is easy for an
organisation to slowly build its quality system starting from scratch. SEI CMM
classifies software development industries into the following five maturity
levels:

Level 1: Initial
A software development organisation at this level is characterised by ad

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

hoc activities. Very few or no processes are defined and followed. Since
software production processes are not defined, different engineers
follow their own process and as a result development efforts become
chaotic. Therefore, it is also called chaotic level. The success of projects
depend on individual efforts and heroics. When a developer leaves the
organisation, the successor would have great difficulty in understanding
the process that was followed and the work completed. Also, no formal
project management practices are followed. As a result, time pressure
builds up towards the end of the delivery time, as a result short-cuts are
tried out leading to low quality products.

Level 2: Repeatable
At this level, the basic project management practices such as tracking
cost and schedule are established. Configuration management tools are
used on items identified for configuration control. Size and cost
estimation techniques such as function point analysis, COCOMO, etc.,
are used. The necessary process discipline is in place to repeat earlier
success on projects with similar applications. Though there is a rough
understanding among the developers about the process being followed,
the process is not documented. Configuration management practices
are used for all project deliverables. Please remember that opportunity
to repeat a process exists only when a company produces a family of
products. Since the products are very similar, the success story on
development of one product can repeated for another. In a non-
repeatable software development organisation, a software product
development project becomes successful primarily due to the initiative,
effort, brilliance, or enthusiasm displayed by certain individuals. On the
other hand, in a non-repeatable software development organisation,
the chances of successful completion of a software project is to a great
extent depends on who the team members are. For this reason, the
successful development of one product by such an organisation does
not automatically imply that the next product development will be
successful.

Level 3: Defined
At this level, the processes for both management and development
activities are defined and documented. There is a common
organisation-wide understanding of activities, roles, and responsibilities.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The processes though defined, the process and product qualities are not
measured. At this level, the organisation builds up the capabilities of its
employees through periodic training programs. Also, review techniques
are emphasized and documented to achieve phase containment of
errors. ISO 9000 aims at achieving this level.

Level 4: Managed
At this level, the focus is on software metrics. Both process and product
metrics are collected. Quantitative quality goals are set for the products
and at the time of completion of development it was checked whether
the quantitative quality goals for the product are met. Various tools like
Pareto charts, fishbone diagrams, etc. are used to measure the product
and process quality. The process metrics are used to check if a project
performed satisfactorily. Thus, the results of process measurements are
used to evaluate project performance rather than improve the process.

Level 5: Optimising
At this stage, process and product metrics are collected. Process and
product measurement data are analysed for continuous process
improvement. For example, if from an analysis of the process
measurement results, it is found that the code reviews are not very
effective and a large number of errors are detected only during the unit
testing, then the process would be fine tuned to make the review more
effective. Also, the lessons learned from specific projects are
incorporated into the process. Continuous process improvement is
achieved both by carefully analysing the quantitative feedback from the
process measurements and also from application of innovative ideas
and technologies. At CMM level 5, an organisation would identify the
best software engineering practices and innovations (which may be
tools, methods, or processes) and would transfer these organisation-
wide. Level 5 organisations usually have a department whose sole
responsibility is to assimilate latest tools and technologies and
propagate them organisation-wide. Since the process changes
continuously, it becomes necessary to effectively manage a changing
process. Therefore, level 5 organisations use configuration management
techniques to manage process changes.

Except for level 1, each maturity level is characterised by several key
process areas (KPAs) that indicate the areas an organisation should focus to

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

improve its software process to this level from the previous level. Each of the
focus areas identifies a number of key practices or activities that need to be
implemented. In other words, KPAs capture the focus areas of a level. The
focus of each level and the corresponding key process areas are shown in the
Table 11.1:

Table 11.1 Focus areas of CMM levels and Key Process Areas

CMM Level Focus Key Process Areas (KPAs)

Initial Competent people

Repeatable Project management Software project planning
Software configuration management

Defined Definition of
processes

Process definition
Training program
Peer reviews

Managed Product and
process quality

Quantitative process metrics
Software quality management

Optimising Continuous process
improvement

Defect prevention
Process change management
Technology change management

SEI CMM provides a list of key areas on which to focus to take an
organisation from one level of maturity to the next. Thus, it provides a way
for gradual quality improvement over several stages. Each stage has been
carefully designed such that one stage enhances the capability already built
up. For example, trying to implement a defined process (level 3) before a
repeatable process (level 2) would be counterproductive as it becomes
difficult to follow the defined process due to schedule and budget pressures.

Substantial evidence has now been accumulated which indicate that
adopting SEI CMM has several business benefits. However, the organisations
trying out the CMM frequently face a problem that stems from the
characteristic of the CMM itself.
CMM Shortcomings: CMM does suffer from several shortcomings. The
important among these are the following:

The most frequent complaint by organisations while trying out the
CMM-based process improvement initiative is that they understand
what is needed to be improved, but they need more guidance about
how to improve it.
Another shortcoming (that is common to ISO 9000) is that thicker
documents, more detailed information, and longer meetings are
considered to be better. This is in contrast to the principles of software
economics—reducing complexity and keeping the documentation to the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

minimum without sacrificing the relevant details.
Getting an accurate measure of an organisation’s current maturity level
is also an issue. The CMM takes an activity-based approach to
measuring maturity; if you do the prescribed set of activities then you
are at a certain level. There is nothing that characterises or quantifies
whether you do these activities well enough to deliver the intended
results.

11.6.1 Comparison Between ISO 9000 Certification and
SEI/CMM

Let us compare some of the key characteristics of ISO 9000 certification
and the SEI CMM model for quality appraisal:

ISO 9000 is awarded by an international standards body. Therefore,
ISO 9000 certification can be quoted by an organisation in official
documents, communication with external parties, and in tender
quotations. However, SEI CMM assessment is purely for internal use.
SEI CMM was developed specifically for software industry and therefore
addresses many issues which are specific to software industry alone.
SEI CMM goes beyond quality assurance and prepares an organisation
to ultimately achieve TQM. In fact, ISO 9001 aims at level 3 of SEI
CMM model.
SEI CMM model provides a list of key process areas (KPAs) on which an
organisation at any maturity level needs to concentrate to take it from
one maturity level to the next. Thus, it provides a way for achieving
gradual quality improvement. In contrast, an organisation adopting ISO
9000 either qualifies for it or does not qualify.

11.6.2 Is SEI CMM Applicable to Small Organisations?
Highly systematic and measured approach to software development suits
large organisations dealing with negotiated software, safety-critical
software, etc. But, what about small organisations? These organisations
typically handle applications such as small Internet, e-commerce
applications, and often are without an established product range,
revenue base, and experience on past projects, etc. For such
organisations, a CMM-based appraisal is probably excessive. These
organisations need to operate more efficiently at the lower levels of

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

maturity. For example, they need to practise effective project
management, reviews, configuration management, etc.

11.6.3 Capability Maturity Model Integration (CMMI)
Capability maturity model integration (CMMI) is the successor of the
capability maturity model (CMM). The CMM was developed from 1987
until 1997. In 2002, CMMI Version 1.1 was released. Version 1.2
followed in 2006. CMMI aimed to improve the usability of maturity
models by integrating many different models into one framework.

After CMMI was first released in 1990, it was adopted and used in many
domains. For example, CMMs were developed for disciplines such as systems
engineering (SE-CMM), people management (PCMM), software acquisition
(SA-CMM), and others. Although many organisations found these models to
be useful, they also struggled with problems caused by overlap,
inconsistencies, and integrating the models. In this context, CMMI is
generalised to be applicable to many domains. For example, the word
“software” does not appear in definitions of CMMI. This unification of various
types of domains into a single model makes CMMI extremely abstract. The
CMMI, like its predecessor, describes five distinct levels of maturity.

11.7 FEW OTHER IMPORTANT QUALITY STANDARDS

11.7.1 Software Process Improvement and Capability
Determination (SPICE)

SPICE stands for Software Process Improvement and Capability
determination. It is an ISO standard (IEC 15504). It distinguishes
different kinds of processes—engineering process, management
process, customer-supplier, support. For each process, it defines six
capability maturity levels. It integrates existing standards to provide a
single process reference model and process assessment model that
addresses broad categories of enterprise processes.

11.7.2 Personal Software Process (PSP)
PSP is based on the work of David Humphrey [Hum97]. PSP is a scaled
down version of industrial software process discussed in the last
section. PSP is suitable for individual use. It is important to note that
SEI CMM does not tell software developers how to analyse, design,
code, test, or document software products, but assumes that engineers

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

use effective personal practices. PSP recognises that the process for
individual use is different from that necessary for a team.

The quality and productivity of an engineer is to a great extent dependent
on his process. PSP is a framework that helps engineers to measure and
improve the way they work. It helps in developing personal skills and
methods by estimating, planning, and tracking performance against plans,
and provides a defined process which can be tuned by individuals.
Time measurement: PSP advocates that developers should rack the way
they spend time. Because, boring activities seem longer than actual and
interesting activities seem short. Therefore, the actual time spent on a task
should be measured with the help of a stop-watch to get an objective picture
of the time spent. For example, he may stop the clock when attending a
telephone call, taking a coffee break, etc. An engineer should measure the
time he spends for various development activities such as designing, writing
code, testing, etc.
PSP Planning: Individuals must plan their project. Unless an individual
properly plans his activities, disproportionately high effort may be spent on
trivial activities and important activities may be compromised, leading to poor
quality results. The developers must estimate the maximum, minimum, and
the average LOC required for the product. They should use their productivity
in minutes/LOC to calculate the maximum, minimum, and the average
development time. They must record the plan data in a project plan
summary.

The PSP is schematically shown in Figure 11.4. While carrying out the
different phases, an individual must record the log data using time
measurement. During post-mortem, they can compare the log data with their
project plan to achieve better planning in the future projects, to improve his
process, etc.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 11.4: A schematic representation of PSP.

The PSP levels are summarised in Figure 11.5. PSP2 introduces defect
management via the use of checklists for code and design reviews. The
checklists are developed by analysing the defect data gathered from earlier
projects.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 11.5: Levels of PSP.

11.8 SIX SIGMA
General Electric (GE) corporation first began Six Sigma in 1995 after
Motorola and Allied Signal blazed the Six Sigma trail. Since them,
thousands of companies around the world have discovered the far
reaching benefits of Six Sigma. The purpose of Six Sigma is to improve
processes to do things better, faster, and at lower cost. It can be used
to improve every facet of business, from production, to human
resources, to order entry, to technical support. Six Sigma can be used
for any activity that is concerned with cost, timeliness, and quality of
results. Therefore, it is applicable to virtually every industry.

Six Sigma at many organisations simply means striving for near perfection.
Six Sigma is a disciplined, data-driven approach to eliminate defects in any
process – from manufacturing to transactional and from product to service.

The statistical representation of Six Sigma describes quantitatively how a
process is performing. To achieve Six Sigma, a process must not produce
more than 3.4 defects per million opportunities. A Six Sigma defect is defined

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

as any system behaviour that is not as per customer specifications. Total
number of Six Sigma opportunities is then the total number of chances for a
defect. Process sigma can easily be calculated using a Six Sigma calculator.

The fundamental objective of the Six Sigma methodology is the
implementation of a measurement-based strategy that focuses on process
improvement and variation reduction through the application of Six Sigma
improvement projects. This is accomplished through the use of two Six Sigma
sub-methodologies—DMAIC and DMADV. The Six Sigma DMAIC process
(define, measure, analyse, improve, control) is an improvement system for
existing processes falling below specification and looking for incremental
improvement. The Six Sigma DMADV process (define, measure, analyse,
design, verify) is an improvement system used to develop new processes or
products at Six Sigma quality levels. It can also be employed if a current
process requires more than just incremental improvement. Both Six Sigma
processes are executed by Six Sigma Green Belts and Six Sigma Black Belts,
and are overseen by Six Sigma Master Black Belts.

Many frameworks exist for implementing the Six Sigma methodology. Six
Sigma Consultants all over the world have also developed proprietary
methodologies for implementing Six Sigma quality, based on the similar
change management philosophies and applications of tools.

SUMMARY

In this chapter, we first defined software reliability and discussed its
importance.
We pointed out that even though the number of defects remaining in a
software product is correlated to its reliability, no simple relationship
between the two exists. An important reason behind this is that the
errors existing in the core and non-core part of a software product
affect the reliability of the product differently.
We discussed a few metrics for quantifying the reliability of a given
piece of software. We have pointed out the shortcomings of these
metrics and concluded that none of these metrics can be used to
provide an entirely satisfactory measure of the reliability of a software
product.
We examined reliability growth modelling and its use to determine how
long to test a product.
We discussed what is meant by a quality management system and

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

introduced the modern concept of software quality. We also discussed
the concept of total quality management (TQM).
We pointed out that the methods of Software Process Assessment are
coming more generally into use in the management of software
development, acquisition and utilisation, in the face of substantial
evidence of the success of such methods in driving improvements in
both quality and productivity.
We identified ISO 9000 and SEI CMM as two sets of guidelines for
setting up a quality system. ISO 9000 series is a standard applicable to
a broad spectrum of industries, whereas SEI CMM model is a set of
guidelines for setting up a quality system specifically addressing the
needs of the software development organisations. Therefore, SEI CMM
model addresses various issues pertaining to software industry in a
more focussed manner. For example, SEI CMM model suggests a 5-tier
structure. On the other hand, ISO 9000 has been formulated by a
standards body and therefore the certificate can be used as a contract
between externally independent parties, whereas SEI CMM addresses
step by step improvements of an organisation’s quality practices.
We discussed the important concepts behind PSP and Six Sigma.

EXERCISES
1. Choose the correct option:

(a) Which of the following is a practical use of reliability growth
modelling? (i) Determine the operational life of an application software
(ii) Determine when to stop testing
(iii) Incorporate reliability information while designing
(iv) Incorporate reliability growth information in the code

(b) What is the availability of a software with the following reliability
figures? Mean Time Between Failure (MTBF) = 25 days, Mean Time To
Repair (MTTR) = 6 hours:
(i) 1 per cent
(ii) 24 per cent
(iii) 99 per cent
(iv) 99.009 per cent

(c) A software organisation has been assessed at SEI CMM Level 4.
Which of the following is a prerequisite to achieve Level 5:
(i) Defect Detection
(ii) Defect Prevention

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(iii) Defect Isolation
(iv) Defect Propagation

(d) Which one of the following is the focus of modern quality paradigms:
(i) Process assurance
(ii) Product assurance
(iii) Thorough testing
(iv) Thorough testing and rejection of bad products

(e) Which of the following is indicated by the SEI C MM repeatable
software development:
(i) Success in development of a software can be repeated
(ii) Success in developmenet of a software can be repeated in related
software development projects.
(iii) Success in developmenet of a software can be repeated in all
software development projects that the organisation might undertake.
(iv) When the same development team is chosen to develop another
software, they can repeat their success.

(f) Which one of the following is the main objective of statistical testing:
(i) Use statistical techniques to design test cases
(ii) Apply statistical techniques to the results of testing to determine if
the software has been adequately tested
(iii) Estimate software reliability
(iv) Apply statistical techniques to the results of testing to determine
how long testing needs to be carried out

2 . Define the terms software reliability and software quality. How can
these be measured?

3. Identify the factors which make the measurement of software reliability
a much harder problem than the measurement of hardware reliability.

4. Through a simple plot explain how the reliability of a software product
changes over its lifetime. Draw the reliability change for a hardware
product over its life time and explain why the two plots look so different.

5. What do you understand by a reliability growth model? How is reliability
growth modelling useful?

6 . Explain using one simple sentence each what you understand by the
following reliability measures:
• A POFOD of 0.001
• A ROCOF of 0.002
• MTBF of 200 units
• Availability of 0.998

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

7. What is statistical testing? In what way is it useful during software
development? Explain in the different steps of statistical testing.

8 . Define three metrics to measure software reliability. Do you consider
these metrics entirely satisfactory to provide measure of the reliability of
a system? Justify your answer.

9 . How can you determine the number of latent defects in a software
product during the testing phase?

10. State TRUE o r FALSE of the following. Support your answer with
proper reasoning:
(a) The reliability of a software product increases almost linearly, each

time a defect gets detected and fixed.
(b) As testing continues, the rate of growth of reliability slows down

representing a diminishing return of reliability growth with testing
effort.

(c) Modern quality assurance paradigms are centered around carrying
out thorough product testing.

(d) An important use of receiving a ISO 9001 certification by a software
organisation is that it can improve its sales efforts by advertising its
products as conforming to ISO 9001 certification.

(e) A highly reliable software can be termed as a good quality software.
(f) If an organisation assessed at SEI CMM level 1 has developed one

software product successfully, then it is expected to repeat its success
on similar products.

11. What does the quality parameter “fitness of purpose” mean in the
context of software products? Why is this not a satisfactory criterion for
determining the quality of software products?

12. Can reliability of a software product be determined by estimating the
number of latent defects in the software? If your answer is “yes”, explain
how reliability can be determined from an estimation of the number of
latent defects in a software product. If your answer is “no”, explain why
can’t reliability of a software product be determined from an estimate of
the number of latent defects.

13. Why is it important for a software development organisation to obtain
ISO 9001 certification?

14. Discuss the relative merits of ISO 9001 certification and the SEI CMM-
based quality assessment.

15. List five salient requirements that a software development organisation
must comply with before it can be awarded the ISO 9001 certificate.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

What are some of the shortcomings of the ISO certification process?
16. With the help of suitable examples discuss the types of software

organisations to which ISO 9001, 9002, and 9003 standards respectively
are applicable.

17. During software testing process, why is the reliability growth initially
high, but slows down later on?

18. If an organisation does not document its quality system, what
problems would it face?

19. What according to you is a quality software product?
20. Discuss the stages through which the quality system paradigm and the

quality assurance methods have evolved over the years.
21. Which standard is applicable to software industry, ISO 9001, ISO 9002,

or ISO 9003?
22. In a software development organisation, identify the persons

responsible for carrying out the quality assurance activities. Explain the
principal tasks they perform to meet this responsibility.

23. Suppose an organisation mentions in its job advertizement that it has
been assessed at level 3 of SEI CMM, what can you infer about the
current quality practices at the organisation? What does this organisation
have to do to reach SEI CMM level 4?

24. Suppose as the president of a company, you have the choice to either
go for ISO 9000 based quality model or SEI CMM based model, which
one would you prefer? Give the reasoning behind your choice.

25. What do you understand by total quality management (TQM)? What
are the advantages of TQM? Does ISO 9000 standard aim for TQM?

26. What are the principal activities of a modern quality system?
27. In a software development organisation whose responsibility is it to

ensure that the products are of high quality? Explain the principal tasks
they perform to meet this responsibility.

28. What do you understand by repeatable software development?
Organisations assessed at which level SEI CMM maturity achieve
repeatable software development?

29. What do you understand by key process area (KPA), in the context of
SEI CMM? Would there be any problem if an organisation tries to
implement higher level SEI CMM KPAs before achieving lower level KPAs?
Justify your answer using suitable examples.

30. What is the Six Sigma quality initiative? To which category of industries
is it applicable? Explain the Six Sigma technique adopted by software

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

organisation with respect to the goal, the procedure, and the outcome.
31. What is the difference between process metrics and product metrics?

Give four examples of each.
32. Suppose you want to buy a certain software product and you have kept

a purchase precondition that the vendor must install the software, train
your manpower on that, and maintain the product for at least a year,
only then would you release the payment. Also, you do not foresee any
maintenance requirement for the product once it works satisfactorily.
Now, you receive bids from three vendors. Two of the vendors quote Rs.
3 lakhs and Rs. 4 lakhs, whereas the third vendor quotes Rs. 10 lakhs
saying that the prices would be high because they would be following a
good development process as they have been assessed at the Level 5 of
SEI CMM. Discuss how you would decide whom to award the contract.

33. A software system is composed of 50 modules. Each module is
guaranteed to have a reliability R not less than 0.999. What would be
the best case and reliability of the entire system? What should be the
reliability of the modules if we require that the system exhibits reliability
equal to 0.99999?

34. Explain the importance of software configuration management in
modern quality paradigms such as SEI CMM and ISO 9001. An
organisation not using any configuration management tool can qualify
for which SEI CMM level(s)?

35. List four metrics that can be determined from an analysis of a
program’s source code and would correlate well with the reliability of the
delivered software.

36. Discuss the salient features of the organisational reporting structure of
the SQA group as recommended by SEI CMM and ISO 9001. What is the
rational behind having such a reporting structure?

37. Suggest two development organisations for whom SEI capability model
is not likely to be appropriate. Give reasons why this is the case.

38. What do you understand by Key Process Area (KPA), in the context of
SEI CMM?
Would an organisation encounter any problems, if it tries to implement
higher level SEI CMM KPAs before achieving the lower level KPAs? Justify
your answer using suitable examples.

39. Can a program be correct and still not exhibit good quality? Explain.
40. What do you understand by defect prevention? Explain how defect

prevention can be achieved.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

1 To determine the core and non-core parts of a program, you can use a commonly available tool
called a profiler. On Unix platforms, a tool called “prof” is normally available for this purpose. the reliability
figure of a software product is observer-dependent and it is very difficult to absolutely quantify the
reliability of the product.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Chapter
12

COMPUTER AIDED SOFTWARE
ENGINEERING

In this chapter, we will discuss about computer aided software
engineering (CASE) and how use of CASE tools help to improve software
development effort and maintenance effort. Of late, CASE has emerged
as a much talked topic in software industries. Software is becoming the
costliest component in any computer installation. Even though hardware
prices keep dropping like never and falling below even the most
optimistic expectations, software prices are becoming costlier due to
increased manpower costs. This scenario has got most managers
worried. In this scene, CASE tools promise effort and cost reduction in
software development and maintenance. Therefore, deployment and
development of CASE tools have become pet subjects for most software
project managers. For software engineers, CASE tools promises to take
drudgery out of routine jobs, and help develop better quality products
more efficiently.

With this brief introduction and motivation for studying CASE tools, we will
first define the scope of CASE and examine the different concepts associated
with CASE. Subsequently, we will discuss the features of different types of
CASE tools.

12.1 CASE AND ITS SCOPE
We first need to define what is a CASE tool and what is a CASE
environment. A CASE tool is a generic term used to denote any form of
automated support for software engineering, In a more restrictive sense
a CASE tool can mean any tool used to automate some activity
associated with software development. Many CASE tools are now
available. Some of these tools assist in phase-related tasks such as

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

specification, structured analysis, design, coding, testing, etc. and
others to non-phase activities such as project management and
configuration management. The primary objectives in using any CASE
tool are:

To increase productivity.
To help produce better quality software at lower cost.

12.2 CASE ENVIRONMENT
Although individual CASE tools are useful, the true power of a tool set
can be realised only when these set of tools are integrated into a
common framework or environment. If the different CASE tools are not
integrated, then the data generated by one tool would have to input to
the other tools. This may also involve format conversions as the tools
developed by different vendors are likely to use different formats. This
results in additional effort of exporting data from one tool and importing
to another. Also, many tools do not allow exporting data and maintain
the data in proprietary formats.

CASE tools are characterised by the stage or stages of software
development life cycle on which they focus. Since different tools covering
different stages share common information, it is required that they integrate
through some central repository to have a consistent view of information
associated with the software. This central repository is usually a data
dictionary containing the definition of all composite and elementary data
items. Through the central repository all the CASE tools in a CASE
environment share common information among themselves. Thus a CASE
environment facilitates the automation of the step-by-step methodologies for
software development. In contrast to a CASE environment, a programming
environment is an integrated collection of tools to support only the coding
phase of software development. The tools commonly integrated in a
programming environment are a text editor, a compiler, and a debugger. The
different tools are integrated to the extent that once the compiler detects an
error, the editor takes automatically goes to the statements in error and the
error statements are highlighted. Examples of popular programming
environments are Turbo C environment, Visual Basic, Visual C++, etc. A
schematic representation of a CASE environment is shown in Figure 12.1.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 12.1: A CASE environment.

The standard programming environments such as Turbo C, Visual C++, etc.
come equipped with a program editor, compiler, debugger, linker, etc., All
these tools are integrated. If you click on an error reported by the compiler,
not only does it take you into the editor, but also takes the cursor to the
specific line or statement causing the error.

12.2.1 Benefits of CASE
Several benefits accrue from the use of a CASE environment or even
isolated CASE tools. Let us examine some of these benefits:

A key benefit arising out of the use of a CASE environment is cost
saving through all developmental phases. Different studies carry out to
measure the impact of CASE, put the effort reduction between 30 per
cent and 40 per cent.
Use of CASE tools leads to considerable improvements in quality. This
is mainly due to the facts that one can effortlessly iterate through the
different phases of software development, and the chances of human
error is considerably reduced.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

CASE tools help produce high quality and consistent documents. Since
the important data relating to a software product are maintained in a
central repository, redundancy in the stored data is reduced, and
therefore, chances of inconsistent documentation is reduced to a great
extent.
CASE tools take out most of the drudgery in a software engineers work.
For example, they need not check meticulously the balancing of the
DFDs, but can do it effortlessly through the press of a button.
CASE tools have led to revolutionary cost saving in software
maintenance efforts. This arises not only due to the tremendous value
of a CASE environment in traceability and consistency checks, but also
due to the systematic information capture during the various phases of
software development as a result of adhering to a CASE environment.
Introduction of a CASE environment has an impact on the style of
working of a company, and makes it oriented towards the structured
and orderly approach.

12.3 CASE SUPPORT IN SOFTWARE LIFE CYCLE
Let us examine the various types of support that CASE provides during
the different phases of a software life cycle. CASE tools should support a
development methodology, help enforce the same, and provide certain
amount of consistency checking between different phases. Some of the
possible support that CASE tools usually provide in the software
development life cycle are discussed below.

12.3.1 Prototyping Support
We have already seen that prototyping is useful to understand the
requirements of complex software products, to demonstrate a concept,
to market new ideas, and so on. The prototyping CASE tool’s
requirements are as follows:

Define user interaction.
Define the system control flow.
Store and retrieve data required by the system.
Incorporate some processing logic.

There are several stand alone prototyping tools. But a tool that integrates
with the data dictionary can make use of the entries in the data dictionary,

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

help in populating the data dictionary and ensure the consistency between
the design data and the prototype.

A good prototyping tool should support the following features:

Since one of the main uses of a prototyping CASE tool is graphical user
interface (GUI) development, a prototyping CASE tool should support
the user to create a GUI using a graphics editor. The user should be
allowed to define all data entry forms, menus and controls.
It should integrate with the data dictionary of a CASE environment.
If possible, it should be able to integrate with external user defined
modules written in C or some popular high level programming
languages.
The user should be able to define the sequence of states through
which a created prototype can run. The user should also be allowed to
control the running of the prototype.
The run time system of prototype should support mock up run of the
actual system and management of the input and output data.

12.3.2 Structured Analysis and Design
Several diagramming techniques are used for structured analysis and
structured design. A CASE tool should support one or more of the
structured analysis and design technique. The CASE tool should support
effortlessly drawing analysis and design diagrams. The CASE tool should
support drawing fairly complex diagrams and preferably through a
hierarchy of levels. It should provide easy navigation through different
levels and through design and analysis. The tool must support
completeness and consistency checking across the design and analysis
and through all levels of analysis hierarchy. Wherever it is possible, the
system should disallow any inconsistent operation, but it may be very
difficult to implement such a feature. Whenever there is heavy
computational load while consistency checking, it should be possible to
temporarily disable consistency checking.

12.3.3 Code Generation
As far as code generation is concerned, the general expectation from a
CASE tool is quite low. A reasonable requirement is traceability from
source file to design data. More pragmatic support expected from a
CASE tool during code generation phase are the following:

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The CASE tool should support generation of module skeletons or
templates in one or more popular languages. It should be possible to
include copyright message, brief description of the module, author
name and the date of creation in some selectable format.
The tool should generate records, structures, class definition
automatically from the contents of the data dictionary in one or more
popular programming languages.
It should generate database tables for relational database
management systems.
The tool should generate code for user interface from prototype
definition for X window and MS window based applications.

12.3.4 Test Case Generator
The CASE tool for test case generation should have the following
features:

It should support both design and requirement testing
It should generate test set reports in ASCII format which can be
directly imported into the test plan document.

12.4 OTHER CHARACTERISTICS OF CASE TOOLS
The characteristics listed in this section are not central to the
functionality of CASE tools but significantly enhance the effectivity and
usefulness of CASE tools.

12.4.1 Hardware and Environmental Requirements
In most cases, it is the existing hardware that would place constraints
upon the CASE tool selection. Thus, instead of defining hardware
requirements for a CASE tool, the task at hand becomes to fit in an
optimal configuration of CASE tool in the existing hardware capabilities.
Therefore, we have to emphasise on selecting the most optimal CASE
tool configuration for a given hardware configuration.

The heterogeneous network is one instance of distributed environment and
we choose this for illustration as it is more popular due to its machine
independent features. The CASE tool implementation in heterogeneous
network makes use of client-server paradigm. The multiple clients which run
different modules access data dictionary through this server. The data

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

dictionary server may support one or more projects. Though it is possible to
run many servers for different projects but distributed implementation of data
dictionary is not common. The tool set is integrated through the data
dictionary which supports multiple projects, multiple users working
simultaneously and allows to share information between users and projects.
The data dictionary provides consistent view of all project entities, e.g., a
data record definition and its entity-relationship diagram be consistent. The
server should depict the per-project logical view of the data dictionary. This
means that it should allow back up/restore, copy, cleaning part of the data
dictionary, etc. The tool should work satisfactorily for maximum possible
number of users working simultaneously. The tool should support multi-
windowing environment for the users. This is important to enable the users to
see more than one diagram at a time. It also facilitates navigation and
switching from one part to the other.

12.4.2 Documentation Support
The deliverable documents should be organized graphically and should
be able to incorporate text and diagrams from the central repository.
This helps in producing up-to-date documentation. The CASE tool
should integrate with one or more of the commercially available desk-
top publishing packages. It should be possible to export text, graphics,
tables, data dictionary reports to the DTP package in standard forms
such as PostScript.

12.4.3 Pro ject Management
It should support collecting, storing, and analysing information on the
software project’s progress such as the estimated task duration,
scheduled and actual task start, completion date, dates and results of
the reviews, etc.

12.4.4 External Interface
The tool should allow exchange of information for reusability of design.
The information which is to be exported by the tool should be
preferably in ASCII format and support open architecture. Similarly, the
data dictionary should provide a programming interface to access
information. It is required for integration of custom utilities, building
new techniques, or populating the data dictionary.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

12.4.5 Reverse Engineering Support
The tool should support generation of structure charts and data
dictionaries from the existing source codes. It should populate the data
dictionary from the source code. If the tool is used for re-engineering
information systems, it should contain conversion tool from indexed
sequential file structure, hierarchical and network database to relational
database systems.

12.4.6 Data Dictionary Interface
The data dictionary interface should provide view and update access to
the entities and relations stored in it. It should have print facility to
obtain hard copy of the viewed screens. It should provide analysis
reports like cross-referencing, impact analysis, etc. Ideally, it should
support a query language to view its contents.

12.4.7 Tutorial and Help
The application of CASE tool and thereby its success depends on the
users’ capability to effectively use all the features supported. Therefore,
for the uninitiated users, a tutorial is very important. The tutorial should
not be limited to teaching the user interface part only, but should
comprehensively cover the following points:

The tutorial should cover all techniques and facilities through logically
classified sections.
The tutorial should be supported by proper documentation.

12.5 TOWARDS SECOND GENERATION CASE TOOL
An important feature of the second generation CASE tool is the direct
support of any adapted methodology. This would necessitate the
function of a CASE administrator for every organisation, who can tailor
the CASE tool to a particular methodology. In addition, we may look
forward to the following features in the second generation CASE tool:

Intelligent diagramming support: The fact that diagramming techniques
are useful for system analysis and design is well established. The future CASE
tools would provide help to aesthetically and automatically layout the
diagrams.
Integration with implementation environment: The CASE tools should

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

provide integration between design and implementation.
Data dictionary standards: The user should be allowed to integrate many
development tools into one environment. It is highly unlikely that any one
vendor will be able to deliver a total solution. Moreover, a preferred tool
would require tuning up for a particular system. Thus the user would act as a
system integrator. This is possible only if some standard on data dictionary
emerges.
Customisation support: The user should be allowed to define new types of
objects and connections. This facility may be used to build some special
methodologies. Ideally it should be possible to specify the rules of a
methodology to a rule engine for carrying out the necessary consistency
checks.

12.6 ARCHITECTURE OF A CASE ENVIRONMENT
The architecture of a typical modern CASE environment is shown
diagrammatically in Figure 12.2. The important components of a
modern CASE environment are user interface, tool set, object
management system (OMS), and a repository. We have already seen
the characteristics of the tool set. Let us examine the other components
of a CASE environment.

Figure 12.2: Architecture of a modern CASE environment.

User interface
The user interface provides a consistent framework for accessing the
different tools thus making it easier for the users to interact with the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

different tools and reducing the overhead of learning how the different
tools are used.

Object management system and repository
Different case tools represent the software product as a set of entities
such as specification, design, text data, project plan, etc. The object
management system maps these logical entities into the underlying
storage management system (repository). The commercial relational
database management systems are geared towards supporting large
volumes of information structured as simple relatively short records.
There are a few types of entities but large number of instances. By
contrast, CASE tools create a large number of entity and relation types
with perhaps a few instances of each. Thus the object management
system takes care of appropriately mapping these entities into the
underlying storage management system.

SUMMARY

We have highlighted some of the important features of the present day
CASE tools and have discussed the emerging trends.
Use of CASE tools is becoming almost indispensable for large software
projects where a team of software engineers work together. The trend
is now towards distributed workstation-based CASE tools.
We pointed out some of the desirable features of the distributed
workstation-based CASE tools.

EXERCISES
1. Choose the correct option:

(a) Which one of the following effectively integrates the different tools in
a CASE environment?
(i) Software requirements specification (SRS) document
(ii) Central data repository
(iii) Incremental compilation
(iv) User intervention

(b) Which one of the following CASE tools is usually not part of a
programming environment?
(i) Compiler
(ii) debugger

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(iii) Modelling tool
(iv) Editor

(c) Which of the following CASE tools is usually not useful during a
corrective maintenance activity?
(i) Regression test selection tool
(ii) Reverse engineering tool
(iii) Symbolic debugger
(iv) Requirements capture tool

2 . What do you understand by the terms a CASE tool and a CASE
environment? Why integration tools increases the power of the tools?
Explain using some examples.

3. What is a programming environment?
4. What are the main advantages of using CASE tools?
5. What are some of the important features that a future generation CASE

tool should support?
6 . Identify the CASE support that can be availed of during a large

maintenance effort concerning a large legacy software.
7. Discuss the role of the data dictionary in a CASE environment.
8. Schematically draw the architecture of a CASE environment and explain

how the different tools are integrated.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Chapter
13

SOFTWARE MAINTENANCE

Many students and practising engineers have a preconceived bias
against software maintenanc e work. The mention of the word
maintenance brings up the image of a screw driver, wielding mechanic
with soiled hands holding onto a bagful of spare parts. It would be the
objective of this chapter to clear up this misnomer, provide some
intuitive understanding of the software maintenance projects, and to
familiarise you with the latest techniques in software maintenance.

Software maintenance denotes any changes made to a software product
after it has been delivered to the customer. Maintenance is inevitable for
almost any kind of product. However, most products need maintenance due
to the wear and tear caused by use. On the other hand, software products do
not need maintenance on this count, but need maintenance to correct errors,
enhance features, port to new platforms, etc.

In Section 13.1, we examine some general issues concerning maintenance
projects. In Section 13.2, we discuss some basic ideas about software reverse
engineering. In Section 13.3 we discuss two software maintenance process
models which attempt to systematise the software development effort and
finally we discuss some concepts involved in cost estimation of maintenance
efforts.

13.1 CHARACTERISTICS OF SOFTWARE MAINTENANCE
In this section, we first classify the different maintenance efforts into a
few classes. Next, we discuss some general characteristics of the
maintenance projects. We also discuss some special problems
associated with maintenance projects.

Software maintenance is becoming an important activity of a large number
of organisations. This is no surprise, given the rate of hardware obsolescence,
the immortality of a software product per se, and the demand of the user

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

community to see the existing software products run on newer platforms, run
in newer environments, and/or with enhanced features. When the hardware
platform changes, and a software product performs some low-level functions,
maintenance is necessary. Also, whenever the support environment of a
software product changes, the software product requires rework to cope up
with the newer interface. For instance, a software product may need to be
maintained when the operating system changes. Thus, every software
product continues to evolve after its development through maintenance
efforts.

Types of Software Maintenance
There are three types of software maintenance, which are described as
follows:

Corrective: Corrective maintenance of a software product is necessary either
to rectify the bugs observed while the system is in use.
Adaptive: A software product might need maintenance when the customers
need the product to run on new platforms, on new operating systems, or
when they need the product to interface with new hardware or software.
Perfective: A software product needs maintenance to support the new
features that users want it to support, to change different functionalities of
the system according to customer demands, or to enhance the performance
of the system.

13.1.1 Characteristics of Software Evolution
Lehman and Belady have studied the characteristics of evolution of
seve ra l software products [1980]. They have expressed their
observations in the form of laws. Their important laws are presented in
the following subsection. But a word of caution here is that these are
generalisations and may not be applicable to specific cases and also
most of these observations concern large software projects and may not
be appropriate for the maintenance and evolution of very small
products.

Lehman’s first law: A software product must change continually or become
progressively less useful. Every software product continues to evolve after its
development through maintenance efforts. Larger products stay in operation
for longer times because of higher replacement costs and therefore tend to
incur higher maintenance efforts. This law clearly shows that every product

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

irrespective of how well designed must undergo maintenance. In fact, when a
product does not need any more maintenance, it is a sign that the product is
about to be retired/discarded. This is in contrast to the common intuition that
only badly designed products need maintenance. In fact, good products are
maintained and bad products are thrown away.
Lehman’s second law: The structure of a program tends to degrade as
more and more maintenance is carried out on it. The reason for the degraded
structure is that when you add a function during maintenance, you build on
top of an existing program, often in a way that the existing program was not
intended to support. If you do not redesign the system, the additions will be
more complex that they should be. Due to quick-fix solutions, in addition to
degradation of structure, the documentations become inconsistent and
become less helpful as more and more maintenance is carried out.
Lehman’s third law: Over a program’s lifetime, its rate of development is
approximately constant. The rate of development can be quantified in terms
of the lines of code written or modified. Therefore this law states that the
rate at which code is written or modified is approximately the same during
development and maintenance.

13.1.2 Special Problems Associated with Software
Maintenance

Software maintenance work currently is typically much more expensive
than what it should be and takes more time than required. The reasons
for this situation are the following:

Software maintenance work in organisations is mostly carried out using ad
hoc techniques. The primary reason being that software maintenance is one
of the most neglected areas of software engineering. Even though software
maintenance is fast becoming an important area of work for many companies
as the software products of yester years age, still software maintenance is
mostly being carried out as fire-fighting operations, rather than through
systematic and planned activities.

Software maintenance has a very poor image in industry. Therefore, an
organisation often cannot employ bright engineers to carry out maintenance
work. Even though maintenance suffers from a poor image, the work involved
is often more challenging than development work. During maintenance it is
necessary to thoroughly understand someone else’s work, and then carry out
the required modifications and extensions.

Another problem associated with maintenance work is that the majority of

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

software products needing maintenance are legacy products. Though the
word legacy implies “aged” software, but there is no agreement on what
exactly is a legacy system. It is prudent to define a legacy system as any
software system that is hard to maintain. The typical problems associated
with legacy systems are poor documentation, unstructured (spaghetti code
with ugly control structure), and lack of personnel knowledgeable in the
product. Many of the legacy systems were developed long time back. But, it is
possible that a recently developed system having poor design and
documentation can be considered to be a legacy system.

13.2 SOFTWARE REVERSE ENGINEERING
Software reverse engineering is the process of recovering the design and
the requirements specification of a product from an analysis of its code.
The purpose of reverse engineering is to facilitate maintenance work by
improving the understandability of a system and to produce the
necessary documents for a legacy system. Reverse engineering is
becoming important, since legacy software products lack proper
documentation, and are highly unstructured. Even well-designed
products become legacy software as their structure degrades through a
series of maintenance efforts.

The first stage of reverse engineering usually focuses on carrying out
cosmetic changes to the code to improve its readability, structure, and
understandability, without changing any of its functionalities. A way to carry
out these cosmetic changes is shown schematically in Figure 13.1. A program
can be reformatted using any of the several available prettyprinter programs
which layout the program neatly. Many legacy software products are difficult
to comprehend with complex control structure and unthoughtful variable
names. Assigning meaningful variable names is important because we had
seen in Chapter 9 that meaningful variable names is the most helpful code
documentation. All variables, data structures, and functions should be
assigned meaningful names wherever possible. Complex nested conditionals
in the program can be replaced by simpler conditional statements or
whenever appropriate by case statements.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 13.1: A process model for reverse engineering.

After the cosmetic changes have been carried out on a legacy software, the
proces of extracting the code, design, and the requirements specification can
begin. These activities are schematically shown in Figure 13.2. In order to
extract the design, a full understanding of the code is needed. Some
automatic tools can be used to derive the data flow and control flow diagram
from the code. The structure chart (module invocation sequence and data
interchange among modules) should also be extracted. The SRS document
can be written once the full code has been thoroughly understood and the
design extracted.

Figure 13.2: Cosmetic changes carried out before reverse engineering.

13.3 SOFTWARE MAINTENANCE PROCESS MODELS

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Before discussing process models for software maintenance, we need to
analyse various activities involved in a typical software maintenance
project. The activities involved in a software maintenance project are
not unique and depend on several factors such as: (i) the extent of
modification to the product required, (ii) the resources available to the
maintenance team, (iii) the conditions of the existing product (e.g., how
structured it is, how well documented it is, etc.), (iii) the expected
project risks, etc. When the changes needed to a software product are
minor and straightforward, the code can be directly modified and the
changes appropriately reflected in all the documents.

However, more elaborate activities are required when the required changes
are not so trivial. Usually, for complex maintenance projects for legacy
systems, the software process can be represented by a reverse engineering
cycle followed by a forward engineering cycle with an emphasis on as much
reuse as possible from the existing code and other documents.

Since the scope (activities required) for different maintenance projects vary
widely, no single maintenance process model can be developed to suit every
kind of maintenance project. However, two broad categories of process
models can be proposed.

First model
The first model is preferred for projects involving small reworks where
the code is changed directly and the changes are reflected in the
relevant documents later. This maintenance process is graphically
presented in Figure 13.3. In this approach, the project starts by
gathering the requirements for changes. The requirements are next
analysed to formulate the strategies to be adopted for code change. At
this stage, the association of at least a few members of the original
development team goes a long way in reducing the cycle time,
especially for projects involving unstructured and inadequately
documented code. The availability of a working old system to the
maintenance engineers at the maintenance site greatly facilitates the
task of the maintenance team as they get a good insight into the
working of the old system and also can compare the working of their
modified system with the old system. Also, debugging of the re-
engineered system becomes easier as the program traces of both the
systems can be compared to localise the bugs.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 13.3: Maintenance process model 1.

Second model
The second model is preferred for projects where the amount of rework
required is significant. This approach can be represented by a reverse
engineering cycle followed by a forward engineering cycle. Such an
approach is also known as software re-engineering. This process model
is depicted in Figure 13.4.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 13.4: Maintenance process model 2.

The reverse engineering cycle is required for legacy products. During the
reverse engineering, the old code is analysed (abstracted) to extract the
module specifications. The module specifications are then analysed to
produce the design. The design is analysed (abstracted) to produce the
original requirements specification. The change requests are then applied to
this requirements specification to arrive at the new requirements
specification. At this point a forward engineering is carried out to produce the
new code. At the design, module specification, and coding a substantial reuse
is made from the reverse engineered products. An important advantage of
this approach is that it produces a more structured design compared to what
the original product had, produces good documentation, and very often
results in increased efficiency. The efficiency improvements are brought about
by a more efficient design. However, this approach is more costly than the
first approach. An empirical study indicates that process 1 is preferable when
the amount of rework is no more than 15 per cent (see Figure 13.5).

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 13.5: Empirical estimation of maintenance cost versus percentage rework.

Besides the amount of rework, several other factors might affect the
decision regarding using process model 1 over process model 2 as follows:

Re-engineering might be preferable for products which exhibit a high
failure rate.
Re-engineering might also be preferable for legacy products having
poor design and code structure.

13.4 ESTIMATION OF MAINTENANCE COST
We had earlier pointed out that maintenance efforts require about 60 per
cent of the total life cycle cost for a typical software product. However,
maintenance costs vary widely from one application domain to another.
For embedded systems, the maintenance cost can be as much as 2 to 4
times the development cost.

Boehm [1981] proposed a formula for estimating maintenance costs as part
of his COCOMO cost estimation model. Boehm’s maintenance cost estimation
is made in terms of a quantity called the annual change traffic (ACT). Boehm
defined ACT as the fraction of a software product’s source instructions which
undergo change during a typical year either through addition or deletion.

where, KLOCadded is the total kilo lines of source code added during
maintenance. KLOCdeleted is the total KLOC deleted during

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

maintenance. Thus, the code that is changed, should be counted in both
the code added and code deleted.

The annual change traffic (ACT) is multiplied with the total development
cost to arrive at the maintenance cost:

Maintenance cost = ACT × Development cost
Most maintenance cost estimation models, however, give only approximate

results because they do not take into account several factors such as
experience level of the engineers, and familiarity of the engineers with the
product, hardware requirements, software complexity, etc.

SUMMARY

In this chapter, we discussed some fundamental concepts associated
with software maintenance activities.
Maintenance is the most expensive phase of the software life cycle and
therefore it is usually cost-effective to invest in time and effort while
developing the product and to emphasise on maintainability of the
product to reduce the maintenance costs.
We discussed the activities in reverse engineering and then discussed
two maintenance process models. We also discussed the applicability
of these two process models to maintenance projects.
We highlighted the salient points in costing maintenance projects.

EXERCISES
1. Choose the correct option:

(a) Which of the following is not a cause for software maintenance for a
typical product?
(i) It is not possible to guarantee that a software is defect-free even
after thorough
testing.
(ii) The deployment platform may change over time.
(iii) The user’s needs may change over time.
(iv) Software undergoes wear and tear after long usage.

(b) A legacy software product refers to a software that is:
(i) Developed at least 50 years ago. (ii) Obsolete software product.
(iii) Software product that has poor design structure and code.
(iv) Software product that could not be tested properly before product

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

delivery.
(c) Which of the following assertions is true?

(i) Legacy products automatically imply very old products.
(ii) The total effort spent in maintaining an average product typically
exceeds the effort in developing it.
(iii) Reverse engineering encompasses re-engineering.
(iv) Reeingineering encompasses reverse engineering.

(d) Which of the following types of maintenance consumes the maximum
effort for a typical software?
(i) Adaptive
(ii) Corrective
(iii) Preventive
(iv) Perfective

2 . What are the different types of maintenance that a software product
might need? Why are these maintenance required?

3 . Explain why every software system must undergo maintenance or
progressively become less useful.

4. Discuss the process models for software maintenance and indicate how
you would select an appropriate maintenance model for a maintenance
project at hand.

5 . State whether the following statements are TRUE or FALSE. Give
reasons for your answer.
(a) Legacy software products are those products which have been

developed long time back.
(b) Corrective maintenance is the type of maintenance that is most

frequently carried out on a typical software product.
6. What do you mean by the term software reverse engineering? Why is it

required? Explain the different activites undertaken during reverse
engineering.

7. What do you mean by the term software re-engineering? Why is it
required? Explain the different activities undertaken during reverse
engineering.

8. If a software product costed Rs. 10,000,000 for development, compute
the annual maintenance cost given that every year approximately 5 per
cent of the code needs modification. Identify the factors which render
the maintenance cost estimation inaccurate?

9 . What is a legacy software product? Explain the problems one would
encounter while maintaining a legacy product.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Chapter
14

SOFTWARE REUSE

Software products are expensive. Therefore, software project managers
are always worried about the high cost of software development and
are desperately looking for ways to cut development cost. A possible
way to reduce development cost is to reuse parts from previously
developed software. In addition to reduced development cost and time,
reuse also leads to higher quality of the developed products since the
reusable components are ensured to have high quality. A reuse
approach that is of late gaining prominence is component-based
development. Component-based software development is different from
the traditional software development in the sense that software is
developed by assembling software from off-the-shelf components.

Software development with reuse is very similar to a modern hardware
engineer building an electronic circuit by using standard types of ICs and
other components. In this Chapter, we will review the state of art in software
reuse.

14.1 WHAT CAN BE REUSED?
Before discussing the details of reuse techniques, it is important to
deliberate about the kinds of the artifacts associated with software
development that can be reused. Almost all artifacts associated with
software development, including project plan and test plan can be
reused. However, the prominent items that can be effectively reused
are:

Requirements specification
Design
Code
Test cases

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Knowledge

Knowledge is the most abstract development artifact that can be reused.
Out of all the reuse artifacts, reuse of knowledge occurs automatically
without any conscious effort in this direction. However, two major difficulties
with unplanned reuse of knowledge is that a developer experienced in one
type of product might be included in a team developing a different type of
software. Also, it is difficult to remember the details of the potentially
reusable development knowledge. A planned reuse of knowledge can
increase the effectiveness of reuse. For this, the reusable knowledge should
be systematically extracted and documented. But, it is usually very difficult to
extract and document reusable knowledge.

14.2 WHY ALMOST NO REUSE SO FAR?
A common scenario in many software development industries is
explained further. Engineers working in software development
organisations often have a feeling that the current system that they are
developing is similar to the last few systems built. However, no
attention is paid on how not to duplicate what can be reused from
previously developed systems. Everything is being built from scratch.
The current system falls behind schedule and no one has time to figure
out how the similarity between the current system and the systems
developed in the past can be exploited.

Even those organisations which embark on a reuse program, in spite of the
above difficulty, face other problems. Creation of components that are
reusable in different applications is a difficult problem. It is very difficult to
anticipate the exact components that can be reused across different
applications. But, even when the reusable components are carefully created
and made available for reuse, programmers prefer to create their own,
because the available components are difficult to understand and adapt to
the new applications.

In this context, the following observation is significant: The routines of
mathematical libraries are being reused very successfully by almost every
programmer. No one in their mind would think of writing a routine to compute
sine or cosine. Let us investigate why reuse of commonly used mathematical
functions is so easy. Several interesting aspects emerge. Cosine means the
same to all. Everyone has clear ideas about what kind of argument should
cosine take, the type of processing to be carried out and the results returned.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Secondly, mathematical libraries have a small interface. For example, cosine
requires only one parameter. Also, the data formats of the parameters are
standardised. These are some fundamental issues which would remain valid
for all our subsequent discussions on reuse. In the following section, we
discuss the issues that must be addressed while starting any reuse program
in an organisation.

14.3 BASIC ISSUES IN ANY REUSE PROGRAM
The following are some of the basic issues that must be clearly
understood for starting any reuse program:

Component creation.
Component indexing and storing.
Component search.
Component understanding.
Component adaptation.
Repository maintenance.

Component creation: For component creation, the reusable components have
to be first identified. Selection of the right kind of components having
potential for reuse is important. In Section 14.4, we discuss domain analysis
as a promising technique which can be used to create reusable components.

Component indexing and storing
Indexing requires classification of the reusable components so that they
can be easily searched when we look for a component for reuse. The
components need to be stored in a relational database management system
(RDBMS) or an object-oriented database system (ODBMS) for efficient
access when the number of components becomes large.

Component searching
The programmers need to search for right components matching their
requirements in a database of components. To be able to search
components efficiently, the programmers require a proper method to
describe the components that they are looking for.

Component understanding
The programmers need a precise and sufficiently complete

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

understanding of what the component does to be able to decide
whether they can reuse the component. To facilitate understanding, the
components should be well documented and should do something
simple.

Component adaptation
Often, the components may need adaptation before they can be reused,
since a selected component may not exactly fit the problem at hand.
However, tinkering with the code is also not a satisfactory solution
because this is very likely to be a source of bugs.

Repository maintenance
A component repository once is created requires continuous
maintenance. New components, as and when created have to be
entered into the repository. The faulty components have to be tracked.
Further, when new applications emerge, the older applications become
obsolete. In this case, the obsolete components might have to be
removed from the repository.

14.4 A REUSE APPROACH
A promising approach that is being adopted by many organisations is to
introduce a building block approach into the software development
process. For this, the reusable components need to be identified after
every development project is completed. The reusability of the
identified components has to be enhanced and these have to be
cataloged into a component library. It must be clearly understood that
an issue crucial to every reuse effort is the identification of reusable
components. Domain analysis is a promising approach to identify
reusable components. In the following subsections, we discuss the
domain analysis approach to create reusable components.

14.4.1 Domain Analysis
The aim of domain analysis is to identify the reusable components for a
problem domain.

Reuse domain
A reuse domain is a technically related set of application areas. A body
of information is considered to be a problem domain for reuse, if a deep

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

and comprehensive relationship exists among the information items as
characterised by patterns of similarity among the development
components of the software product. A reuse domain is a shared
understanding of some community, characterised by concepts,
techniques, and terminologies that show some coherence. Examples of
domains are accounting software domain, banking software domain,
business software domain, manufacturing automation software domain,
telecommunication software domain, etc.

Just to become familiar with the vocabulary of a domain requires months of
interaction with the experts. Often, one needs to be familiar with a network
of related domains for successfully carrying out domain analysis. Domain
analysis identifies the objects, operations, and the relationships among them.
For example, consider the airline reservation system, the reusable objects
can be seats, flights, airports, crew, meal orders, etc. The reusable
operations can be scheduling a flight, reserving a seat, assigning crew to
flights, etc. We can see that the domain analysis generalises the application
domain. A domain model transcends specific applications. The common
characteristics or the similarities between systems are generalised.

During domain analysis, a specific community of software developers get
together to discuss community-wide solutions. Analysis of the application
domain is required to identify the reusable components. The actual
construction of the reusable components for a domain is called domain
engineering.

Evolution of a reuse domain
The ultimate results of domain analysis is development of problem-
oriented languages. The problem-oriented languages are also known as
applicat ion generators. These application generators, once developed
form application development standards. The domains slowly develop.
A s a domain develops, we may distinguish the various stages it
undergoes:

Stage 1 : There is no clear and consistent set of notations. Obviously, no
reusable components are available. All software is written from scratch.
Stage 2 : He re , only experience from similar projects are used in a
development effort. This means that there is only knowledge reuse.
Stage 3: At this stage, the domain is ripe for reuse. The set of concepts are
stabilised and the notations standardised. Standard solutions to standard

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

problems are available. There is both knowledge and component reuse.
Stage 4: The domain has been fully explored. The software development for
the domain can largely be automated. Programs are not written in the
traditional sense any more. Programs are written using a domain specific
language, which is also known as an application generator.

14.4.2 Component Classification
Components need to be properly classified in order to develop an
effective indexing and storage scheme. We have already remarked that
hardware reuse has been very successful. If we look at the classification
of hardware components for clue, then we can observe that hardware
components are classified using a multilevel hierarchy. At the lowest
level, the components are described in several forms—natural language
description, logic schema, timing information, etc. The higher the level
at which a component is described, the more is the ambiguity. This has
motivated the Prieto-Diaz’s classification scheme.

Prieto-Diaz’s classification scheme
Each component is best described using a number of different
characteristics or facets. For example, objects can be classified using
the following:

Actions they embody.
Objects they manipulate.
Data structures used.
Systems they are part of, etc.

Prieto-Diaz’s faceted classification scheme requires choosing an n-tuple that
best fits a component. Faceted classification has advantages over
enumerative classification. Strictly enumerative schemes use a pre-defined
hierarchy. Therefore, these force you to search for an item that best fits the
component to be classified. This makes it very difficult to search a required
component. Though cross referencing to other items can be included, the
resulting network becomes complicated.

14.4.3 Searching
The domain repository may contain thousands of reuse items. In such
large domains, what is the most efficient way to search an item that

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

one is looking for? A popular search technique that has proved to be
very effective is one that provides a web interface to the repository.
Using such a web interface, one would search an item using an
approximate automated search using key words, and then from these
results would do a browsing using the links provided to look up related
items. The approximate automated search locates products that appear
to fulfill some of the specified requirements. The items located through
the approximate search serve as a starting point for browsing the
repository. These serve as the starting point for browsing the
repository. The developer may follow links to other products until a
sufficiently good match is found. Browsing is done using the keyword-
to-keyword, keyword-to-product, and product- to-product links. These
links help to locate additional products and compare their detailed
attributes. Finding a satisfactory item from the repository may require
several iterations of approximate search followed by browsing. With
each iteration, the developer would get a better understanding of the
available products and their differences. However, we must remember
that the items to be searched may be components, designs, models,
requirements, and even knowledge.

14.4.4 Repository Maintenance
Repository maintenance involves entering new items, retiring those
items which are no more necessary, and modifying the search attributes
of items to improve the effectiveness of search. Also, the links relating
the different items may need to be modified to improve the
effectiveness of search. The software industry is always trying to
implement something that has not been quite done before. As patterns
requirements emerge, new reusable components are identified, which
may ultimately become more or less the standards. However, as
technology advances, some components which are still reusable, do not
fully address the current requirements. On the other hand, restricting
reuse to highly mature components,can sacrifice potential reuse
opportunity. Making a product available before it has been thoroughly
assessed can be counter productive. Negative experiences tend to
dissolve the trust in the entire reuse framework.

14.4.5 Reuse without Modifications
.Once standard solutions emerge, no modifications to the program parts

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

may be necessary. One can directly plug in the parts to develop his
application. Reuse without modification is much more useful than the
classical program libraries. These can be supported by compilers
through linkage to run-time support routines (application generators).

Application generators translate specifications into application programs.
The specification usually is written using 4GL. The specification might also be
in a visual form. The programmer would create a graphical drawing using
some standard available symbols. Defining what is variant and what is
invariant corresponds to parameterising a subroutine to make it reusable. A
subroutine’s parameters are variants because the programmer can specify
them while calling the subroutine. Parts of a subroutine that are not
parameterised, cannot be changed.

Application generators have significant advantages over simple
parameterised programs. The biggest of these is that the application
generators can express the variant information in an appropriate language
rather than being restricted to function parameters, named constants, or
tables. The other advantages include fewer errors, easier to maintain,
substantially reduced development effort, and the fact that one need not
bother about the implementation details. Application generators are
handicapped when it is necessary to support some new concepts or features.
Some application generators overcome this handicap through an escape
mechanism. Programmers can write code in some 3GL through this
mechanism.

Application generators have been applied successfully to data processing
application, user interface, and compiler development. Application generators
are less successful with the development of applications with close interaction
with hardware such as real-time systems.

14.5 REUSE AT ORGANISATION LEVEL
Reusability should be a standard part in all software development
activities including specification, design, implementation, test, etc.
Ideally, there should be a steady flow of reusable components. In
practice, however, things are not so simple.

Extracting reusable components from projects that were completed in the
past presents an important difficulty not encountered while extracting a
reusable component from an ongoing project—typically, the original
developers are no longer available for consultation. Development of new
systems leads to an assortment of products, since reusability ranges from

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

items whose reusability is immediate to those items whose reusability is
highly improbable.

Achieving organisation-level reuse requires adoption of the following steps:

Assess of an item’s potential for reuse.
Refine the item for greater reusability.
Enter the product in the reuse repository.

In the following subsections, we elaborate these three steps required to
achieve organisation- level reuse.

Assessing a product’s potential for reuse
Assessment of a components reuse potential can be obtained from an
analysis of a questionnaire circulated among the developers. The
questionnaire can be devised to assess a component’s reusability. The
programmers working in similar application domain can be used to
answer the questionnaire about the product’s reusability. Depending on
the answers given by the programmers, either the component be taken
up for reuse as it is, it is modified and refined before it is entered into
the reuse repository, or it is ignored. A sample questionnaire to assess
a component’s reusability is the following:

Is the component’s functionality required for implementation of
systems in the future?
How common is the component’s function within its domain?
Would there be a duplication of functions within the domain if the
component is taken up?
Is the component hardware dependent?
Is the design of the component optimised enough?
If the component is non-reusable, then can it be decomposed to yield
some reusable components?
Can we parametrise a non-reusable component so that it becomes
reusable?

Refining products for greater reusability
For a product to be reusable, it must be relatively easy to adapt it to
different contexts. Machine dependency must be abstracted out or
localised using data encapsulation techniques. The following

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

refinements may be carried out:
Name generalisation: The names should be general, rather than being directly
related to a specific application.
Operation generalisation: Operations should be added to make the component
more general. Also, operations that are too specific to an application can be
removed.
Exception generalisation: This involves checking each component to see which
exceptions it might generate. For a general component, several types of
exceptions might have to be handled.
Handling portability problems: Programs typically make some assumption
regarding the representation of information in the underlying machine. These
assumptions are in general not true for all machines. The programs also often
need to call some operating system functionality and these calls may not be
the same on all machines. Also, programs use some function libraries, which
may not be available on all host machines. A portability solution to overcome
these problems is shown in Figure 14.1. The portability solution suggests that
rather than call the operating system and I/O procedures directly, abstract
versions of these should be called by the application program. Also, all
platform-related calls should be routed through the portability interface. One
problem with this solution is the significant overhead incurred, which makes it
inapplicable to many real-time systems and applications requiring very fast
response.

Figure 14.1: Improving reusability of a component by using a portability interface.

14.5.1 Current State of Reuse

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

In spite of all the shortcomings of the state-of-the-art reuse techniques,
it is the experience of several organisations that most of the factors
inhibiting an effective reuse program are non-technical. Some of these
factors are the following:

Need for commitment from the top management.
Adequate documentation to support reuse.
Adequate incentive to reward those who reuse. Both the people
contributing new reusable components and those reusing the existing
components should be rewarded to start a reuse program and keep it
going.
Providing access to and information about reusable components.
Organisations are often hesitant to provide an open access to the
reuse repository for the fear of the reuse components finding a way to
their competitors.

SUMMARY

We identified the following as the basic issues that must be addressed
to initiate any meaningful reuse program—component creation;
component indexing and storing; component search; component
understanding; component adaptation; and repository maintenance
Creation of highly reusable components is a very difficult problem. A
promising approach is domain analysis. Domain analysis aims to
identify reusable components for a problem domain.
Application generators translate problem specifications into application
programs. Applications generators greatly facilitate reuse compared to
other ways of reusing components.
We discussed reuse at organisation level. For this, three important
steps are required to be followed. These are—assess an item’s
potential for reuse; refine the item for greater reusability, and enter
the product in the reuse repository.

EXERCISES
1 . Enumerate the major technical and non-technical reasons that hinder

software reuse. Can there be circumstances where software reuse
cannot be recommended?

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

2. Identify the important points that the developer of a software package
must observe to enhance the reusability of the package.

3. Why is it important for an organisation to undertake an effective reuse
program? What are the important reuse artifacts that can be reused?
Why is reuse of software components much more difficult than hardware
components?

4 . Identify the reasons why reuse of mathematical software is so
successful. Also, identify the reasons why the reuse of software
components other than those of the mathematical software is difficult.

5 . What do you understand by the term reuse domain? Explain domain
analysis and how domain analysis leads to increased component
reusability.

6. Do you agree with the statement: “code” is the most important artifact
that can be reused during software development? Justify your answer.

7. What do you understand by the term domain analysis in the context of
software design? What artifacts are produced after domain analysis?
How does domain analysis increase software reusability?

8. Compare the advantages and disadvantages of a reuse program based
on component library and another based on an application generator.

9. Explain how components can be created effectively for reuse.
10. Explain the important aspects (steps) in starting and maintaining an

effective reuse program in a software development organisation.
11. How can you enhance the reusability of a function that you are writing?
12. Identify the stages through which a reuse domain progresses.
13. Explain why reuse is difficult in software development compared to

hardware development.
14. Explain why reuse of mathematical functions is easier compared to

reuse of non-mathematical functions.
15. What do you understand by the term “faceted classification” in the

context of software reuse? How does faceted classification simplify
component search in a component store?

1 6 . Explain how the faceted component classification (Prieto-Diaz’s
scheme) can be used for approximate searching. What are the
advantages of approximate searching over exact searching?

17. Suppose your team has developed a software product. How would you
assess the potential reusability of the developed functions?

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

18. In an organisation level software reuse, identify aspects of a developed
function which hamper its reusability. How can you improve reusability of
the components you have identified for reuse?

19. What is an application generator? Why reuse is easier while using an
application generator compared to a component library? What are the
shortcomings of an application generator?

20. Devise a scheme to store software reuse artifacts. Explain how
components can be searched in your scheme.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Chapter
15

EMERGING TRENDS

We had discussed in Chapter 1 that software engineering techniques
have in the past evolved in response to the challenges posed to
program development by the changing environment in which the
programs run and also the changes to the types of applications required
by the users. By changes to the environment, we mean the changes
that occur to the different technologies that underlie computer
hardware, system software, networking, and peripheral devices. Let us
examine the way the environment has changed of late. This can
indicate the challenges being posed to the software development
principles. This in turn would give us some insight into the way in which
the software engineering techniques are evolving of late.

The important changes to the environment that have occurred in the last
two decades include the following:

The prices of computers have dropped drastically in this period. At the
same time, they have become more powerful. Now they can perform
computations much faster and store much larger volumes of data. The
sizes of computers have shrunk and laptops and palmtops are
becoming popular.
The Internet has become extremely popular. Internet connects millions
of computers world-wide and makes enormous available to the users.
Networking techniques have made rapid progress. The speed of data
transfer has increased unbelievably and at the same time, the cost of
networking computers has dropped dramatically. Just to give an
example of currently supported speed of data transfer, desktops now
come with a default 1Gbps network port.
Mobile phones have dramatically captured imagination of all. The level
of acceptance that mobile phones have achieved in less than a decade

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

appears like a chapter straight out of a science fiction book. Mobile
phones are rapidly transforming themselves into handheld computing
devices. In addition to high speed fixed line connections, GPRS and
wireless LANs have become common place.
Over the last decade, cloud computing has become popular. In cloud
computing, applications are hosted on cloud operating on a data
center. Cloud computing is becoming more and more popular as it
helps a user run sophisticated applications without much upfront
investments and also frees him from buying and maintaining
sophisticated hardware and software.

In the face of the discussed developments, software developers are facing
several challenges. Following are some of the challenges that are being faced
by software developers.

Challenges faced by software developers
Following are some of the challenges that are being faced by software
developers:

To cope up with fierce competitions, business houses are rapidly
changing their business processes. This requires rapid changes to also
occur to the software that support the business process activities.
Therefore, there is a pressing demand to shorten the software delivery
time. However, software is still taking unacceptably long time to
develop and is turning out to be a bottleneck in implementing rapid
business process changes. To reduce the software delivery times,
software is being developed by teams working from globally distributed
locations. How software can be effectively developed using globally
distributed development teams is not yet clear and poses many
challenges. On the other hand, radical changes to the software
development principles are being put forward to shorten the
development time.
Business houses are getting tired of astronomical software costs, late
deliveries, and poor quality products. On the other hand, hardware
costs are dropping and at the same time hardware is becoming more
powerful, sophisticated, and reliable. Hardware and software cost
differentials are becoming more and more glaring. The wisdom of
developing every software from scratch is being questioned.Also,

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

alternate software delivery models are being proposed to reduce the
software cost.
Software sizes are further increasing.
After Internet has become vastly popular, many software products are
now required to interface with the Internet. Many products are even
expected to work across the Internet. Also, with the availability of fast
networks, distributed applications are becoming common place.
However,it is not clear that how software is to be effectively developed
in the context of distributed platforms and Internet.

In response to the challenges faced, the following software engineering
trends are becoming noticeable:

Client-server software
Service-oriented architecture (SOA)
Software as a service (SaaS)

In the following sections, we elaborate these emerging trends in software
engineering.

15.1 CLIENT-SERVER SOFTWARE
In a client-server software, both clients and servers are essentially
software components. A client is a consumer of services and a server is
a provider of services. The client-server concept is not a new concept. It
existed in the society since long. For example, a teacher may be a client
of a doctor, and the doctor may in turn be a client of a barber, who in
turn may be a client of the lawyer, and so forth. From this, we can
observe that a server in some context can be a client in some other
context. So, clients and servers can be considered to be mere roles.
Considering the level of popularity of the client-server paradigm in the
context of software development, there must be several advantages
accruing from adopting this concept. Let us deliberate on the important
advantages of the client-server paradigm.

Advantages of client-server software
There are many reasons for the popularity of client-server software. A
few important reasons are as follows:

Concurrency: A client-server software divides the computing work among

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

many different client and server components that could be residing on
different machines. Thus client-server solutions are inherently concurrent and
as a result offer the advantage of faster processing.
Loose coupling: Client and server components are inherently loosely-
coupled, making these easy to understand and develop.
Flexibility: A client-server software i s flexible in the sense that clients and
servers can be attached and removed as and when required. Also, clients can
access the servers from anywhere.
Cost-effectiveness: The client-server paradigm usually leads to cost-
effective solutions. Clients usually run on cheap desktop computers, whereas
severs may run on sophisticated and expensive computers. Even to use a
sophisticated software, one needs to own only a cheap client machine to
invoke the server.
Heterogeneous hardware: In a client-server solution, it is easy to have
specialised servers that can efficiently solve specific problems. It is possible
to efficiently integrate heterogeneous computing platforms to support the
requirements of different types of server software.
Fault-tolerance: Client-server solutions are usually fault-tolerant. It is
possible to have many servers providing the same service. If one server
becomes unavailable, then client requests can be directed to any other
working server.
Mobile computing: Mobile computing implicitly requires uses of client-
server technique. Cell phones are, of late, evolving as handheld computing
and communicating devices and are being provided with small processing
power, keyboard, small memory, and LCD display. The handhelds have
limited processing power and storage capacity, and therefore can act only as
clients. To perform any non-trivial task, the handheld computers can possibly
only support the necessary user interface to place requests on some remote
servers.
Application service provisioning: There are many application software
products that are extremely expensive to own. A client-server based
approach can be used to make these software products affordable for use. In
this approach, a n application service provider (ASP) would own it, and the
users would pay the ASP based on the charges per unit time of usage.
Component-based development: Client-server paradigm fits well with the
component- based software development. Component-based software

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

development holds out the promise of achieving substantial reductions to cost
and delivery time and at the same time achieve increased product reliability.
Component-based development is similar to the way hardware equipments
are being constructed cost-effectively. A hardware developer achieves cost,
effort, and time savings in an equipment development by integrating pre-built
components (ICs) purchased off-the-shelf on a printed circuit board (PCB).

In the component paradigm, software development consists of integrating off-the-
shelf software components and writing only the missing parts.

As discussed, advantages of the client-server software paradigm are
numerous. No wonder that the client-server paradigm has become extremely
popular. However, before we discuss more details of this technology, it is
important to know the important shortcomings of it as well.

Disadvantages of client-server software
There are several disadvantages of client-server software development.
The main disadvantages are:

Security: In a monolithic application, addressing the security concerns is
much easier as compared to client-server implementations. A client-server
based software provides many flexibilities. For example, a client can connect
to a server from anywhere. This makes it easy for hackers to break into the
system. Therefore, ensuring security of a client-server system is a very
challenging task.
Servers can be bottlenecks: Servers can turn out to be bottlenecks
because many clients might try to connect to a server at the same time. This
problem arises due to the flexibility given that any client can connect anytime
required.
Compatibility: Clients and servers may not be compatible to each other.
Since the client and server components may be manufactured by different
vendors, they may not be compatible with respect to data types, languages,
number representation, etc.
Inconsistency: Replication of servers can potentially create problems as
whenever there is replication of data, there is a danger of the data becoming
inconsistent.

15.2 CLIENT-SERVER ARCHITECTURES
The simplest way to connect clients and servers is by using a two-tier

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

architecture shown in Figure 15.1(a). In a two-tier architecture, any
client can get service from any server by sending a request over the
network.

Limitations of two-tier client-server architecture
A two-tier architecture for client-server applications though is an
intuitively obvious solution, but it turns out to be not practically usable.
The main problem is that client and server components are usually
manufactured by different vendors, who may adopt their own
interfacing and implementation solutions. As a result, the different
components may not interface with (talk to) each other easily.

Three-tier client-server architecture
The three-tier architecture overcomes the main limitations of the two-
tier architecture. In the three-tier architecture, a middleware is added
between client and the server components as shown in Figure 15.1(b).
The middleware keeps track of all servers. It also translates client
requests into server understandable form. For example, the client can
deliver its request to the middleware and disengage because the
middleware will access the data and return the answer to the client.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Figure 15.1: Two-tier and three-tier client-server architectures.

Functions of middleware
The important activities of the middleware include the following:

The middleware keeps track of the addresses of servers. Based on a
client request, it can therefore easily locate the required server.
It can translate between client and server formats of data and vice
versa.

Two popular middleware standards are:

Common Object Request Broker Architecture (CORBA)
COM/DCOM

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

CORBA is being promoted by Object Management Group (OMG), a
consortium of a large number of computer industries such as IBM, HP, Digital,
etc. However, OMG is not a standards body. OMG in fact does not have any
authority to make or enforce standards. It just tries to popularize good
solutions with the hope that if a solution becomes highly popular, it would
ultimately become a standard. COM/DCOM is being promoted mainly by
Microsoft. In the following subsections, we discuss these two important
middleware standards.

15.3 CORBA
Common object request broker architecture (CORBA) is a specification of
a standard architecture for middleware. Using a CORBA implementation,
a client can transparently invoke a service of a server object, which can
be on the same machine or across a network. CORBA automates many
common network programming tasks such as object registration,
location, and activation; request demultiplexing; framing and error-
handling; parameter marshalling and demarshalling; and operation
dispatching.

15.3.1 CORBA Reference Model
The CORBA reference model has been shown in Figure 15.2. In the
following subsection, we briefly discuss the major components of the
CORBA reference model.

Figure 15.2: CORBA reference model.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

ORB
ORB is also known as the object bus, since ORB supports
communication among the different components attached to it. This is
akin to a bus on a printed circuit board (PCB) on which the different
hardware components (ICs) communicate. Observe that due to this
analogy, even the symbol of a bus from the hardware domain is used to
represent ORB (see Figure 15.2). The ORB handles client requests for
any service, and is responsible for finding an object that can implement
t h e request, passing it the parameters, invoking its method, and
returning the results of the invocation. The client does not have to be
aware of where the required server object is located, its programming
language, its operating system or any other aspects that are not part of
an object’s interface.

Domain interfaces
These interfaces provide services pertaining to specific application
domains. Several domain services have been in use, including
manufacturing, telecommunication, medical, and financial domains.

Object services
These are domain-independent interfaces that are used by many
distributed object programs. For example, a service providing for the
discovery of other available services is almost always necessary
regardless of the application domain. Two examples of object services
that fulfill this role are the following:

Naming Service: This allows clients to find objects based on names. Naming
service is also called white page service.
Trading Service: This allows clients to find objects based on their properties.
Trading service is also called yellow page service. Using trading service a
specific service can be searched. This is akin to searching a service such as
automobile repair shop in a yellow page directory.

There can be other services which can be provided by object services such
as security services, life-cycle services and so on.

Common facilities
Like object service interfaces, these interfaces are also horizontally-
oriented, but unlike object services they are oriented towards end-user

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

applications. An example of such a facility is the distributed document
component facility (DDCF), a compound document common facility
based on OpenDoc. DDCF allows for the presentation and interchange
of objects based on a document model, for example, facilitating the
linking of a spreadsheet object into a report document.

Application interfaces
These are interfaces developed specifically for a given application.

15.3.2 CORBA ORB Architecture
The representation of Figure 15.3 is simplified since it does not show the
various components of ORB. Let us now discuss the important
components of CORBA architecture and how they operate. The ORB
must support a large number of functions in order to operate
consistently and effectively. In the carefully thought-out design of ORB,
the ORB implements much of these functionality as pluggable modules
to simplify the design and implementation of ORB and to make it
efficient.

Figure 15.3: CORBA ORB architecture.

ORB
CORBA’s most fundamental component is the object request broker
(ORB) whose task is to facilitate communication between objects. The
main responsibility of ORB is to transmit the client request to the server
and get the response back to the client. ORB abstracts out the
complexities of service invocation across a network and makes service
invocation by client seamless and easy. The ORB simplifies distributed
programming by decoupling clients from the details of the service

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

invocations. This makes client requests appear to be local procedure
calls. When a client invokes an operation, the ORB is responsible for
finding the object implementation, transparently activating it if
necessary, delivering the request to the object, and returning any
response to the caller. ORB allows objects to hide their implementation
details from clients. The different aspects of a program that are hidden
(abstracted out) from the client include programming language,
operating system, host hardware,and object location.

Stubs and skeletons
Using a CORBA implementation clients can communicate to the server in
two ways—by using stubs or by using dynamic invocation interface
(DII). The stubs help static service invocation, where a client requests
for a specific service using the required parameters. In the dynamic
service invocation, the client need not know before hand about the
required parameters and these are determined at the run time. Though
dynamic service invocation is more flexible, static service invocation is
more efficient that dynamic service invocation.

Service invocation by client through stub is suitable when the interface
between the client and server is fixed and it does not change with time. If the
interface is known before starting to develop client and the server parts then
stubs can effectively be used for service invocation. The stub part resides in
the client computer and acts as a proxy for the server which may reside in the
remote computer. That is the reason why stub is also known as a proxy.

Object adapter
Service invocation through dynamic invocation interface (DII)
transparently accesses the interface repository (OA). When an object
gets created, it registers information about itself with OA. DII gets the
relevant information from the IR and lets the client know about the
interface being used.

15.3.3 CORBA Implementations
There are several CORBA implementations that are available for use.
The following are a few popular ones.

Visibroker is a software from Borland is probably the most popular
CORBA implementation. Netscape browser supports Visibroker.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Therefore, CORBA applications can be run using Netscape web
browser. In other words, Netscape browser can act as a client for
CORBA applications. Netscape is extremely popular and there are
several millions of copies installed on desktops across the world.
Orbix from Iona technologies.
Java IDL.

15.3.4 Software Development in CORBA
Let us examine how software can be developed in CORBA. Before
developing a client-server application, the solution is split into two parts
—the client part and the serv part. Next, the exact client and server
interfaces are determined. To specify an interface, interface definition
language (IDL) is used. IDL is very similar to C++ and Java except that
it has no executable statements. Using IDL only data interface between
clients and servers can be defined. It supports inheritance so that
interfaces can be reused in the same or across different applications. It
also supports exception.

After the client-server interface is specified in IDL, an IDL compiler is used
to compile the IDL specification. Depending on whether the target language
in which the application is to be developed is Java, C++, C, etc., Different
IDL compilers such as IDL2Java, IDL2C++, IDL2C etc. can be used as
required. When the IDL specification is compiled, it generates the skeletal
code for stub and skeleton. The stub and skeleton contain interface
definitions and only the method body needs to be written by the
programmers developing the components.

Inter-ORB communication
Initially, CORBA could only integrate components running on the same
LAN. However, on certain applications, it becomes necessary to run the
different components of the application in different networks. This
shortcoming of CORBA 1.X was removed by CORBA 2.0. CORBA 2.0
defines general interoperability standard. The general inter-orb protocol
(GIOP) is an abstract meta-protocol. It specifies a standard transfer
syntax and a set of message formats for object requests. The GIOP is
designed to work over many different transport protocols. In a
distributed implementation, every ORB must support GIOP mapped onto
its local transport. GIOP can be used by almost any connection-oriented
byte stream transport.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

GIOP is popularly implemented on TCP/IP known as internet inter-ORB
protocol (IIOP).

15.4 COM/DCOM
15.4.1 COM

The main idea in the component object model (COM) is that different
vendors can sell binary components. Application can be developed by
integrating off-the-shelf components. COM can be used to develop
component applications on a single computer. The concepts used are
very similar to CORBA. The components are known as binary objects.
These can be generated using languages such as Visual Basic, Delphi,
Visual C++ etc. These languages have the necessary features to create
COM components. COM components are binary objects and they exist in
the form of either .exe or .dll (dynamic link library). The .exe
components have separate existence. But .dll COM components are in-
process servers, that get linked to a process. For example, ActiveX is a
dll type server, which gets loaded on the client-side.

15.4.2 DCOM
Distributed component object model (DCOM) is the extension of the
component object model (COM). The restriction that clients and servers
reside in the same computer is relaxed here. So, DCOM can operate on
networked computers. Using DCOM, development is easy as compared
to CORBA. Much of the complexities are hidden from the programmer.

15.5 SERVICE-ORIENTED ARCHITECTURE (SOA)
Service-orientation principles have their roots in the object-oriented
designing. Many claim that service-orientation will replace object-
orientation; others think that the two are complementary paradigms.

SOA views software as providing a set of services. Each service composed
of smaller services. Let us first understand what are software services.
Services are implemented and provided by a component for use by an
application developer. A service is a contractually de fined behaviour. That is,
a component providing a service guarantees that its behaviour is as per the
specifications. A few examples of services are the following—Filling out an on-
line application, viewing an on-line bank-statement, and placing an online
booking. Different services in an application communicate with each other.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

The services are self-contained. That is, a service does not depend on the
context or state of the other service. An application integrating different
services works within a distributed-system architecture.

The main idea behind SOA is to build applications by composing software services.

SOA principally leverages the Internet and emerging the standardisations
on it for interoperability among various services. An application is built using
the services available on the Internet, and writing only the missing ones.

There are several similarities between services and components, which are
as follows:

Reuse: Both a component and a service are reused across multiple
applications.
Generic: The components and services are usually generic enough to
be useful to a wide range of applications.
Composable: Both services and components are integrated together
to develop an application.
Encapsulated: Both components and services are non-investigable
through their interfaces.
Independent development and versioning: Both components and
services are developed independently by different vendors and also
continue to evolve independently.
Loose coupling: Both applications developed using the component
paradigm and the SOA paradigm have loose coupling inherent to them.

However, there are several dissimilarities between the components and the
SOA paradigm, which are as follow:

The granularity (size) of services in the SOA paradigm are often 100 to
1,000 times larger than the components of the component paradigm.
Services may be developed and hosted on separate machines.
Normally components in the component paradigm are procured for use
as per requirement (ownership). On the other hand, services are
usually availed in a pay per use arrangement.

Instead of services embedding calls to each other in their source code,
services use well-defined protocols which describe how services can talk to
each other. This architecture facilitates a business process expert to tailor an
application as per requirement. To meet a new business requirement, the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

business process expert can link and sequences services in a process known
as orchestration.

SOA targets fairly large chunks of functionality to be strung together to
form new services. That is, large services can be developed by integrating
existing software services. The larger the chunks, the fewer the interfacings
required. This leads to faster development. However, very large chunks may
prove to be difficult to reuse.

15.5.1 Service-oriented Architecture (SOA): Nitty Gritty
The SOA paradigm utilises services that may be hosted on different
computers. The different computers and services may be under the
control of different owners. To facilitate application development, SOA
must provide a means to offer, discover, interact with and use
capabilities of the services to achieve desired results.

SOA involves statically and dynamically plugging-in services to build
software. SOA players—BEA Aqua logic, Oracle Web services manager, HP
Systinet Registry, MS .Net, IBM Web Sphere, Iona Artrix, Java composite
application suite. Web services can be used to implement a service-oriented
architecture. Web services can make functional building blocks accessible
over standard Internet protocols independent of platforms and programming
languages.

One of the central assumptions of SOA is that once a market place for
services develops, services can be purchased to develop new applications. To
build an application, one would use off-the-shelf services and possibly build
some. When services are used across a large number of applications,
automatically quality would improve and also price would reduce. When a
service is used by a very large number of applications, the cost of using that
service becomes near zero. Thus the cost of creating an application that uses
widely used services would also be near zero, as all of the software services
required would already exist and cost near zero, only orchestration of these
services would be required to produce the application.

15.6 SOFTWARE AS A SERVICE (SAAS)
Owning software is very expensive. For example, a Rs. 50 Lakh software
running on an Rs. 1 Lakh computer is common place. As with hardware,
owning software is the current tradition across individuals and business
houses. Most of IT budget now goes in supporting the software assets.
The support cost includes annual maintenance charge (AMC), keeping

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

the software secure and virus free, and taking regular back-ups, etc.
But, often the usage of a specific software package does not exceed a
couple of hours of usage per week. In this situation, it would be
economically worthwhile to pay per hour of usage. This would also free
the user from the botherance of maintenance, upgradation, backup, etc.
This is exactly what is advocated by SaaS.

In this context, SaaS makes a case for pay per usage of software rather
than owning software for use.

SaaS is a software delivery model and involves customers to pay for any software per
unit time of usage, with the price reflecting market place supply and demand.

As we can see, SaaS shifts “ownership” of the software from the customer
to a service provider. Software owner provides maintenance, daily technical
operation, and support for the software. Services are provided to the clients
on amount of usage basis. The service provider is a vendor who hosts the
software and lets the users execute on-demand charges per usage units. It
also shifts the responsibility for hardware and software management from the
customer to the provider. The cost of providing software services reduces as
more and more customers subscribe to the service. Elements of outsourcing
and application service provisioning are implicit in the SaaS model.Also, it
makes the software accessible to a large number of customers who cannot
afford to purchase the software outright. Target the “long tail” of small
customers.

If we compare SaaS to SOA, we can observe that SaaS is a software
delivery model, whereas SOA is a software construction model. Despite
significant differences, both SOA and SaaS espouse closely related
architecture models. SaaS and SOA complement each other. SaaS helps to
offer components for SOA to use. SOA helps to help quickly realise SaaS. Also,
the main enabler of SaaS and SOA are the Internet and web services
technologies.

SUMMARY

Some of the basic assumptions of software are changing. This is
leading to some different paradigms for software development and
delivery.
Component-based development is expected to reduce development
time, cost and at the same time improve quality.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

SaaS is changing the way software is delivered.
SOA would fundamentally change the way we construct software
systems. In the SOA paradigm, an application can be built by
orchestrating existing services, and writing only the missing ones.

EXERCISES
1. Choos the correct option:

(a) What are the possible reasons behind the recent popularity of the
client-server style of software development?
(i) Computers have become small, decentralised and cheap
(ii) Networking has become affordable, reliable, and efficient
(iii) Client-server systems divide up the work of computing among
many separate machines
(iv) All of the above

(b) Which of the following functions are performed by middleware?
(i) Identifying a server from either its id or its service type
(ii) Converting between client protocols and server protocols
(iii) Delivering client-request to the server and server-response to the
client
(iv) All of the above

(c) Which of the following functions does object request broker (ORB)
perform?
(i) Transmit the client request to the server and get the response back
to the client
(ii) Location and possible activation of remote objects
(iii) Interface definition
(iv) All of the above

(d) Before developing client-server application in CORBA, interface
between the client part and the server must be specified using:
(i) Interface definition language
(ii) Dynamic invocation interface
(iii) ORB
(iv) None of the above

(e) In CORBA if the server interface known to be invariant with time,
then it is more efficient to use
(i) Stubs and skeletons
(ii) DSI and DII
(iii) RMI

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

(iv) None of the above
2. What are the advantages of client-server software as compared to

monolithic software? Also, identify the disadvantages of the client-server
software.

3. What is common object request broker architecture (CORBA)? Explain
CORBA architecture.

4. Identify three functions of object request broker (ORB).
5. Name at least three commercial ORBs.
6. Explain what is stub.
7. Explain dynamic invocation interface (DII) in CORBA.
8. Explain what are component object model (COM) and distributed

component object model (DCOM).
9. Explain Inter-ORB communication.
10. What are the advantages of client-server software development?
11. Why is a two-tier architecture not a practical client-server architecture?

How does the three tier architecture overcome the problems of the two-
tier architecture.

12. What are the functions of a middleware in a three-tier architecture?
Mention two popular middleware standards.

13. How does dynamic invocation interface (DII) know what format data or
what exact data required by the server for providing the service and how
does the client recognise the data?

14. What is general inter-ORB protocol (GIOP)? What are the features of
GIOP?

15. Mark the following statements as either True or False. Justify your
answer.
(a) Fault-tolerance is more difficult to provide in a monolithic application

compared to its client-server implementation.
(b) Client-server based software development is more secure than a

monolithic software.
(c) Two-tier client-server architecture can be used to effectively develop

commercial component-based systems.
(d) The object adapter component in CORBA is responsible for

translating the client data formats into server data formats and vice
versa.

(e) CORBA is the name of a software product that facilitates
development of client- server solutions.

(f) A CORBA-based client-server solution is constrained to run on a

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

single local area network (LAN).
(g) Using internet inter-ORB protocol (IIOP), a web browser such as

Netscape can serve as a CORBA client.
16. Differentiate between monolithic and client-server software solutions.

Give an example for each.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

REFERENCES

Albrecht, A.J. and J.E. Gaffney, “Software function, lines of code, and
development effort prediction: a software science validation,” IEEE Trans.
on Software Engineering, 9(6),
pp. 639–647.

Alhir, Sinan Si., UML in Nutshell, OReily, 1998.
Boehm, B.W., Software Engineering Economics, Prentice Hall, Englewood

Cliffs, New Jersey, 1981.
Boehm, Barry, B. Clark and E. Horowitz, et al. “Cost Models for Future

Software Life Cycle Processes: COCOMO 2.0,” Annals of Software
Engineering, 1995.

Booch, Grady, Object-Oriented Design with Applications, Benjamin
Cummings, Menlo Park, California, 1991.

Booch, Rumbaugh, Jacobson, The UML User’s Guide, Addison-Wesley,
Reading, Mass., 1999.

Brooks F., The Mythical Man-Month, Addison-Wesley, Reading, Mass., 1975.
Constantine, L.L. and E. Yourdon, Structured Design, Prentice Hall,

Englewood Cliffs,
New Jersey, 1979.

Conte, S.D., H.E. Dunsmore and V.Y. Shen, Software Engineering Metrics and
Models, Benjamin/Cummings Publishing Company Inc., Menlo Park,
California, 1986.

Corrado Bohm and Giuseppe Jacopini, “Flow Diagrams, Turing Machines and
Languages with Only Two Formation Rules”, Communications of the ACM,
9(5), May 1966.

Crosby, Philip B., Quality is Free, McGraw-Hill, New York, 1979.
DeMarco, T., Structured Analysis and System Specification, Yourdon Press,

New York, 1978.
Dijkstra, E.W., “Goto Statement Considered Harmful,” Communications of the

ACM, 11(3), pp. 147–148, 1968.
Eliason, Alan L., Systems Development Analysis and Implementation, Little

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Brown and Company (Canada) Ltd., 1987.
Fairley, Richard, Managing and Leading Software Project, IEEE Press, 2009.
Fowler, Martin, UML Distilled, 2nd ed., Addison-Wesley, Reading Mass., 2000.
Gane, C. and T. Sarson, Structured Systems Analysis, Prentice Hall,

Englewood Cliffs,
New Jersey, 1979.

George A., Miller, “The Magical Number Seven Plus or Minus Two: Some
Limits on Our Capacity for Processing Information,” The Psychological
Review, 63(2), pp. 8197, 1956.

Ghezzi, Carlo, Mehdi Jazayeri and Dino Mandrioli, Fundamentals of Software
Engineering, Pearson Education Inc., 2003.

Guttag, J., “Notes on Type Abstraction,” IEEE Transactions on Software
Engineering, 6(1), pp. 13–23, 1980.

Guttag, J., J. Horning, J.M. Wing, “The Larch Family of Specification
Languages,” IEEE Software, 2(5), pp. 24–36, 1985.

Harel, D. et al., “Statemate: A working environment for the development of
complex reactive systems,” IEEE Transactions on Software Engineering,
16(3), 403–414,
April 1990.

Hatley, D. and I. Pirbhai, Strategies for Real-Time System Specifications,
Dorset House,
New York, 1987.

Hoare, C.A.R., “Programming Sorcery or Science?” IEEE Transactions on
Software Engineering, pp. 5–16, April 1994.

Humphrey, Watts S., Introduction to the Personal Software Process, Addison
Wesley, Longman, 1997.

IEEE Recommended Practice for Software Requirements Specifications, IEEE
Std. 830–1998.

IEEE Standard Glossary of Software Engineering Terminology, IEEE Std.
610.12–1990.

Ince, Darrel, ISO 9001 and Software Quality Assurance, McGraw-Hill, New
York, 1994.

Ince, David (Ed.), Software Quality and Reliability, Chapman and Hall
Publishing, London, 1991.

Jackson, M.A., Principles of Program Design, Academic Press Inc., Orlando,
Florida, 1975.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Jacobson, Booch, Rumbaugh, The Unified Software Development Process,
Addison-Wesley, Reading Mass., 1999.

Jacobson, I. and Christerson, M., Object-oriented Software Engineering—A
Use Case-Driven Approach, Addison-Wesley, England, 1992.

Jalote, Pankaj, An Integrated Approach to Software Engineering, Third
Edition,
Springer, 2005.

Jelinski, Z. and P. Moranda, “ Software Reliability Research,” in Freiberger W.
(Ed.), Statistical Computer Reliability Evaluation, Academic Press, pp. 465–
484, 1972.

Jensen, R.W., “A Comparison of the Jensen and COCOMO Schedule and Cost
Estimation Models,” in Proc. of International Society of Parametric Analysis,
pp. 96–106, 1984.

Jones, C.B., Software Development: A rigorous approach, Prentice Hall,
Englewood Cliffs, New Jersey, 1980.

Lamb, David Alex, Software Engineering Planning for Change, Prentice-Hall,
Englewood Cliffs, New Jersey, 1988.

Larman, Craig, Applying UML and Patterns—An Introduction to Object-
Oriented Analysis and Design, Pearson Press, 1998.

Lawrence Pfleeger, Shari, Software Engineering Theory and Practice, Fourth
Edition, Prentice Hall, Englewood Cliffs, New Jersey, 2009.

Leathrum, J.F., Foundations of Software Design, Reston Publishing Company,
Virginia, USA, 1983.

Lehman, M.M. and L.A. Belady, “Programs Life Cycles and Laws of Software
Evolution,” Proceedings of IEEE, pp. 1060–1076, September 1980.

Ludolph, Frank, Model-based user interface designSuccessive transformations
of a task object model, in User interface designbridging the gap from user
requirements to design, CRC Press, 1998.

Martin, James and Carma McClure, Structured Techniques: The Basis for
CASE, Prentice Hall, Englewood Cliffs, New Jersey, 1988.

Martin, James and James J. Odell, Principles of Object-Oriented Analysis and
Design, Prentice Hall, Englewood Cliffs, New Jersey, 1992.

McCabe, T., “A Complexity Measure,” IEEE Transactions on Software
Engineering, 4(2)
December 1976.

Miller, G.A., “The Magical Number Seven, Plus or Minus Two: Some

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Limits on Our Capacity for Processing Information,” in the
Psychological Review, 63(2), pp. 81-97, March 1956.

Mund, G.B., R. Mall and S. Sarkar, “An Efficient Dynamic Program
Slicing Technique,” Journal of Information and Software
Technology, Elsevier Press, 44(2), pp. 123–132,
March 2002.

Nielson, J. and R.L. Mack, Usability Inspection Methods, John Wiley,
1994.

Orr, K., Structured Requirements Definition, Ken Orr and Associates,
Australia, 1981.

Parnas, D., “On the Criteria to be Used in Decomposing Systems into
Modules,” Communications of the ACM, 15(2), pp. 105–358,
1972.

Pressman, Roger S., Software Engineering, 7th Ed., McGraw-Hill,
New York, 2009.

Putnam, L.H., “A General Empirical Solution to Macro Software
Sizing and Estimation Problem,” IEEE Transactions on Software
Engineering, 4(3), pp. 345–361, 1978.

Rosenberg D., Use Case-Driven Object Modelling with UML, Addison-
Wesley, Reading, Mass., 2000.

Rumbaugh, J., I. Jacobson and G. Booch, The UML Reference
Manual, Addison-Wesley, Reading, Mass., 1999.

Rumbaugh, J., M. Blaha, et al., Object-Oriented Modelling and
Design, Prentice Hall, Englewood Cliffs, New Jersey, 1991.

Sackman H., W.J. Erikson and E.E. Grant “Exploratory
Experimentation Studies Comparing On-line and Off-line
Programming Performance,” Communications of the ACM, 11(1),
pp. 3–11, 1968.

Scheifler, Robert W., Jim Gettys and R. Newman, X Window
System—C Library and Protocol Reference—C Library and , DEC
Press, Bedford, Mass., 1988.

Shlaer, Sally and Stephen J. Mellor, Object Lifecycles: Modeling the

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

World in States, Prentice Hall, Englewood Cliffs, New Jersey, 1992.
Smith, David J. and Kenneth B. Wood, Engineering Quality

Software, Elsevier Science Publishing, New York, 1987.
Somerville, Ian, Software Engineering, 9th ed., Addison-Wesley,

Reading, Mass., 1992.
Ward, P. and S. Mellor, Structured Development of Real-Time

Systems, Prentice Hall, Englewood Cliffs, New Jersey, 1985.
Warnier, J.D., Logical Construction of Programs, Van Nostrand

Reinhold, New York, 1977.
Wirfs-Brock, Rebecca, Brian Wilkerson, Lauren Wiener, Designing

Object Oriented Software, Prentice Hall, Englewood Cliffs, New
Jersey, 1990.

Wirth, N., “Program Development by Stepwise Refinement,”
Communications of the ACM, 14(4), pp. 221–227, 1971.

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

INDEX

Abstract class, 287
Abstraction, 15, 289
Acceptance testing, 436
Activity diagram, 320
Activity networks, 122
Adaptive maintenance, 44
Aggregation, 286, 314
Agile development models, 62
Algebraic specification, 188
Alpha testing, 436
Antipattern, 341
Architectural patterns, 339
Association, 284, 314
Axiomatic specification, 186

Basis path set, 422

Beta testing, 436
Black-box testing, 414
Booch’s object identification method, 357
Boundary value analysis, 415
Branch coverage, 419

Capability maturity model integration, 477
Case, 485
Characteristics of software maintenance, 494
Class, 280
Class diagrams, 311
Class relationships, 281
Class-responsibility-collaborator (CRC)
Cards, 360
Classical waterfall model, 38
Clean room testing, 403
Client-server software, 514
CMM, 473
COCOMO, 101
COCOMO 2, 109
Code inspection, 401, 402
Code review, 400
Code walkthrough, 401
Coding, 398
Coding and unit testing, 43
Coding standards, 399
Cohesion, 208
Collaboration diagram, 319

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

COM/DCOM, 522
Command language-based interface, 378
Compatibility testing, 437
Complete COCOMO, 108
Component adaptation, 505
Component classification, 506
Component creation, 504
Component diagram, 324
Component indexing, 504
Component searching, 505
Component understanding, 505
Composition, 286, 315
Computer systems engineering, 27
Configuration testing, 437
Constraints, 317
Control flow-based design, 18
Control flow graph (CFG), 421
CORBA, 518
Corrective maintenance, 44
Coupling, 208, 211
Creator, 342
Critical path method, 124
Cyclomatic complexity, 423

Data flow diagram (DFD), 224, 225

Data flow-based testing, 425
Data flow-oriented design, 22
Data hiding, 290
Data structure-oriented design, 22
Debugging, 427
Decision table, 181
Decision tree, 180
Decomposition, 16
Delphi cost estimation, 101
Dependency, 287, 316
Deployment diagram, 324
Design, 42
Design patterns, 339
Design review, 253
Detailed design, 253
Direct manipulation interfaces, 378, 381
Documentation testing, 438
Domain modelling, 353
Driver, 413, 414
Dynamic analysis, 429
Dynamic binding, 291

Encapsulation, 290,

Equivalence class partitioning, 414
Equivalent faults, 408
Error seeding, 438
Estimation of maintenance cost, 500

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Evolution of quality systems, 466
Evolutionary model, 57
Executable specification, 193
Expert, 341
Expert judgement, 100
External documentation, 404
Extreme programming model, 66

Failure mode, 408

Feasibility study, 40
Fog index, 405
Formal methods, 182
Function point, 94
Function-oriented design, 214
Functional independence, 208
Functional requirements, 165, 167

Gantt charts, 128
Genericity, 294
Goals of implementation, 165, 167
Grey-box testing of object-oriented programs, 434

Halstead’s software science, 112
High-level design, 43

Idioms, 339
Incremental development model, 55
Inheritance, 281, 316
Integration and system testing, 43
Integration testing, 430
Interaction diagrams, 318
Interaction modelling, 360
Intermediate COCOMO, 107
Internal documentation, 404
ISO 9000, 467
Iterative waterfall model, 46

Layered design, 207, 212
Linearly independent set of paths, 422
Lines of Code (LOC), 92
Low-level design, 43

Maintenance, 44

Maintenance testing, 438
Menu-based interface, 378, 379
Method overriding, 292
Methods, 280
Model view separation patterns, 343
Model-view-controller (MVC) pattern, 346
Modularity, 206
MTTF, 460, 461
MTTR, 461
Multiple condition coverage, 420

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Mutation testing, 426
Non-functional requirements, 165, 166

Object diagrams, 317

Object-orientation concepts, 277
Object-oriented design, 23, 215
Object-oriented design approach, 43
Objects, 277
Observer pattern, 345
Organisation structure, 129

Package diagram, 323

Path coverage, 421
Patterns, 337
Perceived problem complexity, 11
Perfective maintenance, 44
Performance testing, 436
Person-month, 103
Personal software process (PSP), 477
PERT charts, 126
Phase containment of errors, 47
Phase entry and exit criteria, 38
POFOD, 461
Polymorphism, 291
Procedural design approach, 42
Process versus methodology, 35
Process metrics, 467
Product metrics, 467
Program analysis, 428
Programs versus products, 6
Project estimation techniques, 99
Project planning, 89
Prototyping model, 52
Publish-subscribe pattern, 346

Rapid application development, 59

Recovery testing, 438
Regression testing, 438
Reliability growth modelling, 462
Reliability metrics, 460
Repository maintenance, 505, 507
Requirements analysis, 159
Requirements analysis and specification, 42
Requirements gathering, 156
Requirements gathering and analysis, 42
Requirements specification, 42
Risk assessment, 138
Risk identification, 137
Risk management, 136
Risk mitigation, 138
ROCOF, 460

Scheduling, 119

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Scrum model, 69
Security testing, 438
SEI capability maturity model, 473
Sequence diagram, 318
Service-oriented architecture (SOA), 522
Six sigma, 479
Sliding window planning, 90
Smoke testing, 436
Software architecture, 43
Software as a Service (SaaS), 524
Software configuration management, 140
Software crisis, 5
Software development life cycle (SDLC) model, 34
Software documentation, 403
Software life cycle, 34
Software maintenance, 494
Software maintenance process models, 497
Software process improvement and capability determination (SPICE), 477
Software products, 7
Software quality, 464
Software quality management, 465
Software re-engineering, 498
Software reliability, 458
Software requirements specification, 161
Software reuse, 503
Software reverse engineering, 496
Software services, 7
Spiral model, 69
SPMP document, 90
Staff-size estimation, 107
Staffing, 135
Staffing level estimation, 116
State chart diagram, 322
Statement coverage, 419
Static analysis, 428
Statistical testing, 463
Stress testing, 437
Structure chart, 248
Structured analysis, 42, 225
Structured design, 42, 247
Stub, 413
System testing, 435

Team structure, 132

Test documentation, 439
Test suite, 408
Testability, 408
Testing, 405
Top-down decomposition, 214
Transaction analysis, 250
Transform analysis, 249

UML 2.0, 325

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

Unadjusted function points, 95
Unified Modelling Language (UML), 296
Unified process, 349
Unit testing, 413
Usability testing, 438
Use case, 351
Use case model, 302
User interface design, 373

V-Model, 50

Validation, 409
Verification, 409
Visual programming, 384
Volume testing, 437

White-box testing, 417

Widgets, 385
Window manager, 383
Window system, 382
Work breakdown structure, 121

X-Window, 386

******Created by ebook converter - www.ebook-converter.com******

******ebook converter DEMO - www.ebook-converter.com*******

	Title
	Copyright
	Dedication
	Contents
	List_of_Figures
	Preface
	Preface_to_the_First_Edition
	Chapter-01
	Chapter-02
	Chapter-03
	Chapter-04
	Chapter-05
	Chapter-06
	Chapter-07
	Chapter-08
	Chapter-09
	Chapter-10
	Chapter-11
	Chapter-12
	Chapter-13
	Chapter-14
	Chapter-15
	References
	Index

