

Contributing Authors :
Benjamin Jakobus
Damir Arh
Daniel Jimenez Garcia
Mahesh Sabnis
Ravi Kiran
Subodh Sohoni
Yacoub Massad

Technical Reviewers :
Vikram Pendse
Suprotim Agarwal
Subodh Sohoni
Gouri Sohoni
Daniel Jimenez Garcia
Damir Arh

Next Edition : July 2020
Copyright @A2Z Knowledge Visuals
Pvt. Ltd.

Art Director : Minal Agarwal

Editor In Chief : Suprotim Agarwal
(suprotimagarwal@
dotnetcurry.com)

Suprotim Agarwal

COVID-19 - NAVIGATING THE UNCHARTED!

The stock market has tanked, there is a drop in the overall hiring
sentiment, a recession looks likely, and the world is staring at the
biggest pandemic of the century. There isn't a single soul, industry, or
geography that has not been affected by Covid-19.

We have all heard a similar narrative in the past few days!

But once we get past this pandemic, how will we recover from it?
How will it affect the way we design, build and communicate? Will we
depend on technology more than ever to continue with the same pace of
productivity?

Is there a silver lining?

In times of crisis, it can be hard to see past our own noses. So I may not
know a definite answer to most of these questions, but I know of one
thing that has never failed me during crisis.

Learning.

Learning provides insights, comfort and confidence. It ensures your foot
is on the accelerator of your career.

Thankfully, in this connected world, learning resources are easy to
access without leaving your safe abode. There are plenty of free online
resources available, including this magazine, to help you accelerate your
career and growth.

It's hard to focus during a pandemic, but don't give in to emotions.
Use this lockdown to learn some technical, mental, behavioural and
communication skills. Once you have acquired them, teach others. When
this is all over, these skills will create new opportunities for you, and will
help you outshine others.

So Stay safe, Stay Connected and don't worry.

..as this, too, shall pass!

I hope you enjoy this edition! Do write back and share your stories and
learnings of how are you coping in these tough times.

P.S: We could not release the January edition due to a shortage of funds.
If you would like to help your magazine, here's how you can.

Editor in Chief

Reproductions in whole or part prohibited
except by written permission. Email requests
to “suprotimagarwal@dotnetcurry.com”.
The information in this magazine has been
reviewed for accuracy at the time of its
publication, however the information is
distributed without any warranty expressed
or implied.

LETTER FROM
THE EDITOR THE TEAM

Disclaimer :

Windows, Visual Studio, ASP.NET, Azure, TFS &
other Microsoft products & technologies are
trademarks of the Microsoft group of companies.
‘DNC Magazine’ is an independent publication
and is not affiliated with, nor has it been
authorized, sponsored, or otherwise approved by
Microsoft Corporation. Microsoft is a registered
trademark of Microsoft corporation in the United
States and/or other countries.

https://www.dotnetcurry.com/magazine/all-editions

TABLE OF
CONTENTS

USING BLAZOR, TENSORFLOW AND
ML.NET TO IDENTIFY IMAGES

UNIT TESTING ANGULAR SERVICES,
HTTP CALLS AND HTTP INTERCEPTORS

AUTOMATED ACTIONS ON
AZURE MONITOR ALERTS

DEVELOPING CLOUD APPLICATIONS
IN .NET

USING AZURE COGNITIVE SEARCH APIS
IN AN ANGULAR APPLICATION

CODING PRACTICES:
THE MOST IMPORTANT ONES (PART I)

06

34

44

62

80

102

AI
FACT AND FICTION

28

http://www.dotnetcurry.net/s/dncmag-zohoapm-apr20

Every time you
subscribe you help us

deliver upto

10
times the value

SUBSCRIBE US TODAY!

@ $14.99 for a lifetime subscription

www.dotnetcurry.com/magazine/all-editions

http://www.dotnetcurry.com/magazine/all-editions
http://www.dotnetcurry.com/magazine/all-editions
http://www.dotnetcurry.com/magazine/all-editions

BLAZOR & ML.NET

Daniel Jimenez Garcia

The world of .NET has changed rapidly in the

recent years, becoming a modern cross-platform

environment aware of modern challenges. These

challenges in the past were solved traditionally with

the knowledge and expertise of other languages and

frameworks. But today, .NET developers can apply

their strengths and skills to solve complex problems.

For example, today one can use .NET to build a

website without the need for JavaScript or to classify

images with a Machine Learning model. This is

made possible by two recent additions to the .NET

ecosystem, Blazor and ML.NET.

Photo: Sidney Theater

USING BLAZOR,
TENSORFLOW AND
ML.NET TO
IDENTIFY IMAGES

https://dotnet.microsoft.com/apps/aspnet/web-apps/blazor
https://dotnet.microsoft.com/apps/machinelearning-ai/ml-dotnet

 	

7www.dotnetcurry.com/magazine

Blazor is a framework that lets .NET developers build client web applications

entirely in .NET, without the need for a JavaScript framework. It leverages

technologies such as SignalR and WebAssembly in order to support different

hosting models, of which the server-side one based on SignalR is now part of

ASP.NET Core (The client-side WebAssembly model is still experimental).

On the other hand, ML.NET is a new offering from Microsoft that provides an

open source and cross platform framework for Machine Learning. It allows .NET

developers to leverage their existing knowledge and skills while supporting

popular existing Machine Learning technologies such as TensorFlow and ONNX.

Through the rest of the article we will explore how Blazor and ML.NET can be

used to build a sample website that lets users upload images which will be

classified by a pre-trained TensorFlow model using ML.NET. Enjoy!

Figure 1, our target, a Blazor website classifying images with ML.NET

http://www.dotnetcurry.com/magazine/
https://dotnet.microsoft.com/apps/aspnet/web-apps/blazor
https://docs.microsoft.com/en-gb/aspnet/core/signalr/introduction?view=aspnetcore-3.1
https://webassembly.org/
https://docs.microsoft.com/en-gb/aspnet/core/blazor/hosting-models?view=aspnetcore-3.1
https://dotnet.microsoft.com/apps/machinelearning-ai/ml-dotnet
https://www.tensorflow.org/
https://onnx.ai/

8	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

You can find the entire source code on GitHub.

Creating the ML.NET model

Machine Learning lets you use existing well-known data in order to create a model, which can later be used
with previously unseen data to make predictions.

For example, one can use a pre-classified set of images with objects in them (a canoe, a teddy bear, a coffee
pot, etc.) and create a model that can be used to identify the object in an image. The act of building a
model is called training a model, and the data used to train it is called the training dataset.

The ML.NET framework provides an API that lets developers implement the following workflow:

•	 Define the data schema, for example a bitmap image

•	 Define transformations over the initial data, for example resizing the image and extracting the pixels

•	 Train the model using a training dataset, the defined transformations and one of the available
algorithms.

•	 Evaluate the accuracy and precision of the model using a second dataset, the evaluation dataset (which
is different from the training dataset!)

•	 Save the model so it can be used to make future predictions

You can see a simple example that puts together all these concepts in the official docs.

Creating an ML.NET model using an existing TensorFlow model

As mentioned in the introduction, ML.NET is compatible with TensorFlow, one of the most popular
frameworks for building Machine Learning models. You can use an existing TensorFlow model as the
starting point to derive further knowledge, as in this article of the docs. However, you can also use ML.NET
to simply load an existing TensorFlow model and use it to make predictions.

In this article, we will implement an application that follows an idea similar to this excellent article by
Cesar de la Torre. We will use an existing TensorFlow model that has been trained for image recognition so
it can identify the object in a given image and classify it into one of 1000 different categories. This model
follows the Google’s Inception architecture, and has been trained on a popular academical dataset for
image recognition called ImageNet. While you could train the model yourself, for example following the
instructions from TensorFlow’s official Github, you can also download a fully trained model file from one of
Microsoft’s examples here or from Google. (The important files are the .pb with the model and the .txt with
labels.)

Let’s begin to create our application. Create an empty solution, then add a console project named
ModelBuilder to the solution. Later in the article, we will add a second project to the solution with the
Blazor application.

Once the solution and project are created, we need to install several NuGet packages that will be used to
build the model. Make sure to install all of:

https://github.com/DaniJG/blazor-ml
https://docs.microsoft.com/en-us/dotnet/machine-learning/resources/transforms
https://docs.microsoft.com/en-us/dotnet/machine-learning/resources/tasks
https://docs.microsoft.com/en-us/dotnet/machine-learning/how-does-mldotnet-work
https://www.tensorflow.org/
https://docs.microsoft.com/en-us/dotnet/machine-learning/tutorials/image-classification
https://devblogs.microsoft.com/cesardelatorre/run-with-ml-net-c-code-a-tensorflow-model-exported-from-azure-cognitive-services-custom-vision/
https://arxiv.org/abs/1409.4842
http://www.image-net.org/
https://github.com/tensorflow/models/tree/master/research/inception
https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/DeepLearning_ImageClassification_TensorFlow/ImageClassification/assets/inputs/inception
https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip

 	

9www.dotnetcurry.com/magazine

•	 Microsoft.ML

•	 Microsoft.ML.ImageAnalytics

•	 Microsoft.ML.TensorFlow

•	 SciSharp.TensorFlow.Redist

Next, create a folder named TFInceptionModel and download the pre-trained TensorFlow model files from
Microsoft’s example.

Figure 2, creating the ModelBuilder console application

As the final setup step, we will make sure that the working directory when launching the project is set to
the project folder. This will allow us to reference folders and files relative to the project root in a way that
works regardless whether the project is run with Visual Studio or dotnet run in the console (More info on
this GitHub issue). Update the ModelBuilder.csproj file adding the following entry to the property group:

<RunWorkingDirectory>$(MSBuildProjectDirectory)</RunWorkingDirectory>

Let’s finally begin to add some code. Start by adding a DataModel folder. Inside, create a new class
ImageInputData with the following contents:

public class ImageInputData
{
 [ImageType(224, 224)]
 public Bitmap Image { get; set; }
}

http://www.dotnetcurry.com/magazine/
https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/DeepLearning_ImageClassification_TensorFlow/ImageClassification/assets/inputs/inception
https://github.com/dotnet/project-system/issues/3619#issuecomment-488812563

10	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

This will be our entry to the model we will begin creating next, it simply tells ML.NET that we will use a
bitmap image of 224x224 pixels. This matches the size used to train the downloaded TensorFlow model.

Next add a new ModelBuilder class to the project. This is where we will define the ML.NET model that
will:

1.	 load a bitmap image

2.	 resize it as 224x224 and extract its pixels

3.	 run it through the downloaded TensorFlow model

Following ML.NET’s API, we would define a pipeline with the loading and transformation steps, then train
the model using a training dataset and finally evaluate its accuracy. Since we will be directly using the
pre-trained TensorFlow model, we can skip the training and evaluation steps. The steps to build the model
would then look like:

public ModelBuilder(string tensorFlowModelFilePath, string mlnetOutputZipFilePath)
{
 _tensorFlowModelFilePath = tensorFlowModelFilePath;
 _mlnetOutputZipFilePath = mlnetOutputZipFilePath;
}

public void Run()
{
 // Create new model context
 var mlContext = new MLContext();

 // Define the model pipeline:
 // 1. loading and resizing the image
 // 2. extracting image pixels
 // 3. running pre-trained TensorFlow model
 var pipeline = mlContext.Transforms.ResizeImages(
 outputColumnName: "input",
 imageWidth: 224,
 imageHeight: 224,
 inputColumnName: nameof(ImageInputData.Image)
)
 .Append(mlContext.Transforms.ExtractPixels(
 outputColumnName: "input",
 interleavePixelColors: true,
 offsetImage: 117)
)
 .Append(mlContext.Model.LoadTensorFlowModel(_tensorFlowModelFilePath)
 .ScoreTensorFlowModel(
 outputColumnNames: new[] { "softmax2" },
 inputColumnNames: new[] { "input" },
 addBatchDimensionInput: true));

 // Train the model
 // Since we are simply using a pre-trained TensorFlow model,
 // we can "train" it against an empty dataset
 var emptyTrainingSet =
 mlContext.Data.LoadFromEnumerable(new List<ImageInputData>());
 ITransformer mlModel = pipeline.Fit(emptyTrainingSet);

 // Save/persist the model to a .ZIP file
 // This will be loaded into a PredictionEnginePool by the
 // Blazor application, so it can classify new images

 	

11www.dotnetcurry.com/magazine

 mlContext.Model.Save(mlModel, null, _mlnetOutputZipFilePath);
}

As you can see, we are mostly resizing the images and extracting the pixels into the format used to train
the TensorFlow model (Same size, offset and pixel interleave order), then we simply use the pre-trained
TensorFlow model. If you are curious about the name of the input and output columns, these also need to
match the names used by the TensorFlow model. You can check this out yourself by loading the .pb file into
a TensorFlow explorer such as netron:

Figure 3, inspecting TensorFlow model with Netron to get the input name “input”

Figure 4, inspecting TensorFlow model with Netron to get the output name "softmax2"

http://www.dotnetcurry.com/magazine/
https://lutzroeder.github.io/netron/

12	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

All we have to do now is to modify Program.cs so it calls our ModelBuilder class in order to generate the
model and save it to a .zip file:

static void Main(string[] args)
{
 var tensorFlowModelPath = "TFInceptionModel/tensorflow_inception_graph.pb";
 var mlnetOutputZipFilePath = "PredictionModel.zip";
 var modelBuilder = new ModelBuilder(tensorFlowModelPath, mlnetOutputZipFilePath);
 modelBuilder.Run();

 Console.WriteLine($"Generated {Path.GetFullPath(mlnetOutputZipFilePath)}");
}

You should now be able to build and run the application using either Visual Studio or dotnet run, which
will generate a file named PredictionModel.zip at the root of the project folder.

USING THE ML.NET MODEL TO MAKE
PREDICTIONS
So far, we have created a model and saved it to a .zip file, but we haven’t used it yet to try and identify the
object inside a given image. Let’s see how we can use our model to make predictions!

To begin with, create a new folder SampleImages at the solution root and download the following images
from Microsoft’s example. We will ask the model to classify the first image broccoli.jpg:

Figure 5, a sample broccoli image to try our model

Next, create a new class ImageLabelPredictions inside the DataModel folder. This class simply
represents the output of the model, the array of probabilities assigned to each of the 1000 labels the
model was trained on (Remember we downloaded a txt file with the names of each of the labels):

public class ImageLabelPredictions
{
 [ColumnName("softmax2")]
 public float[] PredictedLabels { get; set; }
}

Now we can follow the instructions available in the ML.NET official docs that explains how to use the
ML.NET model to make predictions. We will add some code at the end of the ModelBuilder.Run method.

https://docs.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/machine-learning-model-predictions-ml-net
https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/DeepLearning_ImageClassification_TensorFlow/ImageClassification/assets/inputs/images
https://docs.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/machine-learning-model-predictions-ml-net#set-up-a-prediction-pipeline

 	

13www.dotnetcurry.com/magazine

Let’s begin by loading the model from the zip file we just created:

DataViewSchema predictionPipelineSchema;
mlModel = mlContext.Model.Load(_mlnetOutputZipFilePath, out
predictionPipelineSchema);

Next we need to create a Prediction Engine from our trained model. This lets us classify one image at a
time, which is enough for our purposes. Check the ML.NET docs for a batch mode example.

var predictionEngine = mlContext.Model
 .CreatePredictionEngine<ImageInputData, ImageLabelPredictions>(mlModel);

As you can see, the engine receives an ImageInputData instance as input and returns an
ImageLabelPredictions output. In order to classify an image, we need to load the image into an
instance of ImageInputData and call the Predict method of the engine:

var image = (Bitmap)Bitmap.FromFile("../SampleImages/broccoli.jpg");
var input = new ImageInputData{ Image = image };
var prediction = predictionEngine.Predict(input);

The output prediction variable is an instance of the ImagePredictionLabel class, containing an array
of 1000 elements. Each element of the array represents the probability assigned by the model to each of
the labels. We can then find the maximum probability and its associated label name:

var maxProbability = prediction.PredictedLabels.Max();
var labelIndex = prediction.PredictedLabels.AsSpan().IndexOf(maxProbability);
var allLabels = System.IO.File.ReadAllLines("TFInceptionModel/imagenet_comp_graph_
label_strings.txt");
var classifiedLabel = allLabels[labelIndex];
Console.WriteLine($"Test image broccoli.jpg predicted as '{classifiedLabel}' with
probability {100 * maxProbability}%");

That’s it! If you build and run the project, you should see an output in the console similar to the following
one:

$ dotnet run
...
Test image broccoli.jpg predicted as 'broccoli' with probability 99.99056%
Generated PredictionModel.zip

Using System.Drawing on Mac or Linux

The code above relies on System.Drawing in order to convert the image into a Bitmap. While
System.Drawing is now part of .NET Core, and thus cross-platform, you may still need to install its
dependencies.

More specifically, you will need to install the GDI+ libraries for your system. You can try the following
commands:

Linux
sudo apt install libc6-dev
sudo apt install libgdiplus
Mac
brew install mono-libgdiplus

http://www.dotnetcurry.com/magazine/
https://docs.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/machine-learning-model-predictions-ml-net#single-prediction
https://docs.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/machine-learning-model-predictions-ml-net#set-up-a-prediction-pipeline
https://www.hanselman.com/blog/HowDoYouUseSystemDrawingInNETCore.aspx

14	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

Integrating the ML.NET model in a Blazor website

So far, we have created a console application which creates a Machine Learning model and saves it as a
zip file. ML.NET provides the necessary APIs to integrate the model in any application in order to make
predictions with it. In this second half of the article, we will integrate the model within a Blazor application
so users can upload images which will be identified using the previously generated model.

Begin by adding a new server-side Blazor project to the solution, named BlazorClient. Once generated,
install the following NuGet packages. We will use them to upload files and to use the ML.NET model:

•	 Microsoft.Extensions.ML

•	 BlazorInputFile (It’s in prerelease so it won’t show in the Visual Studio NuGet unless you check “Include
prerelease”)

After installing BlazorInputFile, update the _Host.cshtml file located inside the Pages folder. You will need
to add its JavaScript file right before the closing </body> tag:

<script src="_content/BlazorInputFile/inputfile.js"></script>

We will also need to add a reference to the ModelBuilder project. From the BlazorClient, we will use the
ImageInputData and ImagePredictionLabels classes as the input/output of the model prediction
engine respectively.

Deploy model and label files to the bin folder

In order to use the generated model, we will need to use both the zip and label files. ML.NET provides an
API to load models both from the local file system or a remote network location. To keep things simple, we
will load it from the local file system.

Update the .csproj file of the ModelBuilder project so both the generated zip model and labels file are
copied to the output folder:

<ItemGroup>
 <None Update="PredictionModel.zip">
 <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
 </None>
 <None Update="TFInceptionModel\imagenet_comp_graph_label_strings.txt">
 <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
 </None>
</ItemGroup>

After this change, whenever we build the BlazorClient, the model and labels will be copied to the output
folder alongside the ModelBuilder DLL.

https://docs.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/save-load-machine-learning-models-ml-net#load-a-model-stored-locally
https://docs.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/save-load-machine-learning-models-ml-net#load-a-model-stored-remotely

 	

15www.dotnetcurry.com/magazine

Figure 6, ModelBuilder DLL, model zip file and labels copied to the output folder

This way we will read both model and labels file from the local file system. The only thing we need is a
little utility to get the full path to a file inside the current bin folder (as opposed to the entry folder where
dotnet run was called). Create a small utility class PathUtilities since we will need it in a couple of
places:

public class PathUtilities
{
 public static string GetPathFromBinFolder(string relativePath)
 {
 FileInfo _dataRoot = new FileInfo(typeof(Program).Assembly.Location);
 string assemblyFolderPath = _dataRoot.Directory.FullName;

 string fullPath = Path.Combine(assemblyFolderPath, relativePath);
 return fullPath;
 }
}

http://www.dotnetcurry.com/magazine/

16	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

Setting up a Prediction Engine Pool

In the previous section we saw how we could create a Prediction Engine and use it to make predictions,
identifying objects in new images. The approach worked fine while we had a console application and used
the model with one image at a time.

However, the Prediction Engine is not thread safe. This means we need a slightly different approach in the
context of a Blazor application, which is inherently multi-threaded like any other ASP.NET web application.
Luckily, ML.NET already provides a thread safe solution designed to be used in the context of web
applications and services, the Prediction Engine Pool.

Setting up the Prediction Engine Pool is very straightforward, with ML.NET providing the necessary
dependency injection extensions. Add the following registration to the ConfigureServices method of the
Startup class:

services.AddPredictionEnginePool<ImageInputData, ImageLabelPredictions>()
 .FromFile(PathUtilities.GetPathFromBinFolder("PredictionModel.zip"));

It is as simple as it looks. We register a Prediction Engine Pool by telling ML.NET where to find the zip file
with the model and which specific classes are to be used as input/output when making predictions.

When registering the engine pool, ML.NET lets you load the model both from the local file system (using
the FromFile extension method) or a network location (using the FromUri extension method). In both
cases, optional parameters let you automatically reload the model whenever a new version of the model is
published, either using a FileSystemWatcher or polling the network location.

Once registered, we can inject instances of PredictionEnginePool<ImageInputData,
ImageLabelPredictions>, the class which exposes the Predict method that will let us identify images.

Creating a prediction service

Now that we have registered the PredictionEnginePool, we could directly use it from a Blazor page/
component via the @inject directive. However, as we saw earlier when testing the generated model,
there is a bit of boilerplate needed to use the Predict method. We need to load the image into a Bitmap,
create the ImageInputData instance, call the Predict method and finally find the label with the highest
probability and map it to the actual label name.

Let’s instead create a service class where we can hide these details. Begin by creating a new class
ImageClassificationResult inside the existing Data folder. Rather than using the raw model output,
which contains an array of 1000 probabilities (one per label) which has to be interpreted, our service will
return a simpler class with the name of the highest probability label and its actual probability:

public class ImageClassificationResult
{
 public string Label { get; set; }
 public float Probability { get; set; }
}

https://docs.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/serve-model-web-api-ml-net#register-predictionenginepool-for-use-in-the-application

 	

17www.dotnetcurry.com/magazine

Now let’s create the service class that encapsulates the boilerplate needed to run the model. Add an
ImageClassificationService class also inside the Data folder with the following contents:

public ImageClassificationService(PredictionEnginePool<ImageInputData,
ImageLabelPredictions> predictionEnginePool)
{
 _predictionEnginePool = predictionEnginePool;
 // Read the labels from txt file available in the output bin folder
 string labelsFileLocation = PathUtilities.GetPathFromBinFolder(
 Path.Combine("TFInceptionModel", "imagenet_comp_graph_label_strings.txt"));
 _labels = System.IO.File.ReadAllLines(labelsFileLocation);
}

public ImageClassificationResult Classify(MemoryStream image)
{
 // Convert to image to Bitmap and load into an ImageInputData
 Bitmap bitmapImage = (Bitmap)Image.FromStream(image);
 ImageInputData imageInputData = new ImageInputData { Image = bitmapImage };

 // Run the model
 var imageLabelPredictions = _predictionEnginePool.Predict(imageInputData);

 // Find the label with the highest probability
 // and return the ImageClassificationResult instance
 float[] probabilities = imageLabelPredictions.PredictedLabels;
 var maxProbability = probabilities.Max();
 var maxProbabilityIndex = probabilities.AsSpan().IndexOf(maxProbability);
 return new ImageClassificationResult()
 {
 Label = _labels[maxProbabilityIndex],
 Probability = maxProbability
 };
}

The service receives the PredictionEnginePool through dependency injection. It also reads the labels
file once as part of the constructor, so they are already loaded in memory by the time an image needs to be
classified.

The implementation of the Classify method follows the very same steps we took when testing the
generated model as part of the ModelBuilder project. The main difference is that we receive the image as
an instance of MemoryStream, which is then transformed into a Bitmap using the System.Drawing utilities
(with the system dependencies we already saw in the case of Mac and Linux). Using a MemoryStream will
let us easily integrate with the code that will receive user uploaded images from a Blazor page.

Finally, let’s register the service within the dependency injection container so it can be later injected into
the Blazor pages/components. Add the following line to the ConfigureServices method of the Startup
class:

services.AddSingleton<ImageClassificationService>();

http://www.dotnetcurry.com/magazine/

18	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

Uploading images

It is time to start building the user interface using Blazor. Let’s add a new Razor component named
Identify.razor inside the Pages folder. This page will let users upload one or multiple images using the
BlazorInputFile component, so if you haven’t yet installed it using NuGet, do so now.

@page "/identify"
@using System.Collections.Generic
@using BlazorClient.Data
@using BlazorInputFile

<div class="container">
 <h1>Identify image</h1>

 <p>
 This component allows sending an image to run the image recognition model.
 Select an image to start the upload and recognition process.
 </p>
 <form>
 <InputFile multiple OnChange="OnImageFileSelected" accept="image/*"/>
 </form>

 <div class="row my-4">
 @foreach (var image in selectedImages)
 {
 <div class="col-4">
 <p>@image.Name</p>
 </div>
 }
 </div>
</div>

@code {
 List<IFileListEntry> selectedImages = new List<IFileListEntry>();

 void OnImageFileSelected(IFileListEntry[] files)
 {
 selectedImages.AddRange(files);
 }
}

You can also add a link to your new page in the left-hand menu of the website. Simply edit the
NavMenu.razor file located inside the Shared folder, adding a new item that navigates to the /identify
route associated with the page you just created:

<li class="nav-item px-3">
 <NavLink class="nav-link" href="identify">
 Identify image
 </NavLink>

Right now, this results in a very uninteresting page that lets users select the image files, the names of
which are then rendered in the page.

http://blog.stevensanderson.com/2019/09/13/blazor-inputfile/

 	

19www.dotnetcurry.com/magazine

Figure 7, the first unimpressive iteration of our page

There are a few interesting details though!

As we already mentioned, we use the BlazorInputFile component for users to select files which will then be
uploaded to the server.

Notice how we have added the accept="image/*" attribute to the InputFile component exposed by
BlazorInputFile. While this isn’t a property specifically allowed by the Blazor component, it uses a property
dictionary in order to capture all the additional unknown properties which are then added directly to the
HTML input element. Read more about this technique in the Blazor docs.

We have also added an event handler for its OnChange event, where we have access to an array of
IFileListEntry. Each IFileListEntry instance contains information about an individual file
selected by the user, including a Data property of type Stream. We will later use this property in order
to upload the image to the server into a MemoryStream instance that can be then used with the
ImageClassificationService. This piece, which we will be needing in a moment, looks as follows:

var file = files.FirstOrDefault();
var downloadedFileData = new MemoryStream();
await file.Data.CopyToAsync(downloadedFileData);

Let’s now create a model class that identifies each selected image. This model will contain the code seen in
the previous paragraph that lets us upload the image from the IFileListEntry into a MemoryStream, as
well as a property with the classification result.

Note: Apart from keeping the page/component code cleaner, using a specific model class will let us extract/
process the data we need from the IFileListEntry. We will later see how this will come really handy as we
add a button for users to remove one of the uploaded files, which can cause Blazor to destroy and re-initialize

http://www.dotnetcurry.com/magazine/
http://blog.stevensanderson.com/2019/09/13/blazor-inputfile/
https://docs.microsoft.com/en-us/aspnet/core/blazor/components?view=aspnetcore-3.1#attribute-splatting-and-arbitrary-parameters

20	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

some components.

Add a new class SelectedImage inside the Data folder:

public class SelectedImage
{
 private IFileListEntry _file;
 public ImageClassificationResult ClassificationResult { get; set; }
 public string Name => _file.Name;

 public SelectedImage(IFileListEntry file)
 {
 _file = file;
 }

 public async Task<MemoryStream> Upload()
 {
 var fileStream = new MemoryStream();
 await _file.Data.CopyToAsync(fileStream);
 return fileStream;
 }
}

Now update the Blazor page so it stores a list of SelectedImage instead of IFileListEntry:

List<SelectedImage> selectedImages = new List<SelectedImage>();

void OnImageFileSelected(IFileListEntry[] files)
{
 selectedImages.AddRange(
 files.Select(f => new SelectedImage(f)));
}

Creating a child component for individual images

We are now ready to create a specific Blazor component that will render an individual image and its
ML.NET classification result. This will follow a classic parent-child relationship between the previous
Identify.razor page and the new child component.

Add a new IdentifyImage.razor component inside the Shared folder. For now, the component will receive a
SelectedImage as parameter and will render a bootstrap card (The Blazor project template comes with
Bootstrap4 CSS framework preconfigured) with the name of the file:

@using BlazorClient.Data

<div class="card mb-2">
 <div class="card-header">
 @Image.Name
 </div>
 <div class="card-body">
 We will render here the classification result
 </div>
</div>

@code {
 [Parameter]

https://getbootstrap.com/docs/4.4/components/card/

 	

21www.dotnetcurry.com/magazine

 public SelectedImage Image { get; set; }
}

This way we can update the template of the parent Identify.razor page so it renders this component for
each of the images:

@foreach (var image in selectedImages)
{
 <div class="col-4">
 <IdentifyImage Image="image" />
 </div>
}

You should see something like the following screenshot:

Figure 8, the page now using a child component for each individual file

Let’s now allow users to remove one of the uploaded images. This is a good excuse to study how a child
can communicate back to its parent, since the child IdentifyImage.razor component needs to let the parent
Identify.razor page know which image should be removed.

Update the IdentifyImage.razor component with a new EventCallback parameter and a method to trigger
it:

[Parameter]
public EventCallback<SelectedImage> OnClear { get; set; }

async Task TriggerOnClear()
{
 await OnClear.InvokeAsync(Image);
}

http://www.dotnetcurry.com/magazine/
https://docs.microsoft.com/en-us/aspnet/core/blazor/components?view=aspnetcore-3.1#eventcallback

22	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

Now update the component template with a button whose click event will execute the TriggerOnClear
method:

<p class="card-text">
 <button class="btn btn-secondary" @onclick="TriggerOnClear">Clear</button>
</p>

The changes in the child IdentifyImage.razor component are finished. Now we need to listen to the
EventCallback in the parent component, which should remove the image from the list of selected
images.

First add a new method to be triggered by the callback:

void OnClear(SelectedImage image)
{
 selectedImages.Remove(image);
}

Then update the template in order to bind the method to the EventCallback.

<IdentifyImage @key="image" Image="image" OnClear="OnClear" />

Notice the usage of the @key special directive. This directive is critical for Blazor to be able to minimize
the work needed when removing elements, as described in its official docs.

Note: Even with this directive, I have been surprised by Blazor recreating component instances which were not
affected. For example, given a list of 3 images, removing the second image will result on the component for the
3rd image to be removed and recreated! Make sure to take this into account when relying on component lifecycle
events.

If you build and run, the page should look similar to the following screenshots, where users are able to
upload multiple files, which can later be removed:

Figure 9, updated page and component allowing users to remove uploaded images

https://docs.microsoft.com/en-us/aspnet/core/blazor/components?view=aspnetcore-3.1#use-key-to-control-the-preservation-of-elements-and-components
https://docs.microsoft.com/en-us/aspnet/core/blazor/lifecycle?view=aspnetcore-3.1
https://docs.microsoft.com/en-us/aspnet/core/blazor/lifecycle?view=aspnetcore-3.1

 	

23www.dotnetcurry.com/magazine

Using the Classification service from the individual image component

It is now time to join all the pieces and run the image classification model for each of the uploaded images.
All we need to do is:

•	 Inject the ImageClassificationService into the image component

•	 Upload the image into a MemoryStream, using the Upload method of the SelectedImage class

•	 Run the Classify method of the service, rendering the result in the card body

Begin by injecting the service into the IdentifyImage.razor component:

@inject ImageClassificationService ClassificationService

Then we will run the image classification during the component initialization, one of its lifecycle events. We
will store the result in the ClassificationResult property of the SelectedImage class.:

protected override async Task OnInitializedAsync()
{
 if (Image.ClassificationResult != null) return;
 using(var fileStream = await Image.Upload())
 {
 Image.ClassificationResult = ClassificationService.Classify(fileStream);
 }
}

Notice how we do nothing when the image has already been classified. This prevents us from re-running
the model if Blazor recreates the component.

Finally, update the component template in order to render the classification result. In case the result
isn’t ready, we will render some text letting the user know that the upload and classification process is in
progress. Add the following elements inside the card-body element of the template:

<p class="card-text text-center my-2">
 @if (Image.ClassificationResult != null)
 {
 @:Classified as @Image.ClassificationResult.Label
 @:with @Image.ClassificationResult.Probability probability
 }
 else
 {
 Processing...
 }
</p>

Rebuild and run the Blazor application. You should finally be able to upload and classify images, as in the
following screenshot:

http://www.dotnetcurry.com/magazine/
https://docs.microsoft.com/en-us/aspnet/core/blazor/lifecycle?view=aspnetcore-3.1

24	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

Figure 10, classifying uploaded images

Polishing the UX by rendering each image and adding and upload
progress indicator

While the app is perfectly functional, the UX is very rough. Fortunately, we can improve it with some simple
changes.

First, we can render the uploaded image, which will make the UX much nicer. We can update the
SelectedImage class so we capture the base64 string of the uploaded image. This way, we will be able to
add an HTML img element that renders said base64 string.

public string Base64Image { get; private set; }

public async Task<MemoryStream> Upload()
{
 ... earlier method contents ...

 // Get a base64 so we can render an image preview
 Base64Image = Convert.ToBase64String(fileStream.ToArray());
 return fileStream;
}

Now update the template of the IdentifyImage.razor component and add the following img element right
before the card-body element:

https://stackoverflow.com/questions/8499633/how-to-display-base64-images-in-html

 	

25www.dotnetcurry.com/magazine

@if (Image.Base64Image != null)
{
 <img src="data:image/png;base64, @Image.Base64Image" class="card-img-top" alt="@
Image.Name">
}

That’s it, the uploaded images will now be rendered as well.

Figure 11, rendering uploaded images

The final improvement we will make is to show a Bootstrap progress bar that gives the user feedback on
the upload progress.

Update the SelectedImage class with a new read-only property that returns the uploaded percentage by
calculating how many of the total file bytes have been read so far:

public double UploadedPercentage => 100.0 * _file.Data.Position / _file.Size;

Next update the template of the IdentifyImage component so it renders the progress bar using the
calculated percentage:

<div class="progress">
 <div class="progress-bar" role="progressbar"
 style="width: @Image.UploadedPercentage%"
 aria-valuenow="@Image.UploadedPercentage"
 aria-valuemin="0"
 aria-valuemax="100"/>
</div>

http://www.dotnetcurry.com/magazine/
https://getbootstrap.com/docs/4.4/components/progress/

26	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

However, if you build and run the project, you will notice that the bar is stuck at 0 during a file upload! That
is because Blazor doesn’t know it needs to update the UX during the file upload. In cases like this, we need
to notify Blazor that component dependent state has changed by invoking the StateHasChanged method.

Update the Upload method of the SelectedImage class so we can provide an Action to be invoked to
report progress:

public async Task<MemoryStream> Upload(Action OnDataRead)
{
 EventHandler eventHandler = (sender, eventArgs) => OnDataRead();
 _file.OnDataRead += eventHandler;

 ... existing code ...

 _file.OnDataRead -= eventHandler;
 return fileStream;
}

Then update the OnInitializedAsync method of the IdentifyImage.razor component so it invokes the
StateHasChanged method during the upload process:

await Image.Upload(() => InvokeAsync(StateHasChanged))

This way, Blazor now has to update the UX during the upload process. If you build and run the project, you
should finally see a working progress bar.

Figure 12, giving feedback on the upload process with a progress bar

https://docs.microsoft.com/en-us/aspnet/core/blazor/lifecycle?view=aspnetcore-3.1#state-changes

 	

27www.dotnetcurry.com/magazine

Conclusion

It is a very interesting time to be a .NET developer. Thanks to Blazor and ML.NET, we have seen how
leveraging your current C# and .NET skills, it is now possible to build a SPA web application and a Machine
Learning model that lets you identify objects in images.

Microsoft seems really excited about both technologies, not without a reason. These were areas
traditionally outside the scope of .NET developers, who at best had to master additional skills, and at worse
would avoid them.

While currently they are not as fully featured as established SPA and Machine Learning solutions, they are
already perfectly functional and have been designed so they are extensible and compatible with existing
technologies.

I can’t wait to see how far Microsoft and communities like ours, can push them!

Author
Daniel Jimenez Garcia

Daniel Jimenez Garcia is a passionate software developer with 10+ years of experience. He started as
a Microsoft developer and learned to love C# in general and ASP MVC in particular. In the latter half
of his career he worked on a broader set of technologies and platforms while these days is particularly
interested in .Net Core and Node.js. He is always looking for better practices and can be seen answering
questions on Stack Overflow.

Thanks to Damir Arh for reviewing this article.

Download the entire source code from GitHub at

bit.ly/dncm46-blazorml

http://www.dotnetcurry.com/magazine/
http://www.dotnetcurry.com/author/damir-arh
http://bit.ly/dncm46-blazorml

28	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

“the scenes in our life resemble

pictures in a rough mosaic; they

are ineffective from close up,

and have to be viewed from

a distance if they are to seem

beautiful”.

... Schopenhauer

As beautiful as this quote is, when it comes to
artificial intelligence, the opposite is true.

The mosaic seems rough and simple from far away.
Only by moving up closer, do we see the intricacies
and complexity of the individual stones that make
up the bigger picture.

Maybe it was the treacherous illusion of simplicity,
caused by standing far away from the mosaic, that
gave rise to the exorbitant speculations about
Artificial Intelligence (AI) back in the 40s and 50s.

Experts and IT moguls predicted that, within the
span of a few years,
•	 computers would pass the Turing test,

•	 would be able to learn and use human language,

•	 and even become sentient.

Pundits and professionals alike, have since predicted

•	 the end of spam,

•	 the emergence of humanoids,

•	 mass unemployment due to automation or the
rise of the singularity.

Yet, the more advances we make in the field of
computing, the more obvious it becomes just how far
away we are from achieving even the simplest of these
wild “predictions”.

AI & ML

Benjamin Jakobus

AI FACT AND FICTION

 	

29www.dotnetcurry.com/magazine

Even if you have only ever dabbled your toes in programming, you will know that even the most “basic” of
problems that humans face today, such as arriving at simple decisions or finding the shortest path between
two points on a map, can become very complex very quickly.

The complexities that make a technical solution difficult, tend to only surface as we examine the problem
in detail. Hence my reference to Schopenhauer’s mosaic: the individual problems that our human brain faces
every single day are infinitely more detailed and nuanced than we can see from afar.

The devil always lies in the detail.

This is precisely the reason as to why I am not worried about many of the scary predictions that we hear in
the media today.

An all-powerful artificial intelligence won’t become our overlord within the next few lifetimes, and we are
still a long way away from producing machines that can compete with us on all levels of human existence.
Sure, computing and artificial intelligence have made tremendous advances over the past decades and
changed both industry and society at a fundamental level. But all of these changes still face the same
constraints than they did when the digital computer was first invented.

Our processors have become faster since then, and the chip has become smaller, migrating into every
pocket. We have therefore managed to apply technology to solve a wider range of problems and can use
the technology in different ways. That is, our computer is no longer constrained to cracking Nazi submarine
codes, or calculating the trajectory of ballistic missiles.

But the underlying theory and foundations of computing haven't changed since the 40s.

The likes of Google, Amazon and Microsoft still use machine learning techniques that were invented during
the 50s, 60s and 70s. These techniques work better today only because we have access to more data, and
can store and process this data. But they still face the same problems than they have before: the techniques
apply only to very domain-specific problems.

http://www.dotnetcurry.com/magazine/

30	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

At the same time, our understanding of the world, of intelligence and of how we look at and solve
problems, hasn't drastically changed since the last major scientific breakthroughs of the 19th and 20th
century.

In his book "Homo Deus", Noah Yuval Harari eloquently pointed out that humanity tends to describe and
view the world in terms of the prominent technology of its age. When the steam engine was invented,
we looked at the world in very mechanical terms. Biologists and doctors described the human body using
terms such as "valves" and "pressure".

Today, everything is an algorithm or a computer program.

The human mind has become a "software"; our body is “the hardware”; by cooking using a recipe we are
"following an algorithm", and suicide is no longer against our "nature" but "against our programming". We
view the world through one lens, until we have exhausted all the possible problems that we can solve this
way. Then the next dominant technology will come along, and we throw ourselves into its current, letting it
carry our thought processes along like a log in a big river.

This is a natural process, and indeed is what drives progress. However, it would be foolish to think that, just
because we view the world in the context of the digital computer, we will be able to solve all problems
using it and create digital gods.

This is because some processes simply don’t lend themselves well to machine learning, statistical analysis
or computing in general. Unless we make fundamental advances in the way we deconstruct problems and

 	

31www.dotnetcurry.com/magazine

look at the world, many problems will still remain outside the domain of completely autonomous artificial
intelligences.

The AI Bubble

The recent increase of the use of artificial intelligence by tech giants such as Google is largely due to the
massive expansion of the internet, and the emergence of mobile devices that allow us to remain connected
24/7.

With the generation of massive amounts of data, well-known machine learning techniques can suddenly
be used in completely new ways. From recommending songs for us to listen to, to telling us what books we
might like, notifying our homes of intruders, detecting weapons at airports or automatically adding entries
to our online calendars, AI systems have simplified our lives, produced large amounts of wealth, but also
changed the way we think, communicate and act.

And whilst there still exists much room for the expansion of artificial intelligence, its rise in popularity also
created a new bubble in whose midst we now find ourselves.

Just like the possibility of the wide-spread adoption of the internet in the 1990s and early 2000s gave
rise to the dot com bubble (during which CEOs of tech companies over-promised and under-delivered and
analysts over-valued over-rated companies), the increased popularity of artificial intelligence has resulted
in what an "AI bubble".

Whether you go to University research laboratories or talk a walk down any major city's business district,
everybody is trying to cash in on the promise that "AI will make the world a better place". Academics fall

http://www.dotnetcurry.com/magazine/

32	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

over themselves to try and fit the words "artificial intelligence", "machine learning" or "smart systems" into
their government funding applications or research proposals. Startup founders promise to "automate"
and "optimize" away your daily pains and worries, and established conglomerates move towards "smarter
solutions".

Most of this is smoke and mirrors. Vaporware sold to customers.

Therefore, before buying a new "AI-powered product" or reading articles about "smart systems", ask yourself
whether the problem in question is well suited for AI.

Problems that are effectively solved by AI often involve categorizing or classifying things, searching
large amounts of data quickly or building up profiles of people or organizations by aggregating, cleaning
and analyzing large amounts of data. AI techniques are also great for solving tricky problems such as
scheduling or pathfinding.

And almost always, one requires data. Data that is well-structured and unambiguous along with a problem
definition must be concise with specific objectives.

Author
Benjamin

Benjamin Jakobus is a senior software engineer based in Rio de Janeiro. He graduated with
a BSc in Computer Science from University College Cork and obtained an MSc in Advanced
Computing from Imperial College, London. For over 10 years he has worked on a wide range of
products across Europe, the United States and Brazil. You can connect with him on LinkedIn

Thanks to Suprotim Agarwal for reviewing this article.

https://www.linkedin.com/in/benjaminjakobus/
https://www.dotnetcurry.com/author/suprotim-agarwal

 	

33www.dotnetcurry.com/magazine

http://www.dotnetcurry.com/magazine/
http://www.dotnetcurry.org/r/dnc-csharpbk-mag-nov

34	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

ANGULAR.JS

Ravi Kiran

UNIT TESTING
ANGULAR SERVICES,
HTTP CALLS AND
HTTP INTERCEPTORS

This tutorial will state the importance of unit

testing Angular services. It also explains the

process of unit testing services, HTTP calls and

HTTP interceptors in an Angular application.

 	

35www.dotnetcurry.com/magazine

Angular services contain UI-independent reusable business logic of the application.

This logic could be used at multiple places in the application - say to receive or calculate data to be shown
on the page. So, it is very important to make sure that the logic in the services is correct, or else this could
result in issues at multiple places in the application.

Unit tests can be used to test the services by invoking the functionality directly.

As discussed in a previous article, unit testing can be used to invoke and test the behavior of a piece of
code in isolation. The reusable logic written in services requires this kind of testing, as unit testing provides
ways to test all possible scenarios by sending different types of data to the service methods.

Also, most applications use services to communicate with the backend APIs. It is important to make
sure that the calls to these services are made correctly and their responses are correctly handled in the
application. Unit tests help in checking the correctness in these calls.

Angular framework includes a testing module to test the API calls by providing mock responses. This setup
can be used to effectively test whether the right set of APIs is called with correct parameters, and then test
how the success and failures of the APIs are handled.

This tutorial will provide you with enough knowledge on setting up a test file to unit test a service. And
then it will show how the calls to backend APIs can be unit tested.

Testing Services

The required setup to test any piece of Angular is already included with Angular CLI. My previous article on
testing Angular component goes through details of the setup and explains it. Let’s see how services can be
tested by taking a simple example.

Consider the following service:

@Injectable({
 providedIn: "root"
})
export class CalculationsService {
 add(a: number, b: number): number {
 return a + b;
 }
}

This service is fairly easy to test, as it doesn’t have any dependencies, and the logic executed in the add
method, is adding two numbers. We need to perform the following tasks to test this service:

•	 Get an object of the service

•	 Call the methods to test

•	 Assert the results

The following code snippet gets an object of the CalculationsService:

describe('CalculationsService tests', () => {

http://www.dotnetcurry.com/magazine/
https://www.dotnetcurry.com/angularjs/1463/unit-testing-angular-components
https://www.dotnetcurry.com/angularjs/1463/unit-testing-angular-components
https://www.dotnetcurry.com/angularjs/1463/unit-testing-angular-components

36	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

 let calculationsSvc: CalculationsService;

 beforeEach(inject(
 [CalculationsService],
 (calcService: CalculationsService) => {
 calculationsSvc = calcService;
 }
));
});

The one thing to notice here is that we didn’t add the TestBed setup here. We didn’t do this as
CalculationsService is provided in the root injector. Otherwise, if the service is provided in a module
or in a component, we need to provide the service in the testing module configured with TestBed. The
beforeEach block gets object of the service from the root injector. Now this object can be used to call the
add method and test it.

The following snippet tests the add method:

it("should add two numbers", () => {
 let result = calculationsSvc.add(2, 3);
 expect(result).toEqual(5);
});

Testing a Service with HttpClient

A service with dependencies requires some more amount of setup for testing.

As unit testing is the technique for testing a piece of code in isolation, the dependencies of the service
have to be mocked so the dependency doesn’t become an obstacle while testing. One of the most common
usages of the services is to interact with the backend APIs. It is needless to say that Angular applications
use HttpClient to call the APIs, and Angular provides a mock implementation of this service to make it
easier for the users of HttpClient to unit test their code.

Let’s write unit tests for the DataAccessService used in the article Getting Started with HTTP Client.
Here is the complete code of the service:

import { Injectable } from "@angular/core";
import { Traveller } from "./traveller";
import { HttpClient, HttpErrorResponse } from "@angular/common/http";
import { catchError } from "rxjs/operators";

import { Observable, throwError } from "rxjs";

const DATA_ACCESS_PREFIX: string = "api/travellers";

@Injectable({
 providedIn: 'root'
})
export class DataAccessService {
 constructor(private client: HttpClient) {}

 getTravellers(): Observable<Traveller[]> {
 return this.client.get<Traveller[]>(`${DATA_ACCESS_PREFIX}`).pipe(
 catchError((error: HttpErrorResponse) => {
 return throwError(

https://www.dotnetcurry.com/angularjs/1438/http-client-angular

 	

37www.dotnetcurry.com/magazine

 `Error retrieving travellers data. ${error.statusText || "Unknown"} `
);
 })
);
 }

 deleteTraveller(id: number): Observable<any> {
 return this.client.delete<Traveller>(`${DATA_ACCESS_PREFIX}/${id}`).pipe(
 catchError((error: HttpErrorResponse) => {
 return throwError(
 `Error deleting travellers data. ${error.statusText || "Unknown"} `
);
 })
);
 }

 createTraveller(traveller: Traveller) {
 return this.client.post(`${DATA_ACCESS_PREFIX}`, traveller);
 }

 updateTraveller(traveller: Traveller, id: number) {
 return this.client.patch(`${DATA_ACCESS_PREFIX}/${id}`, traveller);
 }
}

As we can see, this service performs CRUD operations on a list of travelers that are made available through
REST APIs. Let’s set the environment for testing this.

The following snippet does this:

import { TestBed, inject } from "@angular/core/testing";
import {
 HttpClientTestingModule,
 HttpTestingController
} from "@angular/common/http/testing";

import { DataAccessService } from "./data-access.service";
import { Traveller } from "./traveller";

describe("DataAccessService", () => {
 let httpTestingController: HttpTestingController;
 let dataAccessService: DataAccessService;
 let baseUrl = "api/travellers";
 let traveller: Traveller;

 beforeEach(() => {
 TestBed.configureTestingModule({
 imports: [HttpClientTestingModule]
 });

 httpTestingController = TestBed.get(HttpTestingController);
 traveller = {
 id: 2,
 firstName: "John",
 lastName: "Kelly",
 city: "Boston",
 country: "USA",
 age: 18
 };
 });

http://www.dotnetcurry.com/magazine/

38	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

 beforeEach(inject(
 [DataAccessService],
 (service: DataAccessService) => {
 dataAccessService = service;
 }
));
});

The above snippet does the following tasks:

•	 Imports the required objects. The HttpClientTestingModule and HttpTestingController are
vital for testing the behavior of HttpClient.

o	 The HttpClientTestingModule includes a mock implementation of HttpClient service, which
doesn’t make the actual XHR calls, instead it provides a way to inspect the calls attempted

o	 The HttpTestingController provides APIs to make sure that the HTTP calls are made, to provide
mock response to the calls and to flush the requests, so that the subscribers of the observables would
be invoked

•	 Configures the testing module by importing the HttpClientTestingModule and gets the object of
HttpTestingController

•	 Creates a mock traveler object which will be used in the tests

•	 Gets object of the DataAccessService

Now we have everything required to test the service. Let’s write a test to check the correctness of
getTravellers method.

it("should return data", () => {
 let result: Traveller[];
 dataAccessService.getTravellers().subscribe(t => {
 result = t;
 });
 const req = httpTestingController.expectOne({
 method: "GET",
 url: baseUrl
 });

 req.flush([traveller]);

 expect(result[0]).toEqual(traveller);
});

The above test calls the getTravellers method and expects a GET call to be made to the baseUrl. Then
it flushes the request with the data to be returned. This is when the call is completed and the subscribe
method is called. At the end, it inspects if the request returned the correct data.

The getTravellers method should throw an error when the API fails. The HTTP failure case can be
emulated using HttpTestingController. For this, we need to flush the request with an error message
and a failure HTTP status instead of returning the data. The following snippet tests the failure case of
getTravellers method:

it("should throw error", () => {

 	

39www.dotnetcurry.com/magazine

 let error: string;
 dataAccessService.getTravellers().subscribe(null, e => {
 error = e;
 });

 let req = httpTestingController.expectOne("api/travellers");
 req.flush("Something went wrong", {
 status: 404,
 statusText: "Network error"
 });

 expect(error.indexOf("Error retrieving travellers data") >= 0).toBeTruthy();
});

Notice the difference in handling the observable returned from the getTravellers method. We passed
null for a success callback, as we know that this observable will never succeed. The error callback assigns
the error to a variable so that it can be asserted.

The other methods of DataAccessService can be tested in the same way. Let’s test the
createTraveller method to see how to test a POST call. This method should pass the object it receives
to the REST API. The following snippet shows the unit test for this:

it("should call POST API to create a new traveller", () => {
 dataAccessService.createTraveller(traveller).subscribe();

 let req = httpTestingController.expectOne({ method: "POST", url: baseUrl });
 expect(req.request.body).toEqual(traveller);
});

The updateTraveller method invokes the PATCH API to update a traveler. We can test this method to
check if the right parameter and body are sent to the API. The following snippet shows this test:

it("should call patch API to update a traveller", () => {
 dataAccessService.updateTraveller(traveller, traveller.id).subscribe();

 let req = httpTestingController.expectOne({
 method: "PATCH",
 url: `${baseUrl}/${traveller.id}`
 });
 expect(req.request.body).toEqual(traveller);
});

I leave the testing of deleteTraveller method as an assignment to the readers. You can also check the
sample code to see how it is done.

Testing HTTP Interceptors

HTTP Interceptors are used to handle the tasks that have to be performed with every request going out of
the application. Any mistake in the behavior of the interceptor may cause problems in every API request.
Some of you may have started thinking how to do this, as interceptors are not directly invoked. They can be
tested in the same way as they are used. We can make a request and see if the interceptor is invoked and
performs the right action.

Let’s consider the following interceptor:

http://www.dotnetcurry.com/magazine/
http://bit.ly/dncm46-angularunittesting

40	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

@Injectable()
export class LoggingInterceptorService implements HttpInterceptor {
 constructor(private logger: LoggerService) {}

 intercept(
 req: HttpRequest<any>,
 next: HttpHandler
): Observable<HttpEvent<any>> {
 req.headers.set('Authorization', 'auth-token');
 this.logger.info(`Calling API: ${req.url}`);
 return next.handle(req).pipe(
 tap(
 (data: HttpEvent<any>) => {
 this.logger.success(`Call to the API ${req.url} succeeded`);
 },
 (error: HttpErrorResponse) =>
 this.logger.error(`Call to the API ${req.url} failed with status ${error.
status}`)
)
);
 }
}

The above interceptor logs messages when a request is made, a request succeeds or when a request fails. It
uses the service LoggerService to log these messages. It also sets the Authorization token in the header
of every request. For demo purpose, the above service assigns a hard-coded token; but in real life this
token has to be read from localstorage or any place where the token is persisted before it is assigned to the
header.

Setup for testing the LoggingInterceptor will involve the following:

•	 Creating a mock for LoggingService

•	 Configuring the testing module with:

o	 HttpTestingModule imported to the test module
o	 Providing the interceptor and the mock logging service

•	 Get the references of HttpClient and HttpTestingController to make requests and to inspect
them

The following snippet shows this setup:

import { TestBed } from "@angular/core/testing";
import {
 HttpClientTestingModule,
 HttpTestingController
} from "@angular/common/http/testing";
import { HTTP_INTERCEPTORS, HttpClient } from "@angular/common/http";
import { LoggingInterceptorService } from "./logging-interceptor.service";
import { LoggerService } from "./logger.service";

describe("LoggingInterceptorService tests", () => {
 let httpTestingController: HttpTestingController,
 mockLoggerSvc: any,
 httpClient: HttpClient;

 	

41www.dotnetcurry.com/magazine

 beforeEach(() => {
 mockLoggerSvc = {
 info: jasmine.createSpy("info"),
 success: jasmine.createSpy("success"),
 error: jasmine.createSpy("error")
 };

 TestBed.configureTestingModule({
 imports: [HttpClientTestingModule],
 providers: [
 {
 provide: HTTP_INTERCEPTORS,
 useClass: LoggingInterceptorService,
 multi: true
 },
 {
 provide: LoggerService,
 useValue: mockLoggerSvc
 }
]
 });

 httpClient = TestBed.get(HttpClient);
 httpTestingController = TestBed.get(HttpTestingController);
 });
});

Every test will make an HTTP request using httpClient and then flush the request using
httpTestingController, so the request is completed and then the test will assert the behavior.

For every request made, the interceptor logs an info message and sets the Authorization header. Let’s write
our first test to check if this is done correctly. The following snippet shows the test:

it("should log a message when an API is called and set the authorization header",
() => {
 httpClient.get("api/travellers").subscribe();

 let req = httpTestingController.expectOne("api/travellers");
 req.flush([]);

 expect(mockLoggerSvc.info).toHaveBeenCalled();
 expect(mockLoggerSvc.info).toHaveBeenCalledWith(
 "Calling API: api/travellers"
);
 expect(req.request.headers.get("Authorization")).toBeDefined();
});

As we see, the interceptor is not directly invoked here, rather its behavior is tested in the same way as it
would run in an actual application.

Let’s write one more test to check if the interceptor logs the success message when an API succeeds. The
following test shows this:

it("should log a success message when the API call is successful", () => {
 httpClient.get("api/travellers").subscribe();

 let req = httpTestingController.expectOne("api/travellers");
 req.flush([]);

http://www.dotnetcurry.com/magazine/

42	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

 expect(mockLoggerSvc.success).toHaveBeenCalled();
 expect(mockLoggerSvc.success).toHaveBeenCalledWith(
 "Call to the API api/travellers succeeded"
);
});

Testing the API failure case is much similar to the success case. The only difference will be that now we
have to fail the request by passing an HTTP error code. The following snippet shows the failure case:

it("should log an error message when the API call fails ", () => {
 httpClient.get('api/travellers').subscribe();

 let req = httpTestingController.expectOne("api/travellers");
 req.error(null, { status: 404 });

 expect(mockLoggerSvc.error).toHaveBeenCalled();
 expect(mockLoggerSvc.error).toHaveBeenCalledWith(
 "Call to the API api/travellers failed with status 404"
);
});

Conclusion

Unit testing is a vital part of software development. Because of its detailed and low-level nature, it helps in
finding bugs early and fixing them.

Angular Services are created for reusability of data or business logic in an application, so it is important
to make sure that the services work correctly. This tutorial explained how services, HTTP requests and
the HTTP interceptors can be tested. I hope these techniques help in writing better tests in your Angular
applications.

If you have any additional thoughts on Angular unit testing, please leave a comment if you are reading a
web version of this article, or reach out to me on twitter.

Author
Ravi Kiran

Ravi Kiran is a developer working on Microsoft Technologies at Hyderabad. These days, he is
spending his time on JavaScript frameworks like AngularJS, latest updates to JavaScript in ES6 and
ES7, Web Components, Node.js and also on several Microsoft technologies including ASP.NET 5,
SignalR and C#. He is an active blogger, an author at SitePoint and at DotNetCurry. He is rewarded
with Microsoft MVP (Visual Studio and Dev Tools) and DZone MVB awards for his contribution to the
community. Ravi is also a Google Developer Expert.

Thanks to Damir Arh for reviewing this article.

Download the entire source code from GitHub at

bit.ly/dncm46-angularunittesting

https://twitter.com/sravi_kiran
http://www.dotnetcurry.com/author/damir-arh
http://bit.ly/dncm46-angularunittesting

https://www.dotnetcurry.com/magazine/

44	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

AZURE DEVOPS

Subodh Sohoni

AUTOMATED ACTIONS
ON
AZURE MONITOR
ALERTS

Operations is an integral part of DevOps.

One of the main tasks of Operations is to monitor the
health of the application and take corrective actions
if it is not up to the mark. These activities are usually
done by a set of people in the organization called the
Operations group.

As per the guidelines of DevOps, the responsibility
of “operations” should no longer be on an external
group (like the Operations group), but should be a
part of the responsibilities given to the DevOps team.

 	

45www.dotnetcurry.com/magazine

To make Operations more reliable, we can automate the monitoring of activities, and appropriate actions.
The automation of operations may involve the following:

•	 monitor health of the application and the environment in which it is hosted.

•	 If any activity crosses a threshold (set for a condition of performance or quality), raise an alert. These
conditions can be availability of application or quality of the application or performance of the
hardware that is supporting it.

•	 Once such an alert is raised, an automated action should take place to bring the “out of bound”
parameter back to normal.

Case Study – Monitoring an ASP.NET Web Application using Azure
Monitor

We are going to study an application hosted on IIS on a VM in Azure. It is an ASP.NET web application that
is already deployed and working. It has certain flaws that we need to find out and take appropriate actions
until a bug-fix is found for those. We are going to make use of certain services in Azure to achieve the
desired results.

The Azure services that we will use are:

a) Azure Monitor
•	 Log Analytics

•	 Application Insights

•	 Alerts

b) Azure Automation

c) Azure Storage

In this case study, we are going to do the following:

1.	 Setup Azure Monitor – Log Analytics to observe the performance counters of a VM in Azure. This VM is
hosting the application that we are monitoring.

2.	 Setup Azure Application Insights, which is a part of Azure Monitor, to observe availability of application.

3.	 Setup Azure Automation and a VM in Azure for running automation scripts.

4.	 Create query in Azure Monitor - Log Analytics to get the records where performance of hardware (e.g.
%Processor Time) for the VM hosting our application, is below expected.

5.	 Create Azure automation runbooks (scripts) in Azure Automation which are hooked to alerts in Azure
Monitor. These scripts will take the corrective action on the VM when a hooked alert is sent.

6.	 Create alerts in Azure Monitor to notify runbook so that appropriate actions are taken.

http://www.dotnetcurry.com/magazine/

46	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

Figure: Case of integration of Azure Monitor with Azure Automation

Azure Monitor

Azure Monitor is a service offered by Azure to monitor and report various parameters related to health
of the resources in Azure and on-premises. Set of services offered by Azure Monitor include Application
Insights, Log Analytics, Alerts and predefined Metrics in a graphical form.

Azure Monitor can target various resources in Azure like Application Services, Virtual Machines, Storage
Accounts, Containers, Networks and Cosmos DB.

Figure: Azure monitor overview

 	

47www.dotnetcurry.com/magazine

Major components of Azure Monitor are:

Note: I have already written in details about Application Insights and alerts in my previous article. Let us
now study Log Analytics in this article.

Log Analytics

Log analytics is a feature of Azure Monitor to query and display filtered results of various logs collected by
Azure Monitor service. Application Insights data too can be queried with Log Analytics.

In this example, we will setup and query the performance counters of a virtual machine that is part of
IaaS service of Azure. On this VM, I have installed an ASP.NET Web Application. What we want is when the
application runs, if the performance counter of “% Processor Time” exceeds 90%, the VM should be restarted.

Setup Azure Monitor Log Analytics

To use the Log Analytics, we need to create a Log Analytics Workspace. This is easily done by searching for
Log Analytics Workspaces in the search box (top) in the Azure portal and then use +Add to create a new Log
Analytics Workspace.

Figure: Create log analytics workspace

http://www.dotnetcurry.com/magazine/
https://www.dotnetcurry.com/microsoft-azure/1532/application-insights-monitor-web-apps-health
https://www.dotnetcurry.com/microsoft-azure/1532/application-insights-monitor-web-apps-health

48	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

Once the Log Analytics Workspace is created, go to the section of “Get started with Log Analytics” and select
Azure virtual machines (VMs) in it. This section shows a list of VMs in our account. We can select a VM from
the list and connect to it.

Figure: Get started with log analytics

Select a VM from the list and connect to it.

Figure: Connect log analytics to vm

When we click the connect button for a VM, a Log Analytics Agent is installed on the machine. Log analytics
agent is a component of Log Analytics which resides on infrastructure hosting the application, like a VM.
The agent starts collecting the logs from that machine and starts sending those to Log Analytics of Azure
Monitor.

Log Analytics Agent does not automatically collect the performance counters of the VM. We have to
configure it to do so. Let’s see how we can do that.

 	

49www.dotnetcurry.com/magazine

1.	 To start collection of performance counters of VM, let’s open the “Advanced Settings” of the Log Analytics
Workspace that we created earlier.

2.	 On the page that opens, create a Data section. We will select the Windows Performance Counters from
the list.

3.	 From the next list of various performance counters, we can retain the checks in the checkboxes of those
performance counters that we want to collect.

4.	 Finally, by clicking the button of “Add the selected performance counters” we enable the agent to collect
those performance counters.

Figure: Add performance counters to log analytics workspace

Now that we have configured Log Analytics and the VM to collect the desired logs of performance counters
of that VM, we can create a query that will filter and return the results. We want that only those log
records should be considered where the “% Processor Time” is beyond 90%. This is the condition where the
performance of the application is below expected and if that is true, we want to restart the VM.

Setup Azure Monitor – Application Insights

Application Insights is part of Azure Monitor that monitors the application that is deployed. One of the
parameters that it can monitor is the Quality of Application.

We can measure quality of application in different ways. We can monitor exceptions thrown, unhandled
exceptions, logical errors, usability and many more such pointers to quality of application.

Azure Automation Setup to Access Azure Resources

Setup Azure Automation to create PowerShell Runbooks under it. The first step in it is to create an Azure
Automation Account from the Azure Portal. This is a simple step and does not need any parameters to be
selected.

http://www.dotnetcurry.com/magazine/

50	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

Once our Azure Automation account is created, configure the modules under it to run scripts that will allow
us to authenticate to Azure Account, and to access resources under our Azure Subscription. For this, the
following modules need to be present in our Azure Automation account:

1.	 Az.Accounts

2.	 Az.Computing

3.	 Az.Resources

4.	 Az.Storage

To check that these modules are present, click the Modules under Shared Resources section of Azure Account
in the Azure portal. You will see that unfortunately and surprisingly, none of the Az modules are added
by default to the Azure Automation Account (this is confirmed to be true until mid-March 2020 when I
wrote this article). To install these modules, click the Browse Gallery link at the top and then search for the
required module, e.g. Az.Accounts.

Figure: Add selected Az module

Ensure that you are importing the stable version of the module and not a Preview version. Preview versions
of these modules do not have features that we require. Click the Import button, agree to update dependent
modules and then confirm by clicking the OK button. Import all the modules that are required (mentioned
above).

Figure: Modules installed in azure automation

 	

51www.dotnetcurry.com/magazine

Another configuration change to do is to set the access policy. We need to access various Azure resources
like storage, VMs etc. in the PowerShell runbooks that we will be creating. To give access of those resources
to the identity of the PowerShell runbook, create a Service Principal. In Azure Automation, it is called “Run
as Account”. Click the “Run as Account” under the Account Settings section and then click “+ Azure Run As
Account”.

Figure: Create Run as Account

This creates the Service Principal and sets it in the “Contributor” role of the RBAC (Role Based Access
Control) of the subscription. By doing so, we are allowing access to all Azure resources in our subscription.

We now have all the necessary components setup and configured. These components are:

1.	 Azure Monitor – Log Analytics

2.	 Azure Monitor – Application Insights

3.	 Azure Automation Account

Let’s now create the tests in Application Insights and a query in Log Analytics that will be used for
monitoring the application and the hardware hosting that application.

Create the Monitoring Conditions

Create the Availability Test

In this case study, I have taken the example of availability of all the pages of application as the indicator of
quality of the application. Availability of pages of application are possible to be monitored using Availability
Tests that are created under Application Insights.
	
I have already written a guide to create such Availability Tests in my earlier tutorial on Application Insights.
Please refer to it and create at the least one such availability test for the application that we have hosted
on our VM.

http://www.dotnetcurry.com/magazine/
https://www.dotnetcurry.com/microsoft-azure/1532/application-insights-monitor-web-apps-health

52	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

Figure: Application Insights Availability Test

If the availability test failure goes above 10%, we want to take an action. This action is to reset IIS so
that if the application change has not got initiated, then it will be. Resetting IIS is an action that is subtle
compared to restarting the whole VM. It is also more complex because we need to go inside the VM,
find the IIS process and restart it using the tool iisreset.exe. We will need to write an Azure Automation
PowerShell Runbook to do that.

Create the Log Analytics Query

The queries of Log Analytics are written in a language that is known as Log Analytics Query Language. In its
earlier form, it was known as Kusto.

Log Analytics Query Language targets the tables of data that store the collected logs. Some of these tables
are event, operation, perf (Performance Counters), syslog etc.

Note: Learn more about Log Analytics Query Language.

Providing just the table name, say Perf, will return all the records (or top 10000, whichever is less) of that
table.

We can filter the logs using “where” clauses in the query. To set a filter on the results, we will use the | (pipe)
operator and give a where clause. If we want that only records of “% Processor Time” performance counter
should be returned, then we will add the where clause as –

| where CounterName == "% Processor Time"

We can further narrow the results for getting records where value of the "% Processor Time" is more than
90%. To do so, add another where clause as –

| where CounterValue > 90

Now the entire query will look like this –

https://docs.microsoft.com/en-us/azure/azure-monitor/log-query/get-started-queries

 	

53www.dotnetcurry.com/magazine

Perf
| where CounterName == "% Processor Time"
| where CounterValue > 90

We can also set the time limit for the records to be considered.

When we run this query, it will return only those records that fulfill the filter criteria. I have modified the
query for a threshold of 30% to get some results quickly. The query and the results are shown here:

Figure: Log Analytics query with results

We can also sort the results and take only a few records from it by using “sort” and “top” clauses. Aggregation
of the results is done with the “Summarize” clause and grouping is done with the “by” clause.

So far, we have used Log Analytics to create a query that filters the logs to give us only the records where
“% Processor Time” is beyond 90%. Let us save that query with a name “Pct Proc Load GT 90”.

We can now create an Alert based upon that query. Alert under Azure Monitor needs a condition of a signal
logic to be true, and the action to be taken, if it becomes true. The action we need to take is to restart the
VM. This action can be configured in Azure Automation as a PowerShell Runbook.

Create Actions against Notifications

Create Azure Automation Runbooks to Take Action When Notified

Once the Azure Automation Account is configured in this way, we can start creating the runbooks. The first
runbook that we will create is to restart the VM.

On the Azure Automation account, click the Runbooks under the Process Automation section. It shows a list
of three tutorial runbooks. Click on the “Create Runbook” button. Give the name RestartVM to this runbook
and select PowerShell as the type of runbook.

http://www.dotnetcurry.com/magazine/

54	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

Figure: Create a PowerShell Runbook

In the runbook that is created, add the following code:

param (
 [Parameter(Mandatory=$true)]
 [String] $VMName,
 [Parameter(Mandatory=$true)]
 [String] $RGName,
)
Authentication
try
{
 # Ensures you do not inherit an AzContext in your runbook
 $null = Disable-AzContextAutosave -Scope Process
 $connectionName = "AzureRunAsConnection"
 $Conn = Get-AutomationConnection -Name $connectionName
 Connect-AzAccount `
-ServicePrincipal `
-Tenant $Conn.TenantID `
-ApplicationId $Conn.ApplicationID `
-CertificateThumbprint $Conn.CertificateThumbprint
 Write-Output "Successfully logged into Azure."
}
catch
{
 if (!$Conn)
 {
 $ErrorMessage = "Service principal not found."
 throw $ErrorMessage
 }
 else
 {
 Write-Error -Message $_.Exception
 throw $_.Exception
 }
}

End of authentication
Write-Output "Trying to restart virtual machines ..."
try
{
 Restart-AzVM -ResourceGroupName $RGName -Name $VMName
}
catch
{
 Write-Error -Message $_.Exception

 	

55www.dotnetcurry.com/magazine

 throw $_.Exception
}

This script first authenticates to Azure and then runs the Restart-AzVM cmdlet to restart the VM that is
identified by the Resource Group Name and the VM Name. We will save this runbook and publish it so that it
is available from outside, before creating the second runbook.

The next runbook that we are going to create is for execution of iisreset on the VM. We need to run a
PowerShell script on the VM to do that.

Initially we will keep that PowerShell script in an Azure Storage as a blob. This PowerShell script will only
have the command of “iisreset”, and nothing else.

Create the PowerShell script in your favorite editor and save it locally as a file “ResetIIS.ps1”. Then in Azure
Portal, create an Azure Storage account and a blob container in it named “psscripts”. Set the Container level
access permission. Upload the ResetIIS.ps1 file in this container.

Figure: Reset IIS PowerShell script

Once it is saved, get the URL of that file and store it somewhere to use it later in another script.

Figure: URL of PowerShell script blob

Now we will create a second runbook under the Azure Automation Account created earlier. This runbook will
also be a PowerShell type runbook. Let’s call it as “ResetIISOnVM”.

The code in this runbook is very similar to the code in our previous one. The only change in it is that instead
of Restart command, there will be two different commands. First one is to download the ResetIIS.ps1
PowerShell script from the Azure Storage using wget tool. The second one is the Invoke- AzVMRunCommand

http://www.dotnetcurry.com/magazine/

56	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

cmdlet to call ResetIIS.ps1.

wget "https://ssgsemsstore.blob.core.windows.net/psscripts/ResetIIS.ps1" -outfile
((Get-Location).path + "\ResetIIS.ps1") -UseBasicParsing
 Invoke-AzVMRunCommand -ResourceGroupName $RGName -VMName $VMName -ScriptPath
((Get-Location).path + "\ResetIIS.ps1") -CommandId 'RunPowerShellScript'

Parameters of Resource Group Name and VM Name will be provided at the time of creating the alert that
calls this runbook. We will now save this runbook.

Now the Log Analytics Queries representing the condition for sending alerts are ready. The Azure
Automation Scripts that represent the action are ready too. We only need to connect each script to the
appropriate query. This is done with the help of Azure Monitor Alerts.

Creating Azure Monitor Alerts

Alerts is a mechanism in Azure Monitor by which notification of some condition is passed to the receptors.
This notification can be as simple as sending an email or a SMS, or it can be complex as a call to an Azure
Function or a Logic App. We are going to create the alerts that invoke Azure Automation Runbooks.

Create an Alert for Hardware Overload

To create an alert, we need to specify the condition and the action. We will start the wizard to create a new
Alert Rule. Under the Azure Monitor, select the Alerts and click the “+ New alert rule” button to start the
alert rule creation wizard. Let us first select the Azure Subscription and Log Analytics Workspace to monitor
as the target of monitoring.

To define the logic to raise an alert, click the Add button to select the condition. From the custom saved
queries, select the query that we had created to check if “% Processor Time” goes beyond 30. The value 30 is
for demonstration purpose only, in the real-life conditions you may want it to be somewhere beyond 80.

Figure: Select query as alert signal logic

The search query that we had created is already there. In addition to the query, we can also configure that
alert should be raised if the alert logic threshold exceeds more than three times (3 is for example, we can
change that value if desired). We can also change the frequency of evaluation if needed.

 	

57www.dotnetcurry.com/magazine

Figure: Alert signal logic

The next step is to set the action to be taken when this condition is met. In the section of Action Group,
we will create a new action group and a new action under that. In this action, let’s select action of the type
Automation Runbook. In the details selection, we will select “User” defined runbook and then drill down
to the runbook that we had created to restart the VM. Provide necessary parameters like VM Name and
Resource Group Name in which the VM exists.

Figure: Add action to restart VM

Give a name to the Alert Rule and save it by clicking the button of “Create Alert Rule”.

http://www.dotnetcurry.com/magazine/

58	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

Figure: Add rule restart VM

This way, we have linked the Log Analytics – Azure Monitor Alert – Azure Automation Runbook, so that if
the load on the processor exceeds beyond the set limit consistently, the VM will be restarted without any
manual intervention.

Create an Alert for Test Failures

We will now create the combination of Application Insights – Azure Monitor Alert – Azure Automation
Runbook, so that IIS on the VM will be reset if the availability of the application goes below set limit.

We will start the wizard to create a new alert. Let’s select the Application Insights resource of the
application as the resource to be monitored. In the Signal Logic (condition), select the availability test that
was created. Set a logic that the Test passed at a value smaller than 95%.

 	

59www.dotnetcurry.com/magazine

Figure: Signal logic for availability tests condition

In the action, select the Azure Automation Runbook to reset the IIS on VM.

Figure: Add action to reset IIS

Save the alert by clicking the “Create new alert” button. This way, we have linked the Application Insights –

http://www.dotnetcurry.com/magazine/

60	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

Azure Monitor Alert – Azure Automation so that if availability test fails more than a set limit, the IIS on the
VM will be reset without any manual intervention.

Summary

In this tutorial, we have seen how to automate some of the important parts of Operations, an integral part
of DevOps.

We have taken a case of an ASP.NET application hosted on IIS that is on a VM in Azure. We used services
offered by Azure Monitor – Log Analytics, Application Insights and Alerts to monitor the application and the
hardware hosting it. We used Azure Automation Runbooks to take the desired actions – restart the VM if the
hardware is overloaded or to reset IIS, if the application has some problems.

These examples can be extended to monitor other parameters and automate many of the actions that are
desired to be taken. Lesser dependency on manual intervention makes these operations more reliable.

Author
Subodh Sohoni

Subodh is a consultant and corporate trainer. He has overall 28+ years of experience.
His specialization is Application Lifecycle Management and Team Foundation Server.
He is Microsoft MVP – VS ALM, MCSD – ALM and MCT. He has conducted more than
300 corporate trainings and consulting assignments. He is also a Professional SCRUM
Master. He guides teams to become Agile and implement SCRUM. Subodh is authorized by
Microsoft to do ALM Assessments on behalf of Microsoft.
Follow him on twitter @subodhsohoni

Thanks to Gouri Sohoni for reviewing this article.

http://www.dotnetcurry.com/author/gouri-sohoni

http://www.dotnetcurry.org/r/dnc-csharpbk-mag-nov

62	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

C#

Damir Arh

DEVELOPING
CLOUD
APPLICATIONS
IN .NET This tutorial provides an overview of

different cloud services available to
.NET developers for publishing their
applications on Microsoft Azure.

Cloud applications have many
commonalities with ordinary web
applications. The main difference is in
the way they are hosted. Instead of being
deployed to our on-premise servers, they
take advantage of services offered by
cloud providers.

In this tutorial, I’m going to provide an
overview of the cloud-based hosting
options available for .NET applications,
and how these options affect the
application code. To learn more about
web development in .NET, you can read
my previous article from this series:
Developing Web Applications in .NET.

Which hosting option should I choose?

https://www.dotnetcurry.com/aspnet-core/1501/web-development-in-dotnet

 	

63www.dotnetcurry.com/magazine

This decision strongly depends on how adaptive the application is to the cloud environment:

•	 The least cloud specific hosting option is Infrastructure-as-a-Service (IaaS). This term is used for virtual
machines hosted in the cloud which are completely under our own control as if they were located on
our premises.

•	 The next step is Platform-as-a-Service (PaaS). In this model, the cloud provider keeps control of the
operating system and only allows configuration of the web server software. For the application to work
in such an environment, it must not depend on the local file system or any other software running or
being installed locally.

•	 To avoid this restriction, applications can be deployed as Docker containers which declaratively specify
all the local dependencies and configuration they require. At deployment time, the hosting environment
will compose an isolated container instance based on these specifications. Such a hosting model is
probably the most representative part of the so-called cloud-native applications.

•	 The latest hosting model introduced by cloud providers is serverless computing. Instead of hosting the
web application as a single unit, this model requires it to be decomposed into separate independent
functions. These are deployed, started and invoked as separate units. That’s the reason why this model is
also named Function-as-a-Service (FaaS).

When deciding whether to move from on-premise hosting to the cloud, it’s important to keep in mind all
the advantages of cloud services, especially if they seem to be a more expensive alternative at the first
glance:

•	 Cloud allows us to dynamically scale resources to match current requirements. There’s no need to own
or pay for more resources all the time if they are only needed for a specific period (e.g. during traffic
spikes or additional periodic processing of data).

•	 Provisioning new resources in the cloud for new projects is much cheaper and faster than buying new
hardware.

•	 The cloud providers employ dedicated staff focusing on all aspects of security: updating the software
with latest securing patches, managing network configuration and ensuring physical security of servers.
It’s very difficult to match the level of security they can provide.

You can read more about the things you need to consider before moving to the cloud in Vikram Pendse’s
article Microsoft Azure Cloud Roadmap.

In the remainder of the article, I’m going to explain each of the hosting options in more detail from the
perspective of a .NET developer. I’m going to be using the services available in Microsoft Azure. However,
most other cloud providers also have their own offerings for each of the listed hosting options.

Infrastructure as a Service (IaaS)

The Infrastructure-as-a-Service approach to hosting in the cloud is based on regular virtual machines with
unrestricted administrator access including remote desktop for Windows-based machines and SSH for
Linux-based machines.

This full flexibility in the way the machine can be configured, comes at a cost. Not only are we responsible
for applying security fixes and OS updates, but we must also install and configure all the prerequisites for

http://www.dotnetcurry.com/magazine/
https://www.dotnetcurry.com/microsoft-azure/1512/cloud-migration-roadmap
https://www.dotnetcurry.com/microsoft-azure/1512/cloud-migration-roadmap

64	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

our application to work. Let’s see what this encompasses when deploying an ASP.NET or ASP.NET Core web
application to such a virtual machine.

The Infrastructure-as-a-Service offering in Microsoft Azure is called Azure Virtual Machines. Through a
simple user interface, it allows us to quickly provision a new virtual machine by providing only the most
basic information such as the hardware specification, the operating system, the network configuration and
the login information. If necessary, we can configure many additional aspects, both before and after the
creation of the virtual machine.

Visual Studio 2019 has built-in support for publishing ASP.NET and ASP.NET Core based web applications to
Azure Virtual Machines running Windows. The feature uses the Web Deploy tool to deploy the application
to IIS (Internet Information Services) web server on the selected virtual machine. It’s the same tool that we
can use to deploy to our on-premise servers.

For this to work, the virtual machine must have the Web Deploy tool installed, as well as the .NET
framework and IIS itself with ASP.NET support configured. All of this can be done manually via a remote
desktop connection to the virtual machine. There are detailed instructions available along with a
PowerShell script for automating the process. The documentation also includes a link to a template file
which can be used to create a new virtual machine with all the required software already preinstalled.

To host an ASP.NET Core web application in IIS, the .NET Core Hosting Bundle must be installed in addition
to all of the prerequisites above. To deploy the application in framework-dependent mode, a compatible
version of .NET Core must be installed on the server as well. Otherwise, the application will only work when
deployed in self-contained mode. This isn’t specifically listed in the linked documentation, nor does there
seem to be a template available to take care of that during the virtual machine creation. It’s a .NET Core
requirement for being hosted in IIS, which is in no way specific to Azure Virtual Machines.

Once the virtual machine is correctly set up, the publishing process from Visual Studio 2019 is
straightforward. From the Publish window for an ASP.NET or ASP.NET Core web application, a wizard can be
launched which can connect to an Azure account and list the available virtual machines when publishing
to an Azure Virtual Machine is selected. Additional settings (e.g. build configuration) can be configured
afterwards.

Figure 1: Publish to Azure Virtual Machines from Visual Studio

https://azure.microsoft.com/en-us/services/virtual-machines/
https://www.iis.net/downloads/microsoft/web-deploy
https://github.com/aspnet/Tooling/blob/AspNetVMs/docs/create-asp-net-vm-with-webdeploy.md#configure-a-dns-name-for-the-vm-via-the-azure-portal
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis/index?view=aspnetcore-3.0#install-the-net-core-hosting-bundle

 	

65www.dotnetcurry.com/magazine

Of course, we don’t want to deploy applications directly to production using Visual Studio. To have more
control over the deployment, it should be done from our build server as part of the CI/CD (continuous
integration and continuous deployment) process. Microsoft’s build server in the cloud is named Azure
Pipelines and it’s a part of Azure DevOps.

To build and deploy a web application with Azure Pipelines, the source code must be published to a remote
Git repository in Azure Repos, GitHub or elsewhere (TFVC – Team Foundation Version Control and SVN –
Subversion repositories are also supported).

First, a build pipeline must be created to build the application and run the tests. Although its configuration
is saved as a YAML file, most of it will be generated automatically based on the selected source code
repository and the type of the application (ASP.NET or ASP.NET Core).

Figure 2: Selecting the application type for the build pipeline

Only one additional task must be added to the end of the file and there’s even a graphical user interface for
that. The Publish build artifacts task will make the result of the build available to the release pipeline which
will deploy the application to the virtual machine.

http://www.dotnetcurry.com/magazine/
https://azure.microsoft.com/en-us/services/devops/pipelines/?nav=min
https://azure.microsoft.com/en-us/services/devops/pipelines/?nav=min
https://azure.microsoft.com/en-us/services/devops/?nav=min
https://azure.microsoft.com/en-us/services/devops/repos/
https://github.com/

66	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

Figure 3: Configuring the Publish build artifacts task

The task wizard will insert the corresponding YAML snippet at the current cursor location in the file. This
should result in the following final build pipeline configuration (in case of ASP.NET application):

ASP.NET
Build and test ASP.NET projects.
Add steps that publish symbols, save build artifacts, deploy, and more:
https://docs.microsoft.com/azure/devops/pipelines/apps/aspnet/build-aspnet-4

trigger:
- master

pool:
 vmImage: 'windows-latest'

variables:
 solution: '**/*.sln'
 buildPlatform: 'Any CPU'
 buildConfiguration: 'Release'

steps:
- task: NuGetToolInstaller@1

- task: NuGetCommand@2
 inputs:
 restoreSolution: '$(solution)'

- task: VSBuild@1
 inputs:
 solution: '$(solution)'
 msbuildArgs: '/p:DeployOnBuild=true /p:WebPublishMethod=Package
/p:PackageAsSingleFile=true /p:SkipInvalidConfigurations=true
/p:PackageLocation="$(build.artifactStagingDirectory)"'
 platform: '$(buildPlatform)'
 configuration: '$(buildConfiguration)'

https://docs.microsoft.com/azure/devops/pipelines/apps/aspnet/build-aspnet-4

 	

67www.dotnetcurry.com/magazine

- task: VSTest@2
 inputs:
 platform: '$(buildPlatform)'
 configuration: '$(buildConfiguration)'

Added by the Publish build artifact task wizard
- task: PublishBuildArtifacts@1
 inputs:
 PathtoPublish: '$(Build.ArtifactStagingDirectory) '
 ArtifactName: 'WebApp'
 publishLocation: 'Container'

The release pipeline will use Web Deploy for deployment just like Visual Studio does. There’s detailed
documentation available for configuring it. The process consists of the following steps:

•	 Creating an Azure Pipelines deployment group and adding the target server to it by installing an agent
on the virtual machine using the provided PowerShell script.

•	 Installing a free extension for Azure Pipelines for deploying applications using Windows Remote
Management (WinRM) and Web Deploy.

•	 Configuring the release pipeline to deploy the build artifact from the previously created build pipeline
to the previously created deployment group.

With everything configured correctly, each new commit to the selected Git repository will trigger a new
build. If it succeeds and all tests pass, the release pipeline will deploy the application to the virtual
machine.

As you can see, the Platform-as-a-Service approach doesn’t provide a lot of benefit in comparison to
hosting applications on on-premise servers, except for the obvious fact that we don’t need to worry
about the hardware anymore. To benefit more by migrating to the cloud and have a simpler deployment
processes, we will need to choose one of the other approaches.

Platform as a Service (PaaS)

The Platform-as-a-Service approach is a great compromise that doesn’t require too much modification to
our web applications or development processes, but still makes the hosting and the deployment process
much simpler than the Infrastructure-as-a-Service approach. Instead of having to manage the virtual
machine, we only interact with the web server software which is exposed as a cloud service.

In Microsoft Azure, the service is called Azure App Service Web Apps. When creating a new instance, we start
by selecting the stack of our application. For .NET applications different versions of the .NET framework and
.NET Core are available. For .NET Core applications, we can also choose between the Windows and Linux
operating systems.

http://www.dotnetcurry.com/magazine/
https://docs.microsoft.com/en-us/azure/devops/pipelines/apps/cd/deploy-webdeploy-iis-deploygroups?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/apps/cd/deploy-webdeploy-iis-deploygroups?view=azure-devops
https://marketplace.visualstudio.com/items?itemName=ms-vscs-rm.iiswebapp
https://azure.microsoft.com/en-us/services/app-service/

68	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

Figure 4: Configuring a new Azure App Service Web App

No matter the choice, an ASP.NET or ASP.NET Core web application can be easily deployed to the Azure App
Service Web App instance using Visual Studio 2019.

From the Publish window, a wizard can be launched to select the target instance from those available in
the selected Azure subscription. After clicking Publish, the application files will be copied to Azure and the
deployed web application will be launched in the default web browser.

 	

69www.dotnetcurry.com/magazine

Figure 5: Publish to Azure App Service Web App

Of course, deployment to Azure App Service Web Apps is also supported from Azure DevOps. The build
pipeline will remain configured the same as it was for deployment to Azure Virtual Machines. Only the
release pipeline will be different.

When creating a new release pipeline for deploying to Azure App Service Web Apps, we can start with the
Azure App Service deployment template which is mostly preconfigured for our needs.

Figure 6: Azure App Service deployment release pipeline template

http://www.dotnetcurry.com/magazine/

70	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

The most important part remaining is the configuration of the deployment task in the template. We must
authorize a connection to the selected Azure subscription and then choose the App Service type (Web App on
Windows or Web App on Linux) and the App Service name (from the list of services in our subscription).

Figure 7: Configuring the deployment task

Just like in the case of deploying to Azure Virtual Machines, we need to select the artifact from the build
pipeline we want to deploy. Once we set that up, the web application will be deployed to the selected
Azure App Service Web App instance whenever a new commit is pushed to the corresponding Git repository.

As you can see, deploying to Azure App Service Web Apps is much simpler than to Azure Virtual Machines.
However, since the server is preconfigured, the application is running in its sandbox and there’s no way to
install additional software components on the hosting server. All required dependencies must be deployed
as part of the application.

Also, there’s no guarantee that any files stored locally from the application will persist. The application
might be migrated to a new server and at that time, only application files that were deployed to the service,
will be preserved. So any application state must be stored elsewhere, e.g. in a separate Azure Storage
instance for files and unstructured data, and in an Azure SQL Database or Azure Database for PostgreSQL
instance for relational data.

If this is too restrictive, deploying to one or more Docker containers might be a better fit.

Cloud-Native Applications

Docker containers can be thought of as lightweight virtual machines. They still provide an isolated
environment for the software running inside them but share the kernel of the operating system they are
running on. Hence, they require less resources than virtual machines.

https://azure.microsoft.com/en-us/services/storage/
https://azure.microsoft.com/en-us/services/sql-database/
https://azure.microsoft.com/en-us/services/postgresql/
https://www.docker.com/resources/what-container

 	

71www.dotnetcurry.com/magazine

Image 8: Comparison between applications hosted in virtual machines (left) and Docker containers (right)

Azure App Service Web App for Containers is a variation of Azure App Service Web Apps which runs the
web application from a Docker image instead from the files deployed to it. It requires the Docker image
with that application to be published into a container registry. The one in Azure is named Azure Container
Registry.

To publish an ASP.NET Core application to a container registry (and from there deploy to Azure App Service
Web App for Containers), it must be configured correctly so that the build pipeline can create a Docker
image with it. The simplest way to achieve that for an ASP.NET Core application is to Enable Docker Support
when creating a new project from the Visual Studio 2019 template.

Figure 9: Enabling Docker support in a new web application

http://www.dotnetcurry.com/magazine/
https://azure.microsoft.com/en-us/services/app-service/containers/
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/

72	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

Visual Studio 2019 will transparently take care of running and debugging such an application from a
Docker container on the development machine as long Docker Desktop for Windows is installed. However,
there’s no built-in functionality in Visual Studio 2019 to publish the resulting Docker image to a container
registry.

On the other hand, Azure DevOps doesn’t lack such support. In a typical setup, the build pipeline will be
responsible for publishing the Docker image to the container registry. Although there is a Docker template
for a new build pipeline, it unfortunately doesn’t include all the necessary steps preconfigured. Most of the
pipeline will need to be configured manually:

•	 To allow publishing an image to a container registry, a new service connection to it must first be created
in the Azure DevOps Project Settings. If you want to use an Azure Container Registry, you need to create
one beforehand.

Figure 10: Creating a new service connection to a container registry

•	 With that in place, a new pipeline can be created; preferably from the Starter pipeline template because
the Docker template in its current state, needs to be changed considerably to be helpful.

•	 The existing steps from the template must be replaced with the Docker task available in the assistant.
Only the previously connected Container registry must be additionally configured for the task along
with a unique Container repository name for the application. In Docker terminology, a repository is
a collection of images with the same name but different tags. Tags correspond to versions of these
images. A container registry will typically host multiple repositories.

https://docs.docker.com/docker-for-windows/install/
https://docs.microsoft.com/en-us/azure/devops/pipelines/library/service-endpoints?view=azure-devops&tabs=yaml#create-a-service-connection
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-get-started-portal
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-get-started-portal
https://docs.microsoft.com/en-us/azure/container-registry/container-registry-concepts#repository-name

 	

73www.dotnetcurry.com/magazine

Figure 11: Adding a Docker task to the build pipeline

•	 A Docker image is built from a Dockerfile. The step created in the pipeline assumes that the file will
be placed in the root folder of the code repository. Since it is placed in the project folder by the Visual
Studio template, the working directory must be set to root using the buildContext input or the build
will fail:

- task: Docker@2
 inputs:
 containerRegistry: 'DNC Cloud Registry'
 repository: 'dnc-cloud-article'
 command: 'buildAndPush'
 Dockerfile: '**/Dockerfile'
 buildContext: .

When the newly configured build pipeline is run, it will publish the image to the container registry so
that it can be used by the Azure App Service Web App for Containers which requires the Registry, Image
(corresponds to repository name) and Tag to be specified.

Figure 12: Configuring the image for the Web App for Containers

http://www.dotnetcurry.com/magazine/

74	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

This is already enough to get the application running in Azure. The build pipeline publishes the container
image with the application in the container registry. In the Azure App Service Web App for Containers
configuration, we selected a previously published specific version (i.e. tag in Docker terminology) of the
image to deploy. This version of the application can already be accessed by opening the URL of the created
Web App in the browser.

For automatic deployment of new versions, an Azure DevOps release pipeline must be configured.

Again, the Azure App Service deployment template will be used, but this time Web App for Containers (Linux)
must be selected as the App type. In addition to selecting the Azure subscription and the target App service
name, the Docker image to deploy must be specified in the Registry or Namespace (Login server of the
container registry found on its Overview page in Azure Portal) and Repository (i.e. repository name as set
earlier) fields.

Editorial Note: If you are new to Azure DevOps, I strongly recommend these Azure DevOps tutorials.

Figure 13: Release pipeline deployment step configuration

The Azure Container Registry should act as the artifact source for the release pipeline; configured with
details pointing at the Docker image published by the corresponding build pipeline. This will ensure that
the release pipeline is triggered every time the build of the Docker image succeeds.

https://www.dotnetcurry.com/tutorials/devops

 	

75www.dotnetcurry.com/magazine

Figure 14: Release pipeline artifact configuration

Advantages of Docker Images

If you’re not familiar with Docker images, you might wonder what are the advantages of this deployment
approach over simply deploying the web application file to an Azure App Service Web Apps instance.

For one, Docker images are in no way specific to the service where they are hosted. Changing the hosting
service or the provider in the future will only affect the release pipeline, keeping the application code and
build pipeline unchanged.

http://www.dotnetcurry.com/magazine/

76	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

More importantly, Docker images can include additional software dependencies apart from .NET Core
runtime, although the default Docker image as configured in the Dockerfile created by the Visual Studio
template, doesn’t have any.

If these dependencies are standalone services and not components directly used by the application, they
will typically be deployed as separate Docker images. The multiple images required by an application and
their interaction are configured using a docker-compose.yml file. Azure App Service Web App for Containers
already has preview support for using such a Docker compose file instead of a single Docker image.

However, as the number of required Docker images grows, a dedicated service for hosting Docker images
becomes a better choice. In Azure, there are two available: Azure Kubernetes Service (a managed instance
of a standard container orchestration service) and Azure Service Fabric (recommended choice when fully
supported Microsoft’s technology stack is required).

When this point is reached, it makes sense to use separate Docker images not only for third party
dependencies, but also for different internally developed components of the application. To allow for
this, each one of them needs to be developed as a standalone service. Such services are usually called
microservices. They are a key part of the so-called cloud-native applications, i.e. applications which are built
from the ground up for hosting in the cloud so that they can be easily horizontally scaled.

Serverless Computing

All deployment models described so far include server resources available and payed (paid) for full-time
(either directly in Infrastructure-as-a-Service model or indirectly in Platform-as-a-Service and Cloud-Native
Applications models).

Serverless computing is different from all of those in that server resources are only consumed and payed
for, when they are used. The idea of not choosing specific server resources in advance and paying for those
is also where the name serverless computing originates from.

In Azure, there are two serverless services available. Azure Container Instances is a serverless hosting
model for Docker containers. Since it doesn’t include any advanced orchestration capabilities, it’s more like
Azure App Service Web App for Containers than Azure Kubernetes Service (AKS) or Azure Service Fabric.
The main difference is that the resources are paid for based on actual consumption not the selected
performance specifications.

The second serverless service is Azure Functions. This one is quite similar to Azure App Service Web Apps.
However, it doesn’t support hosting of regular ASP.NET or ASP.NET Core web applications. Instead, a specific
Azure Functions application model must be used.

As the name implies, Azure Functions applications consist of individual functions. These can be invoked
using different triggers, e.g. a timer, an HTTP request, a message arriving in a queue etc. Such an application
model is often also called Function-as-a-Service. Of course, C# is one of supported languages. Azure
Functions runtime version 1.x requires development in the .NET framework, later runtimes (versions 2.x and
3.x) require development in .NET Core. All runtimes are still fully supported.

https://docs.docker.com/compose/compose-file/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://azure.microsoft.com/en-us/services/service-fabric/
https://azure.microsoft.com/en-us/services/container-instances/
https://azure.microsoft.com/en-us/services/functions/
https://docs.microsoft.com/en-us/azure/azure-functions/functions-versions#languages

 	

77www.dotnetcurry.com/magazine

Visual Studio 2019 has built-in support for developing Azure Functions applications in C# for any runtime
version which also includes running and debugging them locally and publishing them directly to Azure.

Figure 15: Selecting Azure Functions runtime version and function triggers

When creating a new application using the Azure Functions project template, the runtime version needs
to be selected first. For every new function, the type of trigger to bind it to, must be selected. The selected
trigger is then further configured using attributes as can be seen from the following code snippet:

[FunctionName("Function1")]
public static async Task<IActionResult> Run(
 [HttpTrigger(AuthorizationLevel.Anonymous, "get", "post", Route = null)] 		
 HttpRequest req, ILogger log)
{
 log.LogInformation("C# HTTP trigger function processed a request.");

 string name = req.Query["name"];

 string requestBody = await new StreamReader(req.Body).ReadToEndAsync();
 dynamic data = JsonConvert.DeserializeObject(requestBody);
 name = name ?? data?.name;

 return name != null
 ? (ActionResult)new OkObjectResult($"Hello, {name}")
 : new BadRequestObjectResult("Please pass a name on the query string or in the
 request body");
}

http://www.dotnetcurry.com/magazine/

78	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

Once the application is ready, it can be deployed to Azure from the Publish window in Visual Studio just like
a regular web application. In the wizard, an Azure Functions application previously created in Azure Portal
can be selected, or a new one can be created in the selected Azure subscription directly from Visual Studio.

Figure 16: Creating a new Azure Functions application inside Visual Studio

Since a live application is usually not deployed directly to production from Visual Studio, there’s support
for building and deploying Azure Functions applications also in Azure DevOps. The build pipeline for that
should be created from the .NET Core Function App to Windows on Azure pipeline template.

It creates a mostly preconfigured pipeline which only requires us to select the target Azure Functions
application to deploy the application to. The reason for that is that unlike many other build pipeline
templates, this one also includes a step to publish the application and not only to build it.

To trigger application deployment on every commit, this should be good enough. But to take advantage
of additional functionalities provided by release pipelines such as manual approvals, a separate release
pipeline needs to be created.

Author
Damir Arh

Damir Arh has many years of experience with Microsoft development tools; both in
complex enterprise software projects and modern cross-platform mobile applications.
In his drive towards better development processes, he is a proponent of test driven
development, continuous integration and continuous deployment. He shares his
knowledge by speaking at local user groups and conferences, blogging, and answering
questions on Stack Overflow. He is an awarded Microsoft MVP for .NET since 2012.

Thanks to Daniel Jimenez Garcia for reviewing this article.

In this case, we first need to delete the second stage of the build pipeline which does the deployment
and only keep the first stage which builds the application and publishes the artifact to be consumed from
the release pipeline. We can create the release pipeline from the Deploy a function app to Azure Functions
pipeline template and configure it by selecting the build artifact from the build pipeline as the trigger and
an Azure Functions application as the deploy target.

Conclusion

It’s easy to think of the cloud as just a deployment model for your application.

In a way, it is exactly that. However, cloud services offer much more than having virtual machines without
your own hardware. If you’re migrating an existing application to the cloud, moving the virtual machine
from your on-premise hardware to the cloud, might be the only option.

But there are many other options which can be simpler and more cost-effective if they fit your
requirements. Especially, if you’re creating a brand-new application, it’s a good idea to consider the services
available and choose the most appropriate one before you start the development. This choice is likely to
affect the way you need to develop your application even if you already know that you want to stay in the
.NET ecosystem you’re familiar with.

http://www.dotnetcurry.com/author/daniel-jimenez-garcia

80	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

AZURE

Mahesh Sabnis

USING

AZURE COGNITIVE
SEARCH APIS IN AN
ANGULAR
APPLICATION

 	

81www.dotnetcurry.com/magazine

What is Azure Cognitive Search?

Azure Cognitive Search is a Search-as-a-Service cloud solution in Microsoft Azure. This service provides
tools and APIs for developers to add rich search experiences to their application.

The Azure Cognitive Search Service can build indexing on the Data Source so that it can be queried from
application code using end user's inputs. As defined in the official documentation, in Azure Cognitive Search,
an index is a persistent store of documents and other constructs used for filtered and full text search.

Azure Cognitive Search Service uses AI enrichment capability on indexing, which can be used to extract text
from images, blobs and other unstructured data sources, and make the search richer. The text extraction
is implemented through cognitive skills that is attached to an indexing. The cognitive skills use Natural
Language Processing (NLP) and Image Processing.

NLP includes language detection, key phrase extraction, text manipulation, etc. The Image processing skills
use Optical Character Recognition (OCR). Using AI and NLP is beyond the scope for this article, but those
interested can read more about it from this link.

Azure Cognitive Search Service functionality is provided using .NET SDK and REST API. Since the Azure
Cognitive Search Service runs in the cloud, we need not worry about the availability and infrastructure, as
its managed by Microsoft.

Figure 1 gives an idea of the Azure Cognitive Search Service in the application.

Figure 1: Application development approach using Azure Cognitive Search Service

Inspiration for this tutorial
An organization where I am working for as an Azure consultant, had a requirement to integrate enterprise

http://www.dotnetcurry.com/magazine/
https://docs.microsoft.com/en-us/azure/search/cognitive-search-concept-intro

82	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

search features into their existing application. They wanted to provide a high-responsive search experience
to the end-users.

The requirement was to consolidate data across various data stores on Microsoft Azure and provide search
functionality on it based on end-user's input. The UX requirement expectation was a highly responsive
UI with fast search. After doing a rigorous research and adopting complex querying mechanisms, as well
as NoSQL solutions, we decided to use Azure Cognitive Search service. We soon found that it had the
capability to address most of my client’s requirements. We tried Azure Cognitive Search Service on various
complex data structures and also on a high volume of data – with success!

Having delved into a relatively new piece of technology (I am no search expert) and getting a good
experience of Azure Cognitive Search Service, I persuaded Suprotim to let me write on it for this month’s
magazine edition.

Scenarios of using Azure Cognitive Search Service

•	 While handling search operations on a high volume of data from different data sources (e.g. Azure SQL
Database, SQL Server on Azure VMs, Cosmos DB, Azure BLOB Storage, Azure Table Storage, etc.), writing
complex join queries increases complexity of the operations.

In such cases, you can consolidate the data from various data sources in JSON documents formats and
use Azure Cognitive Search Service Indexers to load the data in index to ease search operations. For
example, let’s assume you want to search ‘Order details’ across countries, regions, cities, customers,
categories, etc, then consolidating data into a single store and searching this store using Azure
Cognitive Search Service, will be helpful.

•	 If search is using Filters, AutoComplete, Suggestions, etc., then Azure Cognitive Search Service is a good
option.

•	 Indexing unstructured text or extracting text from image. Please note that we need to use Azure
Cognitive Search AI features over here.

Azure Cognitive Search Service provides the following features for search

•	 Free-form text search

o Full-Text Search
o Simple Query Syntax
o Lucene Query Syntax

•	 Relevance

o Simple Scoring

•	 Geo-Search

•	 Filters and facets

o Faceted Navigation
o Filters

 	

83www.dotnetcurry.com/magazine

•	 User Experience Features

o Autocomplete
o Search Suggestions
o Sorting
o Paging
o Hit Highlighting
o Synonyms

In this tutorial, we will implement the Azure Cognitive Search Feature using REST APIs along with Simple
Query syntax and Lucene Query syntax. We will implement the application using the following steps:

1.	 Creating the Data Source using Azure CosmosDB

2.	 Creating Azure Cognitive Search Service

3.	 Creating Angular Client Application to access Azure Cognitive Search Service REST API

Creating the Data Source using Azure CosmosDB

As we have discussed in Figure 1, we need a Data Source for consolidating the data to perform search. I
have used the simple Northwind database and the Orders Table in it. But since some of the columns from
this table are reference columns, I have read data from the Order’s table using the following query:

Select OrderID, Customers.ContactName as CustomerName, Employees.FirstName + ' ' +
Employees.LastName as EmployeeName,
OrderDate, RequiredDate, ShippedDate, Shippers.CompanyName as ShipperName,
Freight, ShipName, ShipAddress, ShipCity,ShipPostalCode, ShipCountry
from Orders, Customers, Employees, Shippers
where
Customers.CustomerID=Orders.CustomerID and Employees.EmployeeID =Orders.EmployeeID
and Shippers.ShipperID=Orders.ShipVia

Create a Cosmos DB Account. If you are new to CosmosDB, follow this link to read steps for creating Cosmos
DB account.

Editorial Note: For those who want to delve deeper into CosmosDB, I recommend reading Azure Cosmos DB –
Deep Dive by Tim Sommer.

Now create an OrdersDb database and two containers named as AllOrders and SuppliersData. To add data
in Cosmos DB Containers, download Data Migration tool for CosmosDB.

If you are not aware about this tool, you can visit this tutorial to read more about it, and how to use it. Once
you migrate data from Orders table to the AllOrders container, the JSON document data will be displayed
in the AllOrders container. We will also read data from SuppliersData table (38000 rows) and migrate to the
SuppliersData container. The query for reading data from the SuppliersData is as follows:

select SupplierID, CompanyName,ContactName,ContactTitle,Address,City,Country,Phone
from SuppliersData

http://www.dotnetcurry.com/magazine/
https://docs.microsoft.com/en-us/azure/search/query-simple-syntax
https://docs.microsoft.com/en-us/azure/search/query-simple-syntax
https://docs.microsoft.com/en-us/azure/search/query-lucene-syntax
https://www.dotnetcurry.com/windows-azure/1395/cosmosdb-webapi-angular-client
https://www.dotnetcurry.com/microsoft-azure/1515/azure-cosmos-db
https://www.dotnetcurry.com/microsoft-azure/1515/azure-cosmos-db
https://github.com/azure/azure-documentdb-datamigrationtool
https://www.dotnetcurry.com/windows-azure/1282/migrating-sqlserver-nosql-using-documentdb

84	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

Creating Azure Cognitive Search Service

Let’s create an Azure Cognitive Search Service. Open the Azure portal using https://portal.azure.com. From
the Azure portal, using Create a Resource we can create Azure Cognitive Search Service as shown in the
following figure:

Figure 2: Creating a new Azure Cognitive Search Service

To create a service, provide the following information as shown in Figure 3.

Figure 3: New Search Service

https://portal.azure.com/

 	

85www.dotnetcurry.com/magazine

One important point to note is the Pricing tier. Azure Cognitive Search Service configuration is completely
based on the pricing tSipliire. We can see the configuration details by clicking on the Change Pricing Tier
link as shown in Figure 4.

Figure 4: The Pricing tier showing the Azure Service Configure details

There are offerings for configuring Azure Cognitive Search Service. Service Indexes, Indexers count and
Storage size are defined based on the offering.

Once the service is created, its details will be shown as seen in Figure 5.

Figure 5: The Azure Service details

http://www.dotnetcurry.com/magazine/

86	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

We need keys for accessing Search Service in the client application. These keys will be used to authorize
the client application to access Azure Service. We can see these keys as shown in Figure 6.

Figure 6: Azure Cognitive Search Service Keys

To configure the data source for the search service, click on the import data link as shown in Figure 5. The
Connect to your data tab option will be displayed, where you can select the data source as shown in Figure
7.

Figure 7: Connect to data source

Select CosmosDB from the dropdown. The Connect to your data tab will bring up a UI where we can enter
data source information like Cosmos DB Account Key, Database name and Container name from the Cosmos
DB as shown in Figure 8.

Figure 8: Data Source Configuration

 	

87www.dotnetcurry.com/magazine

Leave the Query TextBox as empty, we will be selecting all the columns from the source collection. Click on
the Next button, here we can attach Cognitive Service with the Azure Cognitive Search Service. This is an
optional step and we will keep it as-is without any changes. See Figure 9.

Figure 9: Cognitive Service Configuration

Click on the Skip to: Customized target index button.

Settings index configuration is the most important step for the Azure Cognitive Search Service. The Index is
like a database table. This holds data from the source so that queries on the data can be accepted. We can
configure the index by setting following configuration values:

1.	 Index name - is the unique index name. The index name can contain lower case characters,
alphanumeric characters, digits.

2.	 Key - the index can have only one key field. This must be a string. This key represents the unique
identifier for each document for every document stored in the index.

3.	 Suggester name - is required for Auto-Complete suggestions.

4.	 Search mode - is used for strategy used to search

5.	 We can select fields from the index so that we can perform following types of queries on it

a. Retrievable
b. Filterable
c. Sortable
d. Facetable
e. Searchable
f. Suggester

Set values for the Index as shown in Figure 10:

http://www.dotnetcurry.com/magazine/

88	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

Figure 10: Index Configuration

Note that although we are making all fields as Retrievable, Filterable, Sortable, Facetable, Search can only
be possible on string fields. These will be used for text-based search.

The Analyzer column provides a drop down for the query analysis syntax. Here we will select English
-Microsoft. We are doing this for plain text-based search. There are several other Analyzer values which can
be set as per your business needs.

Click on the Next: Create an Indexer button to create an index as shown in Figure 11.

Figure 11: Create an Indexer

 	

89www.dotnetcurry.com/magazine

Here we are keeping the defaults as-is. The indexer will streamline and automate data indexes for all data
source connection, data read and serialization operations.

Indexers are available for Azure CosmosDB, Azure SQL Database, Azure BLOB Storage and SQL Server on
Azure VM. Click on the Submit button to complete the service configuration.

Once the Azure Cognitive Search Service is configured, we can view the details as shown in Figure 12.

Figure 12: The Azure Service Configuration success details

As shown in Figure 12, we can see all the indexer, indexes, storage, data source, etc. for the Azure Cognitive
Search service.

Click on the Indexes tab and then click on the Refresh tab, the page will display the fetched documents
from the data source. See Figure 13.

Figure 13: The Indexes with data loaded

http://www.dotnetcurry.com/magazine/

90	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

It shows all the 830 documents (in this case) received from the data source. Now click on the Indexers tab
and see the status. The status shows the Indexers has run successfully to load the data as seen in Figure 14.

Figure 14: Indexer success

The other important details of the service e.g. URL will be displayed as shown in Figure 15.

Figure 15: Azure Cognitive Search Service other details

We can query using the Search Explorer link. This link will navigate to the search explorer as seen in Figure
16.

Figure 16: Search Explorer

Figure 16 shows the Index name, the API Version, Query String and Request URL. After clicking the Search
button, by default, 50 records will be returned. The Request URL will contain the Query string values
entered into the Query String box. In the Query String box enter 'Roland Mendel' and click on the Search
button to get all records with name Roland Mendel.

Azure Cognitive Search Service Limits

While creating Azure Cognitive Search Service, be aware of the maximum limits for storage, number of
indexes, workloads, documents etc. These limits are helpful to provide an access of Azure Cognitive Search
Service to the client application. These limits vary based on the Provisioning of Azure Cognitive Search E.g.
Free, Basic, Standard, etc. More information about these maximum limits can be read from this link.

https://docs.microsoft.com/en-us/azure/search/search-limits-quotas-capacity#index-limits

 	

91www.dotnetcurry.com/magazine

As seen in Figure 4, we have selected the Standard Provisioning for the Search Service. This means that we
can create a total of 50 Indexes. To create a new container in Cosmos DB, follow all the steps discussed in
the Create Data Source Sections.

From the Northwind Database and its SuppliersData table, execute the following query”

select SupplierID, CompanyName,ContactName,ContactTitle,Address,City,Country,Phone
from SuppliersData

As already explained in the steps for creating a data source, migrate the data from this table to the new
Cosmos DB container. Import this data in the Azure Cognitive Search Service and create a new Index for
reading the Suppliers Data. So now we have two indexes in Azure Cognitive Search Service.

Creating Angular Client Application to access Azure
Cognitive Search Service REST API

Azure Cognitive Service provides a feature for generating a React.js application with HTML views. This can
be done by clicking on “Indexes” from Search Dashboard and then clicking on “Create Search App (Preview))
as shown in Figure 17.

Figure 17: Sample Preview app

Since the Create Search Sapp is in preview, in this step, we will create a new Angular client application and
use Azure Cognitive Search REST API to perform search operations.

We will implement a Simple Query Search in the client application. We require the Search Service Admin
keys as explained in Figure 6. The admin key is used to authorize the client application against the Search
Service.

Create the Angular Application using angular CLI and name this application as azuresearch-client.

Step 1: In the app sub-folder of the src folder, add a new file and name this file as servicedetails.ts. Add the
following code to it:

export class ServerDetails {
 // 1. the Service name
 public static searchServiceName = 'allorderssearch';
 // 2. The Admin Key
 public static searchServiceAdminApiKey = '<MY ADMIN KEY>';
 // 3. The Index Name
 public static searchIndexName = 'cosmosdb-index-allordersdata';
 public static searchIndexNameLucene = 'cosmosdb-index-suppliersdata';

http://www.dotnetcurry.com/magazine/

92	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

 // 4. The API Version
 public static apiVersion = '2019-05-06';
 // 5. The Search URLS
 // tslint:disable-next-line: max-line-length
 public static searchUri = `https://${ServerDetails.searchServiceName}.
search.windows.net/indexes/${ServerDetails.searchIndexName}/docs/search?api-
version=${ServerDetails.apiVersion}`;

// tslint:disable-next-line: max-line-length
public static searchUriLucene = `https://${ServerDetails.searchServiceName}.
search.windows.net/indexes/${ServerDetails.searchIndexNameLucene}/docs/search?api-
version=${ServerDetails.apiVersion}`;

}

Listing 1: The Azure Cognitive Search Service Details

You can see Azure Cognitive Search service details in the code. The important thing here is the URIs, as
these URIs are used for performing query-based search operations.

Step 2: Add the following two code files in the app folder. These files will be used for Orders class and
SuppliersData classes

export class Orders {
 constructor(public OrderID: string,
 public CustomerName: string,
 public EmployeeName: string,
 public OrderDate: string,
 public RequiredDate: string,
 public ShippedDate: string,
 public ShipperName: string,
 public Freight: number,
 public ShipName: string,
 public ShipAddress: string,
 public ShipCity: string,
 public ShipPostalCode: string,
 public ShipCountry: string,
 public id: string) {
 }
}

Listing 2: The Orders class

export class SuppliersData {
 constructor(
 public SupplierID: string,
 public CompanyName: string,
 public ContactName: string,
 public ContactTitle: string,
 public Address: string,
 public City: string,
 public Country: string,
 public Phone: string,
 public id: string

) {
 }
}

Listing 3: The SuppliersData class

 	

93www.dotnetcurry.com/magazine

Step 3: In the app folder, add a new file and name it as azuresearchservice.ts. This file contains an Angular
service. This service will use the HttpClient class to make a call to Azure Cognitive Search Service to
perform Search operations. Add the following code in the file:

import { Injectable } from '@angular/core';
import { HttpClient, HttpHeaders } from '@angular/common/http';
import { Observable } from 'rxjs';
import { ServerDetails } from './serverdetails';

@Injectable({
 providedIn: 'root'
})
export class AzureSerchService {
 constructor(private http: HttpClient) {
 }

 searchData(query: string, pageSize: number): Observable {

 let result: Observable = null;
 const options = {
 headers: new HttpHeaders({
 'api-key': ServerDetails.searchServiceAdminApiKey,
 'Content-Type': 'application/json'
 })
 };
 result = this.http.post(ServerDetails.searchUri, JSON.stringify({
 search: query,
 top: pageSize,
 }), options);
 R1eturn result;
 }

 searchSuppliersLuceneData(query: string): Observable {

 let result: Observable = null;
 const options = {
 headers: new HttpHeaders({
 'api-key': ServerDetails.searchServiceAdminApiKey,
 'Content-Type': 'application/json'
 })
 };
 result = this.http.post(ServerDetails.searchUriLucene, JSON.stringify({
 search: query
 }), options);
 return result;
 }
}

Listing 4: The Service class

In the Service class, we have searchData() and searchSuppliersLuceneData() methods. These methods will
be used to perform simple search and Lucene Text search respectively.

In the searchData() method, we are making a POST request by passing api-key and Content-Type in header.
The api-key will authenticate the call against the Azure Cognitive Search Service. We are sending the search
and top parameters in the request body. The search parameter will post the query for search operations and
the top parameter will define how many results can we expect in response. The default response records
are 50.

http://www.dotnetcurry.com/magazine/

94	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

Similarly in the searchSuppliersLuceneData() method we are passing search query to perform search
operations. You can read more about Simple Query Syntax from this link and the Lucene Query Syntax from
this link.

Step 4: In the app folder, add a new file and name it as app.english.search.component.ts. Add the following
code in it:

import { Component, OnInit } from '@angular/core';
import { AzureSerchService } from './azuresearchservice';
import { Orders } from './orders';

@Component({
 selector: 'app-search-component',
 templateUrl: './app.component.view.html'
})
export class AppEnglishSearchComponent implements OnInit {
 query: string;
 orders: Array;
 headers: Array;
 private order: Orders;
 recordCount: number;
 pageSizeArray: Array;
 pageSize: number;

 constructor(private serv: AzureSerchService) {
 this.query = '';
 this.orders = new Array();
 this.headers = new Array();
 this.recordCount = 0;
 // the page size array
 this.pageSizeArray = [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000];
 // the defaule page size
 this.pageSize = 100;

 this.order = new Orders('', '', '', '', '', '', '', 0, '', '', '', '', '','');
 }

 ngOnInit(): void {
 // tslint:disable-next-line: forin
 for (const p in this.order) {
 this.headers.push(p);
 }
 this.onChangeQuery();

 }
 // method for search query
 onChangeQuery(): void {
 this.serv.searchData(this.query, this.pageSize).subscribe(resp => {
 const response: any = resp.value;
 this.getOrders(response);
 });
 }
 // receive the search data
 private getOrders(data: []): void {

https://docs.microsoft.com/en-us/azure/search/query-simple-syntax
https://docs.microsoft.com/en-us/azure/search/query-lucene-syntax

 	

95www.dotnetcurry.com/magazine

 this.orders = new Array();
 for (const ord of data) {
 this.orders.push(ord);
 }
 this.recordCount = this.orders.length;
 }
}

Listing 5: The Simple Query Component class

The Simple Query Component class defines page size array so that the end-user can select the page size
to define expected records in the response against the search query. The method onChangeQuery() will
call the searchData() method from the Angular service by passing the search query and the page size
parameters to it. The getOrders() method will update the orders array by pushing the search records in
it.

Step 5: In the app folder, add a new html file and name it as app.component.view.html with following
markup in it:

<div>
 <h2>The Standard Search Using 'English- Microsoft'</h2>

 <div class="form-group">
 <label>Enter Search Value</label>
 <input type="text" class="form-control" placeholder="Enter your search
here" (keyup)="onChangeQuery()" [(ngModel)]="query">
 <label>Select Page Size</label>
 <select class="form-control" (change)=" onChangeQuery()"
[(ngModel)]="pageSize">
 <option *ngFor="let size of pageSizeArray" value="{{size}}">{{size}}</option>
 </select>
 </div>
 <hr>
 <label>Total Match Found: {{recordCount}}</label>
 <hr>
 <h2>Orders Details</h2>
 <table class="table table-bordered table-striped">
 <thead>
 <tr>
 <td *ngFor="let h of headers">{{h}}</td>
 </tr>
 </thead>
 <tbody>
 <tr *ngFor="let ord of orders">
 <td *ngFor="let h of headers">{{ord[h]}}</td>
 </tr>
 </tbody>
 </table>
</div>

Listing 6: The Html markup for the English search

The html contains the required angular binding for invoking onChangeQuery() method on keyup event

http://www.dotnetcurry.com/magazine/

96	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

of an input element. apgeSizeArray is bound with select element to display page size in the option
element of the select element. The table element will display received orders after search service returns a
response.

Step 6: Similar to Simple Query Search, the following code shows the logic for performing Lucene Query
Search in the app.suppliers.component.lucene.ts file in the app folder:

import { Component, OnInit } from '@angular/core';
import { AzureSerchService } from './azuresearchservice';
import { SuppliersData } from './suppliersdata';

@Component({
 selector: 'app-suppliers-search-lucene-component',
 templateUrl: './app.suppliers.component.lucene.view.html'
})
export class AppSuppliersSearchLuceneComponent implements OnInit {
 query: string;
 suppliers: Array;
 headers: Array;
 private supplier: SuppliersData;
 recordCount: number;

 constructor(private serv: AzureSerchService) {
 this.query = '';
 this.suppliers = new Array();
 this.headers = new Array();
 this.recordCount = 0;
 this.supplier = new SuppliersData('', '', '', '', '', '', '', '', '');
 }

 ngOnInit(): void {
 // tslint:disable-next-line: forin
 for (const p in this.supplier) {
 this.headers.push(p);
 }
 this.onChangeQuery();

 }

 onChangeQuery(): void {
 this.serv.searchSuppliersLuceneData(this.query).subscribe(resp => {
 const response: any = resp.value;
 this.getSuppliers(response);
 });
 }

 private getSuppliers(data: []): void {
 this.suppliers = new Array();
 for (const sup of data) {

 	

97www.dotnetcurry.com/magazine

 this.suppliers.push(sup);
 }
 this.recordCount = this.suppliers.length;
 }
}

Listing 7: app.suppliers.component.lucene.ts for accessing the the searchSuppliersLuceneData method from Angular Service

We will also have the app.suppliers.component.lucene.view.html file for Search UI for Lucene Search as
shown in Listing 8.

<div>
 <h2>The Standard Search Using 'English- Lucene'</h2>
 <div class="form-row">
 Note that you can query for Fields as FieldName:Value
 You can using
AND/OR Conditions e.g FieldName1:Value1 AND FieldName2:Value2
 </div>
 <div class="form-group">
 <label>Enter Search Value</label>
 <input type="text" class="form-control" placeholder="Enter your search
here" (keyup)="onChangeQuery()" [(ngModel)]="query">

 </div>
 <hr>
 <label>Total Match Found: {{recordCount}}</label>
 <hr>
 <h2>Suppliers Details</h2>
 <table class="table table-bordered table-striped">
 <thead>
 <tr>
 <td *ngFor="let h of headers">{{h}}</td>
 </tr>
 </thead>
 <tbody>
 <tr *ngFor="let sup of suppliers">
 <td *ngFor="let h of headers">{{sup[h]}}</td>
 </tr>
 </tbody>
 </table>

Listing 8: The app.suppliers.component.lucene.view.html file

Listing 8 contains binding with the properties and methods from the AppSuppliersSearchLuceneComponent
for performing search operations based on the Lucene Query Syntax.

Step 7: In the app folder, add a new file and name it as app.main.component.ts. This file will contain routing
configuration across components added in Step 5 and 6. Add the following code in the file:

import { Component, OnInit } from '@angular/core';

http://www.dotnetcurry.com/magazine/

98	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

@Component({
 selector: 'app-main-component',
 template: `
 <table class="table table-bordered table-striped">
 <tr>
 <td>
 <a [routerLink]="['']">English Search
 </td>
 <td>
 <a [routerLink]="['lucene']">Lucene Search
 </td>
 </tr>
 </table>

 <router-outlet></router-outlet>
 `
})
export class MainComponent implements OnInit {
 constructor() { }

 ngOnInit(): void { }
}

Listing 9: The MainComponent with the Routing

Step 8: Modify app.module.ts file in the project with the following code. This code defines routing for the
components we added in Step 5 and Step 6.

import { BrowserModule } from '@angular/platform-browser';
import { NgModule, Component } from '@angular/core';
import { AppEnglishSearchComponent } from './app.english.search.component';
import { HttpClientModule } from '@angular/common/http';
import { FormsModule } from '@angular/forms';
import { AppSuppliersSearchLuceneComponent } from './app.suppliers.component.
lucene';
import { RouterModule } from '@angular/router';
import { MainComponent } from './app.main.component';

@NgModule({
 declarations: [
 AppEnglishSearchComponent,
 AppSuppliersSearchLuceneComponent,
 MainComponent
],
 imports: [
 BrowserModule, HttpClientModule, FormsModule,
 RouterModule.forRoot([
 { path: '', component: AppEnglishSearchComponent },
 { path: 'lucene', component: AppSuppliersSearchLuceneComponent }
])
],
 providers: [],
 bootstrap: [MainComponent]
})
export class AppModule { }
Listing 10: The AppModule

Run the application from the Command Prompt using npm run start command - this will run the Angular

 	

99www.dotnetcurry.com/magazine

Application. Open the browser and enter http://localhost:4200 url in the address bar. This will render a view
in the browser as shown in the Figure 18.

Figure 18: The Simple Query Syntax

This will load the first 100 records because the record size is 100. In the Enter Search Value, enter the value
as Hari, it will immediately perform search operations. The search result will be shown as in the following
figure:

Figure 19: Simple Search based on query as Hari

We can use AND Operator for search using + operator e.g. enter “Margaret Peacock” + “Sierras de Granada
9993” in the search textbox (without the double quotes), and the search results will be displayed
accordingly.

On the page, click on the Lucene Search. This page will show the Suppliers data with the first 50 records.
In the Lucene Query Syntax, we can use Boolean operators, Regular Expressions, WildCards, Fuzze search,

http://www.dotnetcurry.com/magazine/

100	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

etc. For example, in the Enter Search Value text box, enter Charlotte Cooper || London. A the search will take
place on these values and result will be displayed as shown in Figure 20.

Figure 20: The Lucene Query syntax

In the Search Text box, enter Admin*. A search occurs for the word starting with Admin and it will search
Admin, Administrator, etc. This makes it easy to perform search.

Conclusion

Azure Cognitive Search is a search-as-a-service solution with optimized and high-performance search
capabilities. It allows developers to incorporate great search experiences into applications that needs
enterprise search across various data sources.

Author
Mahesh Sabnis

Mahesh Sabnis is a DotNetCurry author and ex-Microsoft MVP having over 19 years of
experience in IT education and development. He is a Microsoft Certified Trainer (MCT)
since 2005 and has conducted various Corporate Training programs for .NET, Cloud and
JavaScript Technologies (all versions). Follow him on twitter @maheshdotnet

Thanks to Vikram Pendse for reviewing this article.

Download the entire source code from GitHub at

bit.ly/dncm46-azure-search

http://www.dotnetcurry.com/author/vikram-pendse
http://bit.ly/dncm46-azure-search

http://www.dotnetcurry.net/s/dncmag-prod-may17

PATTERNS & PRACTICES

Yacoub Massad

CODING
PRACTICES:
THE MOST IMPORTANT
ONES – PART 1

In this tutorial, I will talk
about the most important
coding practices based on
my experience.

INTRODUCTION

In this tutorial, I will talk about the coding practices that I found to be the most beneficial in my experience.

The most important practice is Automated Testing. More specifically, the practice of making sure that
simple tests are written that allow you to verify that you don’t break anything when you modify your code.

In this part, I will talk about this.

Note: In this article, I give you advice based on my 9+ years of experience working with applications and sharing
my knowledge. Although I have worked with many kinds of applications, there are probably kinds that I did not
work with. Software development is more of an art than a science. Use the advice I give you if it makes sense in
your case.

Practice: Having tests that pin program behavior

Make sure that you have tests that pin the behavior of your programs. Here are the properties of the tests I
am talking about:

1.	 Require low maintenance: A good test will not need to be modified often. A very good test will almost
never be modified once it is written.

Before talking about writing low maintenance tests, let’s talk about visibility layers.

Figure 1: Visibility layers in some program

Figure 1 illustrates the visibility layers of some program. I use the word “layer” here in a very general sense.

https://www.dotnetcurry.com/author/yacoub-massad
https://www.dotnetcurry.com/author/yacoub-massad

104	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

I am not trying to talk about a specific architecture of a program. But in general, all programs have some
sort of visibility layers. That is, there are parts of the program that are more visible to the outside world,
and others that are internal and less visible from the outside.

The green squares in Figure 1 represent the outer visibility layer of the program – i.e. the most visible parts
of the program. This may include the user interface, the database, the public API of the program (e.g. when
the program is a web service), etc. The blue squares represent the code at a more internal layer. The white
squares represent code at an even more internal level.

For example, the blue squares might contain code that is immediately below the UI, e.g. View Models in
an MVVM application, or code that usually sits underneath the UI. These squares could also contain data
access code that is just above the database itself, e.g. an ORM.

When writing tests, we can choose to use the green blocks as the points of interaction between the tests,
and the system under test.

Figure 2: Using the outer visibility layer for testing

For example, we can write a test that interacts directly with the user interface (UI tests), and then checks
that certain data has been put inside the database. As a more concrete example, we can use a UI testing
library such as the Microsoft’s Coded UI component to interact directly with the buttons and other input
fields of some UI.

Also, in the assertion phase of our test, we can directly access data in a Microsoft SQL Server table to see
that data was inserted as expected by the test. Alternatively, the assertion phase can also be done against
the UI. For example, we can navigate to some reporting section of the UI and verify that the data that was
given as input to the UI, is now part of some report that is visible in the UI.

We can also choose a more internal visibility layer to do that. See Figure 3 with an area surrounded in red.

https://docs.microsoft.com/en-us/visualstudio/test/use-ui-automation-to-test-your-code?view=vs-2019

 	

105www.dotnetcurry.com/magazine

Figure 3: Using the second most visible layer for testing

For example, instead of writing a test that interacts with the user interface, we can write a test that
interacts with the View Models in some MVVM application. Also, instead of checking data in the database
server at the assertion phase, we can use an in-memory database in the test. Or, if we are using the
repository pattern, we can use a fake repository object for testing.

We can also test internal code. We can test a single unit of behavior, or a group of units.

Figure 4: Testing a group of internal units of behavior

http://www.dotnetcurry.com/magazine/
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/infrastructure-persistence-layer-design

106	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

An example of such a test is a test that tests a few classes together. Figure 4 depicts this.

Figure 5: Testing a single unit of internal behavior

Figure 5 depicts testing a single unit of internal behavior, e.g., testing a single class.
The boundary of the tests can be anything really.

Figure 6: A test that spans different visibility layers

For example, we can invoke the program using the View Models of some MVVM application, and then assert
against the internal state of some internal class in the program. I am not saying that you should do this, I
am just exploring the possibilities.

Different tests have different advantages and disadvantages.

 	

107www.dotnetcurry.com/magazine

Although many kinds of tests can be important, here I only want to talk about the most important ones.
That is, I want to talk about the ones that I consider doing them as the number one best practice.

For tests to require low maintenance, they should be written using points of interaction that are less likely
to change. The following can change easily:

•	 Internal code: The internal blocks of our programs are likely to change. One day we may decide to
implement a feature in a certain way. The next day we decide to do it another way for whatever reason.
We might delete existing functions/classes and add new ones. Or we might change the signatures of
these functions/classes. Such changes immediately break tests that are done against such functions/
classes.

•	 Volatile outer layer code: The outer visibility layers of a program are closer to the user requirements.
For example, the UI is what the user sees. The user cares more about the user interface and the
functionality it provides than the internal implementation details behind it. The public API of a web
service is what the consumer of the service sees. The consumer of the service cares about this API and
doesn’t really care about the internal implementation details.

Although such outer visibility layers are closer to user requirements, some kinds of components in such
layers are still volatile and can change. The user interface is one example. Although the core features of the
UI are relatively stable, the UI itself is volatile.

To explain this further, consider a program that allows users to translate some documents in a folder. The
user is expected to give the following inputs to the program:

i.	 The input folder path
ii.	 Authentication settings for the translation server
iii.	 Output document format

The core UI feature here is to input these three pieces of data. However, you can implement this via
different kinds of UI features, e.g.:

i.	 You can have all these fields in a single form, or you can have a wizard where each page of the
wizard asks for only one of these inputs.

ii.	 You can use a single text box and a pick button that opens a dialog that allows you to pick the
folder from the folder tree of the file system like Figure 7, or you can have the file system folder tree
available directly on the form like Figure 8.

<= Figure 7: Picking the input
folder by clicking a pick button first

http://www.dotnetcurry.com/magazine/

108	 DNC MAGAZINE ISSUE 46 - MAR- APR 2020

Figure 8 Picking the input folder directly

iii.	 You can use a drop-down list (e.g. via a ComboBox) to let the users select the output document
format or you can use radio buttons.

As you can see, although the core UI functionality is to input three pieces of information, the UI itself can
be anything, and the exact way we implement it can easily change.

There are other components that are volatile. For example, if your program communicates with an external
web service to calculate exchange rates, the web service might be down, and you cannot control the data
returned by such web service.

So, to make tests require low maintenance, we should write them against non-volatile components in the
most possible outer visibility layer. For programs with a UI, a subcutaneous test might be what you need.
For web services, the service API is usually the best places to use for tests.

2.	 Be deterministic. A failing test should always mean there is a problem. The test shouldn’t fail because
an external web service is down. It shouldn’t fail because the currency exchange rates (which are
returned by the external service) have changed. Fakes can usually be used to fix such issues. Note that
some dependencies might be acceptable.

For example, a local database (a special testing database controlled by the tests) might be acceptable.
The price to pay in terms of indeterminism (that the local database might be down) in this case may (or
may not) be relatively low compared to the value of testing against a real database.

3.	 Be close to user requirements. This is very much related to Pratice #1. Because user requirements
change slower than implementation details and because they are mostly incremental in nature, having
tests at the level of user requirements makes them less likely to change.

4.	 Run relatively quickly: The tests I am talking about here, run quickly.

How quickly?

Enough to be able to run the possibly hundreds or even more tests in a few minutes. Although it is best
for a test to take less than a few milliseconds, it might be fine if a test takes a second or a few seconds.
There is a lot of advice out there that tests should run even quicker than this. My problem with super-
fast tests is that they usually test small internal blocks of code that are implementation details which
would then make the tests require high maintenance.

If you can have super-fast end-to-end tests, that would be great. If not, making the tests low-
maintenance is more desirable. Of course, there might be cases were end-to-end tests are super-slow. In

https://martinfowler.com/bliki/SubcutaneousTest.html

 	

109www.dotnetcurry.com/magazine

that case, using a lower visibility layer might be a good option. The important thing is to realize the cost
and value of testing at each layer and then deciding on the best option.

One advantage of super-fast tests is that you can run them frequently,
even as you are typing code. Although this has value, the value of
having low-maintenance end-to-end tests is higher in many cases. I
usually run tests a few times every day, and that is enough for me.

Another thing that might be good to do when creating a test suite is to add an additional layer for testing.
That is, the tests themselves will not invoke the system under test directly, instead they will invoke it
indirectly.

For example, if you are testing a program which is a translation web service, you can have a method in your
test class called InvokeSUT that the tests call. InvokeSUT would in turn invoke the translation web service
that is under test. This way, if there are minor changes to the public interface of the web service under test,
only the InvokeSUT method will need to be changed instead of all the test methods.

Conclusion:

This article is about the coding practices that I found to be the most beneficial during my work in software
development. In this part, Part 1, I talked about the most important practice: having low-maintenance
relatively-quick-to-run end-to-end tests that pin the program behavior.

I will talk about some more practices in the upcoming articles.

Author
Yacoub Massad

Yacoub Massad is a software developer who works mainly with Microsoft technologies. Currently, he works
at Zeva International where he uses C#, .NET, and other technologies to create eDiscovery solutions. He
is interested in learning and writing about software design principles that aim at creating maintainable
software. You can view his blog posts at criticalsoftwareblog.com.

Thanks to Damir Arh for reviewing this article.

http://www.dotnetcurry.com/magazine/
http://criticalsoftwareblog.com
http://www.dotnetcurry.com/author/damir-arh

Thank You
for the 46th Edition

@dani_djg

@yacoubmassad @damirarh@sravi_kiran

@saffronstroke@suprotimagarwal

@maheshdotnet

@subodh_sohoni

Write for us - mailto: suprotimagarwal@dotnetcurry.com

benjamij

@gouri_sohoni@vikrampendse

