
Data Structures

Using C

About the Author

E Balagurusamy, former Vice Chancellor, Anna University, Chennai and

Member, Union Public Service Commission, New Delhi, is currently the

Chairman of EBG Foundation, Coimbatore. He is a teacher, trainer, and

 ! " #

Object-Oriented Software Engineering, E-Governance, Technology Management,

Business Process Re-engineering, and Total Quality Management.

$ % & ! ' (

% %) (# (* (# !

� Fundamentals of Computers

� Computing Fundamentals and C Programming

� Programming in ANSI C, 6e

� Programming in Java, 4e

� Programming in BASIC, 3e

� Programming in C#, 3e

� Numerical Methods

� Reliability Engineering

$ % & ! ' (

+ - + /

Data Structures

Using C

McGraw Hill Education (India) Private Limited
NEW DELHI

New Delhi New York St Louis San Francisco Auckland Bogotá Caracas

Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal

San Juan Santiago Singapore Sydney Tokyo Toronto

E Balagurusamy

Chairman

EBG Foundation

Coimbatore

 ((0 &) /

 *12! 0 # 5 ! 7& 889 98:

Data Structures Using C

; % < 198=! (0 &) /

No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical,

% % ! ! & () & % & %

 % (% (! 5 % ! (

may not be reproduced for publication.

 (5% (% (!

 0 &) /

 '7 8= > ?@I*8*1J*?91?J2*@

 '7 89 > 8*1J*?91?J2*?

K > Ajay Shukla

 L (# > Vibha Mahajan

 (L O > Shalini Jha

$ % > Smruti Snigdha

 " > Amiya Mahapatra

 L > Satinder S. Baveja

 > P. L. Pandita

; % > Preyoshi Kundu

$ 0 L # > Vijay Sarathi

 % L K > Tina Jajoriya

 0 % L;) > Meenu Raghav

0 L > Rajender P. Ghansela

 L > Reji Kumar

 & # (((0 & ()

 ((&) ! 0 &

 % % (! 0 &

 (% (! !

& # % (& 0 & %%

 (% %))

 Q ! %% % % (

 % ' #% ! '*8I9$! 0 7 # ! / 5 7 *889 9?1 %

) / ! *8=1! ; % 5! ! 7

;) >) /

"$/R;";T"'WWW

Contents
Preface ix

1. C Recap – I 1

 8 8 2

 8 1 () 2

 8 = T)) & ; 11

 8 2 % 11

 8 J ; 12

 8 : K (12

 8 @ % 13

 8 I % T % T% 15

 8 ? T% 5% 19

 Summary 26

 Review Questions 27

 Programming Exercises 27

2. C Recap – II 28

 1 8 29

 1 1 ; 29

 1 = $ 41

 1 2 45

 1 J ' * X 48

 1 : Y * X 50

 1 @ 54

 1 I Y 58

 1 ? 61

 Summary 62

 Review Questions 63

 Programming Exercises 63

3. Introduction to Algorithm and Data Structures 65

 = 8 66

 = 1 $ 66

 3.3 Asymptotic Notation 70

 = 2 74

 = J % 75

 = : T% 79

 Summary 79

 Key Terms 80

C
o
n
t
e
n
t
s

vi

 Multiple-Choice Questions 80

 Review Questions 81

 Answers to Multiple-Choice Questions 82

4. Arrays 83

 4 8 84

 2 1 % $ 84

 2 = "% T * $ 85

 2 2 $) 85

 2 J 87

 2 : 92

 2 @ "% * $ 97

 2 I " Z Y & * $ 98

 2 ? 5 T% 100

 Summary 108

 Key Terms 108

 Solved Problems 109

 Multiple-Choice Questions 110

 Review Questions 111

 Programming Exercises 111

 Answers to Multiple-Choice Questions 111

5. Linked Lists 112

 J 8 113

 J 1 / # / [' ; % 113

 J = / # / % 114

 J 2 % / # / 126

 J J ; / # / 126

 J : (/ # / 135

 Solved Problems 143

 Summary 144

 Key Terms 144

 Multiple-Choice Questions 145

 Review Questions 146

 Programming Exercises 146

 Answers to Multiple-Choice Questions 146

6. Stacks 147

 : 8 148

 : 1 # 148

 : = # T% 149

 : 2 # % 151

 Solved Problems 162

C
o
n
t
e
n
t
s

 vii

 Summary 165

 Key Terms 165

 Multiple-Choice Questions 166

 Review Questions 167

 Programming Exercises 168

 Answers to Multiple-Choice Questions 168

7. Queues 169

 @ 8 170

 @ 1 \ L ' ; % 170

 @ = \ T% 172

 @ 2 \ % 174

 @ J ; \ 185

 @ : \ 193

 @ @ (* \ 199

 Solved Problems 202

 Summary 205

 Key Terms 205

 Multiple-Choice Questions 206

 Review Questions 207

 Programming Exercises 207

 Answers to Multiple-Choice Questions 207

8. Trees 208

 I 8 209

 I 1 ' ; % 209

 I = ' 210

 I 2 ' "% 212

 I J ') 217

 I : ' 224

 I @ K 231

 Summary 240

 Key Terms 241

 Multiple-Choice Questions 241

 Review Questions 242

 Programming Exercises 242

 Answers to Multiple-Choice Questions 242

9. Graphs 243

 ? 8 244

 ? 1 ' ; % 244

 ? = 0 % 245

 ? 2 0 % % 246

 ? J $ 253

viii

 ? : 0 %) 257

 Summary 259

 Key Terms 259

 Multiple-Choice Questions 259

 Review Questions 260

 Programming Exercises 260

 Answers to Multiple-Choice Questions 260

10. Sorting and Searching 261

 89 8 262

 89 1 Q 262

 89 = Q 288

 Solved Problems 297

 Summary 298

 Key Terms 299

 Multiple-Choice Questions 299

 Review Questions 300

 Programming Exercises 300

 Answers to Multiple-Choice Questions 300

11. Application of Data Structures 301

 88 8 302

 88 1 $%% # 302

 88 = $%% \ 306

 88 2 $%% / # / 307

 88 J $%% 308

 88 : $%% 0 % 311

 Summary 311

Index 313

P
r
e
f
a
c
e

Preface

About the Book

 & % & %%

 % -) % %

 &) % & %% C %

 % & &

 % %

 Data Structures Using C lies in its simple and lucid presentation of the subject which

& % ((% % * %%

 (] &)) 5 % ! & * ; %

 (# & %) (%% %

 Z !)

Salient Features of the Book

� * %) % % # Arrays, Linked lists, Stacks, Queues, Trees, Graphs,

Sorting, and Searching

� % " / $%%

� 5% * % 5

� % *; \) 5) &

�)) %

over 400 pedagogical aids like

illustrations, programs, important

commands in programs, output and

program analysis, note, checkpoint,

key terms, solved problems, and review

questions.

What Sets This Book Apart

Chapter Opening Features

$ % % !

] ! &

(%

& % Z

priorities.
2 Data Structures Using C

Before we start exploring the different types of data structures and learn how to implement them to solve

real world problems, we must first get ourselves familiar with the basics of problem solving techniques

and the C language. Since the early days of programming, problem solving methods, like algorithms

and flowcharts, and the C programming language have been used to represent and explain the concepts

of data structures. They provide a simplified method of learning and implementing the different types

of data structures.

In this chapter, we will explore the different problem solving techniques. We will also get introduced

to the C language and its various programming constructs.

 If you are already familiar with problem solving techniques and the C language, then you

may choose to skip this chapter.

A problem is a situation presented to a computer so that its solution can be found. It is associated with a

well-defined set of inputs and an output that signifies the problem resolution. Problem solving involves

applying a series of methods to a given problem so that its solution can be achieved in a systematic

manner. Following are the three problem-solving methods or techniques that are applied in sequence

to solve a given problem:

1. Developing the algorithm

2. Creating the flowchart

3. Writing the pseudocode

Development of computer program becomes quite easy after we have applied the above techniques

to a given problem. Let us understand each of these techniques one by one.

1.2.1

An algorithm is a sequence of steps written in simple English phrases to describe the solution to a given

problem. It basically breaks the solution of a problem into a series of simple descriptive steps.

 !" # An integer num is given as input. Write an algorithm to find out whether num is

even or odd.

 $ % A number is an even number if it is completely divisible by 2; alternatively, it is an odd

number if it is not completely divisible by 2 and leaves 1 as remainder. Let us apply this logic to develop

the algorithm for the given problem.

Step 1 Start

Step 2 Accept num as the input

Step 3 Divide num by 2. If the remainder is 0 then go to Step 4 else go to Step 5

Step 4 Show num as is an even number and go to Step 6

Step 5 Show num as is an odd number

Step 6 Stop

x

In-chapter Features

�X # !

pseudocodes, flowcharts

 % % Z

on a point or help teach a

concept. Commands in bold

draw students’ attention to

a particular section in the

%

Other Significant Features

7 ! % ; #%

%) 5)) &

 %%

related to the content of the chapter.

 xi

Chapter-end Features

Summary reviews the concepts while a list

 # %) (

students need to understand the concepts

presented in the chapter. Students can assess

 # & (& (

) & Q ! % 5

 % * Q

P
r
e
f
a
c
e

260 Data Structures Using C

 9.3 As per modified Warshall’s algorithm, which of the following is the correct relation for computing

the shortest path between two vertices in a graph?

 (a) SPi, j = Minimum of (SPi, j, SPi, k + SPk, j)

 (b) SPi, j = Maximum of (SPi, j, SPi, k + SPk, j)

 (c) SPi, j = Minimum of (SPi, k, SPk, j + SPi, j)

 (d) None of the above

 9.4 The number of edges incident on a vertex is referred as ____________.

 (a) Degree

 (b) Indegree

 (c) Order

 (d) Outdegree

 9.5 Identify the BFS path for the following graph:

 (a) 1–2–3–4–6–5

 (b) 1–4–3–2–6–5

 (c) 1–2–3–4–5–6

 (d) None of the above

 & ' ($) %)

 9.1 What is a graph? Explain with an example.

 9.2 List and explain any five key terms associated with graphs.

 9.3 What are the different methods of representing a graph?

 9.4 What is an adjacency matrix? How can you derive a path matrix from an adjacency matrix?

 9.5 Explain adjacency list implementation of a graph with the help of an example.

 9.6 What is the significance of computing the shortest path in a graph? Explain with the help of an

example.

 9.7 Write the modified Warshall’s algorithm for computing the shortest path between two nodes of

a graph.

 9.8 What is BFS? Explain with the help of an example.

 9.9 What is DFS? Explain with the help of an example.

 " % ! *))

 9.1 Write a C function to deduce the adjacency matrix for a given directed graph G.

 9.2 Write a C function that takes as input the adjacency matrix and applies Warshall’s algorithm to

generate the corresponding path matrix.

 9.3 Write a C program to implement a 3-node directed graph using adjacency list.

 9.4 Write a C function that takes as input the path matrix and applies the shortest path algorithm to

generate the corresponding shortest path matrix.

 %)') $ # + * ($) %)

 9.1 (b) 9.2 (a) 9.3 (a) 9.4 (b) 9.5 (c)

 Graphs 259

C

a
#

%

 $ " ,

 © A graph G(V, E) consists of the following elements:

 o A set V of vertices or nodes where V = {v1, v2, v3,, vn}

 o A set E of edges also called arcs where E = {e1, e2, e3,, en}

 © A graph can be implemented in three ways: adjacency matrix, path matrix, and adjacency list.

 © Adjacency matrix and path matrix are the sequential methods of representing a graph. Adjacency

matrix signifies whether there is an edge between any two vertices of the graph. Path matrix

signifies whether there is a path between any two vertices of the graph.

 © Adjacency list is a linked representation of a graph. It consists of a list of graph nodes with each

node itself consisting of a linked list of its neighboring nodes.

 © Breadth First Search or BFS is the method of traversing a graph in such a manner that all the

vertices at a particular level are visited first before proceeding onto the next level.

 © Depth First Search or DFS is the method of traversing a graph in such a manner that all the

vertices in a given path (starting from the first node) are visited first before proceeding onto the

next path.

- ,)

 © Weighted graph It signifies that all the edges of the graph are assigned an integer number called

weight.

 © Directed It signifies that each edge of the graph is a pointed arrow that points from one vertex

to the other.

 © Adjacency matrix It is an N ¥ N matrix containing 1s for all the direct edges of the graph and

containing 0s for all the non-edges.

 © Path matrix It is an N ¥ N matrix containing 1s for all the existing paths in a graph and containing

0s otherwise.

 © Adjacency list It a list of graph nodes with each node itself consisting of a linked list of its

neighboring nodes.

 $ # + * ($) %)

 9.1 Which of the following is not true for graph?

 (a) It is a set of vertices and edges.

 (b) All of its vertices are reachable from any other vertex

 (c) It can be represented with the help of an N ¥ N matrix.

 (d) All of the above are true

 9.2 As per Warshall’s method, which of the following is the correct relation for computing the path

matrix?

 (a) Pi, j = Pi, j OR (Pi, k AND Pk, j)

 (b) Pi, j = Pi, j AND (Pi, k OR Pk, j)

 (c) Pi, j = Pi, k AND (Pk, j OR Pi, j)

 (d) None of the above

Chapter Organization

 (# Z 88 % ! & 5% % # $! # ! \ ! / #

/ ! 0 %

Chapters 1 and 2 %) Q # % ; % Chapter 3 *

 % %) (% *

tures. Chapter 4) % ! ! 5% &

 % Chapter 5 5% %

 # &) Chapters 6 and 7 elucidates the restricted data structures,

 # Q % % (

 % %% Chapters 8 and 9

5% * % % %

5%)) Chapter 10 introduces

 & % % ! ! 5%) *

 Q &)) X ! Chapter 11

5% & %) %)

 *& % (

Web Supplements

X & (http://www.mhhe.com/balagurusamy/dsuc

� PowerPoint slides

� Computer programs for labs

� Links for additional resources

Acknowledgements

 & # # &) & %) % >

Shashank Dwivedi UCER, Allahabad, Uttar Pradesh

Rajiv Pandey Amity University Lucknow Campus, Lucknow, Uttar Pradesh

Mahua Banerjee Xavier Institute of Social Service, Ranchi, Jharkhand

Sameer Bhave Indore Professional Studies Academy, Indore, Madhya Pradesh

D Lakshmi, Adithya Institute of Technology, Coimbatore, Tamil Nadu

A Sharada G Narayanamma Institute of Technology and Science, Hyderabad,

 Andhra Pradesh

 # 0 & %% %

Publisher’s Note

) & &) + Q

) (�) & � (# ((#

tmh.csefeedback@gmail.com - (]

Please report any piracy spotted by you as well!

xii

C RECAP–I 1

1.1 Introduction

1.2 Introduction to Problem Solving

 1.2.1 Algorithms

 1.2.2 Flowcharts

 1.2.3 Pseudocode

 1.2.4 Problem Solving—Examples

1.3 Overview of C

1.4 Sample Program

1.5 Constants

1.6 Variables

1.7 Data Types

1.8 Input and Output Operations

 1.8.1 Input Operations

 1.8.2 Output Operations

 1.8.3 File Input/Output Operations

1.9 Operators and Expressions

 1.9.1 Arithmetic Operators

 1.9.2 Assignment Operators

 1.9.3 Bitwise Operators

 1.9.4 Conditional Operator

 1.9.5 Increment and Decrement Operators

 1.9.6 Logical Operators

 1.9.7 Relational Operators

 1.9.8 Special Operators

 1.9.9 Precedence of Operators

Summary

Review Questions

Programming Exercises

1

C
h
a
p
t
e
r

O
u
t
l
i
n
e

2 Data Structures Using C

Before we start exploring the different types of data structures and learn how to implement them to solve

real world problems, we must first get ourselves familiar with the basics of problem solving techniques

and the C language. Since the early days of programming, problem solving methods, like algorithms

and flowcharts, and the C programming language have been used to represent and explain the concepts

of data structures. They provide a simplified method of learning and implementing the different types

of data structures.

In this chapter, we will explore the different problem solving techniques. We will also get introduced

to the C language and its various programming constructs.

 If you are already familiar with problem solving techniques and the C language, then you

may choose to skip this chapter.

A problem is a situation presented to a computer so that its solution can be found. It is associated with a

well-defined set of inputs and an output that signifies the problem resolution. Problem solving involves

applying a series of methods to a given problem so that its solution can be achieved in a systematic

manner. Following are the three problem-solving methods or techniques that are applied in sequence

to solve a given problem:

1. Developing the algorithm

2. Creating the flowchart

3. Writing the pseudocode

Development of computer program becomes quite easy after we have applied the above techniques

to a given problem. Let us understand each of these techniques one by one.

1.2.1 !

An algorithm is a sequence of steps written in simple English phrases to describe the solution to a given

problem. It basically breaks the solution of a problem into a series of simple descriptive steps.

 "#!$ An integer num is given as input. Write an algorithm to find out whether num is

even or odd.

 % & A number is an even number if it is completely divisible by 2; alternatively, it is an odd

number if it is not completely divisible by 2 and leaves 1 as remainder. Let us apply this logic to develop

the algorithm for the given problem.

Step 1 Start

Step 2 Accept num as the input

Step 3 Divide num by 2. If the remainder is 0 then go to Step 4 else go to Step 5

Step 4 Show num as is an even number and go to Step 6

Step 5 Show num as is an odd number

Step 6 Stop

 C RECAP – I 3

C

a
$

&

As we can see in the above algorithm, the solution to the given problem has been described in the

form of a series of steps. Each algorithm starts and ends with a Start and Stop statement, respectively.

Table 1.1 lists the key characteristics, advantages and disadvantages of algorithms:

 #' Characteristics, advantages, and disadvantages of algorithms

Characteristics Advantages Disadvantages

An algorithm completely solves the

given problem.

It eases the process of actual develop-

ment of program code.

For large algorithms, it becomes

difficult to understand the flow of

program control.

Algorithm instructions are simple

and concise.

It allows the programmers to use the

most efficient solution as per time and

space complexity.

It lacks the visual representation of

programming logic as is prevalent

in flowcharts.

Algorithm instructions are ordered. It breaks down the solution of a

problem into a series of simplified

sequential steps.

There are no standard conventions

to be followed while developing

algorithms.

An algorithm begins with Start and

ends with Stop instruction.

Its simplified way of representing

program instructions enables other

programmers to easily understand

and modify it.

It may take considerable amount

of time to write the algorithm for a

given problem.

1.2.2 ()* #

A flowchart can be referred as a pictorial

representation of an algorithm. It uses various

graphical elements to describe the flow of

information and control. The objective of

using flowcharts to describe the problem

solution is to ease the understanding of

programming logic. This helps in developing

the corresponding programming code easier

and faster.

 "#!$ Using flowcharts, solve the

problem given in Example 1.1.

 % & The logic to solve the problem

given in Example 1.1 remains the same. Let

us apply the logic to draw a flowchart.

(Flowchart to determine even or odd number

As shown in Fig. 1.1, different symbols are used in a flowchart to represent different operations.

Table 1.2 lists the key flowchart symbols and along with their description:

4 Data Structures Using C

 #' Flowchart symbols

Name Symbol Description

Start and End Represents the start or end of a process.

Input and Output Represents an input or output operation.

Process Represents a processing step that performs

certain computations.

Decision Represents a decision-making step.

Arrow Represents the flow of control and

information.

Connector Represents the continuation of steps when

a flowchart spans across multiple pages.

Additional Symbols Represent advanced operations.

Similar to algorithms, flowcharts also have certain key characteristics, advantages and disadvantages

associated with them. These are described in Table 1.3.

 #' +

Characteristics Advantages Disadvantages

Standard flow of control in a

flowchart is either from top to

bottom or from left to right.

The visual representation of flow of

program control is easier to understand.

It does not work well for large

programs. The flowchart becomes

too complex and confusing.

Flowchart instructions are

simple and concise.

It eases the process of actual develop-

ment of program code.

A slight modification in a flowchart

may require significant amount of

rework.

None of the arrows in a flowchart

intersect each other.

Flowcharts ease debugging and help in

identifying and removing logical errors.

The use of graphical elements makes

it a little tedious and time consuming

to draw a flowchart.

A flowchart always begins with

a Start symbol and ends with a

Stop symbol.

It acts as documentation for program

flow.

At times, excessive use of connectors

may become a little more confusing.

 C RECAP – I 5

C

a
$

&

 + , %- * -

Pseudocode takes the algorithm one step further. It represents the problem solution with the help of

generic syntax and normal English phrases. It makes the development of program code easier by utilizing

high-level programming constructs for representing conditional and looping scenarios.

 "#!$ + Using pseudocode, solve the problem given in Example 1.1.

 % & The logic to solve the problem given in Example 1.1 remains the same. Let us apply the

logic to write the corresponding pseudocode.

BEGIN

DEFINE: Integer num

DISPLAY: “Enter a number: “

READ: num

IF: num%2=0

DISPLAY: “‘num’ is an even number”

ELSE

DISPLAY: “‘num’ is an odd number”

END IF

END

As we can see in the above pseudocode, the solution to the given problem has been described with the

help of various labels each representing certain programming action. Each pseudocode starts and ends

with a BEGIN and END statement, respectively. Table 1.4 lists the key characteristics, advantages and

disadvantages of pseudocodes.

 #' / Characteristics, advantages, and disadvantages of pseudocodes

Characteristics Advantages Disadvantages

It represents each solution step

with a simple and concise action

statement.

It is simple and easy to understand. It lacks visual representation of

programming logic like flowcharts.

It uses generic labels to describe

programming constructs.

Converting a pseudocode into actual

program code is a lot easier.

There are no standard specifications

for developing pseudocodes.

It completely solves the given

problem.

It is easy to modify and update

pseudocodes as compared to

algorithms and flowcharts.

Unlike flowcharts, it may become a

little difficult to understand the flow

of program control in a pseudocode.

It starts with BEGIN statement and

ends with an END statement.

It is quite flexible and does not

require the programmer to memorize

any special symbols.

A pseudocode written for a complex

problem may become quite lengthy.

 / "#!$, 0 ' ! 3 &

Table 1.5 shows the application of problem solving techniques to solve common problems.

6 Data Structures Using C

 #' 4 Applying problem solving techniques

 ' ! An integer num is given as input. Find out whether num is prime or not.

Algorithm Pseudocode

Step 1 - Start

Step 2 – Accept a number from the user

(num)

Step 3 – Initialize looping counter i = 2

Step 4 – Repeat Step 5 while i < num

Step 5 – If remainder of num divided by

i (num%i) is 0 then go to Step 6 else

go to Step 4

Step 6 - Display “num is not a prime

number” and break from the loop

Step 7 – If i=num then go to Step 8 Else

go to Step 9

Step 8 – Display “num is a prime number”

Step 9 - Stop

BEGIN

DEFINE: Integer num, i

DISPLAY: “Enter a number: “

READ: num

 FOR: i = 2 to num-1

 IF: num%i=0

DISPLAY: “‘num’ is not a prime

number”

BREAK

 END IF

END FOR

FLOWCHART

 C RECAP – I 7

C

a
$

&

 ' ! Apply the problem solving techniques to find the roots of a quadratic equation.

Algorithm Pseudocode

Step 1 - Start

Step 2 – Accept three numbers (a, b,

c) from the user for the quadratic

equation ax2 + bx + c

Step 3 – Calculate root1=((-1)

*b+sqrt(b*b-4*a*c))/2*a

Step 4 – Calculate root2=((-1)*b-

sqrt(b*b-4*a*c))/2*a

Step 5 – Display the computed roots

of the quadratic equation

Step 6 - Stop

BEGIN

DEFINE: Integer a, b, c

DEFINE: Real root1, root2

DISPLAY: “Enter the values of a, b

and c for the quadratic equation ax2

+ bx + c: “

READ: a, b, c

COMPUTE: root1=((-1)*b+sqrt(b*b-

4*a*c))/2*a

COMPUTE: root2=((-1)*b-sqrt(b*b-

4*a*c))/2*a

DISPLAY: “The roots of the quadratic

equation are ‘root1’ and ‘root2’

END

FLOWCHART

8 Data Structures Using C

 ' ! + Apply the problem solving techniques to determine whether the given year is a leap year

or not.

Algorithm Pseudocode

Step 1 - Start

Step 2 – Accept an year value from the

user (year)

Step 3 – If remainder of year value

divided by 4 (year%4) is 0 then go to

Step 4 else go to Step 5

Step 4 – Display “‘year’ is a leap

year” and go to Step 6

Step 5 – Display “‘year’ is not a

leap year”]

Step 6 - Stop

BEGIN

DEFINE: Integer year

DISPLAY: “Enter the year value: ”

READ: year

IF: year%4=0

 DISPLAY: “‘year’ is a leap year”

ELSE

 DISPLAY: “‘year’ is not a leap year”

END IF

END

FLOWCHART

 C RECAP – I 9

C

a
$

&

 ' ! / Apply the problem solving techniques, to find the sum of digits of an integer.

Algorithm Pseudocode

Step 1 - Start

Step 2 – Accept an integer value from

the user (num)

Step 3 – Define a variable Sum to

store the sum of digits and initialize

it to 0

Step 4 – Assign the value of num to a

temporary variable (temp=num)

Step 5 – Repeat Steps 6-7 while temp

is not equal to 0 (temp!=0)

Step 6 – Calculate Sum = Sum+(temp%10)

Step 7 – Calculate temp=temp/10

Step 8 – Display Sum as the result

containing sum of digits of num

Step 9 - Stop

BEGIN

DEFINE: Long Integer num, temp

DEFINE: Integer sum

SET: sum=0

DISPLAY: “Enter an integer value: ”

READ: num

SET: temp=num

REPEAT

 COMPUTE: sum = sum+temp%10

 COMPUTE: temp=temp/10

UNTIL: temp!=0

DISPLAY: “The sum of digits of ‘num’

is ‘sum’”

END

FLOWCHART

10 Data Structures Using C

 ' ! 4 Apply the problem solving techniques, to determine whether a given number is Armstrong

or not.

Algorithm Pseudocode

Step 1 - Start
Step 2 – Accept a number from the
user (num)
Step 3 – Store the value of num in a
temporary variable temp, temp=num
Step 4 – Define a variable sum and
initialize it to 0
Step 5 – Repeat Steps 6-8 while temp
> 0
Step 6 – Calculate i=temp%10;
Step 7 – Calculate sum=sum+i*i*i;
Step 8 – Calculate temp=temp/10;
Step 9 – if num is equal to sum then
go to Step 10 else go to Step 11
Step 10 – Display “num is an Armstrong
number” and go to Step 12
Step 11 – Display “num is not an
Armstrong number”
Step 12 - Stop

BEGIN
DEFINE: Integer num, temp, sum, i
SET: sum = 0
DISPLAY: “Enter a number: ”
READ: num
SET: temp=num
REPEAT
 COMPUTE: i=temp%10
 COMPUTE: sum=sum+i*i*i
 COMPUTE: temp=temp/10
UNTIL: temp>0
IF: sum=num
 DISPLAY: “‘num’ is an Armstrong
number”
ELSE
 DISPLAY: “‘num’ is not an Armstrong
number”
END IF
END

FLOWCHART

 C RECAP – I 11

C

a
$

&

 + 5 (

C language was developed by Dennis Ritchie at Bell Laboratories in the year 1972. Its powerful features,

modular programming approach and simple syntax made C one of the most preferred languages in the late

70s and 80s amongst programmers. It was widely used for systems and application programming. Even

today, C is a popular choice for building device drivers and networking applications. It is considered as

an ideal language for someone who wants to begin his journey into the world of computer programming.

Following are some of the key features of C language:

 1. It is a middle-level language It combines the features of both low level and high level languages.

 2. It follows the structured programming approach It divides a large program into a number of

smaller modules.

 3. It is machine independent A C program written on one computer can be easily ported to another

computer.

 4. It is extensible It supports a number of built-in functions for performing common operations.

functions to these libraries.

 5. It supports a variety of data types and operators; thus, making program development fast

 /

Below is a sample of C program:

#include <stdio.h>
/*This is a sample program*/
int main ()
{
 printf(“C Recap\n”);
}

Let us examine the various elements of the above program:

1. # include <stdio.h> This is a file-inclusion preprocessor directive. It includes the contents of the

header file stdio.h into the program before compilation. The input/output functions printf and scanf

as well as some macro definitions are stored in the standard input/output (stdio) header file. Using the

#include preprocessing directive, we can include other header files as well, such as conio.h and math.h.

The choice of a particular header file depends on the programming situation at hand.

2. /*This is sample program*/ This is a comment statement. It specifies the descriptive statements

related to the program. The compiler treats the sequence of characters enclosed within /* and */ symbols

as wide space characters, and skips their execution. Comment statements are primarily used to include

certain key information about the programming logic. It helps the other programmers to easily update

the program, whenever required.

3. int main () This is the starting point of a program’s execution. It redirects the control to the other

functions included in the program. The control is sent back to the main function at the end of the called

function or when the return statement is encountered.

{ } The opening and closing braces are used to group the executable instructions/statements of a

program.

12 Data Structures Using C

printf This is a standard library function that prints the text enclosed within quotes (“ ”) on to the

console screen. The \n character used inside the printf function is a type of escape sequence that prints

the subsequent text in new line. There are also other escape sequences available, such as \t to insert tab,

\f for a new page, and \r for carriage return.

These are the typical elements of a C program. In addition to these elements, there are various other

elements used in a program, such as user-defined functions, built-in functions, variables, constants and

so on. We shall learn about all these programming elements and much more in the subsequent sections.

 4

C allows you to define certain entities in a program, whose values do not change during the course

of program execution. Such entities are known as constants. A constant can be of various types, as

explained below:

1. Integer constants Represent integer values.

2. Real constants

3. Character constants Represent single characters enclosed within single quotes (‘ ’).

4. String constants Represent a string of characters enclosed within double quotes (“ ”).

You should not use any comma or blank space while defining integer, real, or character constants.

 Since the value of constants remains the same throughout the execution of a program, the

compiler will show an error whenever you try to assign a new value to a constant.

You can define a constant in any of the following ways:

 You can use this preprocessor directive at the beginning of a program to

of its occurrence in the program. Such constant is also referred as symbolic constant.

 Syntax

 Example

2. const keyword You can use the const

a value.

 Syntax const datatype

 Example

3. Enumerated data type You can use the enum

data type and assign it a set of constant values.

 Syntax

 Example enum option {yes, no};

1.6

Unlike constants, variables are the entities that can take different values during the course of execution

of a program. Basically, a variable represents the name of the memory location where the variable value

is stored.

C RECAP–I 13

C

a
$

&

The rules for defining a variable vary from one compiler to the compiler. As far as the length of the

variable name is concerned, the limit is not strictly defined; though, a variable name of eight characters

is generally preferred. Also, the pre-defined C keywords, such as int or char cannot be used as a variable

name in a program.

You may define a variable with or without an initial value. The initial value, if assigned to a variable,

may change during the program’s execution.

The syntax and valid examples of variable declaration are given below.

Syntax " $ &

 " $ ' " " " &

Example int a;

or

int a = 10;

 "#!$ / Write a C program to demonstrate the use of variables and constants.

The following program uses the #define statement to define a symbolic constant.

 #! Use of #define statement

/*Program for demonstrating use of Symbolic Constants*/

#include <stdio.h>

#include <conio.h>

 ? @H JQ " V $ " ? " QJ

void main()

{

 int SP = 70;

 " ' V?W ?&

 " XZ? ' [^_ `&

 getch();

}

 % $%

Profit = 20

 #! #&# 7, ,

Key Statement Purpose

int SP = 70; Declares and initializes the variable SP with an initial

value of 70

int profit = SP–CP; Declares and initializes the variable profit with the

resultant value of the expression, SP–CP

1.7 9

C supports a number of data types for handling different types of data such as integer, real, and string.

The choice of a data type solely depends on the programming situation at hand. For instance, if sorting

of numbers is to be performed then int data type is used for storing integers. Similarly, for printing

name, a character array is used for storing a character string.

The use of symbolic constant makes it

easier to modify a program at a later

stage. The constant value needs to be

changed only at one place instead of its

various instances in the program.

14 Data Structures Using C

Data types in C are primarily categorized into three types:

 1. Primary data types Represent the fundamental data types of C, which are int, char, !

double and void. There are several extensions possible to some of the fundamental data types,

such as short int, unsigned int, long double and so on. Here, short, unsigned and long are used

 " #

 2. Derived data types Represent the data types derived from the fundamental data types.

Examples of derived data types include arrays, structures and pointers. These are covered in

detail in Chapter 2.

 $

types. For example,

 &

 temperature t1, t2, t3;

Here, temperature is a user-defined data type used to declare float type variables.

The enumerated data type is another instance of user-defined data type that allows you to declare

variables that can be assigned only one of the pre-specified values. These values are enclosed within a

pair of braces at the time of variable declaration. For example,

enum logic {HIGH, LOW};

enum logic l;

l = HIGH;

Table 1.6 lists the size and range of primary data types and their extensions.

 #' : Primary data types and their extensions

Data Type Size Range

char or signed char 8 –128 to 127

unsigned char 8 0 to 255

int or signed int 16 –32768 to 32767

unsigned int 16 0 to 65535

short int or signed short int 8 –128 to 127

unsigned short int 8 0 to 255

long int or signed long int 32 –2147483648 to 2147483647

unsigned long int 32 0 to 4294967295

float 32 3.4E – 38 to 3.4E + 38

double 64 1.7E – 308 to 1.7E + 308

long double 80 3.4E – 4932 to 1.1E + 4932

C RECAP–I 15

C

a
$

&

 "#!$ 4 Write a C program to demonstrate the use of data types and their extensions.

 #! Use of data types and extensions

/*Program for demonstrating the use of data types and their extensions*/

#include <stdio.h>

#include <conio.h>

void main()

{

 int num = 10000;

 int num1;

 long int num2;

 clrscr();

 num1 = 10000*10;

 num2 = 10000*10;

 printf(“num = %d”, num);

 printf(“\nnum1 = %d”, num1);

 printf(“\nnum2 = %ld”, num2);

 getch();

}

 % $%

num = 10000

num1 = -31072

num2 = 100000

Program analysis

Key Statement Purpose

int num1; Declares an integer variable num1

long int num2; Declares a long integer variable num2

 ;

Input and output operations in C are performed with the help of function calls, such as printf and scanf.

These standard input and output functions are stored in the header file stdio.h. Thus, each program must

include this header file by using the following statement:

include <stdio.h>

Let us now explore the common input and output operations in C.

1.8.1 &$% $ # &,

Table 1.7 lists the common input operations along with their function descriptions.

This statement will output a garbage value

as a value larger than the capacity of an

integer variable was allocated to num1.

16 Data Structures Using C

 #' = Input operations

Input Operation Function Syntax and Example

Reading a character getchar()

Syntax

 " $ '

getchar();

Example

a = getchar();

Reading formatted input data scanf()

Syntax

scanf(“control string”,

arg1, arg2,...argn);

Example

s c a n f (“ % 2 d % 1 5 c

%lf”,&num, name, &x);

1.8.2 % $% $ # &,

Table 1.8 lists the common output operations along with their function descriptions.

 #' ; Output operations

Output Operation Function Syntax and Example

Writing a character putchar()

Syntax

 � X " $ `&

Example

putchar(a);

Writing formatted output data printf()

Syntax

printf(“control string”,

arg1, arg2,...argn);

Example

printf(“%2d %15c %lf”,num,

name, x);

 "#!$: Write a program to demonstrate input and output operations in C.

 #! + Input and output operations

/*Program for demonstrating input and output operations*/

#include <stdio.h>

#include <conio.h>

void main()

{

int age;

 � &

 char name[10];

 C RECAP – I 17

C

a
$

&

 clrscr();

 printf(“Enter student’s name: ”);

 scanf(“%s”,&name);

 printf(“Enter student’s age: ”);

 scanf(“%d”,&age);

 printf(“Enter student’s average marks: ”);

 scanf(“%f”,&avg_marks);

 printf(“\nThe student details are:\n”);

 printf(“Name: %s”,name);
 printf(“\nAge: %d”,age);
 printf(“\nAverage Marks: %.2f”,avg_marks);
 getch();

}

 % $%

Enter student’s name: Kartik

Enter student’s age: 15

Enter student’s average marks: 75.45

The student details are:

Name: Kartik

Age: 15

Average Marks: 75.45

 #! #&# 7, ,

Key Statement Purpose

scanf(“%s”,&name); Reads a string value from the console

scanf(“%d”,&age); Reads an integer value from the console

scanf(“%f”,&avg_marks); Reads a real value from the console

printf(“Name: %s”,name); Displays a string value on the console

printf(“\nAge: %d”,age); Displays an integer value on the console

printf(“\nAverage Marks: %.2f”,avg_marks); Displays a real value on the console

 ; + (&$% > % $% $ # &,

C makes use of streams for performing input or output operations on files containing data. A file can be

a text stream file or a binary stream file. A stream is defined as a sequence of bytes organized into lines.

A line may have zero or more characters. The standard input stream is called stdin and the standard

output stream is called stdout. Figure 1.2 shows the logical representation of streams.

18 Data Structures Using C

(Logical representation of streams

The input/output operations on files include opening, reading, writing and closing a file. To perform

these operations, I/O library functions are used. The use of I/O functions establishes a connection between

the physical file and a stream.

Opening a File You can open a file in read, write or append mode by using the fopen() function.

The syntax for using the fopen function is shown below.

fopen(<filename>, <mode>);

C allows you to simultaneously open multiple files in a program.

 If you open a file in write or append mode but the file does not exist, then the system

automatically creates a new file with the specified name. Also, if an existing file is opened

in write mode, then its contents are overwritten with the new text.

Reading a File You can use any of the following functions to read data from a file:

1. fscanf Reads formatted input from the file stream.

2. getc Reads an unformatted character from the file stream.

3. fgets Reads an unformatted character string from the file stream.

Writing to a File You can use any of the following functions to write data to a file:

1. fprintf Writes formatted data to a file stream.

2. putc Writes an unformatted character to a file stream.

3. fputs Writes an unformatted character string to a file stream.

Closing a File To close a file, fclose function is used. The file that needs to be closed is indicated

with the corresponding file pointer. The syntax for using the fclose function is shown below.

fclose(<file_pointer>);

 "#!$ = Write a program to count the number of characters in a file.

 #! / To count the number of characters in a file

#include <stdio.h>

#include <conio.h>

void main(int argc, char *argv[])
{

 FILE *fs;

 C RECAP – I 19

C

a
$

&

char ch;

long count=0;

clrscr();

if(argc!=2)

{

printf(“Invalid number of arguments.”);

exit(0);

}

fs = fopen(argv[1],“r”);
if(fs==NULL)

{

 " XZV $ ^`&

exit(0);

}

while(1)

{

ch=fgetc(fs);
if (ch==EOF)

break;

else

count=count+1;

}

fclose(fs);
printf(“\nThe number of characters in %s is %ld”,argv[1],count);

getch();

}

 % $%

D:\TC\BIN>countchar.exe s1.txt

The number of characters in s1.txt is 15

 #! #&# 7, ,

Key Statement Purpose

void main(int argc, char *argv[]) Reads command line arguments

fs = fopen(argv[1],“r”); Opens the file specified by argv[1] in read-only mode

ch=fgetc(fs); Reads a character from file stream fs

fclose(fs); Closes the file stream fs

1.9 @

Operators are the symbols that are used to perform arithmetic and logical computations on operands.

An operand can be an integer, floating point or character variable; or it can be a constant. Operators

and operands together constitute an expression. The output of an expression depends on the data type

of the operands.

The following example illustrates the difference between operators, operands, and expressions:

20 Data Structures Using C

Example A * B + 3

Operators *, +

Operands A, B, 3

Expression A * B + 3

The various types of operators supported by C are:

 1. Arithmetic 2. Assignment

 3. Bitwise 4. Conditional

 5. Increment and Decrement 6. Logical

 7. Relational 8. Special

Depending on the number of operands required, the above operators can be classified as unary or

binary operators. As the names suggests, unary operators act upon a single operand while binary operators

are applied on two operands.

1.9.1 ! * $ # ,

Table 1.9 lists the various arithmetic operators.

 #' A Arithmetic operators

Name Symbol Description Unary/Binary Example

(a = 10, b = 5)

Addition + To find sum of two or more

operands

or

To represent a positive

operand

Both a + b = 15

or

+ a

Subtraction – To find difference of two

or more operands

or

To represent a negative

operand

Both a–b = 5

or

–a

Multiplication * To find product of two or

more operands

Binary a*b = 50

Division / To divide two or more

operands

Binary a/b = 2

Modulo Division % To find remainder of an

integer division

Binary a%b = 0

If an expression has multiple operators with same precedence, then they are executed in the order

of their appearance from left to right. That means, the operator, which appears first in the expression

is executed first.

 C RECAP – I 21

C

a
$

&

1.9.2 ,, &! & $ # ,

Table 1.10 lists the various assignment operators.

 #' B Assignment operators

Name Symbol Description Unary/Binary Example

(a = 10, b = 5)

Assignment = To assign the value of an

expression, variable or constant

to a variable

Binary b = a

Thus, b = 10

Shorthand

assignment

+= To assign the value of an

expression, variable or constant

to a variable and perform the

specified arithmetic operation

on that variable

Binary b + = a

This means, that the

value of a i.e., 10 is

added to the value

of b and the result is

assigned to b as its new

value. Thus, b = 15

 A +) , $ # ,

Bitwise operators are used for manipulating the integers at bit level. The binary representation of the

integer gets altered as per the type of binary operator applied.

Table 1.11 lists the various bitwise operators.

 #' Bitwise operators

Name Symbol Description Unary/Binary Example (a = 10, b = 5)

AND & To perform logical AND

operation at bit level

Binary 0101 & 0011 = 0001

OR | To perform logical OR

operation at bit level

Binary 0101 & 0011 = 0111

Exclusive OR ^ To perform logical

exclusive OR operation

at bit level

Binary 0101 & 0011 = 0110

Shift Left << To shift the bits to the left Unary 00010111 << 1 = 00101110

Shift Right >> To shift the bits to the

right

Unary 00010111 >> 1 = 00001011

Complement or

Not

~ To negate each bit of the

binary number

Unary ~ 0001 = 1110

 A / &- &# $ #

Conditional operator (? :) is the only ternary operator supported by C. It requires three different

expressions, as shown in the syntax below.

 " " �� " � �� " � � �� " �

22 Data Structures Using C

If the conditional expression evaluates to TRUE, then Expression1 is evaluated, else Expression2

is evaluated.

For example, consider the following conditional expression. Assume, a =10 and b = 5:

 c = (a + b > 10) ? a : b;

When the above statement is executed, the expression (a + b > 10) is evaluated first. Since this

condition is true, the value of a is assigned to c.

Now, again consider the following conditional expression:

 c = (a + b > 20) ? a : b

When the above statement is executed, the expression (a + b > 20) is evaluated first. Since this

condition is false, the value of b is assigned to c.

 A 4 &* ! & #&- * ! & $ # ,

Table 1.12 lists the increment and decrement operators.

 #' Increment and decrement operators

Name Symbol Description Unary/Binary Example

(a = 10, b = 5)

Increment ++ To increase the value of

operand by 1

Unary b = ++a

b = 11

Decrement _ _ To decrease the value of

operand by 1

Unary b = – –a

b = 9

Increment and decrement operators may be used as a prefix or a postfix in an expression. When used

as prefix (example ++a or – –b), the operator first changes the variable’s value before the corresponding

expression is evaluated. Alternatively, when it used as postfix (for example, a++ or b– –), the operator

changes the variable’s value after the expression has been evaluated.

For instance, consider the expression,

b = ++a;

Assume a = 5

After the above expression is executed, the values of a and b become

b = 6 and a = 6

Now, consider the expression

b = a++;

Assume a = 5.

After the above expression is executed, the values of a and b become:

b = 5 and a = 6

Note that since the increment operator was used as a postfix, the value of variable a changed after

the expression was evaluated.

1.9.6 *# $ # ,

The output of an expression containing logical operators is either 0 or 1. The output of 1 signifies a true

condition while 0 signifies a false condition. Table 1.13 lists the various logical operators.

 C RECAP – I 23

C

a
$

&

 #' + Logical operators

Name Symbol Description Unary/Binary Example

(a = 10, b = 5)

AND && To return true if the

conditions are true

Binary a < 20 && b > 6 will

return 0 as both the

conditions are not true

 OR || To return true if at least

one of the conditions is

true

Binary a < 20 || b > 6 will return

1 as one of the conditions

is true

NOT ! To negate the value of a

relational expression

Unary !a < 20 will return 0 as the

negated value

Logical operators are typically used in conjunction with relational operators to form logical

expressions. Relational operators are explained in the next subsection.

1.9.7 # &# $ # ,

The output of relational operators is either 0 or 1. The output of 1 signifies a true condition while 0

signifies a false condition. Table 1.14 lists the various relational operators.

 #' / Relational operators

Name Symbol Description Unary/Binary Example

(a = 10, b = 5)

Less than < To check if the value of

one variable is less than

the other variable

Binary a < 20 will return 1as

the condition is true

Less than or equal to <= To check if the value of

one variable is less than

or equal to the other

variable

Binary a < =20 will return 1

as the condition is true

Greater than > To check if the value of

one variable is greater

than the other variable

Binary a > 20 will return 0 as

the condition is false

Greater than or equal

to

>= To check if the value of

one variable is greater

than or equal to the other

variable

Binary a > =20 will return

0 as the condition is

false

Equal to == To check if the value of

two variables is equal

Binary a = = b will return 0 as

the condition is false

Not equal to != To check if the value of

two variables is not equal

Binary a!=b, it will return 1

as the condition is true

As already explained, relational operators are used in conjunction with logical operators to form

logical expressions.

24 Data Structures Using C

1.9.8 $ * # $ # ,

Table 1.15 lists the special operators.

 #' 4 Special operators

Name Symbol Description Unary/Binary Example

(a = 10, b = 5)

Comma , To link the related

expressions together

Binary x = (a = 10, b = 5,

c = a–b);

will assign c = 5

Comma operator is also

used inside while and

for loops

Sizeof sizeof(); To retrieve the number

of bytes a variable or

a constant occupies in

memory

Unary x = sizeof (a); will

ass ign the s ize of

variable a to x

Pointer operators &, * To work with pointers Unary &a retrieves the address

of variable a

*a retrieves the value

references by pointer

variable a

1.9.9 * - &* 0 $ # ,

The precedence order of operators is the order in which operators are executed in an expression.

Table 1.16 lists the precedence of operators from highest to lowest level.

 #' : Precedence of operators

Precedence Level Operators

1 -, ++, – –, !, sizeof()

2 *, /, %

3 +, –

4 <, <=, >, >=, =

5 ==, !=

6 &&

7 ||

8 ,

 "#!$; Write a program to accept two complex numbers and find their sum.

 #! 4 To accept two complex numbers and find their sum

 C RECAP – I 25

C

a
$

&

#include <stdio.h>

#include <conio.h>

#include <math.h>

void main()

{

struct complex

{

 double real;

 double img;

};

struct complex c1, c2, c3;

clrscr();

printf(“\n Enter two Complex Numbers (x+iy):\n\n Real Part of First

Number: ”);

scanf(“%lf”,&c1.real);

printf(“\n Imaginary Part of First Number: ”);

scanf(“%lf”,&c1.img);

printf(“\n Real Part of Second Number: ”);

scanf(“%lf”,&c2.real);

printf(“\n Imaginary Part of Second Number: “);

scanf(“%lf”,&c2.img);

c3.real=c1.real+c2.real;

c3.img=c1.img+c2.img;

printf(“\n\n%.2lf+(%.2lf)i + %.2lf+(%.2lf)i = %.2lf+(%.2lf)i“, c1.real,

c1.img, c2.real, c2.img, c3.real, c3.img);

getch();

}

 % $%

Enter two Complex Numbers (x+iy):

 Real Part of First Number: 22

 Imaginary Part of First Number: 4

 Real Part of Second Number: 5

 Imaginary Part of Second Number: 3

22.00+(4.00)i + 5.00+(3.00)i = 27.00+(7.00)i

26 Data Structures Using C

 #! #&# 7, ,

Key Statement Purpose

struct complex

{

 double real;

 double img;

};

Defines a structure named complex

struct complex c1, c2, c3; Declares structure variables

c3.real=c1.real+c2.real; Performs arithmetic operation on structure

members

 %!!# 7

© A problem is a situation presented to a computer so that its solution can be found.

© Problem solving involves applying a series of methods to a given problem so that its solution

can be achieved in a systematic manner.

© An algorithm is a sequence of steps written in simple English phrases to describe the solution

to a given problem.

© A flowchart can be referred as a pictorial representation of an algorithm. It uses various graphical

elements to describe the flow of information and control.

© Pseudocode represents the problem solution with the help of generic syntax and normal English

phrases.

© C is a programming language that combines the features of both low level and high level

languages. Its key features are: structured programming approach, machine independence,

extensibility, support for a variety of data types and operators.

© Constants are the entities whose values do not change during the course of program execution.

Various types of constants are: integer, real, character and string.

© Variables are the entities that can take different values during the course of execution of a

program.

© C supports a number of data types for handling different types of data such as integer, real, and

string.

© Fundamental data types supported by C are int, char, float, double and void.

© C supports a number of built-in functions for performing input and output operations. These

functions are getchar(), putchar(), printf(), scanf(), etc.

© Operators are the symbols that are used to perform arithmetic and logical computations on

operands.

© Operators in C are classified under different categories, such as arithmetic, assignment, increment,

decrement, relational, logical, etc.

© Operator precedence refers to the order in which operators are executed in an expression.

 C RECAP – I 27

C

a
$

&

 3) D% , &,

 1.1 What is an algorithm? What are its various characteristics?

 1.2 List the advantages and disadvantages of using flowcharts for problem solving.

 1.3 What is a pseudocode? Explain with the help of an example.

 1.4 List any three features of C programming language.

 1.5 What is a constant? Explain the different types of constants with the help of example.

 1.6 What is an input function? Explain with the help of an example.

 1.7 Explain the difference between getc and putc functions.

 1.8 What is an operator? What are its various types?

 #!! & " * , ,

 1.1 You are required to convert the value of temperature from degree Celsius to degree Fahrenheit.

Apply the various problem solving techniques to arrive at the desired solution to this problem.

Also, write a C program for the problem and test the program for three different set of values.

 1.2 Write a C program to read three integers and then display their sum.

 1.3 Write a program in C to compute the area of a circle. Use the # define statement to define pi as

named constant.

 1.4 Using the fundamental C data types, write a program to read the marks obtained by a student in

three different subjects and then compute and display their average.

 1.5 Write a C program to create and open a file named ‘employee.dat’.

 1.6 Using the modulo division operator, write a program to determine if the given number is divisible

by 7 or not.

 1.7 An integer variable num contains 2 as its value. Print the contents of num after a left shift

operation.

 1.8 Write a C program to demonstrate what impact does the postfix and prefix usage of increment

operator has on the value of an expression.

 1.9 Write a C program that uses any one of the special operators of C.

 1.10 You are required to demonstrate the operator precedence rules of C. Choose a suitable expression

and write a program that evaluates the value of the expression.

28 Data Structures Using C

2.1 Introduction

2.2 Control Statements

 2.2.1 Decision Making Statements

 2.2.2 Looping Statements

2.3 Arrays

 2.3.1 Single-Dimensional Array

 2.3.2 Multi-Dimensional Array

2.4 Strings

2.5 Built-in Functions

2.6 User-Defined Functions

2.7 Structures

 2.7.1 Structure Declaration

 2.7.2 Structure Initialization

2.8 Unions

 2.8.1 Structures vs. Unions

2.9 Pointers

Summary

Review Questions

Programming Exercises

2

C
h
a
p
t
e
r

O
u
t
l
i
n
e

C RECAP–II 29

C
h
a
p

t
e
r

T
w
o

In the previous chapter, we learnt the basics of problem solving techniques and the C language. In this

chapter, we will focus on some of the advanced C programming constructs, such as arrays, functions,

structures, and unions. But, first of all, we will begin by exploring the various control statements

provided by C. Control statements allow the programmers implement the solution logic by controlling

and manipulating the program flow. These statements not only allow you to manipulate the statement

execution sequence but also let you repeat the execution of a statement block for certain specified

number of times.

At the end of this chapter, we will learn about one of the most important and advanced C programming

concepts, called pointers.

 If you are already familiar with advanced C programming constructs, then you may choose

to skip this chapter.

2.2

C language allows you to manipulate the flow of program control by using various control statements.

These control statements are categorized into the following types:

1. Decision making statements Decide which actions are to be performed.

2. Looping statements Decide how many times an action is to be performed.

One of the significant differences between decision making and looping statements is that the decision

making statements direct the flow of program control from top to bottom without any iteration; while,

looping statements direct the flow of program control from top to bottom, and then again to the top, in

an iterative manner.

A program may contain both decision making as well as looping statements.

2.2.1

C language supports the following decision-making statements:

1. If

2. If Else

3. Switch

1. If statement

is true. However, if the expression evaluates to a false value, then the set of instructions are skipped at

the time of program execution. A program can contain multiple if statements.

 ! "

if(expression)

{

 statement 1;

30 Data Structures Using C

 statement 2;

 .

 .

 statement n;

}

FLOWCHART

Figure 2.1 shows the flowchart of if statement:

Flowchart of if statement

 " $% Using if statement, write a program to find out if the given number is positive or

negative.
 & & Determine whether given number is positive or negative

#include<stdio.h>

#include<conio.h>

void main()

{

 int num;

 clrscr();

 printf(“Enter an integer value: “);

 scanf(“%d”, &num);

if(num>=0)

 printf(“%d is a positive number”,num);

if(num<0)

 printf(“%d is a negative number”,num);

 getch();

}

If there is only a single statement inside the

if block then the braces are not required

to be added.

C RECAP–II 31

C
h
a
p

t
e
r

T
w
o

 ' $'

Enter an integer value: -9

-9 is a negative number

 & & %!

Key Statement Purpose

if(num>=0) Uses if statement to check whether num is greater than

or equal to zero

if(num<0) Uses if statement to check whether num is less than zero

 $ Do not add a semicolon at the end of an if expression, otherwise the block of statements

specified in the if block will always be executed regardless of the outcome of the conditional

expression statement.

2. If else statement If else statement comprises two sets of instruction, one each with if and else

block. If the given expression statement is true then the if-block instructions are executed. However, if

the expression evaluates to a false value, then the if-block instructions are skipped and the else-block

instructions are executed. A program can contain multiple if else statements.

 ! "

if(expression)

{

 statement 1;

 statement 2;

 .

 .

 statement n;

}

else

{

 statement 1;

 statement 2;

 .

 .

 statement n;

}

FLOWCHART

Figure 2.2 shows the flowchart of if else statement:

32 Data Structures Using C

Flowchart of if else statement

 " $% Using if else statement, write a program to find out if the given number is positive

or negative.
 & & Determine whether given number is positive or negative

#include<stdio.h>

#include<conio.h>

void main()

{

 int num;

 clrscr();

 printf(“Enter an integer value: “);

 scanf(“%d”, &num);

if(num>= 0)
 printf(“%d is a positive number”,num);
 else
 printf(“%d is a negative number”,num);
 getch();

}

 ' $'

Enter an integer value: 22

22 is a positive number

 & & %!

Key Statement Purpose

if (num>= 0)

 printf (“%d is a positive number”,num);

 else

 printf (“%d is a negative number”,num);

if-else block is used to display the output based on the

value of num variable

If-else block

 C RECAP – II 33

C
h
a
p

t
e
r

T
w
o

3. Switch statement Switch statement is a multi-way selection structure that matches the given

expression or variable value with one of a number of integer values, and upon successful match branches

to the corresponding statement block. A default value is also specified with the switch statement to

take appropriate action in case there is a complete mismatch. Switch statement can be considered as an

alternative to multiple if statements.

 ! "

switch (expression)
{
 case value1:
<statement block>
 break;
 case value2:
<statement block>
 break;
 case value3:
<statement block>
 break;
 .
 .
 .
 default:
<statement block>
}

In the above syntax:

expression is the expression to be matched.

value1, value2, etc., are constants, also known as case labels.

FLOWCHART

Figure 2.3 shows the flowchart of switch statement:

(Flowchart of switch statement

34 Data Structures Using C

 " $% (Using switch statement, write a program to count the frequency of individual digits

in a number.
 & & (To count the frequency of individual digits in a number

#include <stdio.h>
#include <conio.h>

void main()
{
long int num1,num2;
int temp,d1=0,d2=0,d3=0,d4=0,d5=0,d6=0,d7=0,d8=0,d9=0,d0=0;
clrscr();

printf(“\nEnter a number:”);
scanf(“%ld”,&num1);

num2=num1;
while(num1!=0)
{
temp=num1%10;
switch(temp) /*Switch statement*/
{
case 1:
 d1++; /*Counting number of Ones*/
 break;
case 2:
 d2++; /*Counting number of Twos*/
 break;
case 3:
 d3++; /*Counting number of Threes*/
 break;
case 4:
 d4++; /*Counting number of Fours*/
 break;
case 5:
 d5++; /*Counting number of Fives*/
 break;
case 0:
 d0++; /*Counting number of Zeros*/
 break;
case 6:
 d6++; /*Counting number of Sixes*/
 break;

case 7:

 d7++; /*Counting number of Sevens*/

 break;

case 8:

 d8++; /*Counting number of Eights*/

 break;

 C RECAP – II 35

C
h
a
p

t
e
r

T
w
o

case 9:
 d9++; /*Counting number of Nines*/
 break;
default:
 ; /*Do-nothing*/
}
num1=num1/10;
}

/*Displaying the frequency of individual digits in a number*/
printf(“\nThe no of 0s in %ld are %d”,num2,d0);
printf(“\nThe no of 1s in %ld are %d”,num2,d1);
printf(“\nThe no of 2s in %ld are %d”,num2,d2);
printf(“\nThe no of 3s in %ld are %d”,num2,d3);
printf(“\nThe no of 4s in %ld are %d”,num2,d4);
printf(“\nThe no of 5s in %ld are %d”,num2,d5);
printf(“\nThe no of 6s in %ld are %d”,num2,d6);
printf(“\nThe no of 7s in %ld are %d”,num2,d7);
printf(“\nThe no of 8s in %ld are %d”,num2,d8);
printf(“\nThe no of 9s in %ld are %d”,num2,d9);

getch();
}

 ' $'

Enter the number: 889653442

The no of 0s in 889653442 are 0
The no of 1s in 889653442 are 0
The no of 2s in 889653442 are 1
The no of 3s in 889653442 are 1
The no of 4s in 889653442 are 2
The no of 5s in 889653442 are 1
The no of 6s in 889653442 are 1
The no of 7s in 889653442 are 0
The no of 8s in 889653442 are 2

The no of 9s in 889653442 are 1

 & & %!

Key Statement Purpose

while (num1!=0) Uses the while statement to repetitively execute the enclosing

statements until the value of num1 is not equal to zero

switch (temp)

{

case 1:

 d1++;

 break;

Uses the switch statement to select the case-block that matches

the given expression

36 Data Structures Using C

 The break statement is inserted with each case block so that the control exits from the

switch construct immediately after meeting the true condition; otherwise, all the remaining

case blocks will be sequentially validated.

2.2.2 $

C language supports the following looping statements:

1. While

2. Do-While

3. For

1. While loop is used for repetitively executing a set of instructions until the specified condition is

true. As soon as the condition becomes false, the control is automatically transferred out of the loop. A

while loop can be considered as an equivalent of a repetitive set of if statements.

 ! "

while (expression)

{

statement 1;

statement 2;

.

.

statement n;

}

Figure 2.4 shows the flowchart of while loop.

) Flowchart of while loop

C RECAP–II 37

C
h
a
p

t
e
r

T
w
o

 " $%) Using while loop, write a program to compute the sum of digits of a number.
 & &) Sum of digits of a number

#include <stdio.h>

#include <conio.h>

void main()

{

long num, temp;

int sum=0;

clrscr();

printf(“\nEnter an integer value: “);

scanf(“%ld”,&num);

temp=num;

/*Calculating sum of digits*/

while(temp!=0)
{

sum = sum+temp%10;

temp=temp/10;
}

printf(“\nThe sum of digits of %ld is %d”,num,sum);

getch();

}

 ' $'

Enter an integer value: 123456

The sum of digits of 123456 is 21

 & & %!

Key Statement Purpose

while (temp!=0) Uses the while statement to repetitively execute the enclosing

statements until the value of temp is not equal to zero

temp=temp/10; Alters the value of the control variable temp at each iteration

of the while loop

2. Do-While Loop Similar to the while loop, the do-while loop is also used for repetitively executing

a set of instructions until the specified condition is true. The difference between while loop and do-while

loop is that in while loop the conditional expression is evaluated first and if it is true, the associated

statement block is executed. However, in do-while loop the statement block is executed first and then

the conditional expression is evaluated. If the expression evaluates to a true value, then the statement

block is executed again; else the control is transferred out of the do-while loop. Hence, in case of do-

while loop, the statement block is executed at least once even if the conditional expression evaluates

to a false value at its very first attempt. This is in contrast to the while statement which executes the

statement block if and only if the conditional expression is true.

If there are multiple statements inside

the while block then the same must be

included inside braces; otherwise only

the immediate statement after the while

statement will be considered.

38 Data Structures Using C

 ! "

do

{

statement 1;

statement 2;

.

.

statement n;

}while(expression);

Figure 2.5 shows the flowchart of do-while loop.

* Flowchart of do-while loop

 " $% * Using do-while loop, write a program to compute the sum of digits of a number.
 & & * Sum of digits of a number

#include <stdio.h>

#include <conio.h>

void main()

{

 long num, temp;

int sum=0;

clrscr();

printf(“\nEnter an integer value: ”);

scanf(“%ld”,&num);

 temp=num;

 /*Calculating sum of digits*/

C RECAP–II 39

C
h
a
p

t
e
r

T
w
o

do
{

sum = sum+temp%10;

temp=temp/10;

} while(temp!=0);

printf(“\nThe sum of digits of %ld is %d”,num,sum);

getch();

}

 ' $'

Enter an integer value: 123456

The sum of digits of 123456 is 21

 & & %!

Key Statement Purpose

do do statement marks the beginning of the do-while block

} while(temp!=0); while statement, specified at the end of the do-while

block, contains the conditional expression for the

looping construct

3. For Loop The functionality of for loop is exactly the same as while loop, however its specification

is a little different. It includes the initialization statement, conditional expression and the modifier

statement of the loop inside a single one-line for statement. At the end of each iteration, the value of

the variable is updated as per the modifier expression and the condition is again evaluated. This process

continues until the conditional expression holds true. The for loop is more compact and easy to implement

in comparison to while loop.

 ! "

for (expression1; expression2; expression3)

{

 statement 1;

 statement 2;

 .

 .

 statement n;

}

In the above syntax:

Expression1 is the initialization statement that initializes the looping variable.

Expression2 is the conditional expression that states the looping condition.

Expression3 is the modifier expression that modifies the looping variable.

Figure 2.6 shows the flowchart of for loop.

A compiler error will be generated if

semi-colon is not inserted after while

statement .

40 Data Structures Using C

Figure 2.6 Flowchart of for loop

 " $% + Using for loop, write a program to print integers from 1 to 10.

 & & + To print integers from 1 to 10

#include <stdio.h>
#include <conio.h>

void main()
{
 int i;
 clrscr();
 printf(“Integers from 1 to 10:\n”);
 for(i=1;i<=10;i++)
 printf(“%d\n”,i)
 getch();
}

 ' $'

Integers from 1 to 10
1
2
3
4
5
6
7
8
9
10

 & & %!

Key Statement Purpose

for (i=1;i<=10;i++) Uses the for statement to repetitively execute the

enclosing statements until the given expression is true

The initialization statement, conditional

separated by semi-colons.

C RECAP–II 41

C
h
a
p

t
e
r

T
w
o

 (,

Array is a linear data structure that groups elements of similar types and stores them at contiguous

memory locations. The concept of arrays can be easily related with real-life scenarios. For example,

percentage marks of 50 students, salary amounts of 100 employees and names of books present in a

library are all examples of arrays.

Each element in an array is assigned an index number called array subscript. It is used to identify

the location of element in the array. In C language, the index number of the base element (first element)

of an array starts with 0. Therefore, the location of the last element of an array containing n elements

is always n-1. An array is referred using the array name defined at the time of array declaration. Each

individual array element is referred using array name and index number.

Let us consider an array A containing four elements. Figure 2.7 shows the logical representation of

array A:

- Logical representation of array

Some of the typical operations performed on arrays include:

1. Insertion Inserts an element into the array.

2. Deletion Deletes an element from the array.

3. Traversal Accesses each element of the array.

4. Sort

5. Search Searches a key value in the array.

 For more information on array operations, refer to Chapter 4.

C supports the following types of arrays:

1. Single-dimensional arrays Represent elements of the array in a single column. The array A

shown in Figure 2.7 is an instance of single-dimensional array.

2. Multi-dimensional arrays Represent elements of an array in multiple columns and rows. A

multi-dimensional array is also referred as array of arrays. Such arrays are commonly used to

realize the mathematical concept of matrices.

Before an array can be used in a program, it needs to be first declared and initialized. You can

initialize an array either at the time of its declaration or initialize it later in the program with the help

of assignment operator.

The subsequent sections explain the declaration and initialization of single and multi-dimensional

arrays along with related syntax and examples.

42 Data Structures Using C

 (% / % && !

Array Declaration

 ! "

<data-type> <array_name>[size];

 " $%

int A[10];

Array Initialization

 ! "

<data-type> <array_name>[size] = {element1, element2, ….., elementn};

<array_name>[index_number] = <element>;

 " $%

int A[3]={2,4,8};

A[0]=2;

Array size (in bytes)

The size of a single-dimensional array can be calculated by using the following formula:

array size = length of array * size of data type

 " $%

Consider the following array:

int A[4] = {10, 20, 30, 40};

Here, size of array A = 4 * 2 = 8 bytes.

Array Representation

Figure 2.8 shows the logical representation of single-dimensional array.

0 Logical representation of single-dimensional array

 " $% - Using single-dimensional array, write a program to find the average of 10 numbers.
 & & -

#include <stdio.h>

#include <conio.h>

void main()

 C RECAP – II 43

C
h
a
p

t
e
r

T
w
o

{

 int a[10], sum, i;

 clrscr();

 printf(“Enter ten integers: “);

 for(i=0;i<=9;i++)

 scanf(“%d”,&a[i]);

 sum=0;

 for(i=0;i<=9;i++)

 sum=sum+a[i];

 ave=1.0*sum/10;

 /*Displaying the results*/

 printf(“\nAverage = %.2f”,ave);

 getch();

}

 ' $'

Enter ten integers:

1

2

3

4

5

6

7

8

9

10

Average = 5.50

 & & %!

Key Statement Purpose

int a[10], sum, i; Declares a 10-element array a along with other variables

scanf (“%d”,&a[i]); Reads an array element value

 ('% / % && !

Array Declaration

 ! "

<data-type> <array_name>[row-subscript][column-subscript];

44 Data Structures Using C

 " $%

int A[2][2];

Array Initialization

 ! "

<array_name> [row-index_number][column-index_number] = <element>;

<data-type> <array_name>[row-subscript][column-subscript] =

{element1, element2, ….., elementn};

 " $%

A[1][0]=3;

int A[2][2] = {1,2,3,4};

The above declaration statement initializes array A in the following manner:

A[0][0]=1

A[0][1]=2

A[1][0]=3

A[1][1]=4 */

Array size (in bytes)

The size of a multi-dimensional array can be calculated by using the following formula:

array size = row-size * column-size * size of data type

 " $% Consider the following array:

int A[2][2] = {10, 20, 30, 40};

Here, size of array A = 2* 2 * 2 = 8 bytes.

Array Representation

Figure 2.9 shows the logical representation of multi-dimensional array.

3 Logical representation of multi-dimensional array

 " $% 0 Using multi-dimensional array, write a program to represent a 2 ¥ 2 matrix.

 & & 0 2 ¥ 2 matrix

#include <stdio.h>

#include <conio.h>

void main()

{

int i,j,M[2][2];
clrscr();

C RECAP–II 45

C
h
a
p

t
e
r

T
w
o

printf(“Enter the elements of the 2 ¥ 2 matrix:\n”);

 for(i=0; i<2;i++)

 for(j=0; j<2;j++)

 {

printf(“M[%d][%d] = “, i, j);

scanf(“%d”,& M[i][j]);

 }

printf(“The matrix represented by the 2 ¥ 2 2D array is:\n”);

 for(i=0; i<2; i++)

 {

printf(“\n\t\t “);

 for(j=0; j<2; j++)

printf(“%d “, M[i][j]);

 }

getch();

}

 ' $'

Enter the elements of the 2 ¥ 2 matrix:

M[0][0] = 1

M[0][1] = 2

M[1][0] = 3

M[1][1] = 4

The matrix represented by the 2 ¥ 2 2D array is:

 1 2

 3 4

 & & %!

Key Statement Purpose

int i,j,M[2][2]; Declares a two-dimensional array M along with other

variables

scanf(“%d”,&M[i][j]); Reads an element value for a two-dimensional array

printf(“%d “,M[i][j]); Displays an element value of a two-dimensional array

) 4

C supports the concept of strings to store a string of characters. Strings are nothing but character arrays

that store the string characters at contiguous memory locations with a null character stored at the last

location to indicate the end of the string. Just like an integer array stores a group of integers and a

real array stores a group of floating point values, the character array stores a group of characters that

collectively represent a string.

46 Data Structures Using C

The syntax and example of string declaration and initialization is shown below:

 ! "

<data_type> <string_name>[size]=”string_characters”;

 " $%

char str[10]=”hello”;

C supports a number of built-in functions that make it easier to work with strings. Table 2.1 lists

these string-based functions:

 5% String functions

Type Function

Input/output string functions gets() Receives a character string from the console.

 Example

 char str[50];

 gets(str);

puts() Prints the string data on the console.

 Example

 char str[50];

 gets(str);

 puts(str);

String-handling functions strcat() Joins two strings together.

strlen() Determines the number of characters in a string.

strcpy() Copies the characters of one string into another

string.

strcmp() Compares whether two strings are equal or not.

 C supports several other functions such as strstr, subchr, strncpy, etc., that help perform

specific string manipulation tasks.

 " $% 3 Write a program to print the reverse of a string.
 & & 3 To print the reverse of a string

#include <stdio.h>

#include <conio.h>

#include <string.h>

void main()

{

charstr[30],revstr[30]; /*Declaring character arrays for storing strings*/

inti,len;

clrscr();

printf(“\nEnter a string: “);

included in a program before the

related functions are called.

C RECAP–II 47

C
h
a
p

t
e
r

T
w
o

gets(str);

len=strlen(str);

for(i=0;i<len;i++)

revstr[len-i-1]=str[i];

revstr[len]=’\0’;

printf(“\n\nThe reverse of string %s is %s”,str,revstr);

getch();

}

 ' $'

Enter a string: New Delhi

The reverse of New Delhi is ihleDweN

 & & %!

Key Statement Purpose

gets(str); Reads a string str

len=strlen(str); Calculates the length of the string str and stores it in

len variable

 " $% 6 Write a program to concatenate two strings.
 & & 6 To concatenate two strings

#include <stdio.h>

#include <string.h>

#include <conio.h>

void main()

{

char str1[40], str2[10];

clrscr();

 /*Reading strings*/

printf(“Enter string 1:\n”);

gets(str1);

printf(“Enter string2:\n”);

gets(str2);

printf(“The result of concatenating strings %s and %s is: “,str1,str2);

printf(“%s”,strcat(str1,str2,strlen(str2)));

getch();

}

Here, we have called the string function

directly from the printf statement.

48 Data Structures Using C

 ' $'

Enter string 1:

Taj

Enter string2:

Mahal

The result of concatenating strings Taj and Mahal is: TajMahal

 & & %!

Key Statement Purpose

printf(“%s”,strcat(str1,str2,s

trlen(str2)));

Concatenates the strings str1

and str2 and displays the result

 * 7 8 #

C supports a number of built-in functions that make the job of a programmer easier. For instance, the

string handling functions such as strcpy and strcmp are all built-in functions that perform standard

pre-defined string manipulation tasks. The built-in functions are stored in the related header files that

need to be included in a program before the functions are actually called.

Table 2.2 gives a snapshot of the various built-in functions provided by C along with their

corresponding header file names.

 5% Built-in functions of C

Header File Functions

<stdio.h> printf(), fprintf(), scanf(), getchar(), gets(), putchar(),

puts(), fopen(), fclose(), feof(), ferror()

<stdlib.h> atoi(), rand(), calloc(), malloc(), free(), exit(), abs()

<string.h> strcpy(), strncpy(), strcat(), strcmp(), strncmp(),

strchr(), strstr()

<time.h> time (), difftime(), mktime(), ctime()

<math.h> sin(), cos(), tan(), sinh(), cosh(), tanh(), log(), log10(),

pow(), sqrt(), fopen(), fclose(), feof(), ferror()

 " $% Using built-in C functions, write a program to compute the square root of an integer.
 & & To compute the square root of an integer

#include <stdio.h>

#include <conio.h>

#include <math.h>

void main()

{

intnum;

math.h before using a mathematical

function in the program.

C RECAP–II 49

C
h
a
p

t
e
r

T
w
o

double result;

clrscr();

printf(“\nEnter an integer:\n”);

scanf(“%d”,&num);

result=sqrt(num); /*Calling the built-in function sqrt()*/
printf(“\nThe square root of %d is = %.2lf”,num, result);

getch();

}

 ' $'

Enter an integer:

2

The square root of 2 is = 1.41

 & & %!

Key Statement Purpose

result=sqrt(num); Uses the built-in function sqrt to

compute the square root of variable

num and stores the resultant value in

result variable

 " $% Using built-in C functions, write a program to generate random numbers.
 & & To generate random numbers

#include <stdio.h>

#include <conio.h>

#include <stdlib.h>

#include <time.h>

void main()

{

clrscr();

srand(time(NULL)); /*The time value needs to be given as input before

generating random number*/

printf(“Random number: %d”, rand()); /*Calling the rand() function to

generate the random number*/

getch();

}

 ' $'

Random number: 14045

Here, we have given the current time

value as an input for the random

number generator function.

50 Data Structures Using C

 & & %!

Key Statement Purpose

srand(time(NULL)); Uses the built-in function srand() to use the time value

as an input for generating random numbers

printf(“Random number: %d”, rand()); Uses the built-in function rand() to generate a random

number value and display it as output

 + 8 # #

As the name suggests, user-defined functions are custom functions defined by the programmer to

perform specific tasks. A typical approach while programming in C is to divide the problem solution

into a number of subtasks and create a function to take care of each of the subtasks. These functions

call each other as per the programming logic to arrive at the end solution.

To use user-defined functions in a program, you need to take care of the following elements:

 1. Function declaration It is a declaration statement included at the beginning of a program to

provide the function details to the compiler. It is also known as function prototype.

 2. Function call It is used to invoke the function. It must supply the required parameter values

along with the function call.

 It is the actual code module written to implement the function.

 ! "

/*Function Prototype*/

<return_type> <function_name>(type1 parameter1, type 2 parameter2,

...., typen parametern);

.

.

/*Function Call*/

<type_variable> = <function_name>(value1, value2,, valuem);

.

.

/*Function Definition*/

<return_type> <function_name>(type1 parameter1, type 2 parameter2,

...., typen parametern)

{

 statement1;

 statement2;

 .

 .

 statementn;

}

 " $%

/*Function Prototype*/

C RECAP–II 51

C
h
a
p

t
e
r

T
w
o

long factorial(int num);

.

.

/*Function Call*/

fact = factorial(x);

.

.

/*Function Definition*/

long fact(int n)

{

 long f;

 if(n == 0)

 return(1);

 else

 f = n*fact(n - 1);

 return(f);

}

 A function may have void return type to indicate no return value.

 " $% (Using functions, write a program to compute the area of a rectangle.
 & & (To compute the area of a rectangle

#include <stdio.h>

#include <conio.h>

void main()

{

clrscr();

printf(“Enter the length and breadth of the rectangle:\n”);

scanf(“%f %f”,&l,&b) ;/*Reading the length and breadth values of the

rectangle*/

getch();

}

void area(length, breadth)

{

 /*Computing and displaying the area of the rectangle*/

printf(“The area of the rectangle with length %.2f and breadth %.2f is =

%.2f”, length,breadth,(length*breadth));

}

52 Data Structures Using C

 ' $'

Enter the length and breadth of the rectangle:

2

5

The area of the rectangle with length 2.00 and breadth 5.00 is = 10.00

 & & %!

Key Statement Purpose

void area(float,float); Declares the prototype for the user-defined function area

area(l,b); Calls the area() function with a set of parameter values

 " $%) Using functions, write a program to implement a simple arithmetic calculator.
 & &) To implement a simple arithmetic calculator

#include <stdio.h>

#include <conio.h>

/*Function prototypes for basic arithmetic operations*/

void main()

{

int choice;

clrscr();

printf(“**********Simple Calc***********”);/*Displaying CalC menu*/

printf(“\n\nChoose a type of operation from the following: “);

printf(“\n\t1. Addition”);

printf(«\n\t2. Subtraction»);

printf(«\n\t3. Multiplication»);

printf(«\n\t4. Division\n»);

scanf(“%d”, &choice);/*Reading user’s choice*/

printf(“\n\nEnter the two operands: “);

scanf(“%f %f”, &num1, & num2);/*Reading operands on which chosen operation

is to be performed*/

 /*Using switch statement to choose the right operation*/

switch (choice)

 {

case 1:

printf(“\n%.2f + %.2f = %.2lf”, num1, num2, add(num1,num2)); /*Calling

the add function*/

break;

C RECAP–II 53

C
h
a
p

t
e
r

T
w
o

case 2:

printf(“\n%.2f - %.2f = %.2lf”, num1, num2, sub(num1,num2)); /*Calling
the sub function*/

break;

case 3:

printf(“\n%.2f * %.2f = %.2lf”, num1, num2, mul(num1,num2)); /*Calling
the mul function*/

break;

case 4:

printf(“\n%.2f / %.2f = %.2lf”, num1, num2, div(num1,num2)); /*Calling
the div function*/

break;

default:

printf(“\nIncorrect Choice!”);

 }

getch();

}

{

return(x+y);

}

{

return(x-y);

}

{

return(x*y);

}

{

return(x/y);

}

 ' $'

**********Simple Calc***********

Choose a type of operation from the following:

 1. Addition

 2. Subtraction

Here, we have used the default block

for showing an error message in case

wrong input is entered.

54 Data Structures Using C

 3. Multiplication

 4. Division

3

Enter the two operands: 11

5

11.00 * 5.00 = 55.00

 & & %!

Key Statement Purpose

Declares the prototypes for the user-

defined functions

 " # " $ " ' * " * "

 " 6 " $ " ' * " * "

 " 7 " $ " ' * " * "

 " 8 " $ " ' * " * "

Calls the user-defined functions as

a part of the printf output statement

 -

Structures are used to group together data of different types inside a single unit. It removes one of the

key limitations of arrays which can only store data elements with similar types. Thus, structures can

be easily used in situations where data elements with distinct types are required to be stored as a single

entity; for example, a student record containing data elements such as name, roll no, marks, etc.

Before a structure can be used in a program, it needs to be first declared and initialized. The subsequent

sections explain the declaration and initialization of a structure along with the method of accessing its

data members.

 - &' '& % &

 ! "

struct <structure_name>

{

 <data_type> member1;

 <data_type> member2;

 .

 .

 <data_type> membern;

}var1;

struct <structure_name> var2;

C RECAP–II 55

C
h
a
p

t
e
r

T
w
o

 " $%

struct book

{

 char title[20];

 char author[15];

 int pages;

}book1;

struct book book2;

 Structure variables can be instantiated either by appending the variable names at the end

of the structure definition or by writing a separate declaration statement.

 - &' '& % 9

 ! "

structure_variable1.member1= value;

structure_variable2.member2= value;

 " $%

book.title = “Data Structures”;

book.pages = 450;

 " $% * Write a program that uses a simple structure to store students’ details.
 & & * To store students’ details

#include <stdio.h>

#include <conio.h>

void main ()

{

 int num, i=0;

 /*Structure Declaration*/

struct student
 {
 char name[30];
 int rollno;
 int t_marks;
 };

struct student std[10];
 clrscr();

 printf(“Enter the number of students: “);

This statement declares an

array of structures.

56 Data Structures Using C

 scanf(“%d”,&num);

 /*Reading student details*/
 for(i=0;i<num;i++)
 {
 printf(“\nEnter the details for student %d”,i+1);
 printf(“\n\n Name “);
 scanf(“%s”,std[i].name);
 printf(“\n Roll No. “);
 scanf(“%d”,&std[i].rollno);
 printf(“\n Total Marks “);
 scanf(“%d”,&std[i].t_marks);
 }

 /*Displaying student details*/
 printf(“\n Press any key to display the student details!”);
 getch();

 for(i=0;i<num;i++)
 printf(“\n student %d \n Name %s \n Roll No. %d \n Total Marks

%d\n”,i+1,std[i].name, std[i].rollno, std[i].t_marks);

getch();
}

 ' $'

Enter the number of students: 2

Enter the details for student 1

 Name Rohit

 Roll No. 32

 Total Marks 375

Enter the details for student 2

 Name Brijesh

 Roll No. 6

 Total Marks 400

 Press any key to display the student details!
 student 1
 Name Rohit
 Roll No. 32

 Total Marks 375

 C RECAP – II 57

C
h
a
p

t
e
r

T
w
o

 student 2

 Name Brijesh

 Roll No. 6

 Total Marks 400

 & & %!

Key Statement Purpose

struct student

 {

 char name[30];

 int rollno;

 int t_marks;

 };

Declares a structure student for storing student-related

data

struct student std[10]; Declares an array of student structure

scanf(“%s”,std[i].name); Reads value for a structure member

 9 ? 9

 @ A B ' #* C G C G

std[i].t_marks);

Displays the structure member values

 " $% + Write a program to perform complex number addition using structures.

 & & + To perform complex number addition using structures

#include <stdio.h>

#include <conio.h>

#include <math.h>

void main()

{

 struct complex/*Realizing a complex number using structure*/

 {

 double real;/*Real part*/

 };

 struct complex c1, c2, c3;

 clrscr();

 /*Reading the 1st complex number*/

 printf(“\n Enter two Complex Numbers (x+iy):\n\n Real Part of First

Number: “);

 scanf(“%lf”,&c1.real);

 printf(“\n Imaginary Part of First Number: “);

 scanf(“%lf”,&c1.img);

 /*Reading the 2nd complex number*/

 printf(“\n Real Part of Second Number: “);

58 Data Structures Using C

 scanf(“%lf”,&c2.real);

 printf(“\n Imaginary Part of Second Number: “);

 scanf(“%lf”,&c2.img);

 /*Performing complex number addition*/

 c3.real=c1.real+c2.real;

 c3.img=c1.img+c2.img;

 /*Displaying the result*/

printf(“\n\n %.2lf+(%.2lf)i + %.2lf+(%.2lf)i = %.2lf+(%.2lf)i”, c1.real,
c1.img, c2.real, c2.img, c3.real, c3.img);

 getch();

}

 ' $'

Enter two Complex Numbers (x+iy):

 Real Part of First Number: 1

 Imaginary Part of First Number: 2

 Real Part of Second Number: 3

 Imaginary Part of Second Number: 4

 1.00+(2.00)i + 3.00+(4.00)i = 4.00+(6.00)i

 & & %!

Key Statement Purpose

struct complex

 {

 double real;

 double img;

 };

Declares a structure complex for storing complex

numbers

struct complex c1, c2, c3; Declares variables of the complex structure

scanf(“%lf”,&c1.real); Reads real value for the complex structure

scanf(“%lf”,&c1.img); Reads imaginary value for the complex structure

 " # " # " # " $

%.2lf+(%.2lf)i”, c1.real, c1.img, c2.real, c2.img,

c3.real, c3.img);

Displays the complex number represented by the

complex structure

 0

Like structures, unions also allow us to group together dissimilar type elements inside a single unit. But

there is a significant difference between structures and unions in the way they are implemented in the

The dot (.) operator is used for

accessing individual structure

members.

 C RECAP – II 59

C
h
a
p

t
e
r

T
w
o

system. The size of a structure is equal to the sum of the sizes of its constituent members. In contrast,

the size of a union is equal to the size of its largest sized element. This is because unions allow only

one member to be utilized at any given point of time. That is, union members can only be manipulated

exclusive of each other.

 ! "

union <union_name>

{

 type1 var1;

 type2 var2;

 .

 .

 typen varn;

};

 " $%

union result

{

int marks;

char grade;

float percent;

};

Unions are particularly useful in situations where it is not required to simultaneously access the data

members. In such situations, unions prove to be memory efficient in comparison to structures.

 " $% - Write a program to demonstrate the use of unions.
 & & - Use of unions

/*Program for demonstrating the use of unions*/

#include <stdio.h>

#include <conio.h>

void main ()

{

 /*Union Declaration*/

 union student

 {

 int roll_no;

 char result;

 }st1,st2;

 clrscr();

 /*Initializing union variables*/

 st1.roll_no=20;

60 Data Structures Using C

 st2.result=’P’;

 /*Accessing and printing the values correctly*/

 printf(“\nRoll NO: %d”,st1.roll_no);
 printf(“\nResult: %c”,st2.result);

 printf(“\n\n”);

 /*Accessing and printing the values incorrectly*/

 printf(“\nRoll NO: %d”,st2.roll_no);

 printf(“\nResult: %c”,st1.result);

 getch();

}

 ' $'

Roll NO: 20

Result: P

Roll NO: 12880

Result: ¶

 & & %!

Key Statement Purpose

union student

 {

 int roll_no;

 char result;

 }st1,st2;

Defines a union named student and declares its variables

 st1.roll_no=20;

 st2.result=’P’;

Initializes the union members

 ? 9HJ ' * K

 ? J ' "

Displays the values of the union members

 0 &' '& :

Table 2.3 lists the key differences between structures and unions.

 5% (Structures vs. Unions

Structures Unions

It is defined with ‘struct’ keyword. It is defined with ‘union’ keyword.

All members of a structure can be utilized simultaneously. Only one member of a union can be utilized at any

given point of time.

 C RECAP – II 61

C
h
a
p

t
e
r

T
w
o

Structures Unions

The size of a structure is equal to the sum of the sizes

of its members.

The size of a union is equal to the size of its largest

member.

Structure members are stored at discrete locations in

memory.

All the union members share common memory space.

Structures are not considered as memory efficient in

comparison to unions.

Unions are considered as memory efficient in situations

where the members are not required to be accessed

simultaneously.

 3

Pointer is a derived data type that stores memory addresses as its value. It points or indicates the location

where another variable is stored. Pointers are particularly used for dynamic memory management. Figure

2.10 shows the logical representation of a pointer:

6 Logical representation of pointer

 3 & % & ; % 9

A pointer is declared with the help of * operator and initialized with the help of & operator, as shown

in the following code snippet:

int num=10;

int *ptr; /Pointer declaration*/

ptr=# /Pointer initialization*/

In the above code, the address of num variable is allocated to pointer variable ptr. Whenever * is

preceded with a variable name, it refers to the value stored at the location being pointed by the variable.

On the other hand, whenever & is preceded with a variable name, it refers to the memory address of

the variable.

Like any other variable, pointer variables can also be used in expressions to form pointer expressions.

This is depicted below:

a = *b +*c;

62 Data Structures Using C

z = z + *y;

*c=*ptr+5;

 " $% 0 Using the concept of pointers, write a program to print the address and value of a

variable.
 & & 0 To print address and value of a variable

#include<stdio.h>

#include<conio.h>

void main()

{

 int a;

int *ptr; /*Declaring pointer variable*/
 clrscr();

 a=50;

ptr=&a; /*Pointer allocation*/

 printf(“address of a = %u\tvalue of a = %d\n”,ptr,*ptr);

 printf(“address of ptr = %u\tvalue of ptr = %u”,&ptr,ptr);

 getch();

}

 ' $'

address of a = 65524 value of a = 50

address of ptr = 65522 value of ptr = 65524

 & & %!

Key Statement Purpose

 7 Declares a pointer variable ptr

 ptr=&a; Assigns an address value to the ptr variable

 ' &!

© C language allows you to manipulate the flow of program control by using control statements.

© Control statements are of two types: decision making statements and looping statements.

© Decision making statements: if, if else, and switch.

© Looping statements: while, do-while, and for.

© Array is a linear data structure that groups elements of similar types and stores them at contiguous

memory locations.

© Common array operations are insertion, deletion, traversal, searching, and sorting.

© Arrays are of two types: single-dimensional and multi-dimensional.

© String is a character array that stores string characters at contiguous memory locations.

printing address values.

 C RECAP – II 63

C
h
a
p

t
e
r

T
w
o

 © C supports a number of built-in functions that can be used by including the appropriate header

file in the program.

 © User-defined functions are custom functions defined by the programmer to perform specific

tasks.

 © A structure groups together data of different types inside a single unit.

 © A structure is used in situations where data elements with distinct types are required to be stored

as a single entity.

 © The size of a structure is equal to the sum of the sizes of its constituent members.

 © The size of a union is equal to the size of its largest sized element.

 © Pointer is a derived data type that stores memory addresses as its value. It is particularly used

for dynamic memory management.

 : < ='

 2.1 Explain the difference between decision-making and looping statements with the help of an

example.

 2.2 Write the syntax of switch statement.

 2.3 What is the main difference between while and do-while statements?

 2.4 What is an array? What are the various types of operations performed on an array?

 2.5 What is a multi-dimensional array? Explain with the help of an example.

 2.6 Explain any two string-handling functions with the help of an example.

 2.7 What is a user-defined function? Explain with the help of an example.

 2.8 Write the syntax for using a structure in a program.

 2.9 What is the difference between structure and union?

 2.10 What is a pointer? Explain with the help of an example.

 & & " &

 2.1 Write a program to find the largest among three numbers.

 2.2 Write a C program to find the factorial of a number using while loop.

 2.3 Using for loop, write a program to generate the following pyramid structure:

0

1 0 1

2 1 0 1 2

3 2 1 0 1 2 3

4 3 2 1 0 1 2 3 4

5 4 3 2 1 0 1 2 3 4 5

6 5 4 3 2 1 0 1 2 3 4 5 6

7 6 5 4 3 2 1 0 1 2 3 4 5 6 7

64 Data Structures Using C

 2.4 Using for loop, write a program to generate the following pyramid structure:

 9

 9 8 7

 9 8 7 6 5

 9 8 7 6 5 4 3

 9 8 7 6 5 4 3 2 1

 2.5 Write a program to compute the sum of elements of an integer array.

 2.6 Using multi-dimensional array, write a program to realize a 3 ¥ 3 matrix.

 2.7 Write a program to compare two strings and find out if they are same or not.

 2.8 Write a function ‘fact’ that computes and returns the factorial of the number passed as parameter.

 2.9 Create an employee structure in C to store the details of five employees.

 2.10 Create a five-element array and print the address of each of its elements.

Introduction to Algorithm and Data Structures 65

C
h
a
p

t
e
r

T
h
r
e
e

3.1 Introduction

3.2 Algorithms

 3.2.1 Characteristics of an Algorithm

 3.2.2 Representation of an Algorithm

 3.2.3 Efficiency of an Algorithm

3.3 Asymptotic Notations

 3.3.1 Big-Oh Notation

 3.3.2 Omega Notation

 3.3.3 Theta Notation

3.4 Introduction to Data Structures

 3.4.1 Characteristics of Data Structures

3.5 Types of Data Structures

 3.5.1 Arrays

 3.5.2 Linked Lists

 3.5.3 Stacks

 3.5.4 Queues

 3.5.5 Trees

 3.5.6 Graphs

3.6 Data Structure Operations

 3.6.1 Data Structure Efficiency

Summary

Key Terms

Multiple-Choice Questions

Review Questions

Answers to Multiple-Choice Questions

INTRODUCTION TO

ALGORITHM AND DATA

STRUCTURES

3

C

h

a

p

t

e

r

O

u

t

l

i

n

e

66 Data Structures Using C

3.1 INTRODUCTION

In the last two chapters, we learnt the basics of C programming language and its various programming

constructs. In this chapter, we will focus on one of the main starting points to developing programming

applications, i.e., algorithms. An algorithm is a set of instructions that defines the complete solution to

a given problem. It uses simple English language for writing the solution steps. It is quite possible to

have multiple algorithmic solutions for the same problem. In such cases, performance becomes the sole

criterion for choosing a specific solution. We can use various asymptotic notations, such as big-oh and

omega for assessing the performance or running time of an algorithm.

In this chapter, we will also get a brief introduction to data structures. Data structure is a collection

of data and the associated operations. Some of the commonly used data structures are arrays, stacks,

queues, linked lists, etc.

3.2 ALGORITHMS

An algorithm can be defined as a step by step procedure that provides solution to a given problem. It

comprises of a well-defined set of finite number of steps or rules that are executed sequentially to obtain

the desired solution.

To understand algorithms in a better way, let us consider a simple problem of identifying the smallest

number from a given list of numbers. Following is the algorithm for this problem:

Select the first number in the list and tag it as the smallest-so-far element.

1. For each subsequent element in the list.

2. Replace the smallest-so-far number with the list element if the latter is smaller.

3. Once all the numbers have been compared, the smallest-so-far number is considered as the

smallest number in the list.

In computing terms, an algorithm is described

a little differently. It is defined as a hierarchy of

steps used for computational procedures, which

usually starts with an input value and generates

the desired output. While defining an algorithm,

you must consider two primary factors, the time

it requires to solve the problem and the required

memory space. For instance, if an algorithm takes

hours to solve a problem, then it is of no use.

Similarly, if an algorithm requires gigabytes of

computer memory, then also it is not considered

an ideal algorithm.

Figure 3.1 shows a simple illustration of how

algorithms are used for solving computational

problems.

An algorithm solves only a single problem

at a time. However, the same problem can be

solved using multiple algorithms. The benefit of

Fig. 3.1 Use of algorithms for solving computational

problems

 Introduction to Algorithm and Data Structures 67

C
h
a
p

t
e
r

T
h
r
e
e

using multiple algorithms to solve the same problem is purely situational. One algorithm could be more

efficient for a particular set of inputs or for a specific variation of the problem while another algorithm

could be more efficient for some different set of inputs or for some different variation of the problem.

The use of multiple algorithms is more evident while solving sorting problems. One sorting algorithm

could be efficient for sorting a large collection of integers while another sorting algorithm could be more

efficient for sorting a large collection of strings. Thus, in this case the choice of a particular algorithm

solely depends on the type of input values.

3.2.1 Characteristics of an Algorithm

There are certain key characteristics that an algorithm must possess. These characteristics are:

 1. An algorithm must comprise of a number of steps.

 input values.

 3. It should be able to generate at least a single valid output based on a valid input.

 4. It must be

 5. It should be correct, i.e., it should be able to perform the desired task of generating correct output

from the given input.

 6. There should be no ambiguity regarding the order of execution of algorithm steps.

 7. It should be able to terminate

3.2.2 Representation of an Algorithm

You can represent an algorithm in a number of ways, right from normal English language phrases to

graphical representation using flow charts. However, such representations are mainly useful when the

algorithm is simple and small.

Another way of representing an algorithm is the pseudocode. Pseudocode is an informal representation

of the algorithm that provides a complete outline of a program so that the programmers can easily

understand it and transform it into a program using the programming language of their choice. The

structure and syntax of pseudocode is quite similar to typical programming language constructs, thus

it is easy to transform it into a program. Since there are no tight syntactical constraints associated

with developing a pseudocoded algorithm, the programmer has the liberty to focus only on getting the

solution logic right.

While representing an algorithm in pseudocode form, you must use certain conventions consistently

throughout the algorithm. This helps in easy understanding of the algorithm. Following are some of the

general conventions that are followed while writing pseudocode:

 1. Provide a valid name for the algorithm written using pseudocode.

 2. For each line of instruction, specify a line number.

 4. It is not necessary to explicitly specify the data type of the variables.

 5. Always indent the statements present inside a block structure appropriately.

 6. Use read and write instructions to specify input and output operations respectively.

 7. Use if or if else constructs for conditional statements. You must end an if statement with the

corresponding end if statement. Further, each if construct should be vertically aligned, depicted

as follows:

68 Data Structures Using C

If (conditional expression)

 Statement

end-if

Or

If (conditional expression)

 Statement

else

 Statement

end-if

 8. For looping or iterative statements, you can use for or while looping constructs. A for loop

must end with an end for statement while a while loop must end with an end while statement,

as depicted below:

for i = 1 to 10 do

{

 Statement 1

 .

 .

 Statement n

}

end-for

while (conditional expression) do

{

 Statement 1

 .

 .

 Statement n

}

end-while

 9. Use logical and relational operators whenever logical or relational operations are to be performed.

For example,

 i = j

 i < j

 10. Represent an array or list element by specifying the name of the array followed by its index

within square brackets. For instance, A[i] will represent the ith element of the array A.

Let us now go through some examples of algorithms created using pseudocode.

Example 3.1 Write an algorithm to interchange two numbers.

Interchange (X, Y)

Step 1: Begin

Step 2: Set X = X + Y

 Introduction to Algorithm and Data Structures 69

C
h
a
p

t
e
r

T
h
r
e
e

Step 3: Set Y = X - Y

Step 4: Set X = X - Y

Step 5: Write (X, Y)

Step 6: End

Example 3.2 Write an algorithm to calculate the average of 15 numbers.

Average (avg, sum)

Step 1: Begin

Step 2: Set avg = 0.0 and sum = 0

Step 3: for i = 1 to 15 do

Step 4: Read (a)

Step 5: sum = sum + a

Step 6: end-for

Step 7: avg = sum/15

Step 8: Write (avg)

Step 9: End

Example 3.3 Write an algorithm to sort n numbers.

Sort (a, n)

Step 1: Begin

Step 2: Read (n)

Step 3: for i = n to 2 do

Step 4: for j = 1 to i-1 do

Step 5: if a[j]> a[j+1] then

Step 6: Interchange a[j] and a[j+1]

Step 7: end-if

Step 8: end-for

Step 9: end-for

Step 10: End

3.2.3

Whenever we refer the term efficiency in the context of algorithms, it points at two aspects: one, whether

the algorithm runs faster; and two, whether it uses lesser amount of memory space. Thus, an efficient

algorithm will always create the best possible tradeoff between its running time and memory space

consumption.

The function that derives the running time of an algorithm and its memory space requirements for a

given set of inputs is referred as algorithm complexity. Time complexity is the measure of the running

time of an algorithm for a given set of inputs. Space complexity is the measure of the amount of memory

space required by an algorithm for its complete execution, for a given set of inputs.

Time complexity is typically measured by counting the number of primitive or elementary steps

performed by the algorithm for its complete execution. These steps are machine independent and

their count is directly dependent on the size of input data set. The representation or expression of time

complexity is done asymptotically, as we shall see in the subsequent section.

70 Data Structures Using C

3.3 ASYMPTOTIC NOTATION

Asymptotic notation is the most simple and easiest way of describing the running time of an algorithm.

It represents the efficiency and performance of an algorithm in a systematic and meaningful manner.

Asymptotic notations describe time complexity in terms of three common measures, best case (or ‘fastest

possible’), worst case (or ‘slowest possible’), and average case (or ‘average time’).

The three most important asymptotic notations are:

 1. Big-Oh notation

 2. Omega notation

 3. Theta notation

3.3.1 Big-Oh Notation

The big-oh notation is a method that is used to express the upper bound of the running time of an

algorithm. It is denoted by ‘O’. Using this notation, we can compute the maximum possible amount of

time that an algorithm will take for its completion.

%¥ϲ©®©´©¯®! Consider f (n) and g(n) to be two positive functions of n, where n is the size of the input data.

Then, f (n) is big-oh of g(n), if and only if there exists a positive constant C and an integer n0, such that

f (n! " Cg(n) and n > n0

Here, f (n) = O(g(n))

Figure 3.2 shows the graphical repre sentation of big-oh notation.

Fig. 3.2 Graphical representation of big-oh notation

Some of the typical complexities (computing time) represented by big-oh notation are:

 1. O(1) Æ Constant

 2. O(n) Æ Linear

 3. O(n2) Æ Quadratic

 Introduction to Algorithm and Data Structures 71

C
h
a
p

t
e
r

T
h
r
e
e

 4. O(n3) Æ Cubic

 5. O(2n) Æ Exponential

 6. O(logn) Æ Logarithmic

Example 3.4 Derive the big-oh notation, if f(n) = 8n + 7 and g(n) = n.

Solution To show f(n) is O(g(n)), we must consider positive constants C and integer n0, such that

f(n! " Cg(n) for all n > n0
or 8n # $ " Cn for all n > n0
Let C = 15.

Now, we must show that .

 $ " $n

 % " n

Therefore, f(n) = 8n # $ " %&n for all n ' % C = 15 and n0 = 1.

Hence, f(n) = O(g(n)).

Example 3.5 Derive the big-oh notation, if f(n) = 2n + 2 and g(n) = n2.

Solution Given, f(n) = 2n +2 and g(n) = n2.

 For n = 1,

 f(n) = 2(1) + 2

 = 4

 g(n) = (1)2

 = 1

i.e., f(n) > g(n)

 For n = 2,

 f(n) = 2(2) + 2

 = 6

 g(n) = (2)2

 = 4

i.e., f(n) > g(n)

 For n = 3,

 f(n) = 2(3) + 2

 = 8

 g(n) = (3)2

 = 9

i.e., f(n) < g(n)

Therefore, f(n) Cg(n) is true if n > 2.

3.3.2 Omega Notation

The omega notation is a method that is used to express the lower bound of the running time of an algorithm.

* /?@ J K

that an algorithm will take for its completion.

72 Data Structures Using C

%¥ϲ©®©´©¯®! Consider f(n) and g(n) to be two positive functions of n, where n is the size of the input data.

Then, f(n) is omega of g(n), if and only if there exists a positive constant C and an integer n0, such that

f(n! ' Cg(n) and n > n0
Here, f(n! M ?Vg(n))

Figure 3.3 shows the graphical representation of omega notation.

Fig. 3.3 Graphical representation of Omega notation

Example 3.6 Deduce the omega notation if f(n) = 2n2 + 4 and g(n) = 6n.

Given, f(n) = 2n2 + 4 and g(n) = 6n.

 For n = 0,

 f(n) = 2(0)2 + 4

 = 4

 g(n) = 6(0)

 = 0

i.e., f(n) > g(n)

 For n = 1,

 f(n) = 2(1)2 + 4

 = 2 + 4

 = 6

 g(n) = 6(1)

 = 6

 i.e., f(n) = g(n)

 For n = 2,

 f(n) = 2(2)2 + 4

 Introduction to Algorithm and Data Structures 73

C
h
a
p

t
e
r

T
h
r
e
e

 = 8 + 4

 = 12

 g(n) = 6(2)

 = 12

 i.e., f(n) = g(n)

 For n = 3,

 f(n) = 2(3)2 + 4

 = 18 + 4

 = 22

 g(n) = 6(3)

 = 18

i.e., f(n) > g(n)

Therefore, we can say that f(n) > Cg(n), if n > 2.

Example 3.7 Deduce the omega notation if f(n) = 2n + 6 and g(n) = 2n.

Given, f(n) = 2n + 6 and g(n) = 2n.

 For n = 0,

 f(n) = 2(0) + 6

 = 6

 g(n) = 2(0)

 = 0

 i.e., f(n) > g(n)

 For n = 1,

 f(n) = 2(1) + 6

 = 2 + 6

 = 8

 g(n) = 2(1)

 = 2

i.e., f(n) > g(n)

Therefore, we can say that f(n) > Cg(n), for n > 1.

3.3.3 Theta Notation

The theta notation is a method that is used to express the running time of an algorithm between the lower

 X /Z@ J

time that an algorithm will take for its completion.

%¥ϲ©®©´©¯® ! Consider f(n) and g(n) to be two positive functions of n, where n is the size of the input

data. Then, f(n) is theta of g(n), if and only if there exists two positive constants C1 and C2, such that,

C1 g(n! " f(n! " C2g(n)

Here, f(n) = (g(n)).

74 Data Structures Using C

Figure 3.4 shows the graphical representation of theta notation.

Fig. 3.4 Graphical representation of Theta notation

Example 3.8 Deduce the theta notation if f(n) = 2n + 8.

Let f(n) = 2n + 8 > 5n where n '

Similarly, f(n) = 2n + 8 > 6n where n '

and f(n) = 2n + 8 < 7n where n '

Thus, 5n < 2n + 8 < 7n, for n '

Here C1 = 5 and C2 = 7

Hence, f(n) = 2n + 8 = (n)

3.4 INTRODUCTION TO DATA STRUCTURES

In simple terms, data structure can be defined as a representation of data along with its associated

operations. It is the way of organizing and storing data in a computer system so that it can be used

efficiently. This organization can be in the form of a group of data elements stored under one name.

Here, the data elements are referred as members of the data structure.

Depending on the type of data structures, the members can be of different types and lengths. Some

of the examples of data structures include arrays, linked lists, binary trees, stacks, etc. Algorithms are

used to manipulate the data structures in a number of different ways, like sorting the data elements or

searching a particular data item.

The design and implementation of a typical data structure is associated with the definition of the

operations that can be performed on the data structure. The specification of these data structure operations

is done with the help of algorithms.

 Introduction to Algorithm and Data Structures 75

C
h
a
p

t
e
r

T
h
r
e
e

3.4.1 Characteristics of Data Structure

Data structures help in storing, organizing, and analyzing the data in a logical manner. The following

points highlight the need of data structures in computer science:

 1. It depicts the logical representation of data in computer memory.

 2. It represents the logical relationship between the various data elements.

 K K

 \ K

3.5 TYPES OF DATA STRUCTURES

Data structures are primarily divided into two classes, primitive and non-primitive. Primitive data

structures include all the fundamental data structures that can be directly manipulated by machine-level

instructions. Some of the common primitive data structures include integer, character, real, boolean, etc.

Non-primitive data structures, on the other hand, refer to all those data structures that are derived from

one or more primitive data structures. The objective of creating non-primitive data structures is to form

sets of homogeneous or heterogeneous data elements.

Non-primitive data structures are further categorized into two types: linear and non-linear. In linear

data structures, all the data elements are arranged in a linear or sequential fashion. Examples of linear

data structures include arrays, stacks, queues, linked lists, etc. In non-linear data structures, there is no

definite order or sequence in which data elements are arranged. For instance, a non-linear data structure

could arrange data elements in a hierarchical fashion. Examples of non-linear data structures are trees

and graphs.

Figure 3.5 shows the classification of different types of data structures.

Fig. 3.5 Types of data structures

76 Data Structures Using C

The subsequent sections give a brief overview of some of the important data structures. Each of these

data structures will be covered in detail in later chapters.

3.5.1

An array is a collection of similar type data elements stored at consecutive locations in the memory.

Typical examples of arrays include list of integers, group of names, etc. The group of array elements is

referred with a common name called array name. Access to individual array elements is provided with

the help of an index identifier. In C language, array index starts with 0. For example, list[5] refers to

the 6th element of the array ‘list’.

Figure 3.6 shows the logical representation of arrays.

Fig. 3.6 Logical representation of arrays

"°°¬©£¡´©¯®!̄ ¦!"²²¡¹³! Arrays are particularly used in programs that require storing large collection

of similar type data elements.

Note For more information on arrays, refer to Chapter 4.

3.5.2 Linked Lists

Linked list is a data structure used for storing data in the form of a list. It comprises of multiple nodes

connected to each other through pointers. Each node comprises of two parts. One part contains the data

value while the other part contains a pointer to the next node in the list.

Linked lists eliminate one of the main disadvantages associated with arrays, that is inefficient

utilization of memory space. A linked list blocks only that much amount of memory space as is required

for storing its constituent data elements. Every time a new element is to be inserted into the linked list, a

corresponding new node is created. This is in contrast to arrays, which block a fixed amount of memory

space irrespective of their precise requirement.

Figure 3.7 shows the logical representation of a linked list.

Fig. 3.7 Logical representation of linked lists

Introduction to Algorithm and Data Structures 77

C
h
a
p

t
e
r

T
h
r
e
e

"°°¬©£¡´©¯®!¯¦!-©®«¥¤!-©³´³! Linked lists are used in situations where there is a need for dynamic

memory allocation. For instance, a number of data structures like stacks, queues, trees, etc., are

implemented with the help of linked lists.

Note

3.5.3 Stacks

Stack is a linear data structure that maintains a list of elements in such

a manner that elements can be inserted or deleted only from one end of

the list. This end is referred as top of the stack. Stack is based on the

Last-In-First-Out (LIFO) principle, which means the element that is

last added to the stack is the one that is first removed from the stack.

A stack of books can be considered similar to a stack data structure

as it allows the books to be added or removed only from the top end

of the stack and not from the middle.

Figure 3.8 shows the logical representation of a stack.

"°°¬©£¡´©¯®!¯¦!4´¡£«³!! Stacks are typically used in the imple-

mentation of system processes, such as compilation and program

control.

Note For more information on stacks, refer to Chapter 6.

3.5.4 Queues

Queue is a linear data structure that maintains a list of elements in such a manner that elements are inserted

from one end of the queue (called rear) and deleted from the other end (called front). Queue is based on

the First-In-First-Out (FIFO) principle, which means the element that is first added to the queue is also

the one that is first removed from the queue. A queue of people standing at a bus stop can be considered

similar to a queue data structure as people join the queue at the back and leave the queue from the front.

Figure 3.9 shows the logical representation of a queue.

Fig. 3.9 Logical representation of queues

Fig. 3.8 Logical representation

of stacks

78 Data Structures Using C

"°°¬©£¡´©¯®!¯¦!2µ¥µ¥³!! Queues are typically used in the implementation of key system processes

such as CPU scheduling, resource sharing, etc.

Note For more information on queues, refer to Chapter 7.

3.5.5 Trees

Tree is a linked data structure that arranges its nodes in the

form of a hierarchical tree structure. Each node comprises of

zero or more child nodes. The node present at the top of the tree

structure is referred as root node. Data is accessed from the tree

data structure through various tree traversal methods.

Figure 3.10 shows the representation of a tree.

"°°¬©£¡´©¯®!¯¦!5²¥¥³! Tree data structure is typically used

for storing hierarchical data, implementing search trees, and

maintaining sorted data.

Note For more information on trees, refer to Chapter 8.

3.5.6 Graphs

Graph is a linked data structure that comprises of a group

of vertices called nodes and a group of edges. An edge

is nothing but a pair of vertices. Graph data structure

realizes the mathematical concept of graphs. The edges

of a graph are typically associated with certain values

also called weights. This helps to compute the cost of

traversing the graph through a certain path.

Figure 3.11 shows the representation of a graph.

"°°¬©£¡´©¯®!¯¦!(²¡°¨³! ! One of the typical application areas of graphs is in the modelling of

networking systems. It helps to compute the cost of transmitting data from a particular network path.

Note For more information on trees, refer to Chapter 9.

Fig. 3.10 Tree

Fig. 3.11 Graph

Introduction to Algorithm and Data Structures 79

C
h
a
p

t
e
r

T
h
r
e
e

3.6 DATA STRUCTURE OPERATIONS

There are several common operations associated with data structures that are used for manipulating the

stored data. While defining a data structure, you also need to define these associated operations. The

following operations are most frequently performed on any data structure type:

1. Traversing It is the process of accessing each record of a data structure exactly once.

2. Searching K K K ^

value.

3. Inserting It is the process of adding a new record in to a data structure.

4. Deleting It is the process of removing an existing record from a data structure.

Apart from these typical data structure operations, there are some other operations associated with

data structures, such as

1. Sorting K K

alphabetical, ascending, or descending.

2. Merging It is the process of combining the records of two different sorted data structures to

produce a single sorted data set.

3.6.1

Table 3.1 lists the efficiency of various data structure types for different operations.

Table 3.1

Data Structure Insert Search Delete

Array O(n) O(n) O(n)

Linked List O(1) O(n) O(n)

Stack O(1) – O(1)

Queue O(1) – O(1)

Tree (Sorted) O(logn) O(logn) O(logn)

© An algorithm is a well-defined set of finite number of steps or rules that are executed sequentially

to obtain the desired solution.

© Algorithms can be represented in the form of pseudocode or flowcharts.

© The function that derives the running time of an algorithm and its memory space requirements

for a given set of inputs is referred as algorithm complexity.

© Asymptotic notations describe time complexity in terms of three common measures, best case,

worst case, and average case.

80 Data Structures Using C

© The various types of asymptotic notations are big-oh, omega, and theta.

© Data structure is the way of organizing and storing data in a computer system.

© Data structures are primarily divided into two classes, primitive and non-primitive.

© Primitive data structures include all the fundamental data structures such as integer, character,

real, etc.

© Non-primitive data structures are the ones that are derived from one or more primitive data

structures. Examples of non-primitive data structures include arrays, linked lists, stacks, queues,

etc.

© An array is a collection of similar type data elements stored at consecutive locations in the

memory.

© Linked list is a collection of nodes connected to each other through pointers.

© Stack is a linear data structure that stores the data elements based on Last-In-First-Out (LIFO)

principle, which means the element that is last added to the stack is the one that is first removed

from the stack.

© Queue is a linear data structure that stores the data elements based on First-In-First-Out (FIFO)

principle, which means the element that is first added to the stack is also the one that is first

removed from the stack.

© Tree is a linked data structure that arranges its nodes in the form of a hierarchical tree structure.

© Graph is a linked data structure that comprises of a group of vertices called nodes and a group

of edges.

© Pseudocode It is an informal representation of the algorithm that provides a complete outline

of a program.

© Time complexity It is the measure of the running time of an algorithm.

© Space complexity It is the measure of the amount of memory space required by the algorithm

for its complete execution.

© Big-oh It is an asymptotic notation that expresses the upper bound of the running time of an

algorithm.

© Omega It is an asymptotic notation that expresses the lower bound of the running time of an

algorithm.

© Theta It is an asymptotic notation that expresses the running time of an algorithm between the

lower and upper bounds.

© LIFO It stands for Last-In-First-Out i.e., the principle on which stacks are based.

© FIFO It stands for First-In-First-Out i.e., the principle on which queues are based.

© Root node It is the node present at the top of a tree data structure.

Multiple-Choice Questions

3.1 Which of the following is not true for algorithms?

 V ! K K

 V ! K K `

 Introduction to Algorithm and Data Structures 81

C
h
a
p

t
e
r

T
h
r
e
e

 (c) It should have at least one valid input value.

 (d) It is possible to have multiple algorithms for the same problem.

 3.2 Efficiency of an algorithm is a tradeoff between which of the following factors?

 (a) Time and Space

 (b) Input and Output

 (c) Compilation time and Running time

 (d) None of the above

 3.3 Big-oh notation is a method that is used to express the __________ of the running time of an

algorithm.

 (a) Lower bound (b) Upper bound

 (c) Lower and upper bound (d) None of the above

 3.4 ____________ notation is a method that is used to express the running time of an algorithm

between the lower and upper bounds.

 (a) Big-oh (b) Beta

 (c) Theta (d) Omega

 3.5 Which of the following is the correct representation of the Omega notation?

 (a) f(n! ' Cg(n) (b) f(n! " Cg(n)

 (c) C1 g(n! " f(n! " C2g(n) (d) None of the above

3.6 Which of the following is an example of primitive data structure?

 (a) Integer (b) Array

 (c) Character (d) Stack

 3.7 Which of the following data structure is based on FIFO principle?

 (a) Tree (b) Graph

 (c) Stack (d) Queue

 3.8 A linked list blocks only that much amount of memory space as is required for storing its

constituent data elements.

 (a) True (b) False

 3.9 Which of the following data structure arranges its nodes in the form of a hierarchical structure?

 (a) Stac (b) Graph

 (c) Linked List (d) Tree

 3.10 Which of the following is a typical data structure operation?

 (a) Insert (b) Delete

 (c) Search (d) All of the above

Review Questions

 3.1 What is an algorithm? Explain with the help of an example.

 3.2 List the characteristics of an algorithm.

 3.3 How are algorithms represented? Explain with the help of an example.

 3.4 What is algorithm complexity?

 3.5 What is an asymptotic notation? Explain the various types of asymptotic notations.

 3.6 What is a data structure? What are its various characteristics?

 3.7 What are the different types of data structures?

82 Data Structures Using C

 3.8 Explain any two non-primitive data structures.

 3.9 What is a tree? Why is it used?

 3.10 List the typical operations associated with derived data structure types.

Answers to Multiple-Choice Questions

 3.1 (c) 3.2 (a) 3.3 (b) 3.4 (c) 3.5 (a)

 3.6 (a) and (c) 3.7 (d) 3.8 (a) 3.9 (d) 3.10 (d)

Arrays 83

C
h
a
p

t
e
r

F
o
u
r

4.1 Introduction

4.2 Types of Arrays

4.3 Representation of One-Dimensional Array in Memory

4.4 Array Traversal

4.5 Insertion and Deletion

 4.5.1 Insertion

 4.5.2 Deletion

4.6 Sorting and Searching

 4.6.1 Sorting

 4.6.2 Searching

4.7 Representation of Multi-Dimensional Array in Memory

4.8 Realizing Matrices Using Two-Dimensional Arrays

4.9 Matrix Operations

 4.9.1 Addition

 4.9.2 Subtraction

 4.9.3 Multiplication

 4.9.4 Transpose

Solved Problems

Summary

Key Terms

Multiple-Choice Questions

Review Questions

Programming Exercises

Answers to Multiple-Choice Questions

ARRAYS

4

C

h

a

p

t

e

r

O

u

t

l

i

n

e

84 Data Structures Using C

4.1 INTRODUCTION

In Chapter 2, we briefly introduced one of the most important and commonly used derived data types,

called array. In this chapter, we will observe how array is used as a data structure in different programming

situations. We will also get familiar with the logical representation of arrays in memory.

An array is regarded as one of the most fundamental entities for storing logical groups of data. It

also forms the basis for implementing some advanced data structures, like stacks and queues, as we

shall see in the later chapters.

Typically, an array is defined as a collection of same type elements. That means, it can store a group

of integers, characters, strings, structures, and so on. However, an array cannot store different type

elements like a group of integers and fractions, or a group of strings and integers. Following are some

of the characteristics associated with arrays:

 1. It uses a single name for referencing all the array elements. The differentiation between any two

elements is made on the basis of index value.

 2. It stores the different elements at consecutive memory locations.

 4. Its size is always a constant expression and not a variable.

 5. It does not perform bound checking on its own. It has to be implemented programmatically.

Before we delve further into exploring array as a data structure, let us first identify the different

types of arrays.

4.2 TYPES OF ARRAYS

As already explained, an array is a logical grouping of same type data elements. Now, it is quite possible

that each of these elements is itself an array. Further, each of the elements of the sub array could also

be an array. This forms the basis of characterizing an array into different types, as depicted in Table 4.1.

Table 4.1 Types of arrays

Array Type Description C Representation Example

One-dimensional array It is a group of same

type data elements, such

as integers, floats, or

characters.

array[] A group of integers.

{2, 5, 6, 1, 9}

Multi-dimensional array It is a group of data

elements, where each

element is itself an array.

array[][]..[] A group of strings.

{“Ajay”, “Vikas”,

“Amit”, “Sumit”}

The various instances of multi-dimensional arrays are two-dimensional (2D) array, three-dimensional

(3D) array, four-dimensional (4D) array, and so on. The choice of a particular multi-dimensional array

depends on the programming situation at hand. For instance, if we are required to realize a 3 ¥ 3 matrix

programmatically, then we can do so by declaring a two dimensional array, say M[3][3]. Here, each

dimension of the array M signifies the row and column of the matrix respectively. Multi-dimensional

arrays are covered in greater detail later in this chapter. For now, let us focus on implementing and

manipulating one-dimensional array.

Arrays 85

C
h
a
p

t
e
r

F
o
u
r

4.3 REPRESENTATION OF

The elements of a one-dimensional array are stored at consecutive locations in memory. Each of the

locations is accessed with the help of array index identifier to retrieve the corresponding element.

Consider the following integer array:

arr[5] = {2, 6, 7, 3, 8}

Here, arr is a five-element integer array. Figure 4.1 shows the representation of array arr in memory:

Fig. 4.1 Array representation in memory

As shown in Fig. 4.1, each array element is stored at consecutive memory locations, i.e., 6000, 6002,

6004, and so on. The location of the first element, i.e., 6000 is also referred as the base address of the array.

If we know the base address of an array, then we can find the location of its individual elements by

using a simple formula, which is

Address of A[k] = B + W * k

Here,

A[] is the array.

B is the base address, i.e., the address of the first element.

W is the word size or the size of an array element.

k is the index identifier.

For instance, the address of the third element of array arr stored at index location 2 would be

Address of arr[2] = 6000 + 2 * 2

 = 6000 + 4

 = 6004

NoteN The word size of a data type is decided by the programming language being used and the

hardware specifications.

4.4

While working with arrays, it is often

required to access the array elements; that

is, reading values from the array. This is

achieved with the help of array traversal.

It involves visiting the array elements and

storing or retrieving values from it. Some of

the typical situations where array traversal

may be required are:

 Check Point

1. What is a base address?

Ans. It is the memory address of the first element

of an array.

2. How are array elements stored in memory?

Ans. The elements of an array are stored at

consecutive locations in memory.

86 Data Structures Using C

Printing array elements,

Searching an element in the array,

Sorting an array, and so on

Algorithm

Example 4.1 Write an algorithm to sequentially

traverse an array.

traverse(arr[], size)

Step 1: Start

Step 2: Set i = 0

Step 3: Repeat Steps 4-5 while i < size

Step 4: Access arr[i]

Step 5: Set i = i + 1

Step 6: Stop

Program

Example 4.2 Write a C program to traverse each element of an array and print its value on the console.

Program 4.1 performs array traversal and prints the array elements as output. It uses the algorithm
depicted in Example 4.1.

Program 4.1 C program to traverse each element of an array and print its value

#include <stdio.h>

#include <conio.h>

void traverse(int*, int); /*Function prototype for array traversal*/
void main()

{

 int arr[5] = {2, 6, 7, 3, 8};

 int N=5;

 clrscr();

 printf(“Press any key to perform array traversal and display its elements:

\n\n”);

 getch();

traverse(arr,N); /*Calling traverse function*/

 getch();

}

void traverse(int *array, int size)

{

 int i;

for(i=0;i<size;i++)

printf(“arr[%d] = %d\n”,i,array[i]); /*Accessing array element and

printing it*/

}

 Mind Jog

What is ‘array index out of bound’?

It is a runtime error that is encountered when a

program tries to reference as address location

outside of the defined array limits.

Specifying array values at the time

of writing a program is referred as

compile-time initialization.

Arrays 87

C
h
a
p

t
e
r

F
o
u
r

Output

Press any key to perform array traversal and display its elements:

arr[0] = 2

arr[1] = 6

arr[2] = 7

arr[3] = 3

arr[4] = 8

Program analysis

Key Statement Purpose

void traverse(int*, int); Declares the prototype for the traverse() function for traversing

an array

traverse(arr,N); Calls the traverse() function for traversing the array arr

containing N elements

for(i=0;i<size;i++) Uses the for loop to access the array elements with each

iteration

TipT While traversing an array, the index identifier should be updated carefully so that array

out of bound situation does not arise. In this situation, the program tries to access a

location outside of the reserved memory block, which is an illegal operation.

4.5 INSERTION A

Insertion is the task of adding an element into an existing

array while deletion is the task of removing an element

from the array. The point of insertion or deletion that is

the position where an element is to be inserted or deleted

holds vital importance, as we shall see in the subsequent

sections.

4.5.1 Insertion

If an element is to be inserted at the end of the array, then

it can be simply achieved by storing the new element

one position to the right of the last element. However,

the array must have vacant positions at the end for this to be feasible. Alternatively, if an element is

required to be inserted at the middle, then this will require all the subsequent elements to be moved one

place to the right. Figure 4.2 depicts the insertion of an element into an array.

 Check Point

1. What is array traversal?

Ans. It is the task of visiting the array

elements and storing or retrieving values

from it.

2. What is the need for array traversal?

Ans. It is required in almost all array

related operations, such as sorting,

searching, printing, etc.

88 Data Structures Using C

Fig. 4.2 Array insertion

Algorithm

Example 4.3 Write an algorithm to perform array insertion.

The following algorithm inserts an element P at index location k in the array A[N], where k<=N.

insert(A[N],k, P)

Step 1: Start

Step 2: Set i = N

Step 3: Repeat Steps 4-5 while i >=k

Step 4: Set A[i+1] = A[i]

Step 5: Set i = i - 1

Step 6: Set A[k] = P

Step 7: Set N = N + 1

Step 8: Stop

Program

Example 4.4 Write a C program to perform array insertion.

Program 4.2 performs array insertion and prints the updated array elements as output. It uses the algorithm

depicted in Example 4.3.

Program 4.2 Array insertion

#include <stdio.h>

#include <conio.h>

void main()

{

 int array[10] = {-1, 3, 5, 22, 77};

Arrays 89

C
h
a
p

t
e
r

F
o
u
r

 int i, k, N, P;

clrscr();

 N = 5;

 printf(“The contents of the array are:\n”);

 for(i=0;i<N;i++)

 printf(“array[%d] = %d\n”,i,array[i]); /*Printing array elements*/

 printf(“\nEnter the element to be inserted:\n”);

 scanf(“%d”,&P);

 printf(“\nEnter the index location where %d is to be inserted:\n”, P);

 scanf(“%d”,&k);

for(i=N;i>=k;i—)

 array[i+1]=array[i];

 array[k] = P;

 N = N + 1;

 printf(“\nThe contents of the array after array insertion are:\n”);

 for(i=0;i<N;i++)

 printf(“array[%d] = %d\n”,i,array[i]); /*Printing array elements after

array insertion*/

 getch();

}

Output

The contents of the array are:

array[0] = -1

array[1] = 3

array[2] = 5

array[3] = 22

array[4] = 77

Enter the element to be inserted:

19

Enter the index location where 19 is to be inserted:

1

The contents of the array after array insertion are:

array[0] = -1

array[1] = 19

array[2] = 3

array[3] = 5

array[4] = 22

array[5] = 77

The existing array elements need

to be moved to make space for the

new element.

90 Data Structures Using C

Program analysis

Key Statement Purpose

for(i=N;i>=k;i—)

array[i+1]=array[i];

Shuffles the array elements to the right to create space for inserting a

new element.

array[k] = P; Inserts a new element at the point of insertion.

N = N + 1; Increments the total number of array elements by 1.

4.5.2 Deletion

The deletion of elements follows a similar procedure as insertion. The deletion of element from the

end is quite simple and can be achieved by mere updation of index identifier. However, to remove an

element from the middle, one must move all the elements present to the right of the point of deletion,

one position to the left. Figure 4.3 depicts the deletion of an element from an array.

Fig. 4.3 Array deletion

Algorithm

Example 4.5 Write an algorithm to perform array deletion.

The following algorithm deletes the element at index location k in the array A[N], where k<=N.

delete(A[N],k)

Step 1: Start

Step 2: Set D = A[k]

Step 3: Set i = k

Step 4: Repeat Steps 5-6 while i <=N-1

Step 5: Set A[i] = A[i+1]

Step 6: Set i = i + 1

Arrays 91

C
h
a
p

t
e
r

F
o
u
r

Step 7: Set N = N - 1

Step 8: Stop

Program

Example 4.6 Write a C program to perform array deletion.

Program 4.3 performs array deletion and prints the updated array elements as output. It uses the algorithm

depicted in Example 4.5.

Program 4.3 Array deletion

#include <stdio.h>

#include <conio.h>

void main()

{

 int array[10] = {-1, 3, 5, 22, 77};

 int i, k, N, D;

 clrscr();

 N = 5;

 printf(“The contents of the array are:\n”);

 for(i=0;i<N;i++)

 printf(“array[%d] = %d\n”,i,array[i]); /*Printing array elements*/

 printf(“\nEnter the index location from where element is to be deleted:\n”);

 scanf(“%d”,&k);

D = array[k];

 for(i=k;i<=N-2;i++)

 array[i]=array[i+1];

 N = N - 1;

 printf(“\n%d element deleted from index location %d\n”,D,k);

 printf(“\nThe contents of the array after array deletion are:\n”);

 for(i=0;i<N;i++)

 printf(“array[%d] = %d\n”,i,array[i]); /*Printing array elements after

array deletion*/

 getch();

}

The existing array elements need

created by the deleted element.

92 Data Structures Using C

Output

The contents of the array are:

array[0] = -1

array[1] = 3

array[2] = 5

array[3] = 22

array[4] = 77

Enter the index location from where element is to be deleted:

3

22 element deleted from index location 3

The contents of the array after array deletion are:

array[0] = -1

array[1] = 3

array[2] = 5

array[3] = 77

Program analysis

Key Statement Purpose

D = array[k]; Retrieves the element value that is to be deleted.

for(i=k;i<=N-2;i++)

array[i]=array[i+1];

Shuffles the array elements to the left to fill the vacant space

created after deleting the array element.

N = N – 1; Decrements the total number of array elements by 1.

NoteN For large-sized arrays, inserting an element at the middle could be a considerable

programming overhead as it would require the other elements to the moved from their

current positions.

4.6 SORTING AND SEARCHING

Sorting and searching are two of the most

common operations performed on arrays.

The sorting operation arranges the elements

of an array in a specific order or sequence.

Searching, on the other hand, locates a

specific element in the array.

4.6.1 Sorting

Sorting involves comparing the array

elements with each other and shuffling them

until all the elements are sorted. There are a

 Check Point

 1. What is array insertion and deletion?

Ans. The task of adding an element into an

existing array is called array insertion while the

task of deleting an existing element from the array

is called array deletion.

 2. What is a point of insertion?

Ans. It is the location in the array where a new

element is to be inserted.

 Arrays 93

C
h
a
p

t
e
r

F
o
u
r

number of sorting techniques that are applied to sort an array in an efficient manner. We shall explore

these sorting techniques in Chapter 10. Here, let us focus on one of the most basic sorting techniques

called bubble sort.

Bubble sort operates on an array in such a manner that the largest element is brought to the end of

the array with each successive iteration. It repeatedly compares two consecutive elements and moves

the largest amongst them to the right. This process is repeated for each pair of elements until the current

iteration moves the largest element to the end.

Consider the following integer array:

arr[5] = {5, 4, 3, 2, 1}

Here, arr is a five-element integer array. It will take four iterations or passes to sort this five-element

array. Each pass will bring the largest element to the end of the array. Here’s a snapshot of the array

contents after each of the four passes:

Initial Array - arr[5] = {5, 4, 3, 2, 1}

Pass 1 - arr[5] = {4, 3, 2, 1, 5}

Pass 2 - arr[5] = {3, 2, 1, 4, 5}

Pass 3 - arr[5] = {2, 1, 3, 4, 5}

Pass 4 - arr[5] = {1, 2, 3, 4, 5}

As shown above, the fourth pass produces the sorted array.

Algorithm

Refer to Section 10.2.3 for the algorithm on applying bubble sorting technique to sort an array.

Program

Example 4.7 Write a C program to sort an array of five elements.

Program 4.4 implements bubble sorting technique to sort an array of five elements.

Program 4.4 Bubble sorting technique

#include <stdio.h>

#include <conio.h>

void main()

{

 int array[5]= {5, 4, 3, 2, 1};

 int i, k, j, temp;

 clrscr();

 printf(“\nThe initial array elements are:\n”);

 for(i=0;i<5;i++)

 printf(“array[%d] = %d\n”,i,array[i]); /*Printing initial array*/

 for(i=5;i>1;i—) /*Outer loop for controlling the number of passes*/

for(j=0;j<i-1;j++) /*Inner loop for controlling the number of comparisons

made in a pass*/

 if (array[j]>array[j+1])

94 Data Structures Using C

 {

 /*Swapping adjacent elements*/

 temp = array[j+1];

 array[j+1] = array[j];

 array[j] = temp;

 }

 printf(“\nThe sorted elements are:\n”);

 for(i=0;i<5;i++)

 printf(“array[%d] = %d\n”,i,array[i]); /*Printing sorted array*/

 getch();

}

Output

The initial array elements are:

array[0] = 5

array[1] = 4

array[2] = 3

array[3] = 2

array[4] = 1

The sorted elements are:

array[0] = 1

array[1] = 2

array[2] = 3

array[3] = 4

array[4] = 5

Program analysis

Key Statement Purpose

for(i=5;i>1;i—) Uses for loop to control the number of passes of bubble

sort algorithm

for(j=0;j<i-1;j++) Uses for loop to compare the array elements in each pass

of bubble sort algorithm

temp = array[j+1];

array[j+1] = array[j];

array[j] = temp; Swaps two array elements

NoteN Just like an integer array, sorting can also be applied to an array of floats, characters,

structures, and so on.

If the swap operation moves the

larger element towards the right then

the array is sorted in ascending order,

otherwise it is sorted in descending

order.

Arrays 95

C
h
a
p

t
e
r

F
o
u
r

4.6.2 Searching

Searching is the process of traversing an array

to find out if a specific element is present in

the array or not. If the search is successful, the

index location of the element is returned. There

are various searching mechanisms that can be

employed to search an element in an array.

We shall explore these searching techniques in

Chapter 10. Here, let us focus on one of the most

basic searching techniques called linear search.

The linear search technique traverses an array

sequentially to search the desired element. It starts the search with the first element and moves towards

the end in a step-by-step fashion. At each step, it matches the element to be searched with the array

element, and if there is a match, the location of the array element is returned.

Consider the following integer array:

arr[5] = {22, 19, 4, 8, 10}

Here, arr is a five element integer array. If we apply linear search to the array arr to search element

4, then the search will be successful as element 4 is present in the array. The search module will return

index location 2 as the search result because element 4 is the third element in the array.

Algorithm

Refer to Section 10.3.1 for the algorithm on applying linear search on an array.

Program

Example 4.8 Write a C program to perform linear search on an array.

Program 4.5 applies linear searching technique on an array of five elements.

Program 4.5 Performing linear search on an array

#include <stdio.h>

#include <conio.h>

void main()

{

 int array[5] = {22, 19, 4, 8, 10};

 clrscr();

 printf(“The contents of the array are:\n”);

 for(i=0;i<5;i++)

 printf(“array[%d] = %d\n”,i,array[i]); /*Printing array elements*/

 Check Point

1. What is sorting?

Ans. It is the task of arranging the elements

of an array in a sequence.

2. How many passes does bubble sorting

technique require to sort an array of n

elements?

Ans. n–1.

96 Data Structures Using C

 printf(“\nEnter the element to be searched:\n”);

scanf(“%d”,&k);

 for(i=0;i<5;i++) /*Scanning array elements one by one*/

 if(k==array[i])

 {

 index = i;

 break;

 }

 else

 ;

printf(“Search is successful! Element %d is present at index location

%d in the array”,k,index);

 else /*Successful Search*/

 printf(“Unsuccessful Search!”);

 getch();

}

Output

The contents of the array are:

array[0] = 22

array[1] = 19

array[2] = 4

array[3] = 8

array[4] = 10

Enter the element to be searched:

4

Search is successful! Element 4 is present at index location 2 in the array

Program analysis

Key Statement Purpose

scanf (“%d”,&k); Reads the key value that needs to be searched

in the array.

if (k==array [i]) Compares the key value with each array

element.

break; Takes the program control out of the for loop

as soon as the search is successful.

NoteN Just like an integer array, searching can also be performed on an array of floats, characters,

structures, and so on.

successful search.

Arrays 97

C
h
a
p

t
e
r

F
o
u
r

 4.7 REPRESENTATION OF

Let us recall that a multi-dimensional array is an array of

arrays. Unlike one-dimensional arrays which have only

one subscript, a multidimensional array has multiple

subscripts. For example, a two-dimensional array, one

of the most widely used instances of multi-dimensional

arrays, has two subscripts. It is used to programmatically

realize a matrix with its first subscript representing the

row and the second subscript representing the column

of a matrix.

The representation of a two-dimensional array in

memory is not like the gird-like structure of a matrix.

Instead, it is same as the one-dimensional array

representation in memory. It either stores the array

elements row by row (row major order) or column by

column (column major order). Figure 4.4 illustrates these

representations:

Fig. 4.4 Representation of two-dimensional array in memory

As shown in Fig. 4.4, the elements of a two-dimensional array are stored at consecutive memory

locations. The only difference is in the order in which these elements are stored in memory. In column-

major order, the elements are stored column-by-column while in row-major order the elements are

stored row-by-row. Both these memory representations are intrinsic to a programming language and

the programmer does not have a choice of selecting a particular representation format for storing array

elements.

 Check Point

1. What is searching?

Ans. Searching is the process of

determining if a specific element is present

in the array or not.

2. At a maximum, how many elements

would the searching technique require to

traverse in an n-element array?

Ans. n

98 Data Structures Using C

The formula for computing the address location of a multi-dimensional array element in row major

implementation is given below:

Address of A[i,j] = B + W (n (i – LBR) + (j – LBC))

Here,

1. A[][] is the multidimensional array.

2. B is the base address.

3. W is the word size or the size of an array element.

4. n is the number of columns.

5. i, j are the index identifiers.

6. LBR is the lower bound of row index.

7. LBC is the lower bound of column index.

Similarly, the formula for computing the address location of a multi-dimensional array element in

column major implementation is given below:

Address of A[i,j] = B + W (m (j – LBC) + (i – LBR))

Here, m represents the number of rows.

Example 4.9 A 10 ¥ 12 matrix is

implemented using array A[10][12]. If the

base address of the array is 200 and the word

size is 2 then compute the address of the element

A[4,7] in:

(a) Row major order

(b) Column major order

Assume that the lower bound of both row and

column indices is 1.

Solution (a) Row major order

Address of A[i,j] = B + W (n (i – LBR) + (j – LBC))

Address of A[4,7] = 200 + 2 (12 (4 – 1) + (7 – 1))

= 200 + 2 (42)

= 284

(b) Column major order

Address of A[i,j] = B + W (m (j – LBC) + (i – LBR))

Address of A[4,7] = 200 + 2 (10 (7 – 1) + (4 – 1))

= 200 + 2 (63)

= 326

Two-dimensional arrays are most commonly used for

realizing matrices. The first subscript signifies the rows

of a matrix while the second subscript signifies the

columns. Operation on these array-represented matrices

can be performed through simple programming.

Figure 4.5 depicts the realization of a matrix through

a two-dimensional array:

 Check Point

1. What is row-major order?

Ans. It is the memory representation of a

two-dimensional array in row-by-row fashion.

2. What is column-major order?

Ans. It is the memory representation of a two-

dimensional array in column-by-column fashion.

 Mind Jog

What is a square matrix?

It is the matrix that has equal number of

rows and columns.

Arrays 99

C
h
a
p

t
e
r

F
o
u
r

Fig. 4.5 Matrix represented by two-dimensional array

Figure 4.5 shows the subscript values for each of the elements of the matrix M[3][4].

Program

Example 4.10 Write a C program to realize a 3¥3 matrix.

Program 4.6 realizes a 3 ¥ 3 matrix using a two-dimensional array.

Program 4.6 3¥3 matrix using two-dimensional array

#include <stdio.h>

#include <conio.h>

void main()

{

int i,j,M[3][3];

 clrscr();

 /*Reading matrix elements*/

 printf(“Enter the elements of the 3 ¥ 3 matrix:\n”);

for(i=0;i<3;i++)

 for(j=0;j<3;j++)

 {

 printf(“M[%d][%d] = “,i,j);

 scanf(“%d”,&M[i][j]);

 }

 /*Printing matrix elements*/

 printf(“The matrix represented by the 3 ¥ 3 2D array is:\n”);

 for(i=0;i<3;i++)

 {

 printf(“\n\t\t “);

 for(j=0;j<3;j++)

 printf(“%d “,M[i][j]);

 }

 getch();

}

Output

Enter the elements of the 3 ¥ 3 matrix:

M[0][0] = 1

The indentation and display of the

two-dimensional array elements is

done in such a manner so to represent

a real matrix.

100 Data Structures Using C

M[0][1] = 2

M[0][2] = 3

M[1][0] = 4

M[1][1] = 5

M[1][2] = 6

M[2][0] = 7

M[2][1] = 8

M[2][2] = 9

The matrix represented by the 3 ¥ 3 2D array is:

 1 2 3

 4 5 6

 7 8 9

Program analysis

Key Statement Purpose

int i,j,M[3][3]; Declares a two-dimensional array to represent a 3 ¥ 3 matrix

for(i=0;i<3;i++) Uses for loop to iterate through each row of the matrix

for(j=0;j<3;j++) Uses for loop to iterate through each column of the matrix

scanf(“%d”,&M[i][j]); Reads the matrix elements

4.9

The various operations associated with matrices are:

 1. Addition

 2. Subtraction

 3. Multiplication

 4. Transpose

4.9.1 Addition

Addition is the task of adding individual elements of two matrices. For instance,
 a1 a2 a3

If matrix A = a4 a5 a6

 a7 a8 a9

 b1 b2 b3

And, matrix B = b4 b5 b6

 b7 b8 b9

 a1+b1 a2+b2 a3+b3

Then, A + B = a4+b4 a5+b5 a6+b6

 a7+b7 a8+b8 a9+b9

 Arrays 101

C
h
a
p

t
e
r

F
o
u
r

Program

Example 4.11 Write a C program to perform addition on two 3¥3 matrices.

Program 4.7 Adding on two 3¥3 matrices

#include <stdio.h>

#include <conio.h>

void main()

{

 int i,j,A[3][3],B[3][3],C[3][3];

 clrscr();

 printf(“Enter the elements of 3 ¥ 3 matrix A:\n”);

 for(i=0;i<3;i++)

 {

 for(j=0;j<3;j++)

 {

 printf(“A[%d][%d] = “,i,j);

 scanf(“%d”,&A[i][j]);/*Reading the elements of 1st matrix*/

 }

 }

 printf(“Enter the elements of 3 ¥ 3 matrix B:\n”);

 for(i=0;i<3;i++)

 {

 for(j=0;j<3;j++)

 {

 printf(“B[%d][%d] = “,i,j);

 scanf(“%d”,&B[i][j]);/*Reading the elements of 2nd matrix*/

 }

 }

 printf(“\nThe entered matrices are: \n”);

 for(i=0;i<3;i++)

 {

 printf(“\n”);

 for(j=0;j<3;j++)

 printf(“%d “,A[i][j]);/*Displaying the elements of matrix A*/

 printf(“\t\t”);

 for(j=0;j<3;j++)

 printf(«%d «,B[i][j]);/*Displaying the elements of matrix B*/

 }

 for(i=0;i<3;i++)

 for(j=0;j<3;j++)

 C[i][j] =A[i][j]+B[i][j];/*Computing the sum of two matrices*/

 printf(“\n\nSum of A and B is shown below: \n”);

102 Data Structures Using C

 for(i=0;i<3;i++)

 {
 printf(“\n”);

 for(j=0;j<3;j++)

 printf(“%d “,C[i][j]);/*Displaying the result*/

 }

 getch();

}

Output

Enter the elements of 3 ¥ 3 matrix A:

A[0][0] = 1

A[0][1] = 1

A[0][2] = 1

A[1][0] = 1

A[1][1] = 1

A[1][2] = 1

A[2][0] = 1

A[2][1] = 1

A[2][2] = 1

Enter the elements of 3 ¥ 3 matrix B:

B[0][0] = 2

B[0][1] = 2

B[0][2] = 2

B[1][0] = 2

B[1][1] = 2

B[1][2] = 2

B[2][0] = 2

B[2][1] = 2

B[2][2] = 2

The entered matrices are:

1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 2 2 2

Sum of A and B is shown below:

3 3 3

3 3 3

3 3 3

Program analysis

Key Statement Purpose

C[i][j] =A[i][j]+B[i][j]; Adds the elements of A and B matrices and stores the result at corresponding positions

of the resultant matrix C

 Arrays 103

C
h
a
p

t
e
r

F
o
u
r

4.9.2 Subtraction

Subtraction is the task of subtracting individual elements of two matrices. For instance,

 a1 a2 a3

If matrix A = a4 a5 a6

 a7 a8 a9

 b1 b2 b3

And, matrix B = b4 b5 b6

 b7 b8 b9

 a1-b1 a2-b2 a3-b3

Then, A - B = a4-b4 a5-b5 a6-b6

 a7-b7 a8-b8 a9-b9

A C program to perform matrix subtraction will be same as matrix addition (see Example 4.11). We

just need to replace the +sign with a –sign.

 !" !#$!%&

Matrix multiplication is not as simple as matrix addition or subtraction. It uses a certain formula to

generate multiplication result. For instance,

 a1 a2 a3

If matrix A = a4 a5 a6

 a7 a8 a9

 b1 b2 b3

And, matrix B = b4 b5 b6

 b7 b8 b9

 a1b1+a2b4+a3b7 a1b2+a2b5+a3b8 a1b3+a2b6+a3b9

Then, A ¥ B = a4b1+a5b4+a6b7 a4b2+a5b5+a6b8 a4b3+a5b6+a6b9

 a7b1+a8b4+a9b7 a7b2+a8b5+a9b8 a7b3+a8b6+a9b9

For two non-square matrices, multiplication is feasible only if the number of columns in the left

matrix is equal to the number of rows in the right matrix. Thus, if a M ¥ N matrix is multiplied with a

N ¥ P matrix, then the resultant matrix would be a M ¥ P matrix.

Program

Example 4.12 Write a C program to perform multiplication on two 3¥3 matrices.

Program 4.8 Multiplying on two 3 ¥ 3 matrices

#include <stdio.h>

#include <conio.h>

104 Data Structures Using C

void main()

{

 int i,j,k,A[3][3],B[3][3],C[3][3];

 clrscr();

 printf(“Enter the 3 ¥ 3 matrix A:\n”);

 for(i=0;i<3;i++)

 {

 for(j=0;j<3;j++)

 {

 printf(“A[%d][%d] = “,i,j);

 scanf(“%d”,&A[i][j]);/*Reading the elements of the 1st matrix*/

 }

 }

 printf(“Enter the 3 ¥ 3 matrix B:\n”);

 for(i=0;i<3;i++)

 {

 for(j=0;j<3;j++)

 {

 printf(“B[%d][%d] = “,i,j);

 scanf(“%d”,&B[i][j]);/*Reading the elements of the 2nd matrix*/

 }

 }

 printf(“\nThe entered matrices are: \n”);

 for(i=0;i<3;i++)

 {

 printf(“\n”);

 for(j=0;j<3;j++)

 {

 printf(“%d\t”,A[i][j]);/*Displaying the elements of matrix A*/

 }

 printf(«\t\t»);

 for(j=0;j<3;j++)

 {

 printf(“%d\t”,B[i][j]);/*Displaying the elements of the matrix B*/

 }

 }

 /*Multiplying the two matrices*/

 for(i=0;i<3;i++)

 for(j=0;j<3;j++)

 {

 C[i][j]=0;

 for(k=0;k<3;k++)

 C[i][j]=C[i][j]+A[i][k]*B[k][j];

 }

 printf(“\n\nThe product of the two matrices A ¥ B is shown below: \n”);

 Arrays 105

C
h
a
p

t
e
r

F
o
u
r

 for(i=0;i<3;i++)

 {

 printf(“\n”);

 for(j=0;j<3;j++)

 {

 printf(“%d\t”,C[i][j]); /*Displaying the result*/

 }

 }

getch();

}

Output

Enter the elements of 3 ¥ 3 matrix A:

A[0][0] = 1

A[0][1] = 2

A[0][2] = 3

A[1][0] = 4

A[1][1] = 5

A[1][2] = 6

A[2][0] = 7

A[2][1] = 8

A[2][2] = 9

Enter the elements of 3 ¥ 3 matrix B:

B[0][0] = 9

B[0][1] = 8

B[0][2] = 7

B[1][0] = 6

B[1][1] = 5

B[1][2] = 4

B[2][0] = 3

B[2][1] = 2

B[2][2] = 1

The entered matrices are:

1 2 3 9 8 7

4 5 6 6 5 4

7 8 9 3 2 1

The product of the two matrices A ¥ B is shown below:

30 24 18

84 69 54

138 114 90

106 Data Structures Using C

Program analysis

Key Statement Purpose

C[i][j]=C[i][j]+A[i][k]*B[k][j]; Multiplies the elements of A and B matrices and stores the result at

corresponding positions of the resultant matrix C

4.9.4 Transpose

In simple words, transposing a matrix refers to the task of changing the rows into columns and columns

into rows. For instance,
 a1 a2 a3

If matrix A = a4 a5 a6

 a7 a8 a9

 a1 a4 a7

Then, transpose(A) = a2 a5 a8

 a3 a6 a9

Program

Example 4.13 Write a C program to transpose a given 3 ¥ 3 matrix.

Program 4.9 C program to transpose 3 ¥ 3 matrix

#include <stdio.h>

#include <conio.h>

void main()

{

 int i,j,A[3][3],T[3][3];

 clrscr();

 printf(“Enter a 3 ¥ 3 matrix:\n”);

 for(i=0;i<3;i++)

 {

 for(j=0;j<3;j++)

 {

 printf(“A[%d][%d] = “,i,j);

 scanf(“%d”,&A[i][j]); /*Reading the elements of the 3X3 matrix*/

 }

 }

 printf(“\nThe entered matrix is: \n”);

 for(i=0;i<3;i++)

 {

 printf(“\n”);

 for(j=0;j<3;j++)

 {

 printf(“%d\t”,A[i][j]); /*Displaying the matrix*/

 }

 }

 Arrays 107

C
h
a
p

t
e
r

F
o
u
r

 for(i=0;i<3;i++)

 {

 for(j=0;j<3;j++)

 T[i][j]=A[j][i]; /*Computing matrix transpose*/

 }

 printf(“\n\nThe transpose of the matrix is: \n”);

 for(i=0;i<3;i++)

 {

 printf(“\n”);

 for(j=0;j<3;j++)

 {

 printf(“%d\t”,T[i][j]); /*Displaying the resultant transposed matrix*/

 }

 }

 getch();

}

Output

Enter a 3 ¥ 3 matrix:

A[0][0] = 1

A[0][1] = 2

A[0][2] = 3

A[1][0] = 4

A[1][1] = 5

A[1][2] = 6

A[2][0] = 7

A[2][1] = 8

A[2][2] = 9

The entered matrix is:

1 2 3

4 5 6

7 8 9

The transpose of the matrix is:

1 4 7

2 5 8

3 6 9

Program analysis

Key Statement Purpose

T[i][j]=A[j][i]; Transposes each element of the matrix A and stores the result in the matrix T

108 Data Structures Using C

NoteN Adequate checks must be included in a program to ensure that non-compatible matrices

are not operated.

 Check Point

1. What is matrix addition?

Ans. It is the task of adding the relative elements of two matrices.

2. What is matrix transpose?

Ans. It is the task of changing the rows into columns and columns into rows.

Solved Problems

Problem 4.1 Consider the following array of integers:

35 18 7 12 5 23 16 3 1

Create a snapshot of the above array for the following operations:

Inserting element 99 at index location 2.

Deleting the first element of the array.

Solution

Array contents after insertion: 35 18 99 7 12 5 23 16 3 1

Array contents after deletion: 18 7 12 5 23 16 3 1

Problem 4.2 Consider the following array of integers:

74 39 35 32 97 84

Create a snapshot of the above array after the sorting operation is performed on it.

Solution

Initial array 74 39 35 32 97 84

Sorted array 32 35 39 74 84 97

Problem 4.3 Consider the following array of integers:

74 39 35 32 97 84

How many elements would need to be traversed before search operation is completed on the

following items:

32

83

Solution

4

6

Problem 4.4 Consider the following array of integers::

35 54 12 18 23 15 45 38

Arrays 109

C
h
a
p

t
e
r

F
o
u
r

Deduce the address of the 4th element (index location 3), if the base address is 3000. Assume that

the word size is 2.

Solution Address of arr[3] = 3000 + 2 * 3

 = 3000 + 6

 = 3006

Problem 4.5 A two-dimensional array A[5][10] is implemented in row order manner in the memory.

Deduce the address of the A[3][5] element, if the base address of the array is 3000 and the word size is

2. Assume the lower bound of row and column indices to be 1.

Solution Address of A[i,j] = B + W (n (i – LBR) + (j – LBC))

 Address of A[3,5] = 3000 + 2 (10 (3 – 1) + (5 – 1))

 = 3000 + 2 (24)

 = 3048

Problem 4.6 Solve Problem 5 in case of column order implementation.

Solution Address of A[i,j] = B + W (m (j – LBC) + (i – LBR))

 Address of A[3,5] = 3000 + 2 (5 (3 – 1) + (5 – 1))

 = 3000 + 2 (14)

 = 3028

Summary

© Arrays are characterized as one-dimensional and multi-dimensional arrays.

© One-dimensional arrays are stored at consecutive locations in memory.

© Array traversal involves visiting the array elements and storing or retrieving values from it.

© Insertion is the task of adding an element into an existing array while deletion is the task of

removing an element from the array.

© Sorting involves arranging the elements of an array in a specific order or sequence.

© Searching involves locating a specific element in an array.

© Multi-dimensional array either stores the array elements in row major order or column major

order.

© Two-dimensional arrays are most commonly used for realizing matrices.

© Common operations performed on matrices are: addition, subtraction, multiplication, transpose.

Key Terms

© Array An array is defined as a collection of same type elements, such as integers, characters,

strings, structures, and so on.

© One-dimensional array It is a group of same type data elements, such as integers, floats, or

characters.

© Multi-dimensional array It is a group of data elements, where each element is itself an array.

© Array subscript It is the index identifier used to identify individual array elements.

110 Data Structures Using C

 © Base address It is the memory address of the first element of an array. © Sorting It involves arranging the elements of an array in a specific order or sequence. © Searching It involves locating a specific element in an array. © Row major order It is the memory representation of a two-dimensional array in row-by-row

fashion. © Column major order It is the memory representation of a two-dimensional array in column-

by-column fashion.

 !" '()%!#' * '+ !%&+

 4.1 Which of the following is not true about arrays?

 (a) It uses a single name for referencing all the array elements.

 (c) It performs automatic bound checking on its own.

 (d) It stores the different elements at consecutive memory locations.

 4.2 Which of the following is an incorrect array representation?

 (a) {2, 5, 6, 1, 9}

 (b) {2.5, 5.5, 6.8, 1.0, 9.7}

 (c) {‘S’, ‘J’, 6, ‘4’, ‘P’}

 (d) All of the above are correct

 4.3 While performing array insertion, the elements to the right of the point of insertion are required

to be moved in which direction?

 (a) Right

 (b) Left

 (c) They are not required to be moved

 (d) None of the above

 4.4 While performing array deletion, the elements to the right of the point of deletion are required

to be moved in which direction?

 (a) Right

 (b) Left

 (c) They are not required to be moved

 (d) None of the above

 4.5 Which of the following is a representation of multi-dimensional array in memory?

 (a) Row major order

 (b) Column major order

 (c) Sequential order

 (d) Both (a) and (b)

 4.6 Address of A[i,j] = B + W (m (j – LBC) + (i – LBR)) is the formula for computation of memory

addresses of which of the following array representations?

 (a) Column major order

 (b) Row major order

 (c) Sequential order

 (d) None of the above

 Arrays 111

C
h
a
p

t
e
r

F
o
u
r

 4.7 A multi-dimensional array A[3][7] possesses how many number of elements?

 (a) 10 (b) 21

 (c) 17 (d) None of the above

 4.8 Transposing a matrix refers to

 (a) converting rows into columns

 (b) converting columns into rows

 (c) Both (a) and (b)

 (d) None of the above

 ',!'- * '+ !%&+

 4.1 What is an array? What are its various types?

 4.2 Explain the representation of a one-dimensional array in memory with the help of an illustration.

 4.3 What is array traversal? Why is it used?

 4.4 What are the typical operations associated with arrays? Explain.

 4.5 Write an algorithm for deleting an element at index location k in the array A[N].

 4.6 What is the difference between sorting and searching?

 4.7 Explain the representation of a two-dimensional array in memory with the help of an illustration.

 4.8 Explain with the help of an illustration how a 2 ¥ 2 matrix is stored in memory using column

major order representation.

 4.9 What is matrix multiplication? Explain with the help of an example.

 4.10

Programming Exercises

 4.1

 4.2 Write a C program to read a value and insert it at the middle of an integer array.

 4.3 Write a C program to sort an array of 10 integers.

 4.4 Write a C program to demonstrate searching on an array of ten integers.

 4.5 Write a C program to show how matrices are realized using two-dimensional arrays.

 4.6 Write a C program to perform matrix subtraction.

 4.7 Write a C program to perform transpose of a matrix.

 &+-'/+ % !" '()%!#' * '+ !%&+

 4.1 (c) 4.2 (c) 4.3 (a) 4.4 (b) 4.5 (d)

 4.6 (a) 4.7 (b) 4.8 (c)

5.1 Introduction

5.2 Linked Lists – Basic Concept

 5.2.1 Representation of Linked Lists

 5.2.2 Advantages of Linked Lists

 5.2.3 Disadvantages of Linked Lists

5.3 Linked List Implementation

 5.3.1 Linked List Node Declaration

 5.3.2 Linked List Operations

 5.3.3 Linked List Implementation

5.4 Types of Linked Lists

5.5 Circular Linked List

 5.5.1 Circular Linked List Operations

 5.5.2 Circular Linked List Implementation

5.6 Doubly Linked List

 5.6.1 Doubly Linked List Node Declaration

 5.6.2 Doubly Linked List Operations

 5.6.3 Doubly Linked List Implementation

Solved Problems

Summary

Key Terms

Multiple-Choice Questions

Review Questions

Programming Exercises

Answers to Multiple-Choice Questions

LINKED LISTS

5

C
h
a
p
t
e
r

O
u
t
l
i
n
e

 Linked Lists 113

C
h
a
p

t
e
r

F
i
v
e

5.1 INTRODUCTION

In the previous chapter, we learnt about arrays and how they are used for storing same type data elements

in memory. While arrays are a good way of grouping same data together, they also have a key limitation

associated with them. An array is allocated fixed amount of memory space before a program is executed.

Thus, if there is a need at run time to store more data in the array than its actual capacity, then there is

no way of doing this. This is where a linked list becomes more useful. It allows for dynamic allocation

of memory space at run time. Thus, there is no need to block memory space at compile time.

Linked list is a collection of nodes or data elements logically connected to each other. Whenever

there is a need to add a new element to the list, a new node is created and appended at the end of the

list. In this chapter, we will learn how a linked list is implemented and how common operations like

insertion and deletion are performed on it. We will also learn about linked list variants, that is circular

linked list and doubly linked list.

Linked list is a collection of data elements stored in such a manner that each element points at the next

element in the list. The elements of a linked list are also referred as nodes. Each node has two parts:

INFO and NEXT. The INFO part contains the data element while the NEXT part contains the address

of the next node. The NEXT part of the last node of the list contains a NULL value indicating the end of

the list. The beginning of the list is indicated with the help of a special pointer called FIRST. Similarly,

the end of the list is indicated by a pointer called LAST.

5.2.1 Representation of Linked Lists

Unlike arrays, the nodes of a linked list need not occupy contiguous locations in memory. Instead, they

can be stored at discrete memory locations, logically connected with each other through node NEXT.

Figure 5.1 depicts the logical representation of a linked list.

Fig. 5.1 Logical representation of a linked list

As shown in the above representation, the first and last nodes of the list are indicated by two distinct

pointers, FIRST and LAST.

114 Data Structures Using C

5.2.2

Some of the key advantages of linked lists are:

 1. Linked lists facilitate dynamic memory management by allowing elements to be added or deleted

at any time during program execution.

of memory space is reserved as is required for storing the list elements.

 !

other elements with each insert and delete operation.

5.2.3 Disadvantages of Linked Lists

Apart from the advantages, linked lists also possess certain limitations, which are:

 1. A linked list element requires more memory space in comparison to an array element because

it has to also store the address of the next element in the list.

 " ! #

 $

it is mandatory to traverse all the preceding elements.

5.3 ! !

The implementation of a linked list involves two tasks:

 1. Declaring the list node

 % !

5.3.1 Linked List Node Declaration

Since a linked list node contains two parts, INFO and NEXT, a structure construct is best suited for its

 ! &

struct node

{

 int INFO;

 struct node *NEXT;

};

typedef struct node NODE;

The above structure declaration defines a new data type called NODE that represents a linked list

node. The node structure contains two members, INFO for storing integer data values and NEXT for

storing address of the next node.

The statement, struct node *NEXT, indicates that the pointer NEXT points at same structure type

i.e. node. Such structures that contain pointer references to their own types are called as self-referential

structures.

 Linked Lists 115

C
h
a
p

t
e
r

F
i
v
e

5.3.2 Linked List Operations

The typical operations performed on a linked list are:

 1. Insert

 2. Delete

 3. Search

 4. Print

1. Insert The insert operation adds a new element to the linked list. The following tasks are performed

while adding the new element:

 (a) Memory space is reserved for the new node.

 (b) The element is stored in the INFO part of the new node.

 (c) The new node is connected to the existing nodes in the list.

Depending on the location where the new node is to be added, there are three scenarios possible,

which are:

 (a) Inserting the new element at the beginning of the list

 (b) Inserting the new element at the end of the list

 (c) Inserting the new element somewhere at the middle of the list

Inserting a new element at the beginning or end of the list is easy as it only requires resetting the

respective NEXT fields. However, if the new element is to be added somewhere at the middle of the list

then a search operation is required to be performed to identify the point of insertion.

Figures 5.2 (a) and (b) show the insertion of a new element between two existing elements of a

linked list.

Fig 5.2 (a) Creating a new element

Fig 5.2 (b) Inserting the newly created element

Example 5.1 Write an algorithm to insert an element at the end of a linked list.

insert (value)

Step 1: Start

116 Data Structures Using C

Step 2: Set PTR = addressof (New Node)

 //Allocate a new node and assign its address to the pointer PTR

Step 3: Set PTR->INFO = value;

 //Store the element value to be inserted in the INFO part of the new node

Step 4: If FIRST = NULL, then goto Step 5 else goto Step 7

 //Check whether the existing list is empty

Step 5: Set FIRST=PTR and LAST=PTR

 //Update the FIRST and LAST pointers

Step 6: Set PTR->NEXT = NULL and goto Step 8

Step 7: Set LAST->NEXT=PTR, PTR->NEXT=NULL and LAST=PTR

 //Link the newly created node at the end of the list

Step 8: Stop

2. Delete The delete operation removes an existing element from the linked list. The following tasks

are performed while deleting an existing element:

 ' *

 (b) The element value is retrieved. In some cases, the element value is simply ignored.

 (c) The link pointer of the preceding node is reset.

Depending on the location from where the element is to be deleted, there are three scenarios possible,

which are:

 (a) Deleting an element from the beginning of the list.

 (b) Deleting an element from the end of the list.

 (c) Deleting an element somewhere from the middle of the list.

Deleting an element from the beginning or end of the list is easy as it only requires resetting the first

and last pointers. However, if an element is to be deleted from within the list then a search operation

is required to be performed for locating that element. Figures 5.3 (a) and (b) show the deletion of an

element that is present between two existing elements of a linked list.

Fig 5.3 (a) Identifying the node to be deleted

Fig 5.3 (b) Deleting the node

 Linked Lists 117

C
h
a
p

t
e
r

F
i
v
e

Example 5.2 Write an algorithm to delete a specific element from a linked list.

delete (value)

Step 1: Start

Step 2: Set LOC = search (value)

 //Call the search module to search the location of the node to be

deleted and assign it to LOC pointer

Step 3: If LOC=NULL goto Step 4 else goto Step 5

Step 4: Return (“Delete operation unsuccessful: Element not present”) and

Stop

Step 5: If LOC=FIRST goto Step 6 else goto Step 10

Step 6: If FIRST=LAST goto Step 7 else goto Step 8

 //Check if there is only one element in the list

Step 7: Set FIRST=LAST=NULL and goto Step 9

Step 8: Set FIRST=FIRST->NEXT

Step 9: Return (“Delete operation successful”) and Stop

Step 10: Set TEMP=LOC-1

 //Assign the location of the node present before LOC to temporary

pointer TEMP

Step 11: Set TEMP->NEXT=LOC->NEXT

 //Link the TEMP node with the node being currently pointed by LOC

Step 12: If LOC=LAST goto Step 13 else goto Step 14

 //Check if the element to be deleted is currently the last element in

the list

Step 13: Set LAST=TEMP

Step 14: Return (“Delete operation successful”)

Step 15: Stop

3. Search The search operation helps to find an element in the linked list. The following tasks are

performed while searching an element:

 ' * + !

 (b) Return the location of the searched node as soon as a match is found.

 ' * / +

The NEXT pointers help in traversing the linked list from start till end.

Example 5.3 Write an algorithm to search a specific element in the linked list.

search (value)

Step 1: Start

Step 2: If FIRST=NULL goto Step 3 else goto Step 4

 //Check if the linked list is empty

Step 3: Return (“Search unsuccessful: Element not present”) and Stop

Step 4: Set PTR=FIRST

Step 5: Repeat Steps 6-8 until PTR!=LAST

 //Repeat Steps 6-8 until PTR is not equal to LAST

Step 6: If PTR->INFO=value goto Step 7 else goto Step 8

Step 7: Return (“Search successful”, PTR) and Stop

Step 8: Set PTR=PTR->NEXT

118 Data Structures Using C

Step 9: If LAST->INFO=value goto Step 10 else goto Step 11

//Check if the element to be searched is the last element in the list

Step 10: Return (“Search successful”, LAST) and Stop

Step 11: Return (“Search unsuccessful: Element not present”)

Step 12: Stop

4. Print The print operation prints or displays the linked list elements on the screen. To print the

elements, the linked list is traversed from start till end using NEXT pointers.

Example 5.4 Write an algorithm to print all the linked list elements.

print ()

Step 1: Start

Step 2: If FIRST=NULL goto Step 3 else goto Step 4

//Check if the linked list is empty

Step 3: Display (“Empty List”) and Stop

Step 4: If FIRST=LAST goto Step 5 else goto Step 6

//Check if the list has only one element

Step 5: Display (FIRST->INFO) and Stop

Step 6: Set PTR=FIRST

Step 7: Repeat Steps 8-9 until PTR!=LAST

//Repeat Steps 8-9 until PTR is not equal to LAST

Step 8: Display (PTR->INFO)

//Displaying list elements

Step 9: Set PTR=PTR->NEXT

Step 10: Display (LAST->INFO)

//Displaying last element

Step 11: Stop

5.3.3 Linked List Implementation

Linked list implementation involves declaring its structure and defining its operations. The following

example shows how a linked list is implemented using C language.

Example 5.5 Write a program to implement a linked list and perform its common operations.

Program 5.1 implements a linked list in C. It uses the insert (Example 5.1), delete (Example 5.2), search

'0$ 6 * '0$ 6 7* ! !

 " " # $ Implementation of linked list

#include<stdio.h>

#include<conio.h>

/*Linked list declaration*/

struct node

{

 int INFO;

 struct node *NEXT;

};

Here, the structure declaration of the

linked list node has been done globally

so as to enable all the functions in the

program to create its instances.

 Linked Lists 119

C
h
a
p

t
e
r

F
i
v
e

struct node *FIRST = NULL;

struct node *LAST = NULL;

/*Declaring function prototypes for linked list operations*/

void insert(int);
int delete(int);
void print(void);
struct node *search (int);

void main()

{

 int num1, num2, choice;

 struct node *location;

 /*Displaying a menu of choices for performing linked list operations*/

 while(1)
 {

 clrscr();

 printf(“\n\nSelect an option\n”);

 printf(“\n1 - Insert”);

 printf(“\n2 - Delete”);

 printf(“\n3 - Search”);

 printf(“\n4 - Print”);

 printf(“\n5 - Exit”);

 printf(“\n\nEnter your choice: “);

 scanf(“%d”, &choice);

 switch(choice)
 {

 case 1:

 {

 printf(“\nEnter the element to be inserted into the linked list: “);

 scanf(“%d”,&num1);

 insert(num1); /*Calling the insert() function*/
 printf(“\n%d successfully inserted into the linked list!”,num1);

 getch();

 break;

 }

 case 2:

 {

 printf(“\nEnter the element to be deleted from the linked list: “);

 scanf(“%d”,&num1);

 num2=delete(num1); /*Calling the delete() function */
 if(num2==-9999)

 printf(“\n\t%d is not present in the linked list\n\t”,num1);

 else

120 Data Structures Using C

 printf(“\n\tElement %d successfuly deleted from the linked list\n\t”,num2);

 getch();

 break;

 }

case 3:

 {

 printf(“\nEnter the element to be searched: “);

 scanf(“%d”,&num1);

location=search(num1); /*Calling the search() function*/
 if(location==NULL)

 printf(“\n\t%d is not present in the linked list\n\t”,num1);

 else

 {

 if(location==LAST)

 printf(“\n\tElement %d is the last element in the list”,num1);

 else

 printf(“\n\tElement %d is present before element %d in the linked list\

n\t”,num1,(location->NEXT)->INFO);

 }

 getch();

 break;

 }

 case 4:

 {

print(); /*Printing the linked list elements*/
 getch();

 break;

 }

 case 5:

 {

 exit(1);

 break;

 }

default:
 {

 printf(“\nIncorrect choice. Please try again.”);

 getch();

 break;

 }

 }

 }

}

/*Insert function*/

If an incorrect choice is entered, an

error prompt is generated.

Linked Lists 121

C
h
a
p

t
e
r

F
i
v
e

void insert(int value)

{

 /*Creating a new node*/

 struct node *PTR = (struct node*)malloc(sizeof(struct node));

/*Storing the element to be inserted in the new node*/

PTR->INFO = value;

 /*Linking the new node to the linked list*/

 if(FIRST==NULL)

 {

FIRST = LAST = PTR;
 PTR->NEXT=NULL;

 }

 else

 {

 LAST->NEXT = PTR;
 PTR->NEXT = NULL;

 LAST = PTR;

 }

}

/*Delete function*/

int delete(int value)

{

 struct node *LOC,*TEMP;

 int i;

 i=value;

 LOC=search(i); /*Calling the search() function*/

 if(LOC==NULL) /*Element not found*/

 return(-9999);

 if(LOC==FIRST)

 {

 if(FIRST==LAST)

 FIRST=LAST=NULL;

 else

 FIRST=FIRST->NEXT;

 return(value);

 }

 for(TEMP=FIRST;TEMP->NEXT!=LOC;TEMP=TEMP->NEXT)

 ;

 TEMP->NEXT=LOC->NEXT;

 if(LOC==LAST)

Here, a single semi-colon indicates that the

for loop is not executing any instructions; it

is simply used to update the TEMP pointer

through linked list traversal.

122 Data Structures Using C

 LAST=TEMP;

 return(LOC->INFO);

}

/*Search function*/

struct node *search (int value)

{

 struct node *PTR;

 if(FIRST==NULL) /*Checking for empty list*/

 return(NULL);

 /*Searching the linked list*/

 for(PTR=FIRST;PTR!=LAST;PTR=PTR->NEXT)

 if(PTR->INFO==value)

 return(PTR); /*Returning the location of the searched element*/

 if(LAST->INFO==value)

 return(LAST);

 else

 return(NULL); /*Returning NULL value indicating unsuccessful search*/

}

/*print function*/

void print()

{

 struct node *PTR;

 if(FIRST==NULL) /*Checking whether the list is empty*/

 {

 printf(“\n\tEmpty List!!”);

 return;

 }

 printf(“\nLinked list elements:\n”);

 if(FIRST==LAST) /*Checking if there is only one element in the list*/

 {

 printf(“\t%d”,FIRST->INFO);

 return;

 }

 /*Printing the list elements*/

 for(PTR=FIRST;PTR!=LAST;PTR=PTR->NEXT)

 printf(“\t%d”,PTR->INFO);

 printf(«\t%d»,LAST->INFO);

}

 Linked Lists 123

C
h
a
p

t
e
r

F
i
v
e

Output

Select an option

1 - Insert

2 - Delete

3 - Search

4 - Print

5 - Exit

Enter your choice: 4

 Empty List!!

Select an option

1 - Insert

2 - Delete

3 - Search

4 - Print

5 - Exit

Enter your choice: 1

Enter the element to be inserted into the linked list: 1

1 successfully inserted into the linked list!

Select an option

1 - Insert

2 - Delete

3 - Search

4 - Print

5 - Exit

Enter your choice: 1

Enter the element to be inserted into the linked list: 2

2 successfully inserted into the linked list!

Select an option

1 - Insert

2 - Delete

3 - Search

4 - Print

5 - Exit

124 Data Structures Using C

Enter your choice: 1

Enter the element to be inserted into the linked list: 3

3 successfully inserted into the linked list!

Select an option

1 - Insert

2 - Delete

3 - Search

4 - Print

5 - Exit

Enter your choice: 3

Enter the element to be searched: 5

 5 is not present in the linked list

Select an option

1 - Insert

2 - Delete

3 - Search

4 - Print

5 - Exit

Enter your choice: 3

Enter the element to be searched: 2

 Element 2 is present before element 3 in the linked list

Select an option

1 - Insert

2 - Delete

3 - Search

4 - Print

5 - Exit

Enter your choice: 2

Enter the element to be deleted from the linked list: 2

 Element 2 successfully deleted from the linked list

 Linked Lists 125

C
h
a
p
t
e
r

F
i
v
e

Select an option

1 - Insert

2 - Delete

3 - Search

4 - Print

5 - Exit

Enter your choice: 4

Linked list elements:

 1 3

Select an option

1 - Insert

2 - Delete

3 - Search

4 - Print

5 - Exit

Enter your choice: 5

 " " # %&

Key Statement Purpose

void insert(int);

int delete(int);

void print(void);

struct node *search (int);

Declares the prototypes for the functions that perform

linked list operations

while(1) Initiates an infinite loop for displaying a menu of

options; the loop terminates only when exit() function

is called from the enclosing statement block

switch(choice) Uses switch statement to select an appropriate case block

as per user’s choice

insert(num1); Calls the insert() function for inserting an element into

the linked list

num2=delete(num1); Calls the delete() function for deleting an element from

the linked list

location=search(num1); Calls the search() function for searching an element in

the linked list

print(); Calls the print() function for printing the linked list

elements

default: Refers to the default instruction block which is executed

when the user enters an incorrect choice

126 Data Structures Using C

Key Statement Purpose

PTR->INFO = value; Stores a value in the INFO part of the linked list node

FIRST = LAST = PTR; FIRST and LAST pointers of the linked list

LAST->NEXT = PTR; Stores an address value in the NEXT part of the linked

list node

 ' * +

% ! !

into the following types:

 1. Singly linked list In this type of linked list, each node points at the successive node. Thus, the

list can only be traversed in the forward direction. The linked list implementation that we saw

in the previous section is an example of singly linked list.

 2. Circular list !

each other, thus giving the impression of a circular list formation. Actually, the NEXT part of

the last node contains the address of the FIRST node, thus connecting the rear of the list to its

front.

 3. Doubly linked list In this type of linked list, a node points at both its preceding as well as

succeeding nodes. Thus, the list can be traversed in both forward as well as backward directions.

5.5 , - ,

The only difference between singly linked list and circular linked list is that the last node of singly linked

list points at NULL while the last node of circular linked list points at the first list element. That means,

the NEXT part of the last node of a circular linked list contains the address of its FIRST node. One of

the main advantages of circular linked list is that it allows traversal of the complete list from any of its

node, which is not possible with singly or doubly linked lists.

Figure 5.4 depicts the logical representation of a circular linked list.

Fig. 5.4 Logical representation of a circular linked list

 Linked Lists 127

C
h
a
p

t
e
r

F
i
v
e

The implementation of a circular linked list involves two tasks:

 1. Declaring the list node

 % !

The declaration of the circular linked list node is similar to the declaration of the singly linked list

node. However, the definition of certain operations of a circular linked list is slightly different than that

of the singly linked list.

5.5.1 Circular Linked List Operations

The typical operations performed on a circular linked list are:

 1. Insert

 2. Delete

 3. Search

 4. Print

1. Insert The insert operation in a circular list is performed in the same manner as a singly linked

list. The only exception is when the element is inserted at the end of the list. In such a case, the NEXT

pointer of the newly inserted node is assigned the address of the first element in the list, thus ensuring

that the list stays circular.

Example 5.6 Write an algorithm to insert an element at the end of a circular linked list.

insert (value)

Step 1: Start

Step 2: Set PTR = addressof (New Node)

 //Allocate a new node and assign its address to the pointer PTR

Step 3: Set PTR->INFO = value;

 //Store the element value to be inserted in the INFO part of the new node

Step 4: If FIRST = NULL, then goto Step 5 else goto Step 7

 //Check whether the existing list is empty

Step 5: Set FIRST=PTR and LAST=PTR

 //Update the FIRST and LAST pointers

Step 6: Set PTR->NEXT = FIRST and goto Step 8

 //Create a circular link

Step 7: Set LAST->NEXT=PTR, PTR->NEXT=FIRST and LAST=PTR

 //Add the newly created node at the end of the list and link it with

Step 8: Stop

2. Delete The delete operation in a circular list is performed in the same manner as a singly linked

list. The only exception is when the element to be deleted is at the end of the list. In such a case, the

NEXT pointer of the second last node in the list is assigned the address of the first element to ensure

that the list stays circular.

Example 5.7 Write an algorithm to delete an element from a circular linked list.

delete (value)

Step 1: Start

Step 2: Set LOC = search (value)

128 Data Structures Using C

 //Call the search module to search the location of the node to be

deleted and assign it to LOC pointer

Step 3: If LOC=NULL goto Step 4 else goto Step 5

Step 4: Return (“Delete operation unsuccessful: Element not present”)

and Stop

Step 5: If LOC=FIRST goto Step 6 else goto Step 11

Step 6: If FIRST=LAST goto Step 7 else goto Step 8

 //Check if there is only one element in the list

Step 7: Set FIRST=LAST=NULL and goto Step 10

Step 8: Set FIRST=FIRST->NEXT

 //Reset the FIRST pointer

Step 9: Set Last->NEXT=FIRST

 //Link the last node with the updated FIRST pointer

Step 10: Return (“Delete operation successful”) and Stop

Step 11: Set TEMP=LOC-1

 //Assign the location of the node present before LOC to temporary

pointer TEMP

Step 11: Set TEMP->NEXT=LOC->NEXT

 //Link the TEMP node with the node being currently pointed by LOC

Step 12: If LOC=LAST goto Step 13 else goto Step 15

 //Check if the element to be deleted is currently the last element in

the list

Step 13: Set LAST=TEMP

Step 14: Set TEMP->NEXT=FIRST

 //Create circular link

Step 15: Return (“Delete operation successful”)

Step 16: Stop

3. Search The search operation in a circular linked list is performed in the same manner as a singly

linked list. The circular list also provides the additional flexibility of starting the search from anywhere

in the list. An unsuccessful search is signified when the same node is reached from where the search

was started.

4. Print The print operation in a circular list is performed in the same manner as a singly linked

list. The circular nature of the list allows us to start the print operation from anywhere in the list.

5.5.2 Circular Linked List Implementation

The implementation of circular linked list involves declaring its structure and defining its operations.

The following example shows how a circular linked list is implemented in C.

Example 5.8 Write a program to implement a circular linked list and perform its common operations.

Program 5.2 implements a circular linked list in C. It uses the insert (Example 5.6) and delete (Example

6 9* ! ! < !

the search and print operations, the same algorithms (Example 5.3 and Example 5.4) have been used

that were earlier used for implementing a singly linked list.

 Linked Lists 129

C
h
a
p

t
e
r

F
i
v
e

 " " # Implementation of a circular linked list

#include<stdio.h>

#include<conio.h>

/*Circular linked list declaration*/

struct cl_node

{

 int INFO;

 struct cl_node *NEXT;

};

struct cl_node *FIRST = NULL;
struct cl_node *LAST = NULL;

/*Declaring function prototypes for list operations*/

void insert(int);
int delete(int);
void print(void);
struct cl_node *search (int);

void main()

{

 int num1, num2, choice;

 struct cl_node *location;

 /*Displaying a menu of choices for performing list operations*/

 while(1)

 {

 clrscr();

 printf(“\n\nSelect an option\n”);

 printf(“\n1 - Insert”);

 printf(“\n2 - Delete”);

 printf(“\n3 - Search”);

 printf(“\n4 - Print”);

 printf(“\n5 - Exit”);

 printf(“\n\nEnter your choice: “);

 scanf(“%d”, &choice);

 switch(choice)

 {

 case 1:

 {

 printf(“\nEnter the element to be inserted into the circular linked list: “);

 scanf(“%d”,&num1);

 insert(num1); /*Calling the insert() function*/
 printf(“\n%d successfully inserted into the linked list!”,num1);

130 Data Structures Using C

 getch();

 break;

 }

 case 2:

 {

 printf(“\nEnter the element to be deleted from the circular linked list: “);

 scanf(“%d”,&num1);

 num2=delete(num1); /*Calling the delete() function */
 if(num2==-9999)

 printf(“\n\t%d is not present in the list\n\t”,num1);

 else

 printf(“\n\tElement %d successfully deleted from the list\n\t”,num2);

 getch();

 break;

 }

 case 3:

 {

 printf(“\nEnter the element to be searched: “);

 scanf(“%d”,&num1);

 location=search(num1); /*Calling the search()function*/
 if(location==NULL)

 printf(“\n\t%d is not present in the list\n\t”,num1);

 else

 printf(“\n\tElement %d is present before element %d in the circular linked

list\n\t”,num1,(location->NEXT)->INFO);

 getch();

 break;

 }

 case 4:

 {

 print(); /*Printing the list elements*/
 getch();

 break;

 }

 case 5:

 {

 exit(1);

 break;

 }

 default:

 {

 printf(“\nIncorrect choice. Please try again.”);

 getch();

 break;

Linked Lists 131

C
h
a
p

t
e
r

F
i
v
e

 }

 }

 }

}

/*Insert function*/

void insert(int value)

{

 /*Creating a new node*/

 struct cl_node *PTR = (struct cl_node*)malloc(sizeof(struct cl_node));

/*Storing the element to be inserted in the new node*/

 PTR->INFO = value;

 /*Linking the new node to the circular linked list*/

 if(FIRST==NULL)

 {

 FIRST = LAST = PTR;

 PTR->NEXT=FIRST;

 }

 else

 {

 LAST->NEXT = PTR;

 PTR->NEXT = FIRST;

 LAST = PTR;

 }

}

/*Delete function*/

int delete(int value)

{

 struct cl_node *LOC,*TEMP;

 int i;

 i=value;

 LOC=search(i); /*Calling the search() function*/

 if(LOC==NULL) /*Element not found*/

 return(-9999);

 if(LOC==FIRST)

 {

 if(FIRST==LAST)

 FIRST=LAST=NULL;

 else

 {

 FIRST=FIRST->NEXT;

 LAST->NEXT=FIRST;

The instruction PTR->NEXT =FIRST

links the newly added node with the

circular arrangement.

132 Data Structures Using C

 }

 return(value);

 }

 for(TEMP=FIRST;TEMP->NEXT!=LOC;TEMP=TEMP->NEXT)

 ;

 if(LOC==LAST)

 {

 LAST=TEMP;

 TEMP->NEXT=FIRST;

 }

 else

 TEMP->NEXT=LOC->NEXT;

 return(LOC->INFO);

}

/*Search function*/

struct cl_node *search (int value)

{

 struct cl_node *PTR;

 if(FIRST==NULL) /*Checking for empty list*/

 return(NULL);

if(FIRST==LAST && FIRST->INFO==value) /*Checking if there is only one

element in the list*/

 return(FIRST);

 /*Searching the linked list*/

 for(PTR=FIRST;PTR!=LAST;PTR=PTR->NEXT)

 if(PTR->INFO==value)

 return(PTR); /*Returning the location of the searched element*/

 if(LAST->INFO==value)

 return(LAST);

 else

 return(NULL); /*Returning NULL value indicating unsuccessful search*/

}

/*print function*/

void print()

{

 struct cl_node *PTR;

 if(FIRST==NULL) /*Checking whether the list is empty*/

 {

 Linked Lists 133

C
h
a
p

t
e
r

F
i
v
e

 printf(“\n\tEmpty List!!”);

 return;

 }

 printf(“\nCircular linked list elements:\n”);

 if(FIRST==LAST) /*Checking if there is only one element in the list*/

 {

 printf(“\t%d”,FIRST->INFO);

 return;

 }

 /*Printing the list elements*/

 for(PTR=FIRST;PTR!=LAST;PTR=PTR->NEXT)

 printf(“\t%d”,PTR->INFO);

 printf(«\t%d»,LAST->INFO);

}

Output

Select an option

1 - Insert

2 - Delete

3 - Search

4 - Print

5 - Exit

Enter your choice: 4

 Empty List!!

Select an option

1 - Insert

2 - Delete

3 - Search

4 - Print

5 - Exit

Enter your choice: 1

Enter the element to be inserted into the circular linked list: 1

1 successfully inserted into the linked list!

Select an option

1 - Insert

2 - Delete

3 - Search

134 Data Structures Using C

4 - Print

5 - Exit

Enter your choice: 1

Enter the element to be inserted into the circular linked list: 2

2 successfully inserted into the linked list!

Select an option

1 - Insert

2 - Delete

3 - Search

4 - Print

5 - Exit

Enter your choice: 1

Enter the element to be inserted into the circular linked list: 3

3 successfully inserted into the linked list!

Select an option

1 - Insert

2 - Delete

3 - Search

4 - Print

5 - Exit

Enter your choice: 3

Enter the element to be searched: 2

 Element 2 is present before element 3 in the circular linked list

Select an option

1 - Insert

2 - Delete

3 - Search

4 - Print

5 - Exit

Enter your choice: 3

Linked Lists 135

C
h
a
p

t
e
r

F
i
v
e

Enter the element to be searched: 3

Element 3 is present before element 1 in the circular linked list

1 3

Select an option

1 - Insert

2 - Delete

3 - Search

4 - Print

5 - Exit

Enter your choice: 5

 " " # %&

Key Statement Purpose

struct cl_node *FIRST = NULL;

struct cl_node *LAST = NULL;

Declares pointers to the first and last nodes of the

circular linked list

void insert(int);

int delete(int);

void print(void);

struct cl_node *search (int);

Declares the prototypes for the functions that perform

operations on the circular linked list

insert(num1); Calls the insert() function for inserting an element into

the circular linked list

num2=delete(num1); Calls the delete() function for deleting an element from

the circular linked list

location=search(num1); Calls the search() function for searching an element in

the circular linked list

print(); Calls the print() function for printing the elements of

the circular linked list

5.6 - *

Each node of a doubly linked list has three parts: INFO, NEXT, and PREVIOUS. The INFO part contains

the data element while the NEXT and PREVIOUS parts contain the address of the next and previous

nodes respectively. The NEXT part of the last node of the list contains a NULL value indicating the

end of the list. The beginning of the list is indicated with the help of a special pointer called FIRST.

The main advantage of a doubly linked list is that it allows both forward and backward traversal.

Figure 5.5 depicts the logical representation of a doubly linked list:

The presence of element 3 before

of the list.

136 Data Structures Using C

Fig. 5.5 Logical representation of a doubly linked list

The implementation of a doubly linked list involves two tasks:

 1. Declaring the list node

 % !

 / $ 09%& :% "

The following structure declaration defines the node of a doubly linked list:

struct node

{

 int INFO;

 struct node *NEXT;

 struct node *PREVIOUS;

};

typedef struct node NODE;

The above structure declaration defines a new data type called NODE that represents a doubly linked

list node. The node structure contains three members, INFO for storing integer data values, NEXT for

storing address of the next node, and PREVIOUS for storing the address of the previous node.

 / 09%& ; "

The typical operations performed on a doubly linked list are:

 1. Insert

 2. Delete

 3. Search

 4. Print

 1. Insert The insert operation in a doubly linked list is performed in the same manner as a singly

linked list. The only exception is that the additional node pointer PREVIOUS is also required

to be updated for the new node at the time of insertion.

 Linked Lists 137

C
h
a
p

t
e
r

F
i
v
e

Example 5.9 Write an algorithm to insert an element at the end of a doubly linked list.

insert (value)

Step 1: Start

Step 2: Set PTR = addressof (New Node)

 //Allocate a new node and assign its address to the pointer PTR

Step 3: Set PTR->INFO = value;

 //Store the element value to be inserted in the INFO part of the new

node

Step 4: If FIRST = NULL, then goto Step 5 else goto Step 7

 //Check whether the existing list is empty

Step 5: Set FIRST=PTR and LAST=PTR

 //Update the FIRST and LAST pointers

Step 6: Set PTR->NEXT = PTR -> PREVIOUS = NULL and goto Step 8

Step 7: Set LAST->NEXT=PTR, PTR->PREVIOUS = LAST, PTR->NEXT=NULL, and

LAST=PTR

 //Link the newly created node at the end of the list

Step 8: Stop

 2. Delete The delete operation in a doubly linked list is performed in the same manner as a singly

linked list. The only exception is that the additional node pointer PREVIOUS of the adjacent

node is also required to be updated at the time of deletion.

Example 5.10 Write an algorithm to delete an element from a doubly linked list.

delete (value)

Step 1: Start

Step 2: Set LOC = search (value)

 //Call the search module to search the location of the node to be

deleted and assign it to LOC pointer

Step 3: If LOC=NULL goto Step 4 else goto Step 5

Step 4: Return (“Delete operation unsuccessful: Element not present”)

and Stop

Step 5: If LOC=FIRST goto Step 6 else goto Step 10

Step 6: If FIRST=LAST goto Step 7 else goto Step 8

 //Check if there is only one element in the list

Step 7: Set FIRST=LAST=NULL and goto Step 9

Step 8: Set FIRST->NEXT->PREVIOUS=NULL and FIRST=FIRST->NEXT

Step 9: Return (“Delete operation successful”) and Stop

Step 10: Set TEMP=LOC-1

 //Assign the location of the node present before LOC to temporary

pointer TEMP

Step 11: If LOC=LAST goto Step 12 else goto Step 13

Step 12: Set LAST=TEMP, TEMP->NEXT=NULL and goto Step 15

Step 13: Set TEMP->NEXT=LOC->NEXT

Step 14: Set LOC->NEXT->PREVIOUS=TEMP

 //Delete the LOC node and set the adjacent NEXT and PREVIOUS pointers

Step 15: Return (“Delete operation successful”)

Step 16: Stop

138 Data Structures Using C

 3. Search The search operation in a doubly linked list is performed in the same manner as a singly

 # + $ # !

from the end and moving backwards towards the front.

 4. Print The print operation in a doubly linked list is performed in the same manner as a singly

linked list. The doubly linked list also allows you to print the list elements in reverse order by

starting from the end and moving backwards towards the front.

5.6.3 09%& #;% #

The implementation of doubly linked list involves declaring its structure and defining its operations.

The following example shows how a doubly linked list is implemented in C.

Example 5.11 Write a program to implement a doubly linked list and perform its common operations.

Program 5.3 implements a doubly linked list in C. It uses the insert (Example 5.9) and delete (Example

6 >?* ! ! # < !

the search and print operations, the same algorithms (Example 5.3 and Example 5.4) have been used

that were earlier used for implementing a singly linked list.

 " " # > Implementation of a doubly linked list

#include<stdio.h>

#include<conio.h>

/*Doubly linked list declaration*/

struct dl_node

{

 int INFO;

 struct dl_node *NEXT;

 struct dl_node *PREVIOUS;

};

struct dl_node *FIRST = NULL;
struct dl_node *LAST = NULL;

/*Declaring function prototypes for list operations*/

void insert(int);
int delete(int);
void print(void);
struct dl_node *search (int);

void main()

{

 int num1, num2, choice;

 struct dl_node *location;

 /*Displaying a menu of choices for performing list operations*/

 while(1)

 Linked Lists 139

C
h
a
p

t
e
r

F
i
v
e

 {

 clrscr();

 printf(“\n\nSelect an option\n”);

 printf(“\n1 - Insert”);

 printf(“\n2 - Delete”);

 printf(“\n3 - Search”);

 printf(“\n4 - Print”);

 printf(“\n5 - Exit”);

 printf(“\n\nEnter your choice: “);

 scanf(“%d”, &choice);

 switch(choice)

 {

 case 1:

 {

 printf(“\nEnter the element to be inserted into the doubly linked list: “);

 scanf(“%d”,&num1);

 insert(num1); /*Calling the insert() function*/
 printf(“\n%d successfully inserted into the linked list!”,num1);

 getch();

 break;

 }

 case 2:

 {

 printf(“\nEnter the element to be deleted from the doubly linked list: “);

 scanf(“%d”,&num1);

 num2=delete(num1); /*Calling the delete() function */
 if(num2==-9999)

 printf(“\n\t%d is not present in the doubly linked list\n\t”,num1);

 else

printf(“\n\tElement %d successfully deleted from the doubly linked list\

n\t”,num2);

 getch();

 break;

 }

 case 3:

 {

 printf(“\nEnter the element to be searched: “);

 scanf(“%d”,&num1);

 location=search(num1); /*Calling the search()*/
 if(location==NULL)

 printf(“\n\t%d is not present in the list\n\t”,num1);

 else

 {

 if(location==LAST)

 printf(“\n\tElement %d is the last element in the list”,num1);

140 Data Structures Using C

 else

 printf(“\n\tElement %d is present before element %d in the doubly linked

list\n\t”,num1,(location->NEXT)->INFO);

 }

 getch();

 break;

 }

 case 4:

 {

 print(); /*Printing the list elements*/
 getch();

 break;

 }

 case 5:

 {

 exit(1);

 break;

 }

 default:

 {

 printf(“\nIncorrect choice. Please try again.”);

 getch();

 break;

 }

 }

 }

}

/*Insert function*/

void insert(int value)

{

 /*Creating a new node*/

 struct dl_node *PTR = (struct dl_node*)malloc(sizeof(struct dl_node));

/*Storing the element to be inserted in the new node*/

 PTR->INFO = value;

 /*Linking the new node to the doubly linked list*/

 if(FIRST==NULL)

 {

 FIRST = LAST = PTR;

 PTR->NEXT=NULL;

 PTR->PREVIOUS=NULL;

 }

 else

 {

Linked Lists 141

C
h
a
p

t
e
r

F
i
v
e

 LAST->NEXT = PTR;

 PTR->NEXT = NULL;
 PTR->PREVIOUS = LAST;
 LAST = PTR;

 }

}

/*Delete function*/

int delete(int value)

{

 struct dl_node *LOC,*TEMP;

 int i;

 i=value;

 LOC=search(i); /*Calling the search() function*/

 if(LOC==NULL) /*Element not found*/

 return(-9999);

 if(LOC==FIRST)

 {

 if(FIRST==LAST)

 FIRST=LAST=NULL;

 else

 {

 FIRST->NEXT->PREVIOUS=NULL;

 FIRST=FIRST->NEXT;

 }

 return(value);

 }

 for(TEMP=FIRST;TEMP->NEXT!=LOC;TEMP=TEMP->NEXT)

 ;

 if(LOC==LAST)

 {

 LAST=TEMP;

 TEMP->NEXT=NULL;

 }

 else

 {

 TEMP->NEXT=LOC->NEXT;

 LOC->NEXT->PREVIOUS=TEMP;

 }

 return(LOC->INFO);

}

A doubly linked list requires two

pointers to be updated, NEXT and

PREVIOUS.

142 Data Structures Using C

/*Search function*/

struct dl_node *search (int value)

{

 struct dl_node *PTR;

 if(FIRST==NULL) /*Checking for empty list*/

 return(NULL);

if(FIRST==LAST && FIRST->INFO==value) /*Checking if there is only one

element in the list*/

 return(FIRST);

 /*Searching the linked list*/

 for(PTR=FIRST;PTR!=LAST;PTR=PTR->NEXT)

 if(PTR->INFO==value)

 return(PTR); /*Returning the location of the searched element*/

 if(LAST->INFO==value)

 return(LAST);

 else

 return(NULL); /*Returning NULL value indicating unsuccessful search*/

}

/*print function*/

void print()

{

 struct dl_node *PTR;

 if(FIRST==NULL) /*Checking whether the list is empty*/

 {

 printf(“\n\tEmpty List!!”);

 return;

 }

 printf(“\nDoubly linked list elements:\n”);

 if(FIRST==LAST) /*Checking if there is only one element in the list*/

 {

 printf(“\t%d”,FIRST->INFO);

 return;

 }

 /*Printing the list elements*/

 for(PTR=FIRST;PTR!=LAST;PTR=PTR->NEXT)

 printf(“\t%d”,PTR->INFO);

 printf(«\t%d»,LAST->INFO);

}

 Linked Lists 143

C
h
a
p

t
e
r

F
i
v
e

Output

The output of this program is same as Example 5.5 (singly linked list implementation).

 " " # %&

Key Statement Purpose

struct dl_node *FIRST = NULL;

struct dl_node *LAST = NULL;

Declares pointers to the first and last nodes of the

doubly linked list

void insert(int);

int delete(int);

void print(void);

struct dl_node *search (int);

Declares the prototypes for the functions that perform

operations on the doubly linked list

insert(num1); Calls the insert() function for inserting an element into

the doubly linked list

num2=delete(num1); Calls the delete() function for deleting an element from

the doubly linked list

location=search(num1); Calls the search() function for searching an element in

the doubly linked list

print(); Calls the print() function for printing the elements of

the doubly linked list

struct dl_node *PTR = (struct dl_node*)

malloc(sizeof(struct dl_node));

Creates a new node of the doubly linked list using

dynamic memory allocation

PTR->NEXT = NULL;

PTR->PREVIOUS = LAST;

Updates both the NEXT and PREVIOUS pointers of the

node of a doubly linked list

 % " 9% #

 " 9% # $ Write the code snippet for declaring the node of a singly linked list that stores students-

related data.

Solution

struct student

{

 char name[30];

 int rollno;

};

struct node

{

 struct student S;

 struct node *NEXT;

};

 typedef struct node NODE;

144 Data Structures Using C

 " 9% # Write a C function to print the elements of a doubly linked list in reverse order.

Solution

/*print function*/
void print()
{
 struct node *PTR;

 if(FIRST==NULL) /*Checking whether the list is empty*/
 {
 printf(“\n\tEmpty List!!”);
 return;
 }

 printf(“\nLinked list elements:\n”);
 if(FIRST==LAST) /*Checking if there is only one element in the list*/
 {
 printf(“\t%d”,FIRST->INFO);
 return;
 }

 /*Printing the list elements in reverse order*/
 for(PTR=LAST;PTR!=FIRST;PTR=PTR->PREVIOUS)
 printf(“\t%d”,PTR->INFO);
 printf(«\t%d»,FIRST->INFO);
}

 0## "&

! © Linked list is a collection of nodes or data elements logically connected to each other.

© Each node of a linked list has two parts: INFO and NEXT. The INFO part contains the data

element while the NEXT part contains the address of the next node in the list.

© The implementation of a linked list involves declaring the list node and defining the list

operations.

© The typical operations performed on a linked list are: insert, delete, search and print.

© The various types of linked lists are: singly linked list, doubly linked list, and circular linked

list.

© In a circular linked list, the first and last nodes are logically connected with each other through

the NEXT pointer.

© In a doubly linked list, a node points at both its preceding as well as succeeding nodes.

 & "#

© Singly linked list Is a type of a linked list, in which each node points at the successive node.

© Circular list Is a type of a linked list, in which the last element points at the first element in the

list, thus, giving the impression of a circular list formation.

 Linked Lists 145

C
h
a
p

t
e
r

F
i
v
e

 © Doubly linked list Is a type of a linked list, in which a node points at both its preceding as well

as succeeding nodes.

 © INFO Is a part of a linked list node that stores the element value.

 © NEXT Is a part of a linked list node that stores the address of the next node.

 © PREVIOUS Is a part of a linked list node that stores the address of the previous node.

 © FIRST Is a pointer to the first node of a linked list.

 © LAST Is a pointer to the last node of a linked list.

 © Insert Inserts an element into a linked list.

 © Delete Deletes an element from a linked list.

 © Search Search the linked list for a specific element.

 © Print Prints the elements of a linked list.

Multiple-Choice Questions

 5.1 Which of the following is not true about linked lists?

 (a) It is a collection of linked nodes.

 (b) It helps in dynamic allocation of memory space.

 (c) It allows direct access to any of the nodes.

 (d) It requires more memory space in comparison to an array.

 5.2 Which node pointers should be updated if a new node B is to be inserted in the middle of A and

C nodes of a singly linked list?

 (a) NEXT pointer of A and NEXT pointer of C

 (b) NEXT pointer of B and NEXT pointer of C

 (c) NEXT pointer of B

 (d) NEXT pointer of A and NEXT pointer of B

 5.3 A circular linked list contains four nodes {A, B, C, D}. Which node pointers should be updated

if a new node E is to be inserted at end of the list?

 (a) NEXT pointer of D and NEXT pointer of E

 (b) NEXT pointer of E

 (c) NEXT pointer of E and NEXT pointer of A

 (d) NEXT pointer of E and START POINTER

 5.4 Which node pointers should be updated if a new node B is to be inserted in the middle of A and

C nodes of a doubly linked list?

 (a) NEXT pointer of A, PREVIOUS pointer of B, NEXT pointer of C, and PREVIOUS pointer

of C

 (b) NEXT pointer of A, PREVIOUS pointer of B, NEXT pointer of B, and PREVIOUS pointer

of C

 (c) NEXT pointer of A, PREVIOUS pointer of A, NEXT pointer of B, and PREVIOUS pointer

of C

 (d) None of the above

 5.5 Which of the following statements is true about doubly linked list?

 (a) It allows list traversal only in forward direction.

 (b) It allows list traversal only in forward direction.

 (c) It allows list traversal in both forward and backward direction.

 (d) It allows complete list traversal starting from any of the nodes.

146 Data Structures Using C

 5.6 Which of the following statements is true about circular linked list?

 (a) It allows complete list traversal starting from any of the nodes.

 (b) It allows complete list traversal only if we begin from the FIRST node.

 (c) Like singly and doubly linked lists, the NEXT part of the last node of a circular linked list

contains a NULL pointer indicating end of the list.

 (d) None of the above

 5.7 You are required to create a linked list for storing integer elements. Which of the following linked

list implementations will require maximum amount of memory space?

 (a) Singly linked

 (b) Doubly linked

 (c) Circular

 (d) All of the above will occupy same space in memory

 5.8 Which of the following linked list types allows you to print the list elements in reverse order?

 (a) Doubly

 (b) Singly

 (c) Circular

 (d) None of the above

Review Questions

 5.1 What is a linked list? What are its various types?

 5.2 Explain the representation of a linked list in memory with the help of an illustration.

 5.3 Explain the typical operations that are performed on a linked list.

 5.4 Explain the key advantages and disadvantages of linked lists.

 5.5 What is a circular linked list? How is it different from a normal linked list?

 5.6 What is a doubly linked list? Why is it used?

 5.7 Write the algorithm for searching an element in a singly linked list.

 5.8 Write the algorithm for inserting an element in a circular linked list.

 " " ## @ ":

 5.1 Write a code snippet for declaring the node of a doubly linked list.

 5.2 Write a C function to delete a node from a singly linked list.

 5.3 Write a C function to insert a new node at the end of a circular linked list.

 5.4 Write a C function to print the elements of a linked list.

 5.5 Write a C function to print the elements of a doubly linked list in both forward and backward

directions.

 A " !0% ;% B G : H0

 5.1 (c) 5.2 (d) 5.3 (a) 5.4 (b) 5.5 (c)

 5.6 (a) 5.7 (b) 5.8 (a)

C
h
a
p

t
e
r

S
i
x

6.1 Introduction

6.2 Stacks

 6.2.1 Stack Representation in Memory

 6.2.2 Arrays Vs Stacks

6.3 Stack Operations

 6.3.1 Push

 6.3.2 Pop

 6.3.3 An Example of Stack Operations

6.4 Stack Implementation

 6.4.1 Array Implementation of Stacks

 6.4.2 Linked Implementation of Stacks

Solved Problems

Summary

Key Terms

Multiple-Choice Questions

Review Questions

Programming Exercises

Answers to Multiple-Choice Questions

STACKS

6

C

h

a

p

t

e

r

O

u

t

l

i

n

e

148 Data Structures Using C

6.1 INTRODUCTION

In the previous chapters, we learnt how arrays are used for implementing linear data structures. Arrays

provide the flexibility of adding or removing elements anywhere in the list. But there are certain linear

data structures that permit the insertion and deletion operations only at the beginning or end of the list,

but not in the middle. Such data structures have significant importance in systems processes such as

compilation and program control.

Stack is one such data structure which is in fact one of the very first data structures that students get

familiar with while studying this subject.

6.2 STACKS

Stack is a linear data structure in which items are

added or removed only at one end, called top of

the stack. Thus, there is no way to add or delete

elements anywhere else in the stack. A stack is

based on Last-In-First-Out (LIFO) principle that

means the data item that is inserted last into the

stack is the first one to be removed from the stack.

We can relate a stack to certain real-life objects and

situations, as shown in Figs. 6.1 (a) and (b).

As we can see in Fig. 6.1, one can add a new

book to an existing stack of books only at its top

and nowhere else. Similarly, a plate cannot be

added at the middle of the plates stack; one has

to first remove all the plates above the insertion

point for the new plate to be added there. Another

apt example of a stack is a set of bangles worn by Indian

women on their arms. A bangle can only be worn from

one side of the hand and to remove a bangle from the

middle one has to first remove all the prior bangles.

The concept of stack in data structures follows the

same analogy as the stack of books or the stack of

plates. We may use a stack in data structures to store

built-in or user-defined type elements depending upon

our programming requirements. Irrespective of the type of elements stored, each stack implementation

follows similar representation in memory, as explained next.

6.2.1 Stack Representation in Memory

Just like their real world counterparts, stacks appear as a group of elements stored at contiguous locations

in memory. Each successive insert or delete operation adds or removes an item from the group. The top

location of the stack or the point of addition or deletion is maintained by a pointer called top. Figure

6.2 shows the logical representation of stacks in memory.

Fig. 6.1(a) Stack of books

Fig. 6.1(b) Stack of plates

 Mind Jog

Who discovered stacks?

Stack was first proposed in 1957 by a

German computer scientist Friedrich

L. Bauer.

Stacks 149

C
h
a
p

t
e
r

S
i
x

Fig. 6.2 Logical representation

of stacks

As we can see in Fig. 6.2, there are six elements in the stack with element 16 being at the top of the

stack.

Note The logical representation of stacks showing stack

elements stored at contiguous memory location

might be true in case of their array implementation

but the same might not be true in case of their linked

implementation, as we shall study later in this chapter.

6.2.2 Arrays vs. Stacks

While both arrays and stacks may look to be similar in their logical representation, they are different in

several aspects, as explained in Table 6.1.

Table 6.1 Arrays vs. Stacks

Arrays Stacks

Arrays provide the flexibility of adding or removing data

elements anywhere in the list, i.e., at the beginning, end or

anywhere in the middle. While this flexibility may seem to

be a boon in certain situations, the same may not be true in

situations where frequent insertions or deletions are required.

This is because; each insertion or deletion in arrays requires

the adjoining elements to be shifted to new locations, which

is an overhead.

Stacks restrict the insertion or deletion of

elements to only one place in the list i.e. the

top of the stack. Thus, there are no associated

overheads of shifting other elements to new

locations.

By using arrays, a programmer can realize common scenarios

where grouping of records is required, for example inventory

management, employee records management, etc.

Stacks find their usage as vital in solutions to

advanced systems problems such as recursion

control, expression evaluation, etc.

 Check Point

1. What is a stack?

Ans. Stack is a linear data structure in which items are added or removed only at one end, called top.

2. What is LIFO?

Ans. Last-In-First-Out (LIFO) principle specifies that the data item that is inserted last into the

stack is the first one to be removed from the stack.

6.3 STACK OPERATIONS

There are two key operations associated with the stack data structure: push and pop. Adding an element

to the stack is referred as push operation while reading or deleting an element from the stack is referred

as pop operation. Figures 6.3 (a) and (b) depict the push and pop operations on a stack.

150 Data Structures Using C

Fig. 6.3(a) Push operation

Fig. 6.3(b) Pop operation

Note Top is the cornerstone of the stack data structure as it points at the entry/exit gateway

of the stack.

6.3.1 Push

As we can see in Fig. 6.3 (a), the push operation involves the following subtasks:

1. Receiving the element to be inserted

2. Incrementing the stack pointer, top

3. Storing the received element at new location of top

Thus, the programmatic realization of the push operation requires implementation of the above

mentioned subtasks, as we shall see later in this chapter.

TipT What happens if the stack is full and there is no more room to push any new element? Such

a condition is referred as stack overflow. It is always advisable to implement appropriate

overflow handling mechanisms in a program to counter any unexpected results.

6.3.2 Pop

As we can see in Fig. 6.3 (b), the pop operation involves the following subtasks:

Retrieving or removing the element at the top of the stack.

Decrementing the stack pointer, top.

Stacks 151

C
h
a
p

t
e
r

S
i
x

Thus, the programmatic realization of the pop

operation requires implementation of the above

mentioned subtasks, as we shall see later in this chapter.

Some pop implementations require the popped

element to be returned back to the calling function while

others may simply focus on updating the stack pointer

and ignore the popped element all together. The choice

of a particular type of implementation depends solely on the programming situation at hand.

TipT What happens if the stack is empty and we want to perform the pop operation? Such a

condition is referred as stack underflow. It is always advisable to implement appropriate

underflow handling mechanisms in a program to counter any unexpected results.

6.3.3 An Example of Stack Operations

Figure 6.4 shows how the stack contents change after a series

of push and pop operations.

We can see in this figure how stack contents change by

the push/pop operations occurring at one end of the stack,

i.e., its top.

6.4 STACK IMPLEMENTATION

Stack implementation involves choosing the data storage

mechanism for storing stack elements and implementing

methods for performing the two stack operations, push and pop. A typical implementation of the push

operation checks if there is any room left in the stack, and if there is any, it increments the stack counter

by one and inserts the received item at the top of the stack. Similarly, the implementation of the pop

operation checks whether or not the stack is already empty, if it is not, it removes the top element of the

stack and decrements the stack counter by one.

We can implement stacks by using arrays or linked

lists. The advantages or disadvantages of array or linked

implementations of stacks are the same that are associated

with such types of data structures. However, both

implementation types have their own usage in specific

situations.

6.4.1 Array Implementation of Stacks

The array implementation of stacks involves allocation of fixed size array in the memory. Both stack

operations (push and pop) are made on this array with a constant check being made to ensure that the

array does not go out of bounds.

 Mind Jog

Which programming language provide

built-in support for stacks?

LISP and Python

 Mind Jog

Is stack a restricted data structure?

Yes, because limited operations can be

performed on it.

 Check Point

1. What is a push operation?

Ans. Adding an element into the

stack is referred as push operation.

2. What is a pop operation?

Ans. Reading or deleting an

element from the stack is referred as

pop operation.

152 Data Structures Using C

Fig 6.4 Stack operations

Stacks 153

C
h
a
p

t
e
r

S
i
x

Push Operation The push operation involves checking whether or not the stack pointer is pointing

at the upper bound of the array. If it is not, the stack pointer is incremented by 1 and the new item is

pushed (inserted) at the top of the stack.

Example 6.1 Write an algorithm to implement the push operation under array representation of stacks.

push(stack[MAX],element)

Step 1: Start

Step 2: If top = MAX-1 goto Step 3 else goto Step 4

Step 3: Display message ”Stack Full” and exit

Step 4: top = top + 1

Step 5: stack[top] = element

Step 6: Stop

The above algorithm inserts an element at the top of a stack of size MAX.

Pop Operation The pop operation involves checking whether or not the stack pointer is already

pointing at NULL (empty stack). If it is not, the item that is being currently pointed is popped (removed)

from the stack (array) and the stack pointer is decremented by 1.

Example 6.2 Write an algorithm to implement the pop operation under array representation of stacks.

pop(stack[MAX],element)

Step 1: Start

Step 2: If top = -1 goto Step 3 else goto Step 4

Step 3: Display message ”Stack Empty” and exit

Step 4: Return stack[top] and set top = top - 1

Step 5: Stop

The above algorithm removes the element at the top of the stack.

Implementation

Example 6.3 Write a program to implement a stack using arrays and perform its common operations.

Program 6.1 implements a stack using arrays in C. It uses the push (Example 6.1) and pop (Example

6.2) algorithms for realizing the common stack operations.

Program 6.1 Implementing a stack using arrays

/*Program for demonstrating implementation of stacks using arrays*/

#include <stdio.h>

#include <conio.h>

int stack[100]; /*Declaring a 100 element stack array*/

int top=-1; /*Declaring and initializing the stack pointer*/

void push(int); /*Declaring a function prototype for inserting an element

into the stack*/

If we do not initialize the top variable then it

may continue to store garbage value which

may lead to erroneous results

154 Data Structures Using C

int pop(); /*Declaring a function prototype for removing an element from

the stack*/

void display(); /*Declaring a function prototype for displaying the

elements of a stack*/

void main()

{

 int choice;

 int num1=0,num2=0;

 while(1)

 {

 clrscr();

 /*Creating an interactive interface for performing stack operations*/

 printf(“Select a choice from the following:”);

 printf(“\n[1] Push an element into the stack”);

 printf(“\n[2] Pop out an element from the stack”);

 printf(“\n[3] Display the stack elements”);

 printf(“\n[4] Exit\n”);

 printf(“\n\tYour choice: “);

 scanf(“%d”,&choice);

 switch(choice)

 {

 case 1:

 {

 printf(“\n\tEnter the element to be pushed into the stack: “);

 scanf(“%d”,&num1);

push(num1); /*Inserting an element*/

 break;

 }

 case 2:

 {

num2=pop(); /*Removing an element*/

 printf(“\n\t%d element popped out of the stack\n\t”,num2);

 getch();

 break;

 }

 case 3:

 {

display(); /*Displaying stack elements*/

 getch();

 break;

 }

 case 4:

 exit(1);

condition that’ll continue to execute the

statements within until a jump statement

is encountered

Stacks 155

C
h
a
p

t
e
r

S
i
x

 break;

 default:

 printf(“\nInvalid choice!\n”);

 break;

 }

 }

}

/*Push function*/

void push(int element)

{

 if(top==99) /*Checking whether the stack is full*/

 {

 printf(“Stack is Full.\n”);

 getch();

 exit(1);

 }

top=top+1; /*Incrementing stack pointer*/

 stack[top]=element; /*Inserting the new element*/

}

/*Pop function*/

int pop()

{

 if(top==-1) /*Checking whether the stack is empty*/

 {

 printf(“\n\tStack is Empty.\n”);

 getch();

 exit(1);

 }

 return(stack[top--]); /*Returning the top element and decrementing the

stack pointer*/

}

void display()

{

 int i;

 printf(“\n\tThe various stack elements are:\n”);

 for(i=top;i>=0;i--)

 printf(“\t%d\n”,stack[i]); /*Printing stack elements*/

}

TipT The above code shows storage of an integer type element into the stack. However,

we may store other built-in or user-defined type elements in the stack as per our own

requirements.

Default blocks are always advisable

in switch-case constructs as it allows

handling of incorrect input values

The upper bound of 99 shows that

this stack can store a maximum of

100 elements

Here, NULL value is

represented by -1

156 Data Structures Using C

Output

Select a choice from the following:

[1] Push an element into the stack

[2] Pop out an element from the stack

[3] Display the stack elements

[4] Exit

 Your choice: 1

 Enter the element to be pushed into the stack: 1

Select a choice from the following:

[1] Push an element into the stack

[2] Pop out an element from the stack

[3] Display the stack elements

[4] Exit

 Your choice: 1

 Enter the element to be pushed into the stack: 2

Select a choice from the following:

[1] Push an element into the stack

[2] Pop out an element from the stack

[3] Display the stack elements

[4] Exit

 Your choice: 1

 Enter the element to be pushed into the stack: 3

Select a choice from the following:

[1] Push an element into the stack

[2] Pop out an element from the stack

[3] Display the stack elements

[4] Exit

 Your choice: 3

 The various stack elements are:

 3

 2

 1

Select a choice from the following:

[1] Push an element into the stack

[2] Pop out an element from the stack

[3] Display the stack elements

[4] Exit

 Stacks 157

C
h
a
p

t
e
r

S
i
x

 Your choice: 2

 3 element popped out of the stack

Select a choice from the following:

[1] Push an element into the stack

[2] Pop out an element from the stack

[3] Display the stack elements

[4] Exit

 Your choice: 3

 The various stack elements are:

 2

 1

Select a choice from the following:

[1] Push an element into the stack

[2] Pop out an element from the stack

[3] Display the stack elements

[4] Exit

 Your choice: 4

Program analysis

Key Statement Purpose

int stack[100]; Declares an array to represent a stack

void push(int);

int pop();

void display();

Declares prototypes for the functions that perform stack operations

push(num1); Calls the push() function for inserting an element into the stack

num2=pop(); Calls the pop() function for deleting an element from the stack

display(); Calls the display() function for displaying the stack elements

top=top+1;

stack[top]=element;
Inserts an element at the top of the stack and updates the stack pointer

6.4.2 Linked Implementation of Stacks

The linked implementation of stacks involves dynamically allocating memory space at run time while

performing stack operations. Since, the allocation of memory space is dynamic, the stack consumes

only that much amount of space as is required for holding its data elements. This is contrary to array-

158 Data Structures Using C

implemented stacks which continue to occupy a fixed memory space even if there are no elements

present. Thus, linked implementation of stacks based on dynamic memory allocation technique prevents

wastage of memory space.

Note The linked implementation of stacks is based on dynamic memory management techniques,

which allow allocation and deallocation of memory space at runtime.

Push Operation The push operation under linked implementation of stacks involves the following

tasks:

1. Reserving memory space of the size of a stack element in memory

2. Storing the pushed (inserted) value at the new location

3. Linking the new element with existing stack

4. Updating the stack pointer

Example 6.4 Write an algorithm to implement the push operation under linked representation of

stacks.

push(structure stack, element, next, value)

Step 1: Start

Step 2: Set ptr=(struct stack*)malloc(sizeof(struct stack)), to reserve a

block of memory for the new stack node and assign its address to pointer ptr

Step 3: Set ptr->element=value, to copy the inserted value into the new node

Step 4: Set ptr->next=top, to link the new node to the current top node

Step 5: Set top = ptr to designate the new node as the top node

Step 6: Return

Step 7: Stop

The above algorithm inserts an element at the top of the stack.

Pop Operation The pop operation under linked implementation of stacks involves the following

tasks:

1. Checking whether the stack is empty

2. Retrieving the top element of the stack

3. Updating the stack pointer

4. Returning the retrieved (popped) value

Example 6.5 Write an algorithm in C to implement the pop operation under linked representation

of stacks.
pop(structure stack, element, next)

Step 1: Start

Step 2: If top = NULL goto Step 3 else goto Step 4

Step 3: Display message ”Stack Empty” and exit

Step 4: Set temp=top->element, to retrieve the element at top node of the

stack

Step 5: Set top=top->next, to designate the next stack node as the top node

Step 6: Return temp

Step 7: Stop

The above algorithm removes the element at the top of the stack.

Stacks 159

C
h
a
p

t
e
r

S
i
x

Implementation

Example 6.6 Write a program to implement a stack using linked lists and perform its common

operations.

Program 6.2 implements a stack using linked lists in C. It uses the push (Example 6.4) and pop (Example

6.5) algorithms for realizing the common stack operations.

Program 6.2 Implementation of stack using linked list

/*Program for demonstrating implementation of stacks using linked list*/

#include <stdio.h>

#include <conio.h>

struct stack /*Declaring the

structure for stack elements*/

{

int element;

 struct stack *next; /*Stack element pointing to another stack element*/

}*top;

void push(int); /*Declaring a function prototype for inserting an element

into the stack*/

int pop(); /*Declaring a function prototype for removing an element from

the stack*/

void display(); /*Declaring a function prototype for displaying the

elements of a stack*/

void main()

{

 int num1, num2, choice;

 while(1)

 {

 clrscr();

 /*Creating an interactive interface for performing stack operations*/

 printf(“Select a choice from the following:”);

 printf(“\n[1] Push an element into the stack”);

 printf(“\n[2] Pop out an element from the stack”);

 printf(“\n[3] Display the stack elements”);

 printf(“\n[4] Exit\n”);

 printf(“\n\tYour choice: “);

 scanf(“%d”,&choice);

 switch(choice)

 {

 case 1:

 {

 printf(“\n\tEnter the element to be pushed into the stack: “);

 scanf(“%d”,&num1);

Each stack element comprises of two

value and another for storing a pointer

to the next element in the stack

160 Data Structures Using C

push(num1); /*Inserting an element*/

 break;

 }

 case 2:

 {

num2=pop(); /*Removing an element*/

 printf(“\n\t%d element popped out of the stack\n\t”,num2);

 getch();

 break;

 }

 case 3:

 {

display(); /*Displaying stack elements*/

 getch();

 break;

 }

 case 4:

 exit(1);

 break;

 default:

 printf(“\nInvalid choice!\n”);

 break;

 }

 }

}

/*Push function*/

void push(int value)

{

 struct stack *ptr;

 ptr=(struct stack*)malloc(sizeof(struct stack)); /*Dynamically allocating

memory space to store stack element*/

ptr->element=value; /*Assigning value to the newly allocated stack

element*/

 /*Updating stack pointers*/

 ptr->next=top;

 top=ptr;

 return;

}

/*Pop function*/

int pop()

{

malloc function is used for dynamic

or runtime reservation of space for

new stack elements

Stacks 161

C
h
a
p

t
e
r

S
i
x

 if(top==NULL) /*Checking whether the stack is empty*/

 {

 printf(“\n\STACK is Empty.”);

 getch();

 exit(1);

 }

 else

 {

 int temp=top->element; /* Retrieving the top element*/

 top=top->next; /*Updating the stack pointer*/

 return (temp); /*Returning the popped value*/

 }

}

void display()

{

 struct stack *ptr1=NULL;

 ptr1=top;

 printf(“\nThe various stack elements are:\n”);

 while(ptr1!=NULL)

 {

 printf(“%d\t”,ptr1->element); /*Printing stack elements*/

 ptr1=ptr1->next;

 }

}

Output

The output of the above program is same as the output of the program shown in Example 6.3.

Program analysis

Key Statement Purpose

struct stack
{
int element;
 struct stack *next;
}*top;

Uses linked list to represent a stack and declares the stack pointer

void push(int);
int pop();
void display();

Declares prototypes for the functions that perform stack
operations

push(num1); Calls the push() function for inserting an element into the stack

num2=pop(); Calls the pop() function for removing an element from the stack

display(); Calls the display() function for displaying the stack elements

ptr->element=value;
ptr->next=top;
top=ptr;

Inserts an element at the top of the stack and updates the stack
pointer

If the stack is empty then the stack

pointer (top) will point at NULL

162 Data Structures Using C

TipT It is advisable to check the overflow condition even with linked implementation of stacks,

as in certain situations the available memory may also run out of space.

TipT It is a good programming practice to release unused memory space so as to ensure efficient

memory space utilization.

 Check Point

1. What is array implementation of stacks?

Ans. It involves allocation of fixed size array in the memory for storing stack elements. Both

push and pop operations are performed on this array-implemented stack.

2. What is linked implementation of stacks?

Ans. It involves dynamic allocation of memory space at run time while performing stack

operations.

Solved Problems

Problem 6.1 The contents of a stack S are as follows:

Stack (S) 99 2 44 8

Index 0 1 2 3 4 5 6 7

The stack can store a maximum of eight elements and the top pointer currently points at index 3.

Show the stack contents and indicate the position of the top pointer after each of the following stack

operations:

 (a) Push (S, 5)

 (b) Push (S, 7)

 (c) Pop (S)

 (d) Pop (S)

 (e) Pop (S)

 (f) Push (S, –1)

Solution
Push (S, 5)

Step 1 Top = Top + 1 = 3 + 1 = 4

Step 2 S [Top] = S [4] = 5

Stack contents

Stack (S): 99 2 44 8 5

Index: 0 1 2 3 4 5 6 7

 Stacks 163

C
h
a
p

t
e
r

S
i
x

Push (S, 7)

Step 1 Top = Top + 1 = 4 + 1 = 5

Step 2 S [Top] = S [5] = 7

Stack contents

Stack (S): 99 2 44 8 5 7

Index: 0 1 2 3 4 5 6 7

 Pop (S)

Step 1 Item = S [Top] = S [5] = 7

Step 2 Top = Top – 1 = 5 – 1 = 4

Stack contents

Stack (S) 99 2 44 8 5

Index 0 1 2 3 4 5 6 7

 Pop (S)

Step 1 Item = S [Top] = S [4] = 5

Step 2 Top = Top – 1 = 4 – 1 = 3

Stack contents

Stack (S) 99 2 44 8

Index 0 1 2 3 4 5 6 7

 Pop (S)

Step 1 Item = S [Top] = S [3] = 8

Step 2 Top = Top –1 = 3 – 1 = 2

Stack contents

Stack (S) 99 2 44

Index 0 1 2 3 4 5 6 7

 Push (S, –1)

Step 1 Top = Top + 1 = 2 + 1 = 3

Step 2 S [Top] = S [3] = –1

 Stack contents

Stack (S) 99 2 44 –1

Index 0 1 2 3 4 5 6 7

Problem 6.2 Consider the following two states of a stack S:

State 1

Stack (S) 99 2 44 8 4

Index 0 1 2 3 5 6 7

State 2

Stack (S) 99 5 –1 6

Index 0 1 2 4 5 6 7

164 Data Structures Using C

Write the series of push and pop operations that will transition the stack S from State 1 to State 2.

Solution
Step 1 Pop (S)

Step 2 Pop (S)

Step 3 Pop (S)

Step 4 Pop (S)

Step 5 Push (S, 5)

Step 6 Push (S, –1)

Step 7 Push (S, 6)

Problem 6.3 Consider the following stack S:

Stack (S) 99 2 44 8

Index 0 1 2 4 5

What will be result of the following statements?

i = 0;

while (i != 5)

{

 push (S, i);

 i = i + 1;

}

Solution
Step 1 push (S, 0) Æ Top = 4, S [4] = 0

Step 2 push (S, 1) Æ Top = 5, S [5] = 1

Step 3 push (S, 2) Æ Top = 6 Æ Stack Overflow

Problem 6.4 Consider the following stack S:

Stack (S) 99 2 44 8

Index 0 1 2 4 5

What will be result of the following statements?

i = 0;

while (i != 5)

{

 item = pop (S);

 i = i + 1;

}

Solution
Step 1 pop (S) item = 8, Top = 2

Step 2 pop (S) item = 44, Top = 1

Step 3 pop (S) item = 2, Top = 0

Step 4 pop (S) Æ item = 99, Top = NULL

Step 5 pop (S) Æ Stack Underflow

Stacks 165

C
h
a
p

t
e
r

S
i
x

Problem 6.5 The linked implementation of stacks eliminates the limitation of array implementation

that restricts the number of stack elements below the array upper bound. So, is it true to say that a stack

overflow condition can never occur with linked implementation of stacks? Justify your answer.

Solution No, it is not correct to say that a stack overflow condition can never occur with linked

implementation of stacks. This is because; the system memory is also available till a certain extent. If

we continue to push elements into a stack then a situation will arise when the system memory will run

out of space causing the malloc function to return a NULL pointer. In this situation, the stack would be

considered to be in an overflow state.

Problem 6.6 Identify and correct the logical error in the following statement that performs pop

operation on a stack S.

item = S[--top];

Solution: The statement,

item = S[--top];

contains the prefix operator --, which decrements the value of top by one. The new value now pointed

by top is then popped and allocated to the variable item. However, this is not the top value of the stack.

To pop out the top value of the stack we must use -- as the postfix operator, as shown below.

item = S[top--];

The above statement will first retrieve the top value of the stack and then decrement the top pointer by one.

Summary

© A stack is a linear list in which elements are added and removed only from one end called top

of the stack.

© Stacks are based on Last-In-First-Out or LIFO principle that means, the element added last into

the list is the first one to be removed.

© Inserting an element into a stack is referred as push operation while removing an element from

the stack is referred as pop operation.

© Stacks can be implemented through arrays or linked lists.

© The array implementation of stacks reserves a fixed amount of memory space in the form of an

array for storing stack elements.

© The linked implementation of stacks uses dynamic memory management techniques for allocating

the memory space for storing a new stack element at run time.

© Since linked implementation of stacks is based on dynamic memory allocation it is more efficient

as compared to array-based implementation.

© The various application areas of stacks are expression evaluation, program control, recursion

control, etc.

Key Terms

© Stack It is a linear data structure in which items are added or removed only at one end.

© Stack top It is that end of the stack from where insertions and deletion of elements takes place.

166 Data Structures Using C

 © LIFO It stands for Last-In-First-Out i.e., the principle on which stacks are based.

 © Push It refers to the task of inserting an element into the stack.

 © Pop It refers to the task of deleting an element from the stack.

 © Array implementation It refers to the realization of stack data structure using arrays.

 © Lined implementation It refers to the realization of stack data structure using linked lists.

Multiple-Choice Questions

 6.1 Which of the following is not true for stacks?

 (a) It is a linear data strucure.

 (b) It allows insertion/deletion of elements only at one end

 (c) It is widely used by systems processes, such as compilation and program control

 (d) It is based on First-In-First-Out principle

 6.2 Which of the following is not an example of a stack?

 (a) Collection of tiles one over another

 (b) A set of bangles worn by a lady on her arm

 (c) A line up of people waiting for the bus at the bus stop

 (d) A pileup of boxes in a warehouse one over another

 6.3 Tower of Hanoi can be regarded as a problem of which of the following data structures?

 (a) Stack (b) Queue

 (c) Graph (d) Tree

 6.4 Recursive function calls are executed using which of the following data structures?

 (a) Stack (b) Queue

 (c) Graph (d) Tree

 6.5 If 2, 1, 5, 8 are the stack contents with element 2 being at the top of the stack, then what will be

the stack contents after following operations:

 Push (11)

 Pop ()

 Pop ()

 Pop ()

 Push(7)

 (a) 11, 2, 1 (b) 8, 11, 7

 (c) 7, 5, 8 (d) 5, 8, 7

 6.6 Which of the following is best suitable for storing a simple collection of employee records?

 (a) Stack (b) Queue

 (c) Array (d) None of the above

 6.7 If ‘top’ points at the top of the stack and ‘stack []’ is the array containing stack elements, then

which of the following statements correctly reflect the push operation for inserting ‘item’ into

the stack?

 (a) top = top + 1; stack [top] = item;

 (b) stack [top] = item; top = top + 1;

 (c) stack [top++] = item;

 (d) Both (a) and (c) are correct

 Stacks 167

C
h
a
p

t
e
r

S
i
x

 6.8 If ‘top’ points at the top of the stack and ‘stack []’ is the array containing stack elements, then

which of the following statements correctly reflect the pop operation?

 (a) top = top – 1; item = stack [top];

 (b) item = stack [top]; top = top – 1;

 (c) item = stack [--top];

 (d) Both (b) and (c) are correct

 6.9 If a pop operation is performed on an empty stack, then which of the following situations will

occur?

 (c) Array out of bound (d) None of the above

 6.10 Which of the following is not a stack application?

 (a) Recursion control

 (b) Expression evaluation

 (c) Message queuing

 (d) All of the above are stack applications

Review Questions

 6.1 What is a stack? Explain with examples.

 6.2 Briefly describe the LIFO principle.

 6.3 What is a top pointer? Explain its significance.

 6.4 What are the different application areas of stack data structure?

 6.5 Give any four real-life examples that principally resemble the stack data structure.

 6.6 Explain the logical representation of stacks in memory with the help of an example.

 6.7 Explain push and pop operations with the help of examples.

 6.8 Deduce the contents of an empty stack after the execution of the following operations in sequence:

 Push (6)

 Push (8)

 Push (–1)

 Pop ()

 Push (7)

 Pop ()

 Pop ()

 6.9 What will happen if we keep on pushing elements into a stack one after another?

 6.10 What will happen if we continue to pop out elements from a stack one after another?

 6.11 How are stacks implemented?

 6.12 What is the advantage of linked implementation of stacks over array implementation?

 6.13 What role does dynamic memory management techniques play in linked implementation of

stacks?

 6.14 Briefly explain the overflow and underflow conditions along with their remedies.

 6.15 Can an overflow situation occur even with linked implementation of stacks that uses dynamic

memory allocation techniques? Explain.

168 Data Structures Using C

Programming Exercises

 6.1 Write a function in C to perform the push operation on an array-based stack that can store a

maximum of 50 elements. Make sure that the overflow condition is adequately handled.

 6.2 Write a function in C to perform the pop operation on a linked implementation of stack. Make

sure that the underflow condition is adequately handled.

 6.3 A stack contains N elements in it with TOP pointing at the top of the stack. It is required to

reverse the order of occurrence of the N elements and store them in the same stack. Write a C

program to achieve the same.

 6.4 Modify the C program solution of Question 6.3 to store the N elements in sorted fashion with

the largest element stored at the TOP.

 6.5 A linked list implemented stack containing unknown number of elements is given. You are

required to count the number of elements present in the stack. Write a function count () in C

that uses the pop operation to count the number of elements in the stack but does not actually

remove the elements from the stack.

 6.6 The Tower of Hanoi problem comprises of three towers with discs initially stacked on to the first

tower. The requirement is to replicate the initial stack of discs into another tower while adhering

to the following conditions:

 (a) A larger disk can not be placed on a smaller disk

 (b) Only one disc can be shifted at a time

 Write a C program to find a solution to the above problem using stacks.

 6.7 An input text string comprises the following:

 (a) Letters

 (b) Digits

 (c) Special Characters

 Write a program in C that accepts a text string from the user and stores its individual characters

in three different stacks, i.e., L (for storing letters), D (for storing digits) and SC (for storing

special characters). The program should terminate as soon as a ‘~’ symbol is encountered.

 6.8 A stack is represented by the following structure declaration:

 struct STACK

 {

 int ELEMENT[100];

 int TOP;

 };

 Write the push () and pop () functions in C for the above stack.

Answers to Multiple-Choice Questions

 6.1 (d) 6.2 (c) 6.3 (a) 6.4 (a) 6.5 (c)

 6.6 (c) 6.7 (a) 6.8 (b) 6.9 (b) 6.10 (c)

Queues 169

C
h
a
p

t
e
r

S
e
v
e
n

7.1 Introduction

7.2 Queues—Basic Concept

 7.2.1 Logical Representation of Queues

7.3 Queue Operations

 7.3.1 Insert

 7.3.2 Delete

 7.3.3 An Example of Queue Operations

7.4 Queue Implementation

 7.4.1 Array Implementation of Queues

 7.4.2 Linked Implementation of Queues

7.5 Circular Queues

7.6 Priority Queues

7.7 Double-Ended Queues

Solved Problems

Summary

Key Terms

Multiple-Choice Questions

Review Questions

Programming Exercises

Answers to Multiple-Choice Questions

QUEUES

7

C

h

a

p

t

e

r

O

u

t

l

i

n

e

170 Data Structures Using C

7.1 INTRODUCTION

In Chapter 6, we learnt how stacks are different from arrays and how they store the data in memory. In

this chapter, we will learn about another linear data structure called queues. While stacks allow insertion

and deletion of data only at one end, queues restrict the insertion and deletion of data at two distinct

ends. Just like stacks, queues also hold great significance in the implementation of key system processes

such as CPU scheduling, resource sharing, etc.

7.2

Queue is a linear data structure in which items are inserted at one end called ‘Rear’ and deleted from

the other end called ‘Front’. Queues are based on the First-In-First-Out (FIFO) principle that means the

data item that is inserted first in the queue is also the first one to be removed from the queue. We can

relate queues to certain real-life objects and situations, as shown in Figs. 7.1 (a) and (b).

Fig. 7.1(a) Queue of people

Fig. 7.1(b) An assembly line

As we can see in Fig. 7.1(a), a person can join a queue of waiting people only at its tail end while

the person who joined the queue first becomes the first one to leave the queue. Likewise, the objects in

an assembly line (Fig. 7.1(b)) also follow the same analogy. Another example of queue is the line up

of vehicles at the toll booth. The vehicle that comes first to the toll booth leaves the booth first while

Queues 171

C
h
a
p

t
e
r

S
e
v
e
n

the vehicle that comes last leaves at the last; thus, observing FIFO principle. The concept of queue in

data structures follows the same analogy as the queue of people or the queue of vehicles at toll booth.

An instance of queue implementation is a system of networked computers and resources where there

are multiple users sharing one common printer amongst them. When a user on the network sends a print

request, the request is added to the print queue. When the request reaches at the front it gets executed

and is removed from the print queue. This ensures orderly execution of users’ print requests. Figure 7.2

depicts this scenario.

Fig. 7.2 Queue implementation

As we can see in the Fig. 7.2, four users, A, B, C and D

share a single printer on the network. When a user sends a

print request, it gets added to the print queue. User C sends

the first print request, thus it gets added at the front of the

print queue. Similarly, print requests from other users are

also added in the queue as per their request order. Now,

based on FIFO analogy, the printer will first process print

request of user C, followed by A, D and user B at the last.

7.2.1 Logical Representation of Queues

Just like their real world counterparts, queues appear as a group of elements stored at contiguous locations

in memory. Each successive insert operation adds an element at the rear end of the queue while each

delete operation removes an element from the front end of the queue. The location of the front and rear

ends are marked by two distinct pointers called front and rear.

Figure 7.3 shows the logical representation of queues in memory.

As we can see in the above figure, there are five elements in the queue with –2 at the front and 4 at

the rear.

 Mind Jog

What is the meaning of enqueue and

dequeue?

All queue insertions are termed as

enqueue while all queue deletions are

termed as deaueue.

Fig. 7.3 Logical representation of queues

NoteN The logical representation of queues showing queue elements stored at contiguous memory

location might be true in case of their array implementation but the same might not be

true in case of their linked implementation, as we shall study later in this chapter.

172 Data Structures Using C

 Check Point

1. What is a queue?
Ans: Queue is a linear data structure in which items
are inserted at one end called ‘Rear’ and deleted from
the other end called ‘Front’.
2. What is FIFO?
Ans: First-In-First-Out (FIFO) principle specifies
that the data item that is inserted first in the queue
is also the first one to be removed from the queue.

7.3

There are two key operations associated with

the queue data structure: insert and delete. The

insert operation adds an element at the rear

end of the queue while the delete operation

removes an element from the front end of the

queue. Figures 7.4 (a) and (b) depict the insert

and delete operations on a queue.

Fig. 7.4(a) Insert operation

Fig. 7.4(b) Delete operation

NoteN The front and rear indicators are quite significant in queue’s context as they point at entry

and exit gateways of the queue.

1. Insert As we can see in Fig. 7.4(a), the insert operation involves the following subtasks:

(a) Receiving the element to be inserted.

(b) Incrementing the queue pointer, rear.

(c) Storing the received element at new location of rear.

Thus, the programmatic realization of the insert operation requires implementation of the above

mentioned subtasks, as we shall see later in this chapter.

TipT Before inserting a new element, it needs to be checked whether the queue is already full.

If the queue is already full then a new element cannot be added at its rear end. Such a

situation is termed as queue overflow.

 Queues 173

C
h
a
p

t
e
r

S
e
v
e
n

2. Delete As we can see in Fig. 7.4 (b), the delete operation involves the following subtasks:

Retrieving or removing the element from the front end of the queue.

Incrementing the queue pointer, front, to make it point to the next element in the queue.

Thus, the programmatic realization of the delete operation requires implementation of the above

mentioned subtasks, as we shall see later in this chapter.

Some queue implementations require the deleted element to be returned back to the calling function

while others may simply focus on updating the front pointer and ignore the deleted element all together.

The choice of a particular type of implementation depends solely on the programming situation at hand.

An example of queue operations

Figure 7.5 shows how the queue contents change after a series of insert and delete operations.

Fig. 7.5 Queue operations

174 Data Structures Using C

TipT Before deleting an element, it needs to be checked whether the queue is already empty. If

the queue is already empty then there is nothing to be deleted. Such a situation is termed

as queue underflow.

 Mind Jog

What is a bounded queue?

It is a queue restricted to a fixed number

of elements.

 Check Point

1. What is a queue insert operation?

Ans. The queue insert operation

adds an element at the rear end of

the queue.

2. What is a queue delete operation?

Ans. The queue delete operation

removes an element from the front

end of the queue.

Queue implementation involves choosing the data

storage mechanism for storing queue elements and

implementing methods for performing the two queue

operations, insert and delete. Like stacks, we can

implement queues by using arrays or linked lists.

The advantages or disadvantages of array or linked

implementations of queues are the same that are

associated with such types of data structures. However,

both types of implementation have their own usage in

specific situations.

7.4.1 ! !" # # $

The array implementation of queues involves allocation

of fixed size array in the memory. Both queue operations

(insert and delete) are performed on this array with a

constant check being made to ensure that the array does

not go out of bounds.

Insert Operation The insert operation involves checking whether or not the queue pointer rear is

pointing at the upper bound of the array. If it is not, rear is incremented by 1 and the new item is added

at the end of the queue.

 % & Write an algorithm to realize the insert operation under array implementation of queues.

insert(queue[MAX], element, front, rear)

Step 1: Start

Step 2: If front = NULL goto Step 3 else goto Step 6

Step 3: front = rear = 0

Step 4: queue[front]=element

Step 5: Goto Step 10

Step 6: if rear = MAX-1 goto Step 7 else goto Step 8

Step 7: Display the message, “Queue is Full” and goto Step 10

Step 8: rear = rear +1

Step 9: queue[rear] = element

Step 10: Stop

We can see in Fig. 7.5 how queue contents change with insert and delete operations occurring at rear

and front ends respectively.

Queues 175

C
h
a
p

t
e
r

S
e
v
e
n

TipT The above code shows insertion of an integer type element into the queue. However,

we may store other built-in or user-defined type elements in the queue as per our own

requirements.

Delete Operation The delete operation involves checking whether or not the queue pointer front is

already pointing at NULL (empty queue). If it is not, the item that is being currently pointed is removed

from the queue (array) and the front pointer is incremented by 1.

 % ' Write an algorithm to realize the delete operation under array implementation of queues.

delete(queue[MAX],front, rear)

Step 1: Start

Step 2: If front = NULL and rear = NULL goto Step 3 else goto Step 4

Step 3: Display the message, “Queue is Empty” and goto Step 10

Step 4: if front != NULL and front = rear goto Step 5 else goto Step 8

Step 5: Set i = queue[front]

Step 6: Set front = rear = -1

Step 7: Return the deleted element i and goto Step 10

Step 8: Set i = queue[front]

Step 9: Return the deleted element i

Step 10: Stop

Implementation

 % * Write a program to implement a queue using arrays and perform its common operations.

Program 7.1 implements a queue using arrays in C. It uses the insert (Example 7.1) and delete (Example

7.2) functions for realizing the common queue operations.

 !+ & Implementation of queue

/*Program for demonstrating implementation of queues using arrays*/

#include <stdio.h>

#include <conio.h>

#include <stdlib.h>

int queue[100]; /*Declaring a 100 element queue array*/

int front=-1; /*Declaring and initializing the front pointer*/

int rear=-1; /*Declaring and initializing the rear pointer*/

void insert(int); /*Declaring a function prototype for inserting an element

into the queue*/

int del(); /*Declaring a function prototype for removing an element from

the queue*/

void display(); /*Declaring a function prototype for displaying the queue

elements*/

void main()

If we do not initialize the front and

rear variables then they may continue

to store garbage value which may

lead to erroneous results

176 Data Structures Using C

{

 int choice;

 int num1=0,num2=0;

 while(1)

 {

 /*Creating an interactive interface for performing queue operations*/

 printf(“\nSelect a choice from the following:”);

 printf(“\n[1] Add an element into the queue”);

 printf(“\n[2] Remove an element from the queue”);

 printf(“\n[3] Display the queue elements”);

 printf(“\n[4] Exit\n”);

 printf(“\n\tYour choice: “);

 scanf(“%d”,&choice);

 switch(choice)

 {

 case 1:

 {

 printf(“\n\tEnter the element to be added to the queue: “);

 scanf(“%d”,&num1);

insert(num1); /*Adding an element*/

 break;

 }

 case 2:

 {

num2=del(); /*Removing an element*/

 if(num2==–9999)

 ;

else

printf(“\n\t%d element removed from the queue\n\t”,num2);

 getch();

 break;

 }

 case 3:

 {

display(); /*Displaying queue elements*/

 getch();

 break;

 }

 case 4:

 exit(1);

 break;

 default:

 printf(“\nInvalid choice!\n”);

 break;

Here, while (1) signifies an infinite

looping condition that’ll continue to

execute the statements within until a jump

statement is encountered

Default blocks are always advisable

in switch-case constructs as it allows

handling of incorrect input values

Queues 177

C
h
a
p

t
e
r

S
e
v
e
n

 }

 }

}

/*Insert function*/

void insert(int element)

{

if(front==-1) /*Adding element in an empty queue*/

 {

 front = rear = front+1;

 queue[front] = element;

 return;

 }

 if(rear==99) /*Checking whether the queue is full*/

 {

 printf(“Queue is Full.\n”);

 getch();

 return;

 }

rear=rear+1; /*Incrementing rear pointer*/

 queue[rear]=element; /*Inserting the new element*/

}

/*Delete function*/

int del()

{

 int i;

 if(front==-1 && rear==-1) /*Checking whether the queue is empty*/

 {

 printf(“\n\tQueue is Empty.\n”);

 getch();

 return (-9999);

 }

 if(front!=-1 && front==rear) /*Checking whether the queue has only one

element left*/

 {

 i=queue[front];

 front=-1;

 rear=-1;

 return(i);

 }

 return(queue[front++]); /*Returning the front most element and incrementing

the front pointer*/

}

/*Display function*/

void display()

{

The upper bound of 99 shows that

this queue can store a maximum of

100 elements

Here, NULL value is represented by –1

178 Data Structures Using C

 int i;

 if(front==-1)

 {

 printf(“\n\tQueue is Empty!\n”);

 return;

 }

 printf(“\n\tThe various queue elements are:\n”);

 for(i=front;i<=rear;i++)

 printf(“\t%d”,queue[i]); /*Printing queue elements*/

}

Output

Select a choice from the following:

[1] Add an element into the queue

[2] Remove an element from the queue

[3] Display the queue elements

[4] Exit

Your choice: 3

Queue is Empty!

Select a choice from the following:

[1] Add an element into the queue

[2] Remove an element from the queue

[3] Display the queue elements

[4] Exit

Your choice: 1

Enter the element to be added to the queue: 1

Select a choice from the following:

[1] Add an element into the queue

[2] Remove an element from the queue

[3] Display the queue elements

[4] Exit

Your choice: 1

Enter the element to be added to the queue: 2

Select a choice from the following:

[1] Add an element into the queue

[2] Remove an element from the queue

[3] Display the queue elements

[4] Exit

 Queues 179

C
h
a
p

t
e
r

S
e
v
e
n

Your choice: 1

Enter the element to be added to the queue: 3

Select a choice from the following:

[1] Add an element into the queue

[2] Remove an element from the queue

[3] Display the queue elements

[4] Exit

Your choice: 3

The various queue elements are:

1 2 3

Select a choice from the following:

[1] Add an element into the queue

[2] Remove an element from the queue

[3] Display the queue elements

[4] Exit

Your choice: 2

1 element removed from the queue

Select a choice from the following:

[1] Add an element into the queue

[2] Remove an element from the queue

[3] Display the queue elements

[4] Exit

Your choice: 2

2 element removed from the queue

Select a choice from the following:

[1] Add an element into the queue

[2] Remove an element from the queue

[3] Display the queue elements

[4] Exit

Your choice: 2

3 element removed from the queue

Select a choice from the following:

[1] Add an element into the queue

[2] Remove an element from the queue

[3] Display the queue elements

180 Data Structures Using C

[4] Exit

Your choice: 3

Queue is Empty!

 !+ $ $

Key Statement Purpose

int queue[100]; Declares an array to represent a queue

void insert(int);

int del();

void display();

Declares prototypes for the functions that perform

queue operations

insert(num1); Calls the insert() function for inserting an element into

the queue

num2=del(); Calls the del() function for deleting an element from

the queue

display(); Calls the display() function for displaying the queue

elements

rear=rear+1;

queue[rear]=element;

Inserts an element at the end of the queue and updates

the rear pointer

if(front==-1) Checks whether or not the queue is empty

7.4.2 , - ! !" # # $

The linked implementation of queues involves dynamically allocating memory space at run time while

performing queue operations. Since, the allocation of memory space is dynamic, the queue consumes

only that much amount of space as is required for holding its data elements. This is contrary to array-

implemented queues which continue to occupy a fixed memory space even if there are no elements

present. Thus, linked implementation of queues based on dynamic memory allocation technique prevents

wastage of memory space.

NoteN The linked implementation of queues is based on dynamic memory management techniques,

which allow allocation and de-allocation of memory space at runtime.

Insert Operation The insert operation under linked implementation of queues involves the

following tasks:

1. Reserving memory space of the size of a queue element in memory

2. Storing the added (inserted) value at the new location

3. Linking the new element with existing queue

4. Updating the rear pointer

 % Write an algorithm to realize the insert operation under linked implementation of

queues.

Queues 181

C
h
a
p

t
e
r

S
e
v
e
n

insert(structure queue, value, front, rear)

Step 1: Start

Step 2: Set ptr=(struct queue*)malloc(sizeof(struct queue)), to reserve a

block of memory for the new queue node and assign its address to pointer ptr

Step 3: Set ptr->element=value, to copy the inserted value into the new node

Step 4: if front = NULL goto Step 5 else goto Step 7

Step 5: Set front = rear = ptr

Step 6: Set ptr->next=NULL and goto Step 10

Step 7: Set rear->next=ptr

Step 8: Set ptr->next=NULL

Step 9: Set rear = ptr

Step 10: Stop

Delete Operation The delete operation under linked implementation of queues involves the

following tasks:

1. Checking whether the queue is empty.

2. Retrieving the front most element of the queue.

3. Updating the front pointer.

4. Returning the retrieved (removed) value

 % / Write an algorithm to realize the delete operation under linked implementation of

queues.

delete(structure queue, front, rear)

Step 1: Start

Step 2: if front = NULL goto Step 3 else goto Step 4

Step 3: Display message, “Queue is Empty” and goto Step 7

Step 4: Set i = front->element

Step 5: Set front = front->next

Step 6: Return the deleted element i

Step 7: Stop

TipT It is a good programming practice to release unused memory space so as to ensure efficient

memory space utilization.

Implementation

 % 0 Write a program to implement a queue using linked lists and perform its common

operations.

Program 7.2 implements a queue using linked lists in C. It uses the insert (Example 7.4) and delete

(Example 7.5) functions for realizing the common queue operations.

 !+ ' Implementation of queue

/*Program for implementing queue using linked list*/

#include<stdio.h>

#include<conio.h>

182 Data Structures Using C

#include<stdlib.h>

struct queue /*Declaring the structure for queue elements*/

{

 int element;

 struct queue *next; /*Queue element pointing to another queue element*/

};

struct queue *front=NULL;

struct queue *rear = NULL;

void insert(int); /*Declaring a function prototype for adding an element

into the queue*/

int del(); /*Declaring a function prototype for removing an element from

the queue*/

void display(void); /*Declaring a function prototype for displaying the

elements of the queue*/

void main()

{

int num1, num2, choice;

while(1)

{

/*Creating an interactive interface for performing queue operations*/

printf(“\n\nSelect an option\n”);

printf(“\n1 - Insert an element into the Queue”);

printf(“\n2 - Remove an element from the Queue “);

printf(“\n3 - Display all the elements in the Queue”);

printf(“\n4 - Exit”);

printf(“\n\nEnter your choice: “);

scanf(“%d”, &choice);

switch(choice)

{

case 1:

{

printf(“\nEnter the element to be inserted into the queue “);

scanf(“%d”,&num1);

insert(num1); /*Adding an element*/

break;

}

case 2:

 {

num2=del(); /*Removing an element*/

 if(num2==-9999)

Each queue element comprises of two

value and another for storing a pointer

to the next element in the queue

Queues 183

C
h
a
p

t
e
r

S
e
v
e
n

 printf(“\n\tQueue is empty!!”);

 else

 printf(“\n\t%d element removed from the queue\n\t”,num2);

 getch();

 break;

 }

 case 3:

 {

display(); /*Displaying queue elements*/

 getch();

 break;

 }

 case 4:

 {

 exit(1);

 break;

 }

 default:

 {

 printf(“\nInvalid choice.”);

 getch();

 break;

 }

 }

 }

}

/*Insert function*/

void insert(int value)

{

 struct queue *ptr = (struct queue*)malloc(sizeof(struct queue));/*Dynamically

declaring a queue element*/

 ptr->element = value; /*Assigning value to the newly allocated queue

element*/

 if(front==NULL) /*Adding element in an empty queue*/

 {

 front = rear = ptr;

 ptr->next=NULL;

 }

/*Updating queue pointers*/

 else

malloc function is used for dynamic

or runtime reservation of space for

new queue elements

184 Data Structures Using C

 {

rear->next = ptr;

 ptr->next = NULL;

 rear = ptr;

 }

}

/*Delete function*/

int del()

{

 int i;

 if(front==NULL) /*Checking whether the queue is empty*/

 return(-9999);

 else

 {

 i=front->element; /*removing element from the start*/

 front = front->next;

 return(i);

 }

}

/*Display function*/

void display()

{

 struct queue *ptr=front;

if(front==NULL)

 {

 printf(“\n\tQueue is Empty!!”);

 return;

 }

 else

 {

 printf(“\nElements present in the Queue are:\n”);

 /*Printing queue elements*/

 while(ptr!=rear)

 {

 printf(«\t%d»,ptr->element);

 ptr=ptr->next;

 }

 printf(“\t%d”,rear->element);

 }

}

Output

The output of the above program is same as the output of the program shown in Example 7.3.

If the queue is empty then the stack

pointer (front) will point at NULL

Queues 185

C
h
a
p

t
e
r

S
e
v
e
n

 !+ $ $

Key Statement Purpose

struct queue

{

 int element;

 struct queue *next;

};

Uses linked list to represent a queue

struct queue *front=NULL;

struct queue *rear = NULL;

Declares queue pointers

void insert(int);

int del();

void display(void);

Declares prototypes for the functions that perform queue operations

insert(num1); Calls the insert() function for inserting an element into the queue

num2=del(); Calls the del() function for deleting an element from the queue

display(); Calls the display() function for displaying the queue elements

rear->next = ptr;

ptr->next = NULL;

rear = ptr;

Inserts an element at the end of the queue and updates the rear pointer

if(front==NULL) Checks whether or not the queue is empty

7.5

A circular queue is a queue whose start and

end locations are logically connected with each

other. That means, the start location comes after

the end location. If we continue to add elements

in a circular queue till its end location, then

after the end location has been filled, the next

element will be added at the beginning of the

queue. Circular queues remove one of the main

disadvantages of array implemented queues in

which a lot of memory space is wasted due to

inefficient utilization.

Figure 7.6 shows the logical representation of a

circular queue.

As we can see in Fig. 7.6, the start location of the

queue comes after its end location. Thus, if the queue is

filled till its capacity, i.e., the end location, then the start

location will be checked for space, and if it is empty,

the new element will be added there. Figure 7.7 shows

the different states of a circular queue during insert and

delete operations.

 Check Point

1. What is array implementation of queues?

Ans. It involves allocation of fixed size array in

the memory for storing queue elements. Both

insert and delete operations are performed on

this array.

2. What is linked implementation of queues?

Ans. It involves dynamic allocation of memory

space at run time while performing queue

operations.

6 + 0 Circular queue

186 Data Structures Using C

Fig. 7.7 Inserting and deleting elements in a circular queue

Insert Operation The insert operation for array implemented circular queues involves the following

tasks:

 1. Checking whether the queue is already full.

 2. Updating the rear pointer.

 (a) If the queue is empty, set front and rear

 (b) If rear is pointing at the last location of the queue, set rear

queue.

 (c) If none of the above situations exist, simply increment the rear pointer by 1.

 3. Inserting the new element at the rear location.

 % Write an algorithm to realize the insert operation for array-implemented circular queues.

insert(queue[MAX], front, rear, element)

Step 1: Start

Step 2: if (front = 0 and rear = MAX-1) OR front = rear+1 goto Step 3 else

goto Step 4

Step 3: Display message, “Queue is Full” and goto Step 10

Step 4: if front = NULL goto Step 5 else goto Step 6

 Queues 187

C
h
a
p

t
e
r

S
e
v
e
n

Step 5: Set front = rear = 0

Step 6: if rear = MAX-1 goto Step 7 else goto Step 8

Step 7: Set rear = 0

Step 8: Set rear = rear + 1

Step 9: Set queue[rear] = element

Step 10: Stop

Delete Operation The delete operation for array implemented circular queues involves the following

tasks:

 1. Checking whether the queue is already empty.

 2. Retrieving the element at the front of the queue.

 3. Updating the front pointer.

 (a) If the queue has only one element left, set front and rear to point to NULL.

 (b) If front is pointing at the last location of the queue, set front

the queue.

 (c) If none of the above situations exist, simply increment the front pointer by 1.

 4. Returning the element retrieved from the front location.

 % 8 Write an algorithm to realize the delete operation for array-implemented circular queues.

delete(queue[MAX], front, rear)

Step 1: Start

Step 2: if front = NULL goto Step 3 else goto Step 4

Step 3: Display message, “Queue is Empty” and goto Step 13

Step 4: Set i = queue[front]

Step 5: if front = rear goto Step 6 else goto Step 8

Step 6: Set front = rear = NULL

Step 7: Return the deleted element i and go to Step 13

Step 8: if front = MAX-1 goto Step 9 else goto Step 11

Step 9: Set front = 0

Step 10: Return the deleted element i and go to Step 13

Step 11: Set front = front + 1

Step 12: Return the deleted element i

Step 13: Stop

Implementation

 % 9 Write a program to implement a circular queue using arrays and perform its common

operations.

Program 7.3 implements a circular queue using arrays in C. It uses the insert (Example 7.7) and delete

(Example 7.8) functions for realizing the common queue operations.

 !+ * Implementation of a circular queue using arrays

/*Program for demonstrating implementation of circular queues using arrays*/

#include <stdio.h>

#include <conio.h>

188 Data Structures Using C

#include <stdlib.h>

int queue[5]; /*Declaring a 5 element queue array*/

int front=-1; /*Declaring and initializing the front pointer*/

int rear=-1; /*Declaring and initializing the rear pointer*/

void insert(int); /*Declaring a function prototype for inserting an element

into the circular queue*/

int del(); /*Declaring a function prototype for removing an element from

the circular queue*/

void display(); /*Declaring a function prototype for displaying the queue

elements*/

void main()

{

 int choice;

 int num1=0,num2=0;

 while(1)

 {

 /*Creating an interactive interface for performing queue operations*/

 printf(“\nSelect a choice from the following:”);

 printf(“\n[1] Add an element into the queue”);

 printf(“\n[2] Remove an element from the queue”);

 printf(“\n[3] Display the queue elements”);

 printf(“\n[4] Exit\n”);

 printf(“\n\tYour choice: “);

 scanf(“%d”,&choice);

 switch(choice)

 {

 case 1:

 {

 printf(“\n\tEnter the element to be added to the queue: “);

 scanf(“%d”,&num1);

 insert(num1); /*Adding an element*/

 break;

 }

 case 2:

 {

 num2=del(); /*Removing an element*/

 if(num2== (-9999))

 ;

 else

 printf(“\n\t%d element removed from the queue\n\t”,num2);

 getch();

 break;

 }

 Queues 189

C
h
a
p

t
e
r

S
e
v
e
n

 case 3:

 {

 display(); /*Displaying queue elements*/

 getch();

 break;

 }

 case 4:

 exit(1);

 break;

 default:

 printf(“\nInvalid choice!\n”);

 break;

 }

 }

}

/*Insert function*/

void insert(int element)

{

if((front==0 && rear ==4) || front==rear+1)

{

 printf(“\tQueue is Full. Element %d cannot be added into the queue\

n”,element);

 getch();

 return;

}

if(front==-1) /*Adding element in an empty queue*/

{

 front=0;

 rear=0;

}

else if(rear==4)

 rear=0; /*Setting rear pointer to start of queue*/

else

 rear=rear+1; /*Incrementing rear pointer*/

queue[rear]=element; /*Inserting the new element*/

}

/*Delete function*/

int del()

{

 int i;

 if(front==-1) /*Checking whether the queue is empty*/

 {

 printf(“\n\tQueue is Empty.\n”);

190 Data Structures Using C

 getch();

 return (-9999);

 }

 i=queue[front]; /*Retrieving the element at the front of the queue*/

 if(front==rear) /*Checking whether the queue has only one element left*/

 {

 front=-1;

 rear=-1;

 return(i);

 }

 else if(front==4)

 {

 front=0; /*Setting the front pointer to start of queue*/

 return(i);

 }

 else

 {

 front=front+1; /*Incrementing the front pointer*/

 return(i);

 }

}

/*Display function*/

void display()

{

 int i;

 if(front==-1)

 {

 printf(“\n\tQueue is Empty!\n”);

 return;

 }

 printf(“\n\tThe various queue elements are:\n”);

 i=front;

 while(i!=rear)

 {

 printf(“\t%d”,queue[i]); /*Printing queue elements*/

 if(i==4)

 i=0;

 else

 i=i+1;

 }

 printf(“\t%d\n”,queue[i]); /*Printing the last element in the queue*/

}

 Queues 191

C
h
a
p

t
e
r

S
e
v
e
n

Output

Select a choice from the following:
[1] Add an element into the queue
[2] Remove an element from the queue
[3] Display the queue elements
[4] Exit

 Your choice: 1

 Enter the element to be added to the queue: 1

Select a choice from the following:
[1] Add an element into the queue
[2] Remove an element from the queue
[3] Display the queue elements
[4] Exit

 Your choice: 1

 Enter the element to be added to the queue: 2

Select a choice from the following:
[1] Add an element into the queue
[2] Remove an element from the queue
[3] Display the queue elements
[4] Exit

 Your choice: 1

 Enter the element to be added to the queue: 3

Select a choice from the following:
[1] Add an element into the queue
[2] Remove an element from the queue
[3] Display the queue elements
[4] Exit

 Your choice: 1

 Enter the element to be added to the queue: 4

Select a choice from the following:
[1] Add an element into the queue
[2] Remove an element from the queue
[3] Display the queue elements
[4] Exit

 Your choice: 1

 Enter the element to be added to the queue: 5

192 Data Structures Using C

Select a choice from the following:

[1] Add an element into the queue

[2] Remove an element from the queue

[3] Display the queue elements

[4] Exit

 Your choice: 3

 The various queue elements are:

 1 2 3 4 5

Select a choice from the following:

[1] Add an element into the queue

[2] Remove an element from the queue

[3] Display the queue elements

[4] Exit

 Your choice: 1

 Enter the element to be added to the queue: 6

 Queue is Full. Element 6 cannot be added into the queue

Select a choice from the following:

[1] Add an element into the queue

[2] Remove an element from the queue

[3] Display the queue elements

[4] Exit

 Your choice: 2

 1 element removed from the queue

Select a choice from the following:

[1] Add an element into the queue

[2] Remove an element from the queue

[3] Display the queue elements

[4] Exit

 Your choice: 3

 The various queue elements are:

 2 3 4 5

Select a choice from the following:

[1] Add an element into the queue

[2] Remove an element from the queue

[3] Display the queue elements

[4] Exit

Queues 193

C
h
a
p

t
e
r

S
e
v
e
n

 Your choice: 1

 Enter the element to be added to the queue: 6

Select a choice from the following:

[1] Add an element into the queue

[2] Remove an element from the queue

[3] Display the queue elements

[4] Exit

 Your choice: 3

 The various queue elements are:

 2 3 4 5 6

We can observe in the above output that a circular queue makes the best utilization of available

memory space by logically connecting the start and end locations.

 !+ $ $

Key Statement Purpose

if((front==0 && rear ==4) ||

front==rear+1)

Checks whether the circular queue is full or not

i=front;

while(i!=rear)

Traverses the elements of the circular queue

 0 :

Priority queue is a type of queue in which each

element is assigned certain priority such that the

order of deletion of elements is decided by their

associated priorities. The order of processing or

deletion of elements in a priority queue is decided

by the following rules:

1. An element with highest priority is deleted

before all other elements of lower priority.

2. If two elements have the same priority

then they are deleted as per the order in

which they were added into the queue

(i.e., First-In-First-Out).

The implementation of priority queues may follow different approaches. For instance, elements may

be added arbitrarily into the queue and deleted as per their priority values or, the elements may be sorted

as per their priorities at the time of their insertion itself, and deleted in a sequential fashion. We’ll be

following the later approach for implementing priority queues.

The structure of a priority queue needs to be defined in such a manner that each queue node is able

to store both its value as well as its priority information. The following C structure defines the node of

a priority queue:

 Check Point

1. What is a circular queue?

Ans. A circular queue is a queue whose start

and end locations are logically connected with

each other.

2. What is the advantage of circular queue?

Ans. The implementation of circular queues

ensures efficient utilization of memory space

in comparison to normal queues.

194 Data Structures Using C

struct queue /*Node of a priority queue*/

{

 int element;

 int priority;

 struct queue *next; /*Pointer to the next queue node*/

};

Implementation

 % &; Write a program to implement a priority queue using linked lists and perform its

common operations.

Program 7.4 implements a priority queue using linked lists in C.

 !+ Implementation of a priority queue using linked lists

/*Program for implementing priority queue using linked list*/

#include<stdio.h>

#include<conio.h>

#include<stdlib.h>

struct queue /*Declaring the structure for queue node*/

{

 int element;

 int priority;

 struct queue *next; /*Pointer to the next queue node*/

};

struct queue *front=NULL;

void insert(int,int); /*Declaring a function prototype for inserting an

element into the queue*/

int del(); /*Declaring a function prototype for deleting an element from

the queue*/

void display(void); /*Declaring a function prototype for displaying the

queue elements along with their priority values*/

void main()

{

 int num1, num2, pr, choice;

 while(1)

 {

 /*Creating an interactive interface for performing queue operations*/

 printf(“\n\nSelect an option\n”);

 printf(“\n1 - Insert an element into the Queue”);

 printf(“\n2 - Remove an element from the Queue “);

 printf(“\n3 - Display all the elements in the Queue”);

 printf(“\n4 - Exit”);

 Queues 195

C
h
a
p

t
e
r

S
e
v
e
n

 printf(“\n\nEnter your choice: “);

 scanf(“%d”, &choice);

 switch(choice)

 {

 case 1:

 {

 printf(“\nEnter the element to be inserted into the queue “);

 scanf(“%d”,&num1);

 printf(“\nEnter the priority of %d “,num1);

 scanf(“%d”,&pr);

 insert(num1,pr); /*Inserting an element*/

 break;

 }

 case 2:

 {

 num2=del(); /*Deleting an element*/

 if(num2==-9999)

 printf(“\n\tQueue is empty!!”);

 else

 printf(“\n\t%d element removed from the queue\n\t”,num2);

 getch();

 break;

 }

 case 3:

 {

 display(); /*Displaying queue elements*/

 getch();

 break;

 }

 case 4:

 {

 exit(1);

 break;

 }

 default:

 {

 printf(“\nInvalid choice.”);

 getch();

 break;

 }

 }

 }

}

196 Data Structures Using C

/*Insert Function*/

void insert(int value,int p)

{

 struct queue *temp;

 struct queue *ptr = (struct queue*)malloc(sizeof(struct queue));/*Dynamically

declaring a queue element*/

 ptr->element = value; /*Assigning value to the newly allocated queue

element*/

 ptr->priority=p; /*Assigning priority to the newly allocated queue

element*/

/*Checking if the newly allocated queue element needs to be inserted at

the front*/

 if(front==NULL||ptr->priority<front->priority)

 {

 ptr->next=front;

 front = ptr;

 }

 else

 {

 temp=front;

 /*Adding the newly allocated queue element as per priority*/

 while(temp->next!=NULL && temp->next->priority<=ptr->priority)

 temp=temp->next;

 ptr->next = temp->next;

 temp->next = ptr;

 }

}

/*Delete Function*/

int del()

{

 int i;

 if(front==NULL) /*Checking whether the queue is empty*/

 return(-9999);

 else

 {

 i=front->element; /*Removing elements as per priority*/

 front = front->next;

 return(i);

 }

}

/*Display Function*/

void display()

 Queues 197

C
h
a
p

t
e
r

S
e
v
e
n

{

 struct queue *ptr=front;

 if(front==NULL)

 {

 printf(“\n\tQueue is Empty!!”);

 return;

 }

 else

 {

 printf(“\nElements present in the Queue are:\n”);

 printf(“\n\tElement\t\tPriority\n”);

 /*Printing queue elements along with their priority*/

 printf(“Front->”);

 while(ptr!=NULL)

 {

 printf(“\t %d\t\t %d\n”,ptr->element,ptr->priority);

 ptr=ptr->next;

 }

 }

}

Output

Select an option

1 - Insert an element into the Queue

2 - Remove an element from the Queue

3 - Display all the elements in the Queue

4 - Exit

Enter your choice: 1

Enter the element to be inserted into the queue 10

Enter the priority of 10 3

Select an option

1 - Insert an element into the Queue

2 - Remove an element from the Queue

3 - Display all the elements in the Queue

4 - Exit

Enter your choice: 1

Enter the element to be inserted into the queue 20

198 Data Structures Using C

Enter the priority of 20 2

Select an option

1 - Insert an element into the Queue

2 - Remove an element from the Queue

3 - Display all the elements in the Queue

4 - Exit

Enter your choice: 1

Enter the element to be inserted into the queue 30

Enter the priority of 30 1

Select an option

1 - Insert an element into the Queue

2 - Remove an element from the Queue

3 - Display all the elements in the Queue

4 - Exit

Enter your choice: 3

Elements present in the Queue are:

 Element Priority

Front-> 30 1

 20 2

 10 3

Select an option

1 - Insert an element into the Queue

2 - Remove an element from the Queue

3 - Display all the elements in the Queue

4 - Exit

Enter your choice: 2

 30 element removed from the queue

Select an option

1 - Insert an element into the Queue

Queues 199

C
h
a
p

t
e
r

S
e
v
e
n

2 - Remove an element from the Queue

3 - Display all the elements in the Queue

4 - Exit

Enter your choice: 3

Elements present in the Queue are:

 Element Priority

Front-> 20 2

10 3

As we can see in the above output, irrespective of the order in which elements are added into the

queue, they are placed inside the queue as per their priorities and removed in the same fashion.

 !+ $ $

Key Statement Purpose

sstruct queue

{

 int element;

 int priority;

 struct queue *next;

};

Declares a priority queue node using linked list

representation

scanf(“%d”,&pr); Reads the priority of the element being inserted into

the queue

while(temp->next!=NULL && temp->next-

>priority<=ptr->priority)

 temp=temp->next;

Identifies the location where the new element is to be

inserted as per priority

 < = < <

A double-ended queue is a special

type of queue that allows insertion

and deletion of elements at both ends,

i.e., front and rear. In simple words, a

double-ended queue can be referred as a

linear list of elements in which insertion

and deletion of elements takes place

at its two ends but not in the middle.

This is the reason why it is termed as

double-ended queue or deque.

Based on the type of restrictions

imposed on insertion and deletion of

elements, a double-ended queue is

categorized into two types:

 Check Point

1. What is a priority queue?

Ans. It is a type of queue in which each element is

assigned certain priority such that the order of deletion of

elements is decided by their associated priorities.

2. What is order of deletion if two or more elements

in a priority queue have same priorities?

Ans. If two or more elements have the same priority then

they are deleted as per the order in which they were added

into the queue (i.e. First-In-First-Out).

200 Data Structures Using C

1. Input-restricted deque It allows deletion from both the ends but restricts the insertion at only

one end.

2. Output-restricted deque It allows insertion at both the ends but restricts the deletion at only

one end.

Figure 7.8 shows the logical representation of a deque.

6 + 8 Double-ended queue

As shown in Fig. 7.8, insertion and deletion of

elements is possible at both front and rear ends of the

queue. As a result, the following four operations are

possible for a double-ended queue:

1. i_front Insertion at front end of the queue.

2. d_front Deletion from front end of the queue.

3. i_rear Insertion at rear end of the queue.

4. d_rear Deletion from rear end of the queue.

Ex && Write C functions to realize the four possible insert and delete operations for array-

implemented double-ended queues.

 !+ / i_front() function

/*Insertion at front end*/
/*queue[100], front and rear are global variables*/
void i_front(int element)
{
if(front==-1) /*Adding element in an empty queue*/
 {
 front = rear = front+1;
 queue[front] = element;
 return;
 }

 if(front==0) /*Checking whether the queue is full at the front end*/
 {
 printf(“Queue is Full.\n”);
 getch();
 return;
 }

 front=front-1; /*Decrementing rear pointer*/
 queue[front]=element; /*Inserting the new element*/
}

 Mind Jog

In which situation is a deque used?

A deque is used for implementing

A-Steal job scheduling algorithm. This

algorithm helps perform task scheduling

for multiple processors.

 Queues 201

C
h
a
p

t
e
r

S
e
v
e
n

 !+ 0 d_front()function

/*Deletion at front end*/

/*queue[100], front and rear are global variables*/
int d_front()
{
 int i;
 if(front==-1 && rear==-1) /*Checking whether the queue is empty*/
 {
 printf(“\n\tQueue is Empty.\n”);
 getch();
 return (-9999);
 }
 if(front==rear) /*Checking whether the queue has only one element left*/
 {
 i=queue[front];
 front=-1;
 rear=-1;
 return(i);
 }
 return(queue[front++]); /*Returning the front most element and incrementing

the front pointer*/

}

 !+ i_rear() function

/*Insertion at rear end*/
/*queue[100], front and rear are global variables*/
void i_rear(int element)
{
if(rear==-1) /*Adding element in an empty queue*/
 {
 front = rear = rear+1;
 queue[rear] = element;
 return;
 }

 if(rear==99) /*Checking whether the queue is full at the rear end*/
 {
 printf(“Queue is Full.\n”);
 getch();
 return;
 }

 rear=rear+1; /*Incrementing rear pointer*/
 queue[rear]=element; /*Inserting the new element*/
}

 !+ 8 d_rear() function

/*Deletion at rear end*/
/*queue[100], front and rear are global variables*/
int d_rear()
{

202 Data Structures Using C

 int i;

 if(front==-1 && rear==-1) /*Checking whether the queue is empty*/

 {

 printf(“\n\tQueue is Empty.\n”);

 getch();

 return (-9999);

 }

 if(front==rear) /*Checking whether the queue has only one element left*/

 {

 i=queue[rear];

 front=-1;

 rear=-1;

 return(i);

 }

 return(queue[rear—]); /*Returning the rear most element and decrementing

the rear pointer*/

}

 Check Points

1. What is a double-ended queue?

Ans: A double-ended queue is a special type of queue that allows insertion and deletion of elements

at both ends, i.e., front and rear.

2. What are the different types of double-ended queues?

Ans: The two types of double-ended queues are input-restricted deque (insertion at one end,

deletion at both ends) and output-restricted deque (insertion at both ends, deletion at one end).

 ! > - !? $

 !? & The contents of a queue Q are as follows:

Queue (Q) 4 5 –9 66

Index 0 1 2 3 4 5 6 7

F? R ?

The queue can store a maximum of eight elements and the front (F) and rear (R) pointers currently

point at index 0 and 3 respectively.

Show the queue contents and indicate the position of the front and rear pointers after each of the

following queue operations:

(a) Insert (Q, 16), (b) Delete (Q), (c) Delete (Q), (d) Insert (Q, 7), (e) Delete (Q),

(f) Insert (Q, –2)

Solution
(a) Insert (Q, 16)

 Step 1 R = R + 1 = 3 + 1 = 4

 Step 2 Q [R] = Q [4] = 16

 Queues 203

C
h
a
p

t
e
r

S
e
v
e
n

 Queue contents

Queue (Q) 4 5 -9 66 16

Index 0 1 2 3 4 5 6 7

 (b) Delete (Q)

 Step 1 Item = Q [F] = Q [0] = 4

 Step 2 F = F + 1 = 0 + 1 = 1

 Queue contents

Queue (Q) 5 –9 66 16

Index 0 1 2 3 4 5 6 7

 (c) Delete (Q)

 Step 1 Item = Q [F] = Q [1] = 5

 Step 2 F = F + 1 = 1 + 1 = 2

 Queue contents

Queue (Q) –9 66 16

Index 0 1 2 3 4 5 6 7

F R

 (d) Insert (Q, 7)

 Step 1 R = R + 1 = 4 + 1 = 5

 Step 2 Q [R] = Q [5] = 7

 Queue contents

Queue (Q) –9 66 16 7

Index 0 1 2 3 4 5 6 7

F R

 (e) Delete (Q)

 Step 1 Item = Q [F] = Q [2] = –9

 Step 2 F = F + 1 = 2 + 1 = 3

 Queue contents

Queue (Q) 66 16 7

Index 0 1 2 3 4 5 6 7

 (f) Insert (Q, –2)

 Step 1 R = R + 1 = 5 + 1 = 6

 Step 2 Q [R] = Q [6] = –2

 Queue contents

204 Data Structures Using C

Queue (Q) –9 66 16 7 –2

Index 0 1 2 3 4 5 6 7

 !? ' Consider the following two states of a queue Q:

 State 1

Queue (Q) 4 –1 8

Index 0 1 2 3 4 5 6 7

 State 2

Queue (Q) 3 11 22 33

Index 0 1 2 3 4 5 6 7

F R ?

Write the series of insert and delete operations that will transition the queue Q from State 1 to State 2.

Solution
Step 1 Delete (Q)

Step 2 Delete (Q)

Step 3 Insert (Q, 11)

Step 4 Insert (Q, 22)

Step 5 Insert (Q, 33)

 !? * Is there any limitation associated with array implemented queues?

Solution One of the key limitations of array implemented queue is that it may lead to an overflow

condition even when a number of its preceding locations are empty. Such a situation can be easily

avoided by implementing the queue in a circular fashion, which logically connects its front and rear ends.

 !? Identify the error in the following structure declaration of a priority queue node:

struct queue /*Node of a priority queue*/
{
 int element;
 int priority;
 }*next;

Solution In the linked implementation of a queue, the next pointer should be associated with each

node of the queue. Hence, next should be declared inside the structure declaration and not outside, as

shown below:

struct queue /*Node of a priority queue*/

{

 int element;

 int priority;

 *next; /*Pointer to the next queue node*/

 }

Queues 205

C
h
a
p

t
e
r

S
e
v
e
n

 #

© Queue is a linear data structure in which items are inserted at one end called ‘Rear’ and deleted

from the other end called ‘Front’.

© Queues are based on the First-In-First-Out (FIFO) principle that means the data item that is

inserted first in the queue is also the first one to be removed from the queue.

© There are two key operations associated with the queue data structure: insert and delete.

© Queues can be implemented through arrays or linked lists.

© The array implementation of queues reserves a fixed amount of memory space in the form of

an array for storing queue elements.

© The linked implementation of queues uses dynamic memory management techniques for

allocating the memory space for storing a new queue element at run time.

© Since linked implementation of queues is based on dynamic memory allocation it is more

efficient as compared to array-based implementation.

© A circular queue is one whose start and end locations are logically connected with each other.

© Circular queues remove one of the main disadvantages of array implemented queues in which

a lot of memory space is wasted due to inefficient utilization.

© Priority queue is a type of queue in which each element is assigned certain priority such that

the order of deletion of elements is decided by their associated priorities.

© A double-ended queue is a special type of queue that allows insertion and deletion of elements

at both ends, i.e., front and rear.

© A double-ended queue can also be referred as a linear list of elements in which insertion and

deletion of elements takes place at its two ends but not in the middle.

© A double-ended queue is categorized into two types: input-restricted deque and output-restricted

deque.

@ $

© Queue It is a linear data structure based on the First-In-First-Out (FIFO) principle that means

the data item that is inserted first in the queue is also the first one to be removed from the queue.

© Front It represents the front end of the queue from where elements are deleted.

© Rear It represents the rear end of the queue where elements are added.

© FIFO It stands for First-In-First-Out i.e., the principle on which queues are based.

© Insert It refers to the task of inserting an element into the queue.

© Delete It refers to the task of retrieving or deleting an element from the queue.

© Array implementation It refers to the realization of queue data structure using arrays.

© Lined implementation It refers to the realization of queue data structure using linked lists.

© Circular queue It is a type of queue whose start and end locations are logically connected with

each other.

© Priority queue It is a type of queue in which each element is assigned certain priority such that

the order of deletion of elements is decided by their associated priorities.

© Double-ended queue It is a special type of queue that allows insertion and deletion of elements

at both ends, i.e., front and rear.

206 Data Structures Using C

Multiple-Choice Questions

 7.1 Which of the following statements is not true for queues?

 (a) It is a linear data structure.

 (b) It allows insertion/deletion of elements only at one end.

 (c) It has two ends front and rear.

 (d) It is based on First-In-First-Out principle.

 7.2 Which of the following statements is not an example of a queue?

 (a) Collection of tiles one over another.

 (b) A queue of print jobs.

 (c) A line up of people waiting for the bus at the bus stop.

 (d) All of the above are queue examples.

 7.3 CPU scheduler can be implemented by which of the following data structures?

 (a) Stack (b) Queue

 (c) Graph (d) Tree

 7.4 Which of the following is a type of a queue?

 (a) Circular queue (b) Priority queue

 (c) Double-ended queue (d) All of the above

 7.5 If 1, 2, 3, 4 are the queue contents with element 1 at the front and 4 at the rear, then what will

be the queue contents after following operations:

 Insert (5)

 Delete ()

 Delete ()

 Delete ()

 Insert (6)

 Insert (–1)

 Delete ()

 (a) 5, 6, –1 (b) 4, 5, 6, –1

 (c) 1, 2, 6 (d) 1, 2, 6, –1

 7.6 Which of the following is best suitable for implementing a print scheduler?

 (a) Stack (b) Queue

 (c) Array (d) None of the above

 7.7 If ‘front’ points at the front end of the queue, ‘rear’ points at the rear end of the queue and ‘queue

[]’ is the array containing queue elements, then which of the following statements correctly

reflects the insert operation for inserting ‘item’ into the queue?

 (a) rear = rear + 1; queue [rear] = item; (b) front = front + 1; queue [front] = item;

 (c) queue [rear++] = item; (d) Both (a) and (c) are correct

 7.8 If ‘front’ points at the front end of the queue, ‘rear’ points at the rear end of the queue and ‘queue

[]’ is the array containing queue elements, then which of the following statements correctly

reflects the delete operation for deleting an element from the queue?

 (a) item = queue [rear]; rear = rear + 1; (b) item = queue [front]; front = front + 1;

 (c) item = queue [++front]; (d) Both (b) and (c) are correct

 7.9 If a delete operation is performed on an empty queue, then which of the following situations will

occur?

 Queues 207

C
h
a
p

t
e
r

S
e
v
e
n

 (c) Array out of bound (d) None of the above

 7.10 Which of the following is not a queue application?

 (a) Recursion control (b) CPU scheduling

 (c) Message queuing (d) All of the above are queue applications

Review Questions

 7.1 What is a queue? Explain with examples.

 7.2 Briefly describe the FIFO principle.

 7.3 What are front and rear pointers? Explain their significance.

 7.4 What are the different application areas of queue data structure?

 7.5 Give any three real-life examples that principally resemble the queue data structure.

 7.6 Explain the logical representation of queue in memory with the help of an example.

 7.7 Explain insert and delete queue operations with the help of examples.

 7.8 Deduce the contents of an empty queue after the execution of the following operations in sequence:

 Insert (9)

 Insert (–7)

 Delete ()

 Insert (4)

 Delete ()

 Insert (18)

 Delete ()

 7.9 What is a priority queue? How is it different from a normal queue?

 7.10 Explain the significance of double-ended queue.

 7.11 How are queues implemented?

 7.12 What is the advantage of linked implementation of queues over array implementation?

 7.13 What is the objective of implementing a queue in circular fashion?

 7.14 List the differences between stack and queue data structures.

 7.15 How is a double-ended queue implemented?

 !+ + % B $ $

 7.1 Write a C function to print the elements of a queue implemented using linked list.

 7.2 Write a C function to perform the delete operation on an array-implemented circular queue.

 7.3 Write a C function to insert an element into a priority queue as per priority.

 7.4 Write a C function to perform the delete operation at the end of a double-ended queue.

 7.5 Write a C function to remove elements from a queue and store them in a stack. Also, display the

contents of the resultant stack.

 $G $! # H J! B # $! $

 7.1 (b) 7.2 (a) 7.3 (b) 7.4 (d) 7.5 (a)

 7.6 (b) 7.7 (d) 7.8 (b) 7.9 (b) 7.10 (a)

8.1 Introduction

8.2 Basic Concept

 8.2.1 Tree Terminology

8.3 Binary Tree

 8.3.1 Binary Tree Concepts

8.4 Binary Tree Representation

 8.4.1 Array Representation

 8.4.2 Linked Representation

8.5 Binary Tree Traversal

8.6 Binary Search Tree

8.7 Tree Variants

 8.7.1 Expression Trees

 8.7.2 Threaded Binary Trees

 8.7.3 Balanced Trees

 8.7.4 Splay Trees

 8.7.5 m-way Trees

Summary

Key Terms

Multiple-Choice Questions

Review Questions

Programming Exercises

Answers to Multiple-Choice Questions

TREES

8

C

h

a

p

t

e

r

O

u

t

l

i

n

e

 Trees 209

C
h
a
p

t
e
r

E
i
g

h
t

8.1 INTRODUCTION

Till now, we focussed only on linear data structures such as stacks, queues and linked lists. But, in

real-world situations, data relationships are not always linear. Tree is one such non-linear data structure

which stores the data elements in a hierarchical manner. Each node of the tree stores a data value, and

is linked to other nodes in a hierarchical fashion.

In this chapter, we will learn about the different types of trees and their related operations. Most

importantly, we will focus on binary tree and its variants, which are widely used in the field of computer

science.

8.2 BASIC CONCEPT

A tree is defined as a finite set of elements or nodes, such that

 1. One of the nodes present at the top of the tree is marked as root node.

 2. The remaining elements are partitioned across multiple subtrees present below the root node.

Figure 8.1 shows a sample tree T.

Fig. 8.1 Tree T

Here, T is a simple tree containing ten nodes with A being the root node. The node A contains two

subtrees. The left subtree starts at node B while the right subtree starts at node C. Both the subtrees

further contain subtrees below them, thus indicating recursive nature of the tree data structure. Each

node in the tree has zero or more child nodes.

8.2.1 Tree Terminology

There are a number of key terms associated with trees. Table 8.1 lists some of the important key terms.

Table 8.1 Tree terminology

Key Term Description Example (Refer to Fig. 8.1)

Node It is the data element of a tree. Apart from

storing a value, it also specifies links to the

other nodes.

A, B, C, D

210 Data Structures Using C

Key Term Description Example (Refer to Fig. 8.1)

Root It is the top node in a tree. A

Parent A node that has one or more child nodes

present below it is referred as parent node.

B is the parent node of D and E

Child All nodes in a tree except the root node are

child nodes of their immediate predecessor

nodes.

H, I and J are child nodes of E

Leaf It is the terminal node that does not have any

child nodes.

G, H, I, J and F are leaf nodes

Internal node All nodes except root and leaf nodes are

referred as internal nodes.

B, C, D and E are internal nodes

Sibling All the child nodes of a parent node are

referred as siblings.

D and E are siblings

Degree The degree of a node is the number of subtrees

coming out of the node.

Degree of A is 2

Degree of E is 3

Level All the tree nodes are present at different

levels. Root node is at level 0, its child nodes

are at level 1, and so on.

A is at level 0

B and C are at level 1

G, H, I, J are at level 3

Depth or Height It is the maximum level of a node in the tree. Depth of tree T is 3

Path It is the sequence of nodes from source node

till destination node.

A–B–E–J

8.3 BINARY TREE

Binary tree is one of the most widely used non-linear data structures in the field of computer science. It

is a restricted form of a general tree. The restriction that it applies to a general tree is that its nodes can

have a maximum degree of 2. That means, the nodes of a binary tree can have zero, one or two child

nodes but not more than that. Figure 8.2 shows a binary tree.

Fig. 8.2 Binary tree

As shown in the above binary tree, all nodes have a maximum degree of 2. The maximum number

of nodes that can be present at level n is 2n.

 Trees 211

C
h
a
p

t
e
r

E
i
g

h
t

8.3.1 Binary Tree Concepts

Before we learn how binary trees are represented in memory, let us discuss some of the key concepts

associated with binary trees. Table 8.2 lists these key concepts.

Table 8.2 Binary tree concepts

Concept Description Example

Strictly binary tree A binary tree is called strictly binary

if all its nodes barring the leaf nodes

contain two child nodes.

Complete binary tree A binary tree of depth d is called

complete binary tree if all its levels

from 0 to d–1 contain maximum

possible number of nodes and all

the leaf nodes present at level d are

placed towards the left side.

Perfect binary tree A binary tree is called perfect binary

tree if all its leaf nodes are at the

lowest level and all the non-leaf

nodes contain two child nodes.

Balanced binary tree A binary tree is called balanced

binary tree if the depths of the

subtrees of all its nodes do not differ

by more than 1.

212 Data Structures Using C

8.4 BINARY TREE REPRESENTATION

The sequential representation of binary trees is done by

using arrays while the linked representation is done by using

linked lists.

8.4.1 Array Representation

In the array representation of binary trees, one-dimensional

array is used for storing the node elements. The following

rules are applied while storing the node elements in the array:

array while its left and right child nodes are stored

at the successive positions.

2. If a node is stored at index location i then its left child

node will be stored at location 2i+1 while the right child node will be stored at location 2i+2.

Let us consider a binary tree T1, as shown in Fig. 8.3.

Fig. 8.3 Binary tree T1

Here, T1 is a binary tree containing seven nodes with A being the root node. B and C are the left

and right child nodes of A respectively. Let us apply the rules explained earlier to arrive at the array

representation of binary tree T1. Figure 8.4 shows the array representation.

Fig. 8.4 Array representation of binary tree T1

 Check Point

1. What is a leaf?

Ans. It is the terminal node in a tree

that does not have any child nodes.

2. What is a balanced binary tree?

Ans. A binary tree is called balanced

binary tree if the depths of the

subtrees of all its nodes do not differ

by more than 1.

 Trees 213

C
h
a
p

t
e
r

E
i
g

h
t

Figure 8.4 shows the array index values for each of the tree nodes. Array A is used for storing the

node values.

Now, let us modify the binary tree T1 a little by deleting nodes E and F. The revised array representation

of T1 is shown in Fig. 8.5.

Fig. 8.5 Revised array representation of binary tree T1

As we can see in Fig. 8.5, even after removing two elements from the tree, it still requires the same

number of memory locations for storing the node elements. This is the main disadvantage of array

representation of binary trees. It efficiently utilises the memory space only when the tree is a complete

binary tree. Otherwise, there are always some memory locations lying vacant in the array.

8.4.2 Linked Representation

To avoid the disadvantages associated with array representation, linked representation is used for

implementing binary trees. It uses a linked list for storing the node elements. Each tree node is represented

with the help of the linked list node comprising of the following fields:

 1. INFO Stores the value of the tree node.

 2. LEFT Stores a pointer to the left child.

 3. RIGHT Stores a pointer to the right child.

In addition, there is a special pointer that points at the root node. Figure 8.6 shows how linked list is

used for representing a binary tree in memory.

Fig. 8.6 Linked representation of binary tree

214 Data Structures Using C

The linked representation of binary tree uses dynamic memory allocation technique for adding new

nodes to the tree. It reserves only that much amount of memory space as is required for storing its node

values. Thus, linked representation is more efficient as compared to array representation.

Example 8.1 Write a program to implement a binary tree using linked list.

Program 8.1 Implementation of a binary tree

#include <stdio.h>

#include <stdlib.h>

#include <conio.h>

struct bin_tree

{

 int INFO;

 struct node *LEFT, *RIGHT;

};

typedef struct bin_tree node;

node *insert(node *,int); /*Function prototype for inserting a new node*/

void display (node *); /*Function prototype for displaying the tree nodes*/

int count = 1; /*Counter for ascertaining left or right position for the

new node*/

void main()

{

 struct node *root = NULL;

 int element, choice;

 clrscr();

 /*Displaying a menu of choices*/

 while(1)

 {

 clrscr();

 printf(“Select an option\n”);

 printf(“\n1 - Insert”);

 printf(“\n2 - Display”);

 printf(“\n3 - Exit”);

 printf(“\n\nEnter your choice: “);

 scanf(“%d”, &choice);

 switch(choice)

 {

 case 1:

 {

Here, the node of the tree is realised with

the help of a structure declaration. The

the LEFT and RIGHT pointers point at

Since the root node has no parents, its

location is tracked with the help of a

special pointer called root.

Trees 215

C
h
a
p

t
e
r

E
i
g

h
t

 printf(“\n\nEnter the node value: “);

 scanf(“%d”,&element);

root = insert(root,element); /*Calling the insert function for inserting

a new element into the tree*/

 getch();

 break;

 }

 case 2:

 {

display(root); /*Calling the display function for printing the node

values*/

 getch();

 break;

 }

 case 3:

 {

 exit(1);

 break;

 }

 default:

 {

 printf(“\nIncorrect choice. Please try again.”);

 getch();

 break;

 }

 }

 }

}

node *insert(node *r, int n)

{

 if(r==NULL)

 {

 r=(node*) malloc (sizeof(node));

 r->LEFT = r->RIGHT = NULL;

 r->INFO = n;

 count=count+1;

 }

 else

 {

if(count%2==0)

 r->LEFT = insert(r->LEFT, n);

 else

 r->RIGHT = insert(r->RIGHT, n);

 }

 return(r);

its creation.

216 Data Structures Using C

}

void display(node * r)

{

 if(r->LEFT!=NULL)

 display(r->LEFT);

 printf(“%d\n”,r->INFO);

 if(r->RIGHT!=NULL)

 display(r->RIGHT);

}

Output

Select an option

1 - Insert

2 - Display

3 - Exit

Enter your choice: 1

Enter the node value: 1

Enter your choice: 1

Enter the node value: 2

Enter your choice: 1

Enter the node value: 3

Enter your choice: 1

Enter the node value: 4

Enter your choice: 1

Enter the node value: 5

Enter your choice: 1

Enter the node value: 6

Select an option

1 - Insert

2 - Display

3 - Exit

Enter your choice: 2

 Trees 217

C
h
a
p

t
e
r

E
i
g

h
t

6

4

2

1

3

5

Select an option

1 - Insert

2 - Display

3 - Exit

Enter your choice: 3

Program analysis

Key Statement Purpose

node *insert(node *,int);

void display (node *);

Declares function prototypes for inserting and

displaying binary tree nodes

root = insert(root,element); Calls the insert() function for inserting a new node into

the binary tree

display(root); Calls the ! function for displaying the binary

tree nodes

if(count%2==0)

 r->LEFT = insert(r->LEFT, n);

 else

 r->RIGHT = insert(r->RIGHT, n);

Checks the value of the count variable to insert the new

node either in the left or right subtree

8.5 BINARY TREE TRAVERSAL

Traversal is the process of visiting the various elements of a data structure. Binary tree traversal can be

performed using three methods:

 1. Preorder

 2. Inorder

 3. Postorder

 1. Preorder The preorder traversal method performs the following operations:

 (a) Process the root node (N).

 (b) Traverse the left subtree of N (L).

 (c) Traverse the right subtree of N (R).

 2. Inorder The inorder traversal method performs the following operations:

 (a) Traverse the left subtree of N (L).

 (b) Process the root node (N).

 (c) Traverse the right subtree of N (R).

 3. Postorder The postorder traversal method performs the following operations:

218 Data Structures Using C

(a) Traverse the left subtree of N (L).

(b) Traverse the right subtree of N (R).

(c) Process the root node (N).

Figure 8.7 shows an illustration of the different binary tree traversal methods.

Example 8.2 Consider the following binary tree:

Fig. 8.7 Binary tree traversal

For the above binary tree, deduce the following:

 (a) Preorder traversal sequence

 (b) Inorder traversal sequence

 (c) Postorder traversal sequence

Solution
 (a) Preorder traversal sequence

 A–B–D–E–G–C–F

 (b) Inorder traversal sequence

 D–B–G–E–A–C–F

 (c) Postorder traversal sequence

 D–G–E–B–F–C–A

Example 8.3 Write algorithms for the following:

 (a) Preorder traversal

 (b) Inorder traversal

 (c) Postorder traversal

Solution
 (a) Preorder

preorder(root)

Step 1: Start

Step 2: Display root

Step 3: Function Call preorder(root->LEFT)

Step 4: Function Call preorder(root->RIGHT)

Step 5: Stop

 (b) Inorder

inorder(root)

Step 1: Start

Trees 219

C
h
a
p

t
e
r

E
i
g

h
t

Step 2: Function Call inorder(root->LEFT)

Step 3: Display root

Step 4: Function Call inorder(root->RIGHT)

Step 5: Stop

(c) Postorder

postorder(root)

Step 1: Start

Step 2: Function Call postorder(root->LEFT)

Step 3: Function Call postorder(root->RIGHT)

Step 4: Display root

Step 5: Stop

Example 8.4 Modify the program shown in Example 8.1 to add preorder, inorder and postorder

traversals to the linked implementation of binary tree.

Program 8.2 Preorder, inorder, and postorder traversal of binary tree

#include <stdio.h>

#include <stdlib.h>

#include <conio.h>

struct bin_tree

{

 int INFO;

 struct node *LEFT, *RIGHT;

};

typedef struct bin_tree node;

node *insert(node *,int); /*Function prototype for inserting a new node*/

void preorder(node *); /*Function prototype for displaying preorder

traversal path*/

void inorder(node *); /*Function prototype for displaying inorder traversal

path*/

void postorder(node *); /*Function prototype for displaying postorder

traversal path*/

int count = 1; /*Counter for ascertaining left or right position for the

new node*/

void main()

{

 struct node *root = NULL;

 int element, choice;

 clrscr();

"

220 Data Structures Using C

 /*Displaying a menu of choices*/

 while(1)

 {

 clrscr();

 printf(“Select an option\n”);

 printf(“\n1 - Insert”);

 printf(“\n2 - Preorder”);

 printf(“\n3 - Inorder”);

 printf(“\n4 - Postorder”);

 printf(“\n5 - Exit”);

 printf(“\n\nEnter your choice: “);

 scanf(“%d”, &choice);

 switch(choice)

 {

 case 1:

 {

 printf(“\n\nEnter the node value: “);

 scanf(“%d”,&element);

 root = insert(root,element); /*Calling the insert function for inserting

a new element into the tree*/

 getch();

 break;

 }

 case 2:

 {

 preorder(root); /*Calling the preorder function*/

 getch();

 break;

 }

 case 3:

 {

 inorder(root); /*Calling the inorder function*/

 getch();

 break;

 }

 case 4:

 {

 postorder(root); /*Calling the postorder function*/

 getch();

 break;

 }

 case 5:

 {

Trees 221

C
h
a
p

t
e
r

E
i
g

h
t

 exit(1);

 break;

 }

 default:

 {

 printf(“\nIncorrect choice. Please try again.”);

 getch();

 break;

 }

 }

 }

}

node *insert(node *r, int n)

{

 if(r==NULL)

 {

 r=(node*) malloc (sizeof(node));

 r->LEFT = r->RIGHT = NULL;

 r->INFO = n;

 count=count+1;

 }

 else

 {

 if(count%2==0)

 r->LEFT = insert(r->LEFT, n);

 else

 r->RIGHT = insert(r->RIGHT, n);

 }

 return(r);

}

void preorder(node *r)

{

 if(r!=NULL)

 {

 printf(“%d\n”,r->INFO);

 preorder(r->LEFT);

 preorder(r->RIGHT);

 }

}

void inorder(node *r)

{

 if(r!=NULL)

 {

 inorder(r->LEFT);

 $

nodes in the left and right subtrees.

222 Data Structures Using C

 printf(“%d\n”,r->INFO);

 inorder(r->RIGHT);

 }

}

void postorder(node *r)

{

 if(r!=NULL)

 {

 postorder(r->LEFT);

 postorder(r->RIGHT);

 printf(“%d\n”,r->INFO);

 }

}

Output

Select an option

1 - Insert

2 - Preorder

3 - Inorder

4 - Postorder

5 - Exit

Enter your choice: 1

Enter the node value: 1

Enter your choice: 1

Enter the node value: 2

Enter your choice: 1

Enter the node value: 3

Enter your choice: 1

Enter the node value: 4

Enter your choice: 1

Enter the node value: 5

Enter your choice: 1

Enter the node value: 6

Trees 223

C
h
a
p

t
e
r

E
i
g

h
t

Select an option

1 - Insert
2 - Preorder
3 - Inorder
4 - Postorder
5 - Exit

Enter your choice: 2
1
2
4
6
3
5

Select an option

1 - Insert
2 - Preorder
3 - Inorder
4 - Postorder
5 - Exit

Enter your choice: 3
6
4
2
1
3
5

Select an option

1 - Insert
2 - Preorder
3 - Inorder
4 - Postorder
5 - Exit

Enter your choice: 4
6
4
2
5
3
1

Select an option

1 - Insert
2 - Preorder

% $

 $

% $

224 Data Structures Using C

3 - Inorder

4 - Postorder

5 - Exit

Enter your choice: 5

Program analysis

Key Statement Purpose

node *insert(node *,int);

void preorder(node *);

void inorder(node *);

void postorder(node *);

Declares the function prototypes for inserting a new

node and traversing the binary tree using different

traversal methods

preorder(root); Calls the preorder() function to traverse the binary tree

in preorder sequence

inorder(root); Calls the inorder() function to traverse the binary tree

in inorder sequence

postorder(root); Calls the postorder() function to traverse the binary tree

in postorder sequence

8.6 BINARY SEARCH TREE

A binary tree is referred as a binary search tree if for any

node n in the tree:

1. the node elements in the left subtree of n are lesser

in value than n.

2. the node elements in the right subtree of n are greater

than or equal to n.

Thus, binary search tree arranges its node elements in a

sorted manner. As the name suggests, the most important

application of a binary search tree is searching. The average

running time of searching an element in a binary search tree

is O (logn), which is better than other data structures like

array and linked lists.

 Check Point

1. Which node in a binary tree

does not have a parent node?

Ans. Root

2. Which tree traversal method

processes the root node first and

then the left and right subtrees?

Ans. Preorder

Fig. 8.8 Binary search tree

Figure 8.8 shows a sample binary search tree.

As we can see in the figure, all the nodes in the left subtree are less

than the nodes in the right subtree.

The various operations performed on a binary search tree are:

1. Insert

2. Search

3. Delete

1. Insert The insert operation involves adding an element into the

binary tree. The location of the new element is determined in such

a manner that insertion does not disturb the sort order of the tree.

Trees 225

C
h
a
p

t
e
r

E
i
g

h
t

Example 8.5 Write a C function for inserting an element into a binary search tree.

node *insert(node *r, int n)

{

if(r==NULL)

{

r=(node*) malloc (sizeof(node));

r->LEFT = r->RIGHT = NULL;

r->INFO = n;

}

else if(n<r->INFO)

r->LEFT = insert(r->LEFT, n);

else if(n>r->INFO)

r->RIGHT = insert(r->RIGHT, n);

else if(n==r->INFO)

printf(“\nInsert Operation failed: Duplicate Entry!!”);

return(r);

}

2. Search The search operation involves traversing the various nodes of the binary tree to search

each iteration, the number of nodes to be searched gets reduced. For example, if the value to

be searched is less than the root value then the remainder of the search operation will only be

performed in the left subtree while the right subtree will be completely ignored.

Example 8.6 Write a C function for searching an element in a binary search tree.

void search(node *r,int n)

{

if(r==NULL)

{

printf(“\n%d not present in the tree!!”,n);

return;

}

else if(n==r->INFO)

printf(“\nElement %d is present in the tree!!”,n);

else if(n<r->INFO)

search(r->LEFT,n);

else

search(r->RIGHT,n);

}

3. Delete The delete operation involves removing an element from the binary search tree. It is

in such a manner that the sort order of the tree is regained. The delete operation is depicted in

Fig. 8.9.

&

 $

location where the new node will

be inserted.

226 Data Structures Using C

Fig. 8.9 Deleting an element from binary search tree

As we can see in Fig. 8.9, if the node to be deleted is a leaf node, then it is simply deleted without

requiring any shuffling of other nodes. However, if the node to be deleted is an internal node then

appropriate shuffling is required to ensure that the tree regains its sort order.

Example 8.7 Write a C function for deleting an element from a binary search tree.

int del(node *r,int n)

{

 node *ptr;

 if(r==NULL)

 {

 return(0);

 }

 else if(n<r->INFO)

 return(del(r->LEFT,n));

 else if(n>r->INFO)

 return(del(r->RIGHT,n));

 else

 {

& '

 *

successful search.

 Trees 227

C
h
a
p

t
e
r

E
i
g

h
t

 if(r->LEFT==NULL)

 {

 ptr=r;

 r=r->RIGHT;

 free(ptr);

 return(1);

 }

 else if(r->RIGHT==NULL)

 {

 ptr=r;

 r=r->LEFT;

 free(ptr);

 return(1);

 }

 else

 {

 ptr=r->LEFT;

 while(ptr->RIGHT!=NULL)

 ptr=ptr->RIGHT;

 r->INFO=ptr->INFO;

 return(del(r->LEFT,ptr->INFO));

 }

 }

}

 4. Implementation The implementation of a binary search tree requires implementing the insert,

search, and delete operations.

Example 8.8 Write a C program for implementing a binary search tree.

Program 8.3 uses the insert (Example 8.5), search (Example 8.6), and delete (Example 8.7) functions.

Program 8.3 Implementation of a binary tree

#include <stdio.h>

#include <stdlib.h>

#include <conio.h>

struct BST

{

 int INFO;

 struct node *LEFT, *RIGHT;

};

typedef struct BST node;

node *insert(node *,int); /*Function prototype for inserting a new node*/

void search(node *,int); /*Function prototype for searching a node*/

int del(node *,int); /*Function prototype for deleting a node*/

void display(node*);

void main()

228 Data Structures Using C

{

 struct node *root = NULL;

 clrscr();

 /*Displaying a menu of choices*/

 while(1)

 {

 clrscr();

 printf(“Select an option\n”);

 printf(“\n1 - Insert”);

 printf(“\n2 - Search”);

 printf(“\n3 - Delete”);

 printf(“\n4 - Display”);

 printf(“\n5 - Exit”);

 printf(“\n\nEnter your choice: “);

 scanf(“%d”, &choice);

 switch(choice)

 {

 case 1:

 {

 printf(“\n\nEnter the node value: “);

 scanf(“%d”,&element);

 root = insert(root,element); /*Calling the insert function for inserting

 a new element into the tree*/

 getch();

 break;

 }

 case 2:

 {

 printf(“\nEnter the element to be searched: “);

 scanf(“%d”,&num);

 search(root,num);

 getch();

 break;

 }

 case 3:

 {

 printf(“\n\nEnter the element to be deleted: “);

 scanf(“%d”,&num);

 printf(“\nElement %d deleted from the list”,num);

 else

 Trees 229

C
h
a
p

t
e
r

E
i
g

h
t

 printf(“\nElement %d not present in the list”,num);

 getch();

 break;

 }

 case 4:

 {

 display(root);

 getch();

 break;

 }

 case 5:

 {

 exit(1);

 break;

 }

 default:

 {

 printf(“\nIncorrect choice. Please try again.”);

 getch();

 break;

 }

 }

 }

}

void display(node * r)

{

 if(r->LEFT!=NULL)

 display(r->LEFT);

 printf(“%d\n”,r->INFO);

 if(r->RIGHT!=NULL)

 display(r->RIGHT);

}

Output

Select an option

1 - Insert

2 - Search

3 - Delete

4 - Display

5 - Exit

Enter your choice: 1

Enter the node value: 6

230 Data Structures Using C

Enter your choice: 1

Enter the node value: 1

Enter your choice: 1

Enter the node value: 5

Enter your choice: 1

Enter the node value: 2

Enter your choice: 1

Enter the node value: 4

Enter your choice: 1

Enter the node value: 3

Select an option

1 - Insert

2 - Search

3 - Delete

4 - Display

5 - Exit

Enter your choice: 4

1

2

3

4

5

6

Enter your choice: 2

Enter the element to be searched: 7

7 not present in the tree!!

Enter your choice: 2

Enter the element to be searched: 4

Element 4 is present in the tree!!

 +

 Trees 231

C
h
a
p

t
e
r

E
i
g

h
t

Select an option

1 - Insert
2 - Search
3 - Delete
4 - Display
5 - Exit

Enter your choice: 3

Enter the element to be deleted: 8

Element 8 not present in the list

Enter the element to be deleted: 4

Element 4 deleted from the list

Select an option

1 - Insert
2 - Search
3 - Delete
4 - Display
5 - Exit

Enter your choice: 5

Program analysis

Key Statement Purpose

node *insert(node *,int);

void search(node *,int);

int del(node *,int);

void display(node*);

Declares function prototypes for performing operations

on the binary search tree

root = insert(root,element); Calls the insert()function for inserting a new node into

the binary search tree

search(root,num); Calls the search()function for performing search

operation on the binary search tree

flag=del(root,num); Calls the del()function for deleting an element from the

binary search tree

display(root); Calls the !function for displaying the nodes of

the binary search tree

8.7 TREE VARIANTS

Based on the concept of trees, binary trees and binary search trees various tree variants have been

deduced. Each of these variants possesses distinct characteristics and serves specific purposes. For

232 Data Structures Using C

example, balanced binary trees balance their nodes in such a way that the height of the tree is always

kept to a minimum, thus ensuring better average case performance at the time of searching.

In the subsequent sections, we will learn about the various tree variants.

8.7.1 Expression Trees

Expression tree is nothing but a binary tree containing mathematical expression. The internal nodes of

the tree are used to store operators while the leaf or terminal nodes are used to store operands. Various

compilers and parsers use expression trees for evaluating arithmetic and logical expressions.

Consider the following expression:

(a+b)*(a–b/c)

The expression tree for the above expression is shown in Fig. 8.10.

Fig. 8.10 Expression tree

As shown in the above tree, the internal nodes store the operators while the leaf nodes store the

operands. While constructing a binary tree from a given expression, the following precedence rules

are followed:

 2. The exponential expressions are evaluated next.

 3. Then, division and multiplication operations are evaluated.

 4. Finally, addition and subtraction operations are evaluated.

Representing an expression using a binary tree has another key advantage. By applying the various

traversal methods we can deduce the other representations of an expression. For example, the preorder

traversal of an expression tree derives its prefix notation.

Table 8.3 shows the various expression notations deduced after traversing the expression tree shown

in Fig. 8.10.

Table 8.3 Expression notations

Expression Notation Traversal Method Example (Refer to Fig. 8.10)

Prefix Preorder *+ab–a/bc

Infix Inorder a+b*a–a/c

Postfix Postorder ab+abc/-*

Trees 233

C
h
a
p

t
e
r

E
i
g

h
t

8.7.2 Threaded Binary Trees

Let us recall the structure declaration of a tree node described during the linked implementation of a

binary tree:

struct bin_tree

{

 int INFO;

 struct node *LEFT, *RIGHT;

};

As we can see in the above declaration, each node in a binary tree has two pointer nodes associated with

it, i.e., LEFT and RIGHT. Now, in case of leaf nodes, these pointers contain NULL values. Considering

the number of leaf nodes that are there in a typical binary tree, this leads to a lot of memory space getting

wasted. Threaded binary trees offer an innovative alternate to avoid this memory wastage.

In a threaded binary tree, all nodes that do not have a right child contain a pointer or a thread to its

inorder successor. The address of the inorder successor node is stored in the RIGHT pointer. But, how do

we distinguish between a normal pointer and a thread pointer? This is done with the help of a Boolean

variable, as shown in the below node declaration of a threaded binary tree:

struct t_tree

{

 int INFO;

 struct node *LEFT, *RIGHT;

 boolean LThread, RThread;

};

NoteN - / + /

 $

Figure 8.11 shows a threaded binary tree.

As shown in the figure, nodes D, E, F and H contain threads to

point at their inorder successors.

Now, what is the advantage of a threaded binary tree

representation? Try to recall the algorithm for inorder traversal

of a binary tree. The algorithm uses recursive function calls to

determine the inorder traversal path. The execution of recursive

function calls requires the use of stack and consumes both memory

as well as time. The threaded tree traversal allows us to determine

the inorder sequence using an iterative approach instead of a

recursive approach. Fig. 8.11 Threaded binary tree

234 Data Structures Using C

Example 8.9 Write the algorithm for traversal of a threaded binary tree to generate the inorder

sequence.

Solution

inorder(node)

Step 1: Start
Step 2: Set current = leftmost(node)
//current refers to the current node
//leftmost function returns the left most node value in a subtree
Step 3: while current != NULL repeat Steps 4-7
Step 4: Display current
Step 5: If current->RThread != NULL goto Step 6 else goto Step 7
Step 6: Set current = current->RIGHT
Step 7: Set current = leftmost(current->RIGHT)
Step 8: Stop

leftmost (node)

Step 1: Start
Step 2: Set ptr = node
Step 3: if ptr = NULL goto Step 4 else goto Step 5
Step 4: Return NULL and goto Step 8
Step 5: while ptr->LEFT != NULL repeat Step 6
Step 6: Set ptr = ptr->LEFT
Step 7: Return ptr
Step 8: Stop

If we apply the above algorithm on the threaded binary tree shown in Fig. 8.11, then we will obtain

the following inorder sequence:

D-B-E-A-F-C-H-G

8.7.3 Balanced Trees

In the previous sections, we saw how nodes

are added to a binary search tree. With

each addition of a node in a tree, there is a

possibility that the height of the tree may

also get changed. The height of a tree has

a direct affect on its efficiency to perform

the search operation. For instance, consider

the binary search trees shown in Fig. 8.12.

 Check Point

1. In an expression tree, the internal nodes contain ______ while the leaf nodes contain ______.

Ans. operators, operands

2. In a threaded binary tree, a RIGHT thread points at the ___________ successor of a node.

Ans. Inorder

Fig. 8.12 Binary search trees

 Trees 235

C
h
a
p

t
e
r

E
i
g

h
t

Both the binary search trees shown in the above figure contain the same nodes however the height of

the first tree is 2 while that of the second tree is 6. To search element 30 in the above trees, we need to

dig a lot deeper in the second tree as compared to the first tree. Thus, while implementing binary trees,

it is important to keep the height of the tree in check.

There are various binary search trees that keep the tree balanced whenever a new node is added by

shuffling the tree nodes appropriately. These are:

 1. AVL tree

 2. Red-Black tree

1. AVL tree AVL tree, also called height-balanced tree was defined by mathematicians Adelson, Velskii

and Landis in the year 1962. The main characteristic of an AVL tree is that for all its nodes, the height

of the left subtree and the height of the right subtree never differ by more than

At any point of time, an AVL tree node is in any one of the following states:

 (a) Balanced The height of left subtree is equal to the height of right subtree.

 ! 4 The height of left subtree is one more than the height of right subtree.

 ! # The height of right subtree is one more than the height of left subtree.

Figure 8.13 shows an AVL tree.

Fig. 8.13 AVL tree

As shown in Fig. 8.13, the height of left and right subtrees of each node differs by not more than 1.

Now, how is an AVL tree created and maintained? This is done by associating a balance factor (BF)

with each node that keeps a track of the height balance for that particular node. BF for a node is calculated

by using the following formula:

BF = Height of Left Subtree – Height of Right Subtree

Let us apply the above formula to calculate the balance factor for each node of the AVL tree shown

in Fig. 8.13. Figure 8.14 shows the updated AVL tree.

236 Data Structures Using C

Fig. 8.14 AVL tree with balance factors

As shown in Fig. 8.14, the balance factors of all the nodes are not more than 1, which is the key

characteristic of an AVL tree.

The structure declaration of an AVL tree node contains an additional field for storing the balance

factor, as shown below:

struct avl_node

{

 int INFO;

 struct node *LEFT, *RIGHT;

 int BF;

};

Whenever a new node is inserted in an AVL tree, a slight disbalance is created at the point of insertion

which reflects in the balance factors of the nodes in its preceding path till the root node. To restore the

balance of the tree, left and right rotations are carried out to move the nodes towards the right or left.

This is repeated until the balance factors of all the nodes are reduced below 1.

Figure 8.15 shows the insertion of node value 15 into the AVL tree shown in Fig. 8.14. It depicts how

the disbalance resulting out of the insert operation is corrected.

Fig. 8.15 Inserting an element in an AVL tree

 Trees 237

C
h
a
p

t
e
r

E
i
g

h
t

The delete operation follows a similar approach. A left or right rotation may need to be carried out

if a node is deleted from an AVL tree.

2. Red-Black tree Red-Black tree is a self-balancing binary search tree that has an average running time

of O (logn) for insert, delete and search operations. As the name suggests, the red-black tree associates

a color attribute with each node, which can possess only two values, red or black. That means each

node in a red-black tree is either red or black colored. Apart from possessing the properties of a typical

binary search tree, a red-black tree possesses the following properties:

 (a) Each node is either red or black in color.

 (b) The root node is black colored.

 (c) The leaf nodes are black colored. It includes the NULL children.

 (d) The child nodes of all red-colored nodes are black.

 (e) Each path from a given node to any of its leaf nodes contains equal number of black nodes. The

number of such black nodes is also referred as black-height (bh) of the node.

The above properties ensure that the length of the longest path from the root node to a leaf node is

less than roughly twice of the shortest path. This ensures that the balance of the tree is always kept under

check. The key advantage of a red-black tree is that its worst case running time is better than most of

the other binary search trees.

Figure 8.16 shows a red-black tree.

Fig. 8.16 Red-Black tree

The insert and delete operations on a red-black tree require small number of rotations as well as

change of colors of some of the nodes so that the tree complies with all the properties of a red-black

tree. However, the average running time of these operations is O (logn).

8.7.4 Splay Trees

The concept of splay trees is based on the assumption that when a particular element is accessed from a

binary search tree then there are high chances that the same element would be accessed again in future.

Now, if the element is placed deep in the tree then all such repetitive accesses would be inefficient. To

make the repetitive accesses of a node efficient, splay tree shifts the accessed node towards the root

238 Data Structures Using C

two levels at a time. This shifting is done through splay rotations. Table 8.4 shows the various types of

splay rotations along with an illustration.

Table 8.4 Splay rotations

Splay Rotation Occurrence Illustration

Zig When root node P is the

parent of the node N being

accessed.

Zigzag When node N is the right

child of parent P, which

itself is the left child of

grandparent G.

Or, when node N is the left

child of parent P, which

itself is the right child of

grandparent G.

Zigzig When both node N and

parent P are left or right

child of grandparent G.

Splay rotations ensure that all future accesses of a node are efficient as compared to its first time access.

Let us now discuss what happens when typical tree-related operations are performed on a splay tree:

 1. Insert New element is inserted at the root.

 2. Search There are two possibilities:

 (a) Successful search The searched node is moved to the root position.

 (b) Unsuccessful search The last node accessed during the unsuccessful search operation is

moved to the root position.

 3. Delete

the largest node in the left subtree is moved to the root position.

8.7.5 m-way Trees

Binary search trees are more suitable for smaller data sets where the data is static. However, for large data

sets which require dynamic access (example file storage); binary search trees are not exactly suitable.

For such cases, the nodes of the tree are required to store large amounts of data. This is achieved with

the help of m-way trees.

m-way search trees are an extension of binary search trees having the following properties:

 1. Each node of the tree stores 1 to m–1 number of keys.

 2. The keys are stored in a sorted manner inside the node.

 Trees 239

C
h
a
p

t
e
r

E
i
g

h
t

 3. A node containing k values can have a maximum of k+1 subtrees.

 4. The subtree pointed by pointer Ti has values less than the key value of ki+1.

 5. All the subtrees are m-way trees.

Figure 8.17 shows a sample m-way tree.

Fig. 8.17 Sample m-way tree

(a) B tree To ensure efficiency while searching an m-way tree it is important to control its height.

This is achieved with the help of B tree. A B tree is nothing but a height balanced m-way search tree.

A B tree of order m has the following properties:

 i. Root node is either a leaf node or it contains child nodes ranging from 2 to m.

 ii. All internal nodes contain a maximum of m–1 keys.

 iii. Number of children of internal nodes ranges from m/2 to m.

 iv. Number of keys stored in the leaf nodes ranges from (m–1)/2 to m–1. All the keys are stored in

a sorted manner.

 v. All leaf nodes are at the same depth.

Figure 8.18 shows a sample B tree.

Fig. 8.18 Sample B tree

An element is inserted in a B tree by first identifying the location where the new node should be

inserted. If the existing node is not full, the new element is inserted within the existing node and an

appropriate pointer is created linking it with the parent node. However, if the exiting node is full then it

is split into three parts. The middle part is accommodated with the parent node while the new element

is inserted in one of the child nodes.

Similarly, deletion of an element from a B tree is done by first removing the element from a node and

then carrying out appropriate redistributions to ensure that the tree stays true to its properties.

240 Data Structures Using C

(b) B+ tree B+ tree is a variant of B tree that is mainly used for implementing index sequential access

of records. The main difference between B+ tree and B tree is that in B+ tree data records are only stored

in the leaf nodes. The internal nodes of a B+ tree are only used for storing the key values. The key values

help in performing the search operation. If the target element is less than a key value then the search

proceeds towards its left pointer. Similarly, if the target element is greater than a key value then the

search proceeds towards its right pointer.

A B+ tree of order m has the following properties:

i. The internal nodes contain up to m–1 keys.

ii. The number of children of internal nodes lies between m/2 and m.

 ! ! !" ! # $!"

iv. All leaf nodes are at the same level.

v. All the leaf nodes are sequentially connected through a linked list.

B+ tree is typically used for implementing index sequential file organization in a database. The internal

nodes are used for representing index values through which data records in the sequence set are accessed.

Figure 8.19 shows a sample B+ tree.

Fig. 8.19 Sample B+ tree

 Check Point

1. In which situation is a zig-zig splay rotation performed?

Ans. When both node N and parent P are left or right child of grandparent G.

2. B+ tree implementation helps in performing ____________ search.

Ans. Index-sequential search.

Summary

© Tree is a non-linear data structure which stores the data elements in a hierarchical manner.

© The top node of a tree is marked as a root node while the remaining nodes are partitioned across

the subtrees present under the root node.

© A binary tree is a restricted form of a general tree that can have zero, one or two child nodes

but not more than that.

© Traversal is the process of visiting the various elements of a data structure. Binary tree traversal

can be performed using three methods: preorder, inorder and postorder.

© If N represents the parent node, L represents the left subtree and R represents the right subtree

then

Trees 241

C
h
a
p

t
e
r

E
i
g

h
t

 o $ N–L–R

 o $ L–N–R

 o $ L–R–N

© A binary search tree arranges its node elements in a sorted manner. The node elements in the

left subtree are less than the parent node while the node elements in the right subtree are greater

than or equal to the parent node.

© Expression tree is a binary tree whose internal nodes store operators while the leaf or terminal

nodes store the operands.

© A threaded binary tree uses the empty NULL pointers of nodes to create threads to their inorder

successors. This increases the inorder traversal efficiency by preventing the use of recursive

function calls.

© In an AVL tree, the height of the left subtree and the height of the right subtree differ by not more

than 1. Keeping the height of the tree in check ensures that the search efficiency is optimized.

© Red-Black tree is a self-balancing binary search tree that has an average running time of O

(logn) for insert, delete and search operations. Each node in a red-black tree is colored either

red or black.

© m-way search trees are a generalized form of binary search trees that are used for storing large

amounts of data. The two types of m-way trees are: B tree and B+ tree.

Key Terms

© Root It is the top node in a tree.

© Leaf It is the terminal node that does not have any child nodes.

© Depth or Height It is the maximum level of a node in a tree.

© INFO Stores the value of the tree node.

© LEFT Stores a pointer to the left child.

© RIGHT Stores a pointer to the right child.

© Preorder Traverses the tree in N–L–R order.

© Inorder Traverses the tree in L–N–R order.

© Postorder Traverses the tree in L–R–N order.

© Thread Stores the address of the inorder successor of a node in a threaded binary tree.

© Balance factor Height of Left Subtree – Height of Right Subtree

Multiple-Choice Questions

8.1 All the child nodes of a parent node are referred as ________?

(a) neighbors (b) siblings

(c) internal nodes (d) leaf nodes

8.2 The degree of a binary tree is

(a) 1 (b) 2

(c) 3 (d) n, where n is the number of nodes in the tree

8.3 The right pointer of a threaded binary tree points at

(a) NULL (b) Root

(c) inorder successor (d) postorder successor

242 Data Structures Using C

 8.4 The expression, (a+b)*(a–b) is stored in an expression tree. What will be its preorder sequence?

 (a) (a+b)*(a–b) (b) +ab-ab*

 (c) ab+ab-* (d) *+ab–ab

 8.5 Which of the following trees stores its elements in a sorted manner?

 (a) General tree (b) Binary tree

 (c) Binary search tree (d) None of the above

Review Questions

 8.1 What is a tree? Explain any five key terms associated with a tree.

 8.2 What is the difference between complete binary tree and perfect binary tree?

 8.3 What are the two types of balanced binary trees? Explain with the help of an illustration.

 8.4 What is the advantage of linked implementation of a binary tree over array implementation?

 8.5 What are the different types of tree traversal methods? Explain with the help of an example.

 8.6 Deduce the preorder and postorder sequences for the following binary tree:

 8.7 What is a binary search tree? Explain with the help of an example.

 8.8 What is an expression tree? Explain with the help of an example.

 8.9 What is a splay tree? Explain the different types of splay rotations.

 8.10 hat is an m-way tree? Explain the two instances of m-way trees.

Programming Exercises

 8.1 Write a function in C to count the number of nodes in a binary tree.

 8.2 Write a function in C to display the elements of a binary search tree in ascending order.

 8.3 Write a function in C that displays all the leaf nodes of a binary tree.

 8.4 Write a function in C that returns the degree of a binary tree node.

 8.5 Write a C function that transforms a given binary tree into a binary search tree.

Answers to Multiple-Choice Questions

 8.1 (b) 8.2 (b) 8.3 (c) 8.4 (d) 8.5 (c)

Graphs 243

9.1 Introduction

9.2 Basic Concept

9.3 Graph Terminology

9.4 Graph Implementation

 9.4.1 Implementing Graphs using Adjacency Matrix

 9.4.2 Implementing Graphs using Path Matrix

 9.4.3 Implementing Graphs using Adjacency List

9.5 Shortest Path Algorithm

9.6 Graph Traversal

 9.6.1 Breadth First Search

 9.6.2 Depth First Search

Summary

Key Terms

Multiple-Choice Questions

Review Questions

Programming Exercises

Answers to Multiple-Choice Questions

GRAPHS

9

GraGGrGGGG phsphshsphssphshshshpp 243242244344324434333

C
h
a
p
t
e
r

O
u
t
l
i
n
e

244 Data Structures Using C

9.1 INTRODUCTION

Till now, we have learnt about different types of data structures, such as arrays, linked lists, trees, etc.

In this chapter, we will learn about another important data structure called graph. It is similar to the

mathematical graph structure, which comprises of a set of vertices connected with each other through

edges. Some of the typical operations performed on a graph data structure include finding possible paths

between two nodes and finding the shortest possible path.

Graph data structure finds its application in varied domains, such as computer network analysis,

travel application, chip designing, gaming and so on.

In this chapter, we will learn how a graph data structure is represented and what algorithms are used

for graph traversal. We will also learn about the shortest path algorithm that allows us to find the shortest

path between two nodes.

9.2 BASIC CONCEPT

A graph G consists of the following elements:

 1, v2,

v3,, vn}

 1,

e2, e3,, en}

Figure 9.1 shows a sample graph G.

In Fig. 9.1, e1 is an edge between v1 and v2 vertices

while e2 is an edge between v2 and v3 vertices. Thus, we

 ! "

e connects both u and v vertices.

" $ $ " % $

no significance here. Thus, we can call the graph G as undirected graph.

If we replace each edge of the Graph G with arrows, then it will become a directed graph or diagraph,

as shown in Fig. 9.2.

Fig. 9.2 Directed graph

In Fig. 9.2 graph, the set of vertices and edges are:

 1, v2, v3, v4, v5}

 1, v2 2, v3 1, v4 4, v3 3, v5 &

Fig. 9.1 Graph G

Graphs 245

C
h
a
p

t
e
r

N
i
n
e

9.3 GRAPH TERMINOLOGY

There are a number of key terms associated with the concept of graphs. Table 9.1 explains some of

these important key terms.

Table 9.1 Graph terminology

Key Terms Description

Adjacent node ' " ! (" ("

are called adjacent to each other. That means, u is adjacent to v and v is

adjacent to u.

Predecessor node ' " ! $ " " !

node of v.

Successor node ' " ! $ " "

node of u.

Degree Degree of a vertex is the number of edges connected to a vertex. For

example, in the graph shown in Fig. 9.1, the degree of vertex v3 is 3.

Indegree In a directed graph, indegree of a vertex is the number of edges ending

at the vertex.

Outdegree In a directed graph, outdegree of a vertex is the number of edges beginning

at the vertex.

Path A path is a sequence of vertices each adjacent to the next. For example,

in the graph shown in Fig. 9.2, the path between the vertices v1 and v5 is

v1–v2–v3–v5.

Cycle It is a path that starts and ends at the same vertex.

Loop ' ! $ " "

Weight It is a non-negative number assigned to an edge. It is also called length.

Order Order of a graph is the number of the vertices contained in the graph.

Labeled Graph It is a graph that has labeled edges.

Weighted Graph It is a graph that has weights assigned to each of its edges.

Connected Graph It is an undirected graph in which there is a path between each pair of nodes.

Strongly Connected Graph It is a directed graph in which there is a route between each pair of nodes.

Complete Graph It is an undirected graph in which there is a direct edge between each pair

of nodes.

Tree It is a connected graph with no cycles.

NoteN There are no standards defined related to the use of graph terminology. Thus, you may

find the same concept being referred with different names at different places. For instance,

a graph edge could also be referred as an arc or a link.

246 Data Structures Using C

9.4 GRAPH IMPLEMENTATION

Graphs are nothing but a collection of nodes

and edges. Thus, while representing graphs in

memory the only focus is on capturing details

related to the different vertices and edges.

Graphs can be implemented using the following

methods:

1. Adjacency matrix

2. Path matrix

3. Adjacency list

9.4.1 Implementing Graphs

Using Adjacency Matrix

Consider a ! #

The adjacency matrix of graph G is defined as

an N ¥ N matrix A, where:

1. Ai, j) $ * i to vj
2. and Ai, j + $ * i to vj
Let us try and understand the concept of adjacency matrix

with the help of an example: Consider the graph shown in

Fig. 9.3.

The adjacency matrix of the above graph will be

 + ! (

the corresponding vertices while 1s represent the presence of a

directed edge.

Example 9.1 Write a program in C to represent a graph using

adjacency matrix.

Program 9.1 represents the directed graph shown in Fig. 9.3 with

the help of adjacency matrix.

Program 9.1 C program to represent adjacency matrix

#include <stdio.h>

#include <conio.h>

void main()

{

int A[5][5];
 int i,j;

 clrscr();

 Check Point

1. In a weighted directed graph, what does the

term weighted and directed signify?

Ans. The term weighted signifies that all the

edges of the graph are assigned an integer number

called weight. The term directed signifies that

each edge of the graph is a pointed arrow that

points from one vertex to the other.

2. What is indegree?

Ans. Indegree of a vertex is the number of edges

incident on the vertex.

Fig. 9.3 Graph

Ai, j 1 2 3 4 5

1 1 1 + 1 +

2 + + 1 + +

3 + + + + 1

4 + + 1 + +

5 + + + + +

Graphs 247

C
h
a
p

t
e
r

N
i
n
e

for(i=0;i<5;i++)

 for(j=0;j<5;j++)

A[i][j]=0; /*Initializing the array A*/

/*Creating adjacency matrix*/

 A[0][0]=1;

 A[0][1]=1;

 A[0][3]=1;

 A[1][2]=1;

 A[2][4]=1;

 A[3][2]=1;

/*Printing Adjacency Matrix*/

 printf(“Adjacency Matrix:”);

 for(i=0;i<5;i++)

 {

 printf(“\n”);

 for(j=0;j<5;j++)

 printf(“%d “,A[i][j]);

 }

getch();

}

Output

Adjacency Matrix:

1 1 0 1 0

0 0 1 0 0

0 0 0 0 1

0 0 1 0 0

0 0 0 0 0

Program analysis

Key Statement Purpose

int A[5][5]; Declares a two-dimensional array for storing the

adjacency matrix

A[i][j]=0; Initializes the array A before storing the adjacency

matrix values

Advantages and Disadvantages

The advantage of adjacency matrix representation of a graph is that it is simple to implement. However

it also has certain disadvantages, such as the following:

) ' /" 0 2 $ $! 6 $ * !

 7 ' ! (8 ! ! "$(

Since, we have already initialized all

the elements of the adjacency matrix

to 0, we do not need to explicitly

write the assignment statements for

non-edges.

248 Data Structures Using C

9.4.2 Implementing Graphs Using Path Matrix

; ! # % ! $ * ! # ¥ N

matrix P, where

 1. Pi, j) ! $ * i to vj, and

 2. Pi, j + ! $ * i to vj.

Now, the path matrix P can be deduced using the adjacency matrix of G, as depicted below:

PN <
2 < 3 < < N

Here, A2 is the square of the adjacency matrix A, A3 is the cube of A, and so on. All the non-zero

entries resulting from the addition operation above are replaced by 1 to arrive at the path matrix.

This method of deriving the path matrix by computing powers of adjacency matrix is not very efficient,

as it requires performing a number of matrix multiplication operations. Warshall has suggested a more

simplified method of deriving the path matrix from the adjacency matrix. Warshall’s method determines

the presence of a path between vi and vj by

 1. identifying a direct path from vi to vj, and

 2. identifying an indirect path from vi and vj that is, a path from vi to vk and vk to vj.

That is, Pi, j =i, j 0> =i, k AND Pk, j

Here, OR represents the logical OR operation and AND represents the logical AND operation.

Example 9.2 Write the Warshall’s algorithm for deriving the path matrix of a digraph G.

path_matrix(Adjacency Matrix A[], N)
Step 1: Start

Step 2: Set P[] = A[]

Step 3: Set i = j = k = 1

Step 4: Repeat Steps 5-10 while k <=N

Step 5: Repeat Steps 6-9 while i <=N

Step 6: Repeat Steps 7-8 while j <=N

Step 7: P[i,j] = P[i,j] OR (P[i,k] AND P[k,j])

Step 8: j = j + 1

Step 9: i = i + 1

Step 10: k = k + 1

Step 11: Display path matrix P[]

Step 12: Stop

Example 9.3 ? ! $ * $! @) !! B E $

the path matrix of a diagraph.

Program 9.2 uses Warshall’s algorithm to derive the path matrix of the digraph shown in Fig. 9.3.

Program 9.2 Deriving path matrix using Warshall’s algorithm

#include <stdio.h>

#include <conio.h>

int AND(int, int); /* Function prototype for performing logical AND

operation*/

int OR(int, int); /* Function prototype for performing logical OR operation*/

Graphs 249

C
h
a
p

t
e
r

N
i
n
e

void main()

{

 int A[5][5], P[5][5];
 int i,j,k;

 clrscr();

 for(i=0;i<5;i++)

 for(j=0;j<5;j++)

 A[i][j]=0;

 /*Creating adjacency matrix*/

 A[0][0]=1;

 A[0][1]=1;

 A[0][3]=1;

 A[1][2]=1;

 A[2][4]=1;

 A[3][2]=1;

 /*Printing adjacency matrix*/

 printf(“Adjacency Matrix: \n”);

 for(i=0;i<5;i++)

 {

 printf(“\n”);

 for(j=0;j<5;j++)

 printf(“%d “,A[i][j]);

 }

 for(i=0;i<5;i++)

 for(j=0;j<5;j++)

 P[i][j]=A[i][j];

 /*Creating path matrix*/

 for(k=0;k<5;k++)

 for(i=0;i<5;i++)

 for(j=0;j<5;j++)

P[i][j]=OR(P[i][j],AND(P[i][k],P[k][j]));

 /*Printing path matrix*/

 printf(“\n\nPath Matrix: \n”);

 for(i=0;i<5;i++)

 {

 printf(“\n”);

 for(j=0;j<5;j++)

printf(“%d “,P[i][j]);
 }

 getch();

}

Applying Warshall’s method.

250 Data Structures Using C

int AND(int x, int y)

{

 return(x*y);

}

int OR(int x, int y)

{

 if(x==0 && y==0)

 return(0);

 else

 return(1);

}

Output

Adjacency Matrix:

1 1 0 1 0

0 0 1 0 0

0 0 0 0 1

0 0 1 0 0

0 0 0 0 0

Path Matrix:

1 1 1 1 1

0 0 1 0 1

0 0 0 0 1

0 0 1 0 1

0 0 0 0 0

Program analysis

Key Statement Purpose

int A[5][5], P[5][5]; Declares two-dimensional arrays for storing adjacency

and path matrices

P[i][j]=A[i][j]; Copies the adjacency matrix values into the path matrix

array

P[i][j]=OR(P[i][j], AND(P[i][k],P[k][j])); Applies the Warshall’s method to generate the path

matrix values

printf(“%d “,P[i][j]); Prints the path matrix values

9.4.3 Implementing Graphs Using Adjacency List

Adjacency list is a linked representation of a graph. It consists of a list of graph nodes with each node

itself consisting of a linked list of its neighboring nodes. Figure 9.4 shows the adjacency list of the

directed graph shown in Fig. 9.3.

Since the operands associated with the

AND and OR operations are integers,

we cannot apply the relational operators

of C to obtain the desired result.

 Graphs 251

C
h
a
p

t
e
r

N
i
n
e

Fig. 9.4 Adjacency list

The adjacency list shown above contains five nodes with each node pointing towards its successor

nodes.

Example 9.4 Write a program in C to represent a graph using adjacency list.

Program 9.3 represents a directed graph using adjacency list.

Program 9.3 Representing graph using adjacency list

#include<stdio.h>

#include<conio.h>

#include<stdlib.h>

struct vertex
{
 struct vertex *edge[10];
 int id;
}node[10];

void display(int);

void main()

{

 int i,j,N;

 char ch;

 clrscr();

 i=j=N=0;

 printf(“Enter number of graph vertices: “);

 scanf(“%d”,&N);

 for(i=0;i<N;i++)

 {

 node[i].id=i;

252 Data Structures Using C

 for(j=0;j<N;j++)

 {

 printf(“Edge from %d to %d? (y/n): “,i+1,j+1);

 scanf(“%c”,&ch);

 if(ch==’y’)
 node[i].edge[j]=&node[j];
 else
 node[i].edge[j]=NULL;
 }

 }

 display(N);

 getch();

}

void display(int num)

{

 int i,j;

 printf(“\n”);

 for(i=0;i<num;i++)

 {

 printf(“Edges of node[%d] are: “,i+1);

 for(j=0;j<num;j++)

 {

 if(node[i].edge[j]==NULL)

 continue;

 printf(“(%d-%d) “,i+1,node[i].edge[j]->id+1);

 }

 printf(“\n”);

 }

}

Output

Enter number of graph vertices: 3

Edge from 1 to 1? (y/n): n

Edge from 1 to 2? (y/n): y

Edge from 1 to 3? (y/n): y

Edge from 2 to 1? (y/n): y

Edge from 2 to 2? (y/n): n

Edge from 2 to 3? (y/n): y

Edge from 3 to 1? (y/n): n

Edge from 3 to 2? (y/n): y

Edge from 3 to 3? (y/n): y

Edges of node[1] are: (1-2) (1-3)

Edges of node[2] are: (2-1) (2-3)

Edges of node[3] are: (3-2) (3-3)

Graphs 253

C
h
a
p

t
e
r

N
i
n
e

Program analysis

Key Statement Purpose

struct vertex

{

 struct vertex *edge[10];

 int id;

}node[10];

Declares a structure to represent a graph node

void display(int); Declares the function prototype for displaying the graph

represented by adjacency list

if(ch==’y’)

 node[i].edge[j]=&node[j];

else

node[i].edge[j]=NULL;

Stores information related to edges that is whether or

not an edge is present between two vertices of the graph

NoteN Adjacency matrix and path matrix are both examples of sequential representation of

graphs. Adjacency list is an example of linked representation of graphs.

9.5 SHORTEST PATH ALGORITHM

One of the most common problems associated with graphs

is to find the shortest path from one node to the other. It

finds its relevance in a number of real-life applications.

For example, consider a scenario where a freight carrier

departing from Delhi is required to drop consignments

at Lucknow, Jaipur, Ahemadabad, Pune, and Hyderabad

airports. In this situation, the route taken by the carrier

is determined by assessing the distance between each

of these cities. The final route undertaken should be the

shortest path that covers all these cities. We can relate this scenario with a graph data structure where

each city represents a graph node while the distance between the cities represents the weight of the edges.

Consider the weighted digraph shown in Fig. 9.5.

The weight matrix of the above graph will be

 Check Point

1. Write the Warshall’s relation for

computing a path matrix?

Ans. P[i,j] = P[i,j] OR (P[i,k] AND

P[k,j])

2. The end of adjacency list of a graph

node is signified by ______________.

Ans. NULL pointer

Fig. 9.5 Weighted digraph

Wi, j 1 2 3 4 5

1 8 3 + 4 +

2 + + 7 + +

3 4 + + + 5

4 + + 2 + +

5 + + + 1 +

254 Data Structures Using C

Here, Wi, j represents the weight of the edge from node vi to vj % " +

no direct edge between the corresponding nodes. Now, a modification of the Warshall’s algorithm can

be applied to the weight matrix to derive the shortest path matrix SP that represents the weight of the

shortest possible path between any two nodes of a graph.

' (! +E $ * �, as shown below.

SPi, j 1 2 3 4 5

1 8 3 8 4 8

2 8 8 7 8 8

3 4 8 8 8 5

4 8 8 2 8 8

5 8 8 8 1 8

Now, the following relation is applied to arrive at the shortest path matrix:

SPi, j ? $"$ V=i, j, SPi, k < V=k, j

The shortest path matrix obtained after applying the above relation for each graph node is

SPi, j 1 2 3 4 5

1 8 3 6 4 11

2 11 14 7 13 12

3 4 7 8 6 5

4 6 9 2 8 7

5 7)+ 3 1 8

Example 9.5 Write the modified Warshall’s algorithm for deriving the shortest path matrix of a

digraph G.

shortest_path_matrix(Path Matrix P[], N)
Step 1: Start

Step 2: Set i = j = 1

Step 3: Repeat Steps 4-9 while i<=N

Step 4: Repeat Steps 5-8 while j<=N

Step 5: if P[i,j]=0 goto Step 6 else goto Step 7

Step 6: Set SP[i,j]= 8

Step 7: Set SP[i,j]=P[i,j]

Step 8: j = j + 1

Step 9: i = i + 1

Step 10: Set i = j = k = 1

Step 11: Repeat Steps 12-17 while k<=N

Step 12: Repeat Steps 13-16 while i <=N

Step 13: Repeat Steps 14-15 while j <=N

Step 14: SP[i,j] = MINIMUM(SP[i,j], SP[i,k]+SP[k,j]

Step 15: j = j + 1

Step 16: i = i + 1

Step 17: k = k + 1

 Graphs 255

C
h
a
p

t
e
r

N
i
n
e

Step 18: Display shortest path matrix SP[]

Step 19: Stop

Example 9.6 Write a program in C to deduce the shortest path matrix of a weighted digraph G.

Program 9.4 uses modified Warshall’s algorithm to derive the shortest path matrix of the weighted

digraph shown in Fig. 9.5.

Program 9.4

#include <stdio.h>
#include <conio.h>

int MIN(int, int); /*Function prototype for computing the minimum among

two integers*/

void main()

{

 int P[5][5], SP[5][5];
 int i,j,k;

 clrscr();

 for(i=0;i<5;i++)

 for(j=0;j<5;j++)

 P[i][j]=0;

 P[0][0]=8;

 P[0][1]=3;

 P[0][3]=4;

 P[1][2]=7;

 P[2][0]=4;

 P[2][4]=5;

 P[3][2]=2;

 P[4][3]=1;

 printf(“Path Matrix: \n”);

 for(i=0;i<5;i++)

 {

 printf(“\n”);

 for(j=0;j<5;j++)

 printf(“%d\t”,P[i][j]);

 }

 for(i=0;i<5;i++)

 for(j=0;j<5;j++)

 if(P[i][j]==0)

 SP[i][j]=999;

 else

 SP[i][j]=P[i][j];

256 Data Structures Using C

 for(k=0;k<5;k++)

 for(i=0;i<5;i++)

 for(j=0;j<5;j++)

SP[i][j]=MIN(SP[i][j],SP[i][k]+SP[k][j]);

 printf(“\n\nShortest Path Matrix: \n”);

 for(i=0;i<5;i++)

 {

 printf(“\n”);

 for(j=0;j<5;j++)

printf(“%d\t”,SP[i][j]);
 }

 getch();

}

int MIN(int x, int y)

{

 if(x<=y)

 return(x);

 else

 return(y);

}

Output

Path Matrix:

8 3 0 4 0

0 0 7 0 0

4 0 0 0 5

0 0 2 0 0

0 0 0 1 0

Shortest Path Matrix:

8 3 6 4 11

11 14 7 13 12

4 7 8 6 5

6 9 2 8 7

7 10 3 1 8

Program analysis

Key Statement Purpose

int P[5][5], SP[5][5]; Declares two-dimensional arrays for storing path and

shortest path matrices

SP[i][j]=MIN(SP[i][j], SP[i][k]+SP[k][j]); Applies the modified Warshall’s algorithm for

generating the shortest path matrix values

printf(“%d\t”,SP[i][j]); Prints the shortest path matrix values

The reason for not including this code

within the main program is to ensure

modularity and make the program less

complex.

 Graphs 257

C
h
a
p

t
e
r

N
i
n
e

9.6 GRAPH TRAVERSAL

One of the common tasks associated with graphs is to traverse or visit the graph nodes and edges in a

systematic manner. There are two methods of traversing a graph:

) Y Z V YZV

 7 [! Z V [ZV

Both these methods consider the graph nodes to be in one of the following states at any given point

of time:

 1. Ready state

 2. Waiting state

 3. Processed state

The state of a node keeps on changing as the graph traversal progresses. Once the state of a node

becomes processed, it is considered as traversed or visited.

9.6.1 Breadth First Search

The BFS method begins with analyzing the starting node and then progresses by analysing its adjacent

or neighbouring nodes. Once all the neighbouring nodes of the starting node are analyzed, the algorithm

starts analyzing the neighboring nodes of each of the analyzed neighboring nodes. This method of graph

traversal requires frequent backtracking to the already analyzed nodes. As a result, a data structure is

required for storing information related to the neighboring nodes. The BFS method uses the queue data

structure for storing the nodes data.

Consider the graph shown in Fig. 9.6.

Fig. 9.6 Graph traversal

The BFS traversal sequence for the above graph will be: v1, v2, v3, v4, v5, v6, v7, v8. Another BFS

traversal sequence can be: v1, v3, v2, v6, v5, v4, v7, v8.

Example 9.7 Write an algorithm for the BFS graph traversal method.

BFS(adj[], status[], queue[], N)
Step 1: Start

Step 2: Set status[] = 1

Step 3: Push(queue, v1)

258 Data Structures Using C

Step 4: Set status[v1]=2

Step 5: Repeat Step 6–11 while queue[] is not empty

Step 6: V = Pop(queue)

Step 7: status[V]=3

Step 8: Repeat Step 9-11 while adj(V) is not empty

Step 9: If adj(V) = 1 goto step 10 else goto step 8

Step 10: Push(queue, adj(V))

Step 11: Set adj[v]=2

Step 12: Stop

NoteN Pop means removing an element from the queue while push means inserting an element

into the queue.

9.6.2 Depth First Search

Unlike the BFS traversal method, which visits the graph nodes level by level, the DFS method visits

the graph nodes along the different paths. It begins analyzing the nodes from the start to the end node

and then proceeds along the next path from the start node. This process is repeated until all the graph

nodes are visited.

The DFS method also requires frequent backtracking to the already analyzed nodes. It uses the stack

data structure for storing information related to the previous nodes.

Let us again consider the graph shown in Fig. 9.6. The DFS traversal sequence for this graph will be:

v1, v2, v4, v8, v5, v7, v3, v6. Another DFS traversal sequence can be: v1, v3, v6, v7, v8, v2, v5, v4.

Example 9.8 Write an algorithm for the DFS graph traversal method.

DFS(adj[], status[], stack[], N)
Step 1: Start

Step 2: Set status[] = 1

Step 3: Push(stack, v1)

Step 4: Set status[v1]=2

Step 5: Repeat Step 6–11 while stack[]

is not empty

Step 6: V = Pop(stack)

Step 7: status[V]=3

Step 8: Repeat Step 9-11 while adj(V) is

not empty

Step 9: If adj(V) = 1 goto step 10 else

goto step 8

Step 10: Push(stack, adj(V))

Step 11: Set adj[v]=2

Step 12: Stop

 Check Point

1. What is BFS?

Ans. It is the method of traversing

a graph in such a manner that all

the vertices at a particular level are

visited first before proceeding onto

the next level.

2. What is DFS?

Ans. It is the method of traversing a

graph in such a manner that all the

 ! $

 (

proceeding onto the next path.

processing of a graph node.

processing of a graph node.

Graphs 259

C
h
a
p

t
e
r

N
i
n
e

Summary

© ! $]

 1, v2, v3,, vn}

 1, e2, e3,, en}

© A graph can be implemented in three ways: adjacency matrix, path matrix, and adjacency list.

© Adjacency matrix and path matrix are the sequential methods of representing a graph. Adjacency

matrix signifies whether there is an edge between any two vertices of the graph. Path matrix

signifies whether there is a path between any two vertices of the graph.

© Adjacency list is a linked representation of a graph. It consists of a list of graph nodes with each

node itself consisting of a linked list of its neighboring nodes.

© Breadth First Search or BFS is the method of traversing a graph in such a manner that all the

vertices at a particular level are visited first before proceeding onto the next level.

© Depth First Search or DFS is the method of traversing a graph in such a manner that all the

 ! $ (!

next path.

Key Terms

© Weighted graph It signifies that all the edges of the graph are assigned an integer number called

weight.

© Directed It signifies that each edge of the graph is a pointed arrow that points from one vertex

to the other.

© Adjacency matrix It is an N ¥ N matrix containing 1s for all the direct edges of the graph and

 + ^

© Path matrix It is an N ¥ N matrix containing 1s for all the existing paths in a graph and containing

+

© Adjacency list It a list of graph nodes with each node itself consisting of a linked list of its

neighboring nodes.

Multiple-Choice Questions

9.1 Which of the following is not true for graph?

 '

 (($ *

 ' (! ! # ¥ N matrix.

 ("

9.2 As per Warshall’s method, which of the following is the correct relation for computing the path

matrix?

 =i, j =i, j 0> =i, k AND Pk, j

 (=i, j =i, j #[=i, k OR Pk, j

 =i, j =i, k #[=k, j OR Pi, j

 # (

260 Data Structures Using C

 9.3 As per modified Warshall’s algorithm, which of the following is the correct relation for computing

the shortest path between two vertices in a graph?

 V=i, j ? $"$ V=i, j, SPi, k < V=k, j

 (V=i, j ? * $"$ V=i, j, SPi, k < V=k, j

 V=i, j ? $"$ V=i, k, SPk, j < V=i, j

 # (

 9.4 The number of edges incident on a vertex is referred as ____________.

 [

 ('

 0

 0"

 9.5 Identify the BFS path for the following graph:

){7{|{~{�{�

 (){~{|{7{�{�

){7{|{~{�{�

 # (

Review Questions

 9.1 B ! � *! * $!

 9.2 List and explain any five key terms associated with graphs.

 9.3 What are the different methods of representing a graph?

 9.4 What is an adjacency matrix? How can you derive a path matrix from an adjacency matrix?

 9.5 *! 6 $! $! ! * $!

 9.6 B $!" ! ! � *! !

example.

 9.7 Write the modified Warshall’s algorithm for computing the shortest path between two nodes of

a graph.

 9.8 B YZV� *! ! * $!

 9.9 B [ZV� *! ! * $!

Programming Exercises

 9.1 Write a C function to deduce the adjacency matrix for a given directed graph G.

 9.2 Write a C function that takes as input the adjacency matrix and applies Warshall’s algorithm to

generate the corresponding path matrix.

 9.3 Write a C program to implement a 3-node directed graph using adjacency list.

 9.4 Write a C function that takes as input the path matrix and applies the shortest path algorithm to

generate the corresponding shortest path matrix.

Answers to Multiple-Choice Questions

 @) (@ 7 @ | @ ~ (@ �

10.1 Introduction

10.2 Sorting Techniques

 10.2.1 Selection Sort

 10.2.2 Insertion Sort

 10.2.3 Bubble Sort

 10.2.4 Quick Sort

 10.2.5 Merge Sort

 10.2.6 Bucket Sort

10.3 Searching Operations

 10.3.1 Linear Search

 10.3.2 Binary Search

 10.3.3 Hashing

Summary

Key Terms

Multiple-Choice Questions

Review Questions

Programming Exercises

Answers to Multiple-Choice Questions

SORTING AND SEARCHING

10

C
h
a
p
t
e
r

O
u
t
l
i
n
e

262 Data Structures Using C

10.1 INTRODUCTION

Sorting and searching are two of the most common operations performed by computers all around the

world. The sorting operation arranges the numerical and alphabetical data present in a list, in a specific

order or sequence. Searching, on the other hand, locates a specific element across a given list of elements.

At times, a list may require sorting before the search operation can be performed on it.

A telephone directory is one such example where both sorting and searching techniques are applied.

The names of telephone subscribers are first alphabetically sorted and then posted on to the telephone

directory. If one needs to search the telephone number of a particular subscriber in the telephone directory

then it can be easily achieved by looking up the directory on the basis of the subscriber name. Now,

consider the same scenario in the absence of a sorted list of subscribers. It would become very tough and

painstaking to search the subscriber name in a directory where names are posted in a random fashion

without any definite order.

There are a number of sorting techniques that can be employed to sort a given list of data elements.

The suitability of a specific technique in a specific situation depends on a number of factors, such as

 1. size of the data structure,

 3. programmer’s knowledge of the technique.

While all the sorting methods produce the same result, that is a list of sorted elements, it is one or

more of the above factors that play an important role in choosing a specific sorting technique in a given

situation.

In this chapter, we will discuss the various searching and sorting methods.

10.2 SORTING TECHNIQUES

Consider a list L containing n elements, as shown below.

L1, L2, L3,, Ln

Now, there are n! ways in which the elements can be arranged within the list. We can apply a sorting

technique to the list L to arrange the elements in either ascending or descending order.

If we sort the list in ascending order, then

L1 £ L2 £ L3 £ Ln

Alternatively, if we arrange the list in descending order, then

L1 ≥ L2 ≥ L3 ≥ Ln

Example 10.1 Consider an array A containing five elements, as shown below.

What would be the resultant array if it is sorted in

ascending order

descending order

Solution Array A sorted in ascending order.

Sorting and Searching 263

C
h
a
p

t
e
r

T
e
n

Array A sorted in descending order.

As already explained, there are a number of methods

that can be used to sort a given list of elements. We will

discuss the following sorting methods in the forthcoming

sections:

1. Selection sort

2. Insertion sort

3. Bubble sort

4. Quick sort

5. Merge sort

6. Bucket sort

NoteN The application of a sorting technique is not restricted to an array or a list alone. In fact,

we may apply sorting to other data structures such as structures or linked lists provided

there is a subelement in the data structure based on which sorting can be performed.

10.2.1 Selection Sort

Selection sort is one of the most basic sorting techniques. It works on the principle of identifying the

smallest element in the list and moving it to the beginning of the list. This process is repeated until all

the elements in the list are sorted.

Let us consider an example where a list L contains five integers stored in a random fashion, as shown

in Fig. 10.1.

Fig. 10.1 List of integers

Now, if the list L is sorted using selection sort technique then first of all the first element in the list,

i.e., 18 will be selected and compared with all the remaining elements in the list. The element which is

found to be the lowest amongst the remaining set of elements will be swapped with the first element.

Then, the second element will be selected and compared with the remaining elements in the list. This

process is repeated until all the elements are rearranged in a sorted manner. Table 10.1 illustrates the

sorting of list L in ascending order using selection sort.

 Mind Jog

What is the internal sorting?

All sorting techniques which require

the data set to be present in the main

memory are referred as internal sorting

techniques.

264 Data Structures Using C

Table 10.1 Selection sort

Pass Comparison Resultant Array

1

2

3

4

A single iteration of the selection sorting technique that brings the smallest element at the beginning

of the list is called a pass. As we can see in the above table, four passes were required to sort a list of

five elements. Hence, we can say that selection sort requires n–1 passes to sort an array of n elements.

Example 10.2 Write an algorithm to perform selection sort on a given array of integers.

selection(arr[], size)
Step 1: Start

Step 2: Set i = 0, loc = 0 and temp = 0

Step 3: Repeat Steps 4-6 while i < size

Step 4: Set loc = Min(arr, i, size)

Step 5: Swap the elements stored at arr[i] and a[loc] by performing the

following steps

 I Set temp = a[loc]

 II Set a[loc] = a[i]

 III Set a[i]=temp

Step 6: Set i = i +1

Step 8: Stop

Min(array[], LB, UB)
Step 1: Start

Step 2: Set m = LB

Step 3: Repeat Steps 4-6 while LB < U B

Step 4: if array[LB] < array[m] goto Step 5 else goto Step 6

Step 5: Set m = LB

Step 6: Set LB = LB +1

Step 7: Return m

Step 8: Stop

Example 10.3 Write a C program to perform selection sort on an array of N elements.

Program 10.1 implements selection sorting technique in C. It uses the algorithm depicted in Example 10.2.

Sorting and Searching 265

C
h
a
p

t
e
r

T
e
n

Program 10.1 Selection sort

/*Program for performing selection sort*/

#include <stdio.h>

#include <conio.h>

#include <stdlib.h>

void selection(int*, int); /*Function prototype for performing selection

sort*/

the array*/

void main()

{

 int *arr;

 int i, N;

 clrscr();

 printf(“Enter the number of elements in the array:\n”);

 scanf(“%d”,&N);

 arr = (int*) malloc(sizeof(int)); /*Dynamic allocation of memory for the

array*/

 printf(“Enter the %d elements to sort:\n”,N);

 for (i=0;i<N;i++)

 scanf(“%d”,&arr[i]); /*Reading array elements*/

 selection(arr,N); /*Calling selection function*/

 printf(“\nThe sorted elements are:\n”);

 for(i=0;i<N;i++)

 printf(“%d\n”,arr[i]); /*Printing sorted array*/

 getch();

}

void selection(int *a, int size)

{

 int i=0,loc=0,temp=0;

 for(i=0;i<size;i++)

 {

loc=Min(a,i,size); /*Calling Min function*/
 /*Swapping array elements*/

temp=a[loc];
 a[loc]=a[i];
 a[i]=temp;
 }

}

Function prototypes are declared

globally to allow one function call

the other.

The malloc function allocates only

that much amount of memory space

as is required for holding the array

elements.

266 Data Structures Using C

int Min(int *array, int LB, int UB)

{

 int m=LB;

 /*Finding location of smallest element*/

 while(LB<UB)

 {

 if(array[LB]<array[m])

 m=LB;

 LB++;

 }

 return(m);

}

Output

Enter the number of elements in the array:

5

Enter the 5 elements to sort:

18

3

2

33

21

The sorted elements are:

2

3

18

21

33

Program analysis

Key Statement Purpose

loc=Min(a,i,size); Calls the Min() function to identify the location of the

smallest element

temp=a[loc];

a[loc]=a[i];

a[i]=temp;

Swaps the array elements to move the smaller elements

towards the start of the array

 Assume that an array containing n elements is sorted using selection

sort technique.

Now, the number of comparisons made during first pass = n–1

Number of comparisons made during second pass = n–2

Number of comparisons made during last pass = 1

So, total number of comparisons = (n–1) + (n–2) + …. + 1

 = n * (n–1) / 2

 = O(n2)

Thus, efficiency of selection sort = O(n2)

Sorting and Searching 267

C
h
a
p

t
e
r

T
e
n

 Some of the key advantages of selection sorting technique are:

1. It is one of the simplest of sorting techniques.

2. It is easy to understand and implement.

3. It performs well in case of smaller lists.

4. It does not require additional memory space to perform sorting.

The disadvantages associated with selection sort that prevent the programmers from using it often

are as follows:

 2) is not well suited for large sized lists.

2. It does not leverage the presence of any existing sort pattern in the list.

NoteN Selection sort is an internal sorting technique and requires the entire data structure to

be present in the main memory while performing sorting. As a result, it is not well suited

for sorting large sized data structures.

10.2.2 Insertion Sort

As the name suggests, insertion sort method sorts a

list of elements by inserting each successive element

in the previously sorted sublist. Such insertion of

elements requires the other elements to be shuffled

as required.

To understand the insertion sorting method,

consider a scenario where an array A containing

n elements needs to be sorted. Now, each pass of

the insertion sorting method will insert the element

A[i] into its appropriate position in the previously

sorted subarray, i.e., A[1], A[2], …, A[i–1]. The

following list describes the tasks performed in each

of the passes:

Pass 1 A[2] is compared with A[1] and inserted

either before or after A[1]. This makes A[1], A[2] a sorted sub array.

Pass 2 A[3] is compared with both A[1] and A[2] and inserted at an appropriate place. This makes

A[1], A[2], A[3] a sorted sub array.

Pass n–1 A[n] is compared with each element in the sub array A[1], A[2], A[3], … A[n-1] and inserted

at an appropriate position. This eventually makes the entire array A sorted.

Let us revisit the list L containing five integers stored in a random fashion, as shown in Fig. 10.1.

Now, if the list L is sorted using insertion sort technique then first of all the second element in the

list, i.e., 3 will be selected and compared with the first element, i.e., 18. Since 3 is less than 18, the two

elements will be interchanged. This process is repeated until all the elements are rearranged in a sorted

manner. Table 10.2 illustrates the sorting of list L in ascending order using insertion sort technique.

 Check Point

1. How many passes are required by the

selection sort technique to sort an array

of N elements?

Ans. N–1

2. What is the most significant disadvantage

of selection sort?

Ans. One of the most critical disadvantages

of selection sort is that its efficiency of O(n2)

does not make it suitable for large sized lists.

268 Data Structures Using C

Table 10.2 Insertion sort

Pass Comparison Resultant Array

1

2

3

4

As we can see in the above illustration, four passes were required to sort a list of five elements. Hence,

we can say that insertion sort requires n–1 passes to sort an array of n elements.

Example 10.4 Write an algorithm to perform insertion sort on a given array of integers.

insertion(arr[], size)
Step 1: Start

Step 2: Set i = 1, j = 0 and temp = 0

Step 3: Repeat Steps 4-12 while i < size

Step 4: Set temp = arr[i]

Step 5: Set j = i-1

Step 6: Repeat Steps 7-10 while j>=0

Step 7: if arr[j] > temp goto Step 8 else goto Step 9

Step 8: Set arr[j+1] = arr[j]

Step 9: Branch out and go to Step 11

Step 10: Set j = j-1

Step 11: Set arr[j+1] = temp

Step 12: Set i = i + 1

Step 13: Stop

Example 10.5 Write a C program to perform insertion sort on an array of N elements.

Program 10.2 implements insertion sorting technique in C. It uses the algorithm depicted in

Example 10.4.

Program 10.2 Insertion sort

#include <stdio.h>

#include <conio.h>

#include <stdlib.h>

void insertion(int [], int); /*Function prototype for performing insertion

sort*/

Sorting and Searching 269

C
h
a
p

t
e
r

T
e
n

void main()

{

 int *arr;

 int i, N;

 clrscr();

 printf(“Enter the number of elements in the array:\n”);

 scanf(“%d”,&N);

 arr = (int*) malloc(sizeof(int)); /*Dynamic allocation of memory for the

array*/

 printf(“Enter the %d elements to sort:\n”,N);

 for (i=0;i<N;i++)

 scanf(“%d”,&arr[i]); /*Reading array elements*/

 insertion(arr,N); /*Calling insertion function*/

 printf(“\nThe sorted elements are:\n”);

 for(i=0;i<N;i++)

 printf(“%d\n”,arr[i]); /*Printing sorted array*/

 getch();

}

void insertion(int array[], int size)

{

 int i,j,temp;

 for(i=1;i<size;i++)

 {

temp=array[i]; /*Selecting the next element to be inserted*/
 /*Inserting the element in previously sorted sub array*/

for(j=i-1;j>=0;j—)
 if(array[j]>temp)
 array[j+1]=array[j];
 else
 break;
array[j+1]=temp;

 }

}

Output

Enter the number of elements in the array:

5

Enter the 5 elements to sort:

18

3

2

33

The break statement takes the control

out of the looping construct as soon

as the point of insertion is ascertained

in the sorted sub array.

270 Data Structures Using C

21

The sorted elements are:

2

3

18

21

33

Program analysis

Key Statement Purpose

temp=array[i]; Stores the next element to be inserted, in the temp

variable

for(j=i-1;j>=0;j—)

 if (array[j]>temp)

 array[j+1]=array[j];

 else

 break;

Identifies the point of insertion for the element in the

previously sorted sub array

array[j+1]=temp; Inserts the element at the identified location

 Assume that an array containing n elements is sorted using insertion

sort technique.

The minimum number of elements that must be scanned = n–1

For each of the elements the maximum number of shifts possible = n–1

Thus, efficiency of insertion sort = O(n2)

 Some of the key advantages of insertion sorting technique are:

1. It is one of the simplest sorting techniques that is easy to implement.

2. It performs well in case of smaller lists.

 " " #

The disadvantages associated with insertion sorting technique are as follows.

 2) is not well suited for large sized lists.

2. It requires large number of elements to be shifted.

TipT Insertion sorting technique should not be used with lists containing lengthy records as

the worst case of O(n2) may result in inefficient performance.

10.2.3 Bubble Sort

Bubble sort is one of the oldest and simplest of sorting techniques. It focuses on bringing the largest

element to the end of the list with each successive pass. Unlike selection sort, it does not perform a

search to identify the largest element; instead it repeatedly compares two consecutive elements and

moves the largest amongst them to the right. This process is repeated for all pairs of elements until the

current iteration moves the largest element to the end of the list.

Sorting and Searching 271

C
h
a
p

t
e
r

T
e
n

To understand the bubble sorting method,

consider a scenario where an array A containing

n elements needs to be sorted. In the first pass,

elements A[1] and A[2] are compared and if

A[1] is larger than A[2] then the two values are

swapped. Next, A[2] and A[3] are compared. The

last comparison of the first pass between A[n–1]

and A[n] brings the largest element of the list to

the end. The second pass repeats this process for

the remaining n–1 elements. Finally, the last pass

compares only the first two elements i.e., A[1] and

A[2] to generate the sorted list.

Let us revisit the list L containing five integers stored in a random fashion, as shown in Fig. 10.1.

Table 10.3 illustrates the sorting of list L in ascending order using bubble sort:

Table 10.3 Bubble sort

Pass Comparison Resultant Array

1

2

3

4

As we can see in the above illustration, four passes were required to sort a list of five elements. Hence,

we can say that bubble sort requires n–1 passes to sort an array of n elements.

Example 10.6 Write an algorithm to perform bubble sort on a given array of integers.

 Check Point

1. What is the efficiency of insertion sort?

Ans. The efficiency of insertion sort is O(n2).

2. What is the advantage of using insertion

sort?

Ans. The advantage of using insertion sort

technique is that it is easy to implement and

it performs well for small sized lists.

272 Data Structures Using C

bubble(arr[], size)
Step 1: Start

Step 2: Set i = size, j = 0 and temp = 0

Step 3: Repeat Steps 4-9 while i > 1

Step 4: Set j = 0

Step 5: Repeat Steps 6-8 while j < i-1

Step 6: if arr[j] > arr[j+1] goto Step 7 else goto Step 8

Step 7: Swap the elements stored at arr[j] and arr[j+1] by performing the

following steps

 I Set temp = a[j+1]

 II Set arr[j+1] = arr[j]

 III Set a[j]=temp

Step 8: Set j = j + 1

Step 9: Set i = i - 1

Step 10: Stop

Example 10.7 Write a C program to perform bubble sort on an array of N elements.

Program 10.3 implements bubble sorting technique in C. It uses the algorithm depicted in Example 10.6.

Program 10.3 Implementation of bubble sorting technique

#include <stdio.h>

#include <conio.h>

#include <stdlib.h>

void bubble(int [], int); /*Function prototype for performing bubble sort*/

void main()

{

 int *arr;

 int i, N;

 clrscr();

 printf(“Enter the number of elements in the array:\n”);

 scanf(“%d”,&N);

 arr = (int*) malloc(sizeof(int)); /*Dynamic allocation of memory for the

array*/

 printf(“Enter the %d elements to sort:\n”,N);

 for (i=0;i<N;i++)

 scanf(“%d”,&arr[i]); /*Reading array elements*/

 bubble(arr,N); /*Calling bubble function*/

 printf(“\nThe sorted elements are:\n”);

Sorting and Searching 273

C
h
a
p

t
e
r

T
e
n

 for(i=0;i<N;i++)

 printf(“%d\n”,arr[i]); /*Printing sorted array*/

 getch();

}

void bubble(int array[], int size)

{

 int i, j, temp;

 for(i=size;i>1;i—)

 for(j=0;j<i-1;j++)

if (array[j]>array[j+1])
 {

 /*Swapping adjacent elements*/

temp = array[j+1];
 array[j+1] = array[j];
 array[j] = temp;
 }

}

Output

Enter the number of elements in the array:

5

Enter the 5 elements to sort:

18

3

2

33

21

The sorted elements are:

2

3

18

21

33

Program analysis

Key Statement Purpose

if(array[j]>array[j+1]) Compares the adjacent array elements in each pass

temp = array[j+1];

array[j+1] = array[j];

array[j] = temp;

Swaps the array elements as per the sort order

 Assume that an array containing n elements is sorted using bubble sort

technique.

Number of comparisons made in first pass = n–1

The outer loop controls the number

of passes while the inner loop

controls the number of comparisons

made in each pass.

274 Data Structures Using C

Number of comparisons made in second pass = n–2

Number of comparisons made in last pass = 1

Total number of comparisons made = (n–1) + (n–2) + … + 1

 = n * (n – 1) / 2

 = O(n2)

Thus, efficiency of bubble sort = O(n2)

 Some of the key advantages of bubble sorting technique are:

1. It is easy to understand and implement.

 " " #

The disadvantages associated with bubble sorting technique are given below.

 2) is not well suited for large sized lists.

2. It requires large number of elements to be shifted.

3. It is slow in execution as large elements are moved towards the end of the list in a step-by-step

fashion.

NoteN Bubble sort leverages any existing sort pattern in a list quite well. Its best case

efficiency on an already sorted list is O(n) which is better than a number of other sorting

techniques.

10.2.4 Quick Sort

As the name suggests, quick sort is one of the

fastest sorting methods that is based on divide

and conquer strategy. It divides the given list into

a number of sub lists and then works on each of the

sub lists to obtain the sorted output. It first chooses

one of the list elements as a key value and then

tries to place the key value at its final position in

the list. Once, the key value is positioned correctly,

the two sub lists to the left and right of the key

value are processed in the similar fashion until the

entire list becomes sorted.

NoteN
 The key value is also called as pivot element.

Consider an array containing six elements, as shown below.

34 99 5 2 57 40

Initially, the first list element i.e., 34 is chosen as the pivot element. Now, the list is scanned from

right to left to identify the first element that is less than 34. This element is 2. So, both the elements are

swapped and the list becomes:

 Check Point

1. Why is the bubble sorting technique slow

in execution?

Ans. Bubble sorting technique is considered

as slow because it moves the elements to the

end of the list in a step-by-step fashion.

2. How many passes are required by bubble

sort to sort an array of N elements?

Ans. N–1

 Sorting and Searching 275

C
h
a
p

t
e
r

T
e
n

2 99 5 3 4 57 40

Now, the list is scanned from left to right till the place where 34 is stored and the control stops at

the first element that is greater than 34. This element is 99. So, both the elements are swapped and the

list becomes:

2 34 5 99 57 40

Now, the list is again scanned from right to left starting with element 99 and ending at element 34.

Element 5 is found to be lesser than 34, thus both the elements are swapped. Now, the list becomes:

2 5 34 99 57 40

Now, there are no elements present between 5 and 34, thus we can assume that 34 has attained its

final position in the list.

Now, the two sublists to the left and right of the pivot element are identified, as shown below:

Now, each of these lists is processed in the same fashion and eventually all the elements are placed

at appropriate positions in the final sorted list.

Example 10.8 Write an algorithm to perform quick sort on a given array of integers.

quick(arr[], LB, UB)
Step 1: Start

Step 2: Set pivot=0, nxt_pvt=0, left=LB, right=UB

 ! " $ ' ? ' !' ?

Step 4: Repeat Steps 5-14 while LB < UB

Step 5: Repeat Step 6 while arr[UB] >= pivot and LB < UB

Step 6: Set UB = UB - 1

Step 7: if LB is not equal to UB goto Step 8 else goto Step 10

Step 8: Set arr[LB]=arr[UB]

Step 9: Set LB = LB + 1

Step 10: Repeat Step 11 while arr[LB] <= pivot and LB < UB

Step 11: Set LB = LB + 1

Step 12: if LB is not equal to UB goto Step 13 else goto Step 15

Step 13: Set arr[UB]=arr[LB]

Step 14: Set UB = UB - 1

Step 15: Set arr[LB]= pivot

Step 16: Set nxt_pvt = LB

Step 17: Set LB = left and UB = right

Step 18: if LB < nxt_pvt goto Step 19 else goto Step 20

Step 19: Apply quick sort in the left sub list by calling module quick(arr,

LB, nxt_pvt-1)

Step 20: if UB > nxt_pvt goto Step 21 else goto Step 22

Step 21: Apply quick sort in the right sub list by calling module quick(arr,

nxt_pvt+1, UB)

Step 22: Stop

Example 10.9 Write a C program to perform quick sort on an array of N elements.

Program 10.4 implements quick sorting technique in C. It uses the algorithm depicted in Example 10.8.

276 Data Structures Using C

Program 10.4 Implementation of quick sorting technique

#include <stdio.h>

#include <conio.h>

#include <stdlib.h>

void quick(int [], int, int); /*Function prototype for performing quick

sort*/

void main()

{

 int *arr;

 int i, N;

 clrscr();

 printf(“Enter the number of elements in the array:\n”);

 scanf(“%d”,&N);

 arr = (int*) malloc(sizeof(int)); /*Dynamic allocation of memory for the

array*/

 printf(“Enter the %d elements to sort:\n”,N);

 for (i=0;i<N;i++)

 scanf(“%d”,&arr[i]); /*Reading array elements*/

 quick(arr,0,N-1); /*Calling quick function*/

 printf(“\nThe sorted elements are:\n”);

 for(i=0;i<N;i++)

 printf(“%d\n”,arr[i]); /*Printing sorted array*/

 getch();

}

void quick(int array[], int LB, int UB)

{

 int pivot, nxt_pvt, left, right;

 left = LB;

 right = UB;

 pivot = array[left];
 while(LB<UB)

 {

 /*Scanning the list from right to left to identify the element lesser

than pivot element*/

 while((array[UB] >= pivot) && (LB<UB))

 UB—;

 if(LB!=UB)

 {

Sorting and Searching 277

C
h
a
p

t
e
r

T
e
n

 ! ! "GH$! ! "JH$? K
 LB++;
 }

 /*Scanning the list from left to right to identify the element greater
than pivot element*/
 while((array[LB]<=pivot) && (LB<UB))
 LB++;
 if(LB != UB)
 {
 ! ! "JH$! ! "GH$? K
 UB—;
 }
 }

 array[LB]=pivot;
nxt_pvt=LB;

 LB=left;
 UB=right;

if(LB<nxt_pvt)
 quick(array, LB, nxt_pvt-1);
 if(UB>nxt_pvt)
 quick(array, nxt_pvt+1, UB);
}

Output

Enter the number of elements in the array:
6
Enter the 6 elements to sort:
34
99
5
2
57
40

The sorted elements are:
2
5
34
40
57
99

Program analysis

Key Statement Purpose

pivot = array[left]; Initializes the pivot element

nxt_pvt=LB;

LB=left;

UB=right;

Generates the next set of pivot, lower bound and upper

bound values

The quick sort module is called

recursively until the entire list is

sorted.

278 Data Structures Using C

Key Statement Purpose

if(LB<nxt_pvt)

 quick(array, LB, nxt_pvt-1);

if (UB>nxt_pvt)

 quick(array, nxt_pvt+1, UB);

Recursively calls the quick() function as per the next set of

pivot, UB and LB values

 Assume that an array containing n elements is to be sorted using quick

sort technique. Let us analyze the efficiency of quick sort in best case and worst case scenarios.

Best Case In the best case, the pivot element always divides the list in to two equal halves. Here, we

are assuming that the number of elements in the list is a power of 2. That means, n = 2m or m = log2 n

Number of comparisons made in first pass = n

Number of comparisons made in second pass = 2*(n / 2)

Number of comparisons made in the third pass = 4*(n / 4)

Number of comparisons made in the fourth pass = 8*(n / 8)

Number of comparisons made in the kth pass = k*(n / k)

Now, total number of comparisons = O(n) + O(n) + O(n) +…+ m terms

 = O(n * m)

 = O(n log n)

Thus, efficiency of quick sort in best case scenario = O(n log n)

Worst Case It may happen that the pivot element divides the lists in unequal partitions. In the worst

case, there would be no element in one of the lists while the other list will contain all the elements.

In such a case, number of comparisons made in first pass = n–1

Number of comparisons made in second pass = n–2

Number of comparisons made in last pass = 1

Total number of comparisons = (n–1) + (n–2) + … + 1

 = n * (n–1) / 2

 = O(n2)

Thus, efficiency of quick sort in worst case scenario = O(n2)

 Some of the key advantages of quick sorting technique are:

1. It is one of the fastest sorting algorithms.

2. Its implementation does not require any additional memory.

The disadvantages associated with quick sorting technique are as follows.

 $ 2) is not well suited for large sized lists.

2. Its algorithm is considered as a little more complex in comparison to some other sorting techniques.

NoteN The choice of the pivot element may have a direct impact on the performance of the quick

sort algorithm, considering that there could be some pre-existing sort order present in the

input list. As a result, different implementations of the quick sorting technique use first,

last, middle or at times some randomly chosen element as the pivot element.

Sorting and Searching 279

C
h
a
p

t
e
r

T
e
n

10.2.5 Merge Sort

Merge sort is another sorting technique that is based

on divide-and-conquer approach. It divides a list

into several sub lists of equal sizes and sorts them

individually. It then merges the various sub lists

in pairs to eventually form the original list, while

ensuring that the sort order is not disturbed.

Consider a list L containing n elements on

which merge sort is to be performed. Initially, the n

elements of the list L are considered as n different

sublists of one element each. Since, a list having one

element is sorted in itself, thus there is no further

action required on these sublists. Now, each of the sublists is merged in pairs to form n/2 sublists having

two elements each. While merging two lists the elements are compared and placed in a sorted fashion

in the new sublist. This process is repeated until the original list is formed with elements arranged in a

sorted fashion.

Consider an array containing six elements, as shown below:

34 99 5 2 57 40 8 29

Figure 10.2 shows how merge sort is performed on the above list.

Fig. 10.2 Merge sort

As we can see in the above illustration, the sorted sublists are progressively merged in each pass to

eventually generate the original list, sorted in ascending order.

Example 10.10 Write an algorithm to perform merge sort on a given array of integers.

mergesort(arr[], size)
Step 1: Start

Step 2: Set mid = 0

Step 3: if size = 1 goto Step 4 else goto Step 5

Step 4: Stop and return back to the calling module

Step 5: Set mid = size / 2

Step 6: Call module mergesort(arr, mid)

 Check Point

1. What is the best case efficiency of quick

sort?

Ans. O(nlogn).

2. What is a pivot element?

Ans. It is a key value that is selected and

shuffled continuously as per the quick sort

algorithm until it attains its final position

in the list.

280 Data Structures Using C

Step 7: Call module mergesort(arr+mid, size-mid)

Step 8: Call module merge(arr, mid, arr+mid, size-mid)

Step 9: Stop

merge(a[], size1, b[], size2)
Step 1: Start

Step 2: Initialize a temporary array, temp_array[size1+size2]

Step 3: Set i=0, j=0, k=0

Step 4: Repeat Step 5-9 while i < size1 and j < size2

Step 5: If a[i] < b[j] goto Step 6 else goto Step 8

Step 6: Set temp_array[k] = a[i]

Step 7: Set k = k + 1 and i = i + 1

Step 8: Set temp_array[k] = b[j]

Step 9: Set k = k + 1 and j = j + 1

Step 10: Repeat Step 11-12 while i < size1

Step 11: Set temp_array[k] = a[i]

Step 12: Set k = k + 1 and i = i + 1

Step 13: Repeat Step 14-15 while j < size2

Step 14: Set temp_array[k] = b[j]

Step 15: Set k = k + 1 and j = j + 1

Step 16: Set a[] = temp_array[]

Step 17: Stop

Example 10.11 Write a C program to perform merge sort on an array of N elements.

Program 10.5 implements merge sorting technique in C. It uses the algorithm depicted in Example 10.10.

Program 10.5 Implementation of merge sort technique in C

#include <stdio.h>

#include <conio.h>

#include <stdlib.h>

void mergesort(int*, int); /*Function prototype for performing merge sort*/

void merge(int*, int, int*, int); /*Function prototype for merging two

arrays*/

void main()

{

 int *arr;

 int i, N;

 clrscr();

 printf(“Enter the number of elements in the array:\n”);

 scanf(“%d”,&N);

 arr = (int*) malloc(sizeof(int)*N); /*Dynamic allocation of memory for

the array*/

 printf(“Enter the %d elements to sort:\n”,N);

 for (i=0;i<N;i++)

Sorting and Searching 281

C
h
a
p

t
e
r

T
e
n

 scanf(“%d”,&arr[i]); /*Reading array elements*/

 mergesort(arr,N); /*Calling mergesort function*/

 printf(“\nThe sorted elements are:\n”);

 for(i=0;i<N;i++)

 printf(“%d\n”,arr[i]); /*Printing sorted array*/

 getch();

}

void mergesort(int *array, int size)

{

 int mid;

 if(size==1)

 return;

 else

 {

mid = size/2;

 /*Making recursive calls to mergesort function*/

mergesort(array, mid);

 mergesort(array+mid, size-mid);

merge(array, mid, array+mid, size-mid); /*Calling merge function*/

 }

}

void merge(int *a, int s1, int *b, int s2)

{

 int i, j, k, *temp_arr;

 temp_arr=(int*) malloc((s2+s1) * sizeof(int)); /*Dynamic allocation of a

temporary array in memory*/

 i=j=k=0;

 while(i < s1 && j < s2)

 temp_arr[k++] = (a[i]<b[j]) ? a[i++] : b[j++];

 while(i < s1)

 temp_arr[k++] = a[i++];

 while(j < s2)

 temp_arr[k++] = b[j++];

 for(i=0;i<k;i++)

 a[i] = temp_arr[i];

 free(temp_arr);

}

Here, the use of increment and conditional

operators has simplified the code and

reduced it to a single line.

282 Data Structures Using C

Output

Enter the number of elements in the array:
8
Enter the 8 elements to sort:
34
99
5
2
57
40
8
29

The sorted elements are:
2
5
8
29
34
40
57
99

Program analysis

Key Statement Purpose

mid = size/2; Initializes the mid variable

mergesort(array, mid);

mergesort(array+mid, size-mid);

Recursively calls the mergesort() function to sort the

individual sub arrays

merge(array, mid, array+mid, size-mid); Calls the merge function to merge two sorted sub arrays

 Assume that an array containing n elements is sorted using merge sort

technique. As we have already seen, merge sort is divided into two submodules. One module keeps

on dividing the list until n different sublists of one element each are generated. Alternatively, the other

module keeps on appending pairs of sublists until the main list with n elements is generated.

Now, the number of steps required for dividing the list = log2n

The number of steps required for merging the lists = log2n

Total number of steps = 2log2n

Now, in each step all n list elements are compared.

Thus, total number of comparisons made = n*2log2n

 = 2nlog2n

 = O(nlog2n)

Thus, efficiency of merge sort = O(nlog2n)

 Some of the key advantages of merge sorting technique are:

 1. It is a fast and stable sorting method.

Sorting and Searching 283

C
h
a
p

t
e
r

T
e
n

 $ " n).

The disadvantages associated with merge sorting

technique are as follows.

1. It requires additional memory space to

perform sorting. The size of the additional

space is in direct proportion to the size of the

input list.

2. Even though the number of comparisons

made by merge sort are nearly optimal, its

performance is slightly lesser than that of

quick sort.

10.2.6 Bucket Sort

Bucket sort distributes the list of elements across

different buckets in such a way that any bucket m

contains elements greater than the elements of bucket

m–1 but less than the elements of bucket m+1. The

elements within each bucket are sorted individually

either by using some alternate sorting technique or by recursively applying bucket sort technique. In

the end, elements of all the buckets are merged to generate the sorted list. This technique is particularly

effective for smaller range of data series.

Consider a list containing ten integers stored in a random fashion, as shown in Fig. 10.3.

Fig. 10.3 List of integers

In the above list, all elements are between the range of 0 to 50. So, let us create five buckets for storing

ten elements each. Figure 10.4 shows how these buckets are used for sorting the list.

 Check Point

1. What is the efficiency of merge sort?

Ans. O(nlogn).

2. What is the most significant advantage

of merge sort?

Ans. It always ensures an efficiency of

O(nlogn).

 Mind Jog

What is a stable sort?

It is that sorting medhodology which

preserves the original order of the

duplicate values in the final sorted list.

Fig. 10.4 Bucket sort

284 Data Structures Using C

As we can see in the above illustration, the list elements are first distributed as per their values across

different buckets. Then, each of the buckets are individually sorted and later merged to generate the

original sorted list.

Example 10.12 Write an algorithm to perform bucket sort on a given array of integers.

Assumption: The input list elements are within the range of 0 to 49.

bucket(arr[], size)
Step 1: Start

Step 2: Set i = 0, j = 0 and k = 0

Step 3: Initialize an array c[5] and set all its values to 0; it keeps

 ! Q ? V ' ! ? ? V Q '

 W X ! V Q ' V ! Y ! Z^` ! ! V"|$"~�$! '

all its values to 0

Step 5: Now, distribute the input list elements across different buckets.

To do this, repeat Steps 6-16 while i < size

Step 6: if 0 <= arr[i] <=9 then goto Step 7 else goto Step 8

Step 7: Set b[0][c[0]] = arr[i] and c[0] = c[0] + 1

Step 8: if 10 <= arr[i] <=19 then goto Step 9 else goto Step 10

Step 9: Set b[1][c[1]] = arr[i] and c[1] = c[1] + 1

Step 10: if 20 <= arr[i] <=29 then goto Step 11 else goto Step 12

Step 11: Set b[2][c[2]] = arr[i] and c[2] = c[2] + 1

Step 12: if 30 <= arr[i] <=39 then goto Step 13 else goto Step 14

Step 13: Set b[3][c[3]] = arr[i] and c[3] = c[3] + 1

Step 14: if 40 <= arr[i] <=49 then goto Step 15 else goto Step 16

Step 15: Set b[4][c[4]] = arr[i] and c[4] = c[4] + 1

Step 16: Set i = i + 1

Step 17: Sort each of the buckets b[][] by calling insertion sort module

insertion(&b[][],c[])

Step 18: Merge all the buckets together into the main array by setting

array [] = b[][]

Step 19: Stop

Example 10.13 Write a C program to perform bucket sort on an array of N elements.

Program 10.6 implements bucket sorting technique in C. It uses the algorithms depicted in Example

10.4 and Example 10.12.

Program 10.6 Implementation of bucket sorting technique

#include <stdio.h>

#include <conio.h>

 Sorting and Searching 285

C
h
a
p

t
e
r

T
e
n

#include <stdlib.h>

void insertion(int*, int); /*Function prototype for performing insertion
sort*/
void bucket(int*, int); /*Function prototype for performing bucket sort*/

void main()
{
 int *arr;
 int i, N;
 clrscr();

 printf(“Enter the number of elements in the array:\n”);
 scanf(“%d”,&N);

 arr = (int*) malloc(sizeof(int)); /*Dynamic allocation of memory for the
array*/

 printf(“Enter the %d elements to sort:\n”,N);
 for (i=0;i<N;i++)
 scanf(“%d”,&arr[i]); /*Reading array elements*/

 bucket(arr,N); /*Calling bucket function*/

 printf(“\nThe sorted elements are:\n”);
 for(i=0;i<N;i++)
 printf(“%d\n”,arr[i]); /*Printing sorted array*/

 getch();
}

/*Insertion sort function for sorting elements in a bucket*/
void insertion(int *array, int size)
{
 int i=0,j=0,temp=0;
 for(i=1;i<size;i++)
 {
 temp=array[i];
 for(j=i-1;j>=0;j—)
 if(array[j]>temp)
 array[j+1]=array[j];
 else
 break;
 array[j+1]=temp;
 }
}

void bucket(int *array, int size)
{

286 Data Structures Using C

 int i, j, k, b[5][10];
 int c[5];

 for(i=0;i<5;i++)
 c[i]=0;

 /*Distributing elements across different buckets*/
 for(i=0;i<size;i++)
 {
 if(array[i]>=0 && array[i]<=9)
 b[0][c[0]++]=array[i];

 if(array[i]>=10 && array[i]<=19)
 b[1][c[1]++]=array[i];

 if(array[i]>=20 && array[i]<=29)
 b[2][c[2]++]=array[i];

 if(array[i]>=30 && array[i]<=39)
 b[3][c[3]++]=array[i];

 if(array[i]>=40 && array[i]<=49)
 b[4][c[4]++]=array[i];
 }

 /*Sorting elements in each bucket using insertion sort*/
for(i=0;i<5;i++)

 if(c[i]!=0)
 insertion(&b[i][0], c[i]); /*Calling insert function*/

 /*Merging buckets to form the original list*/
 i=0;
 k=0;
 while(i<5)
 {
 if(c[i]==0)
 {
 i=i+1;
 continue;
 }

for(j=0;j<c[i];j++)
 array[k++]=b[i][j];
 i=i+1;
 }
}

Output

Enter the number of elements in the array:

10

Here, elements in each of

the bucket are sorted using

insertion sort technique.

Sorting and Searching 287

C
h
a
p

t
e
r

T
e
n

Enter the 10 elements to sort:

2

27

13

18

21

43

42

39

31

4

The sorted elements are:

2

4

13

18

21

27

31

39

42

43

Program analysis

Key Statement Purpose

for(i=0;i<5;i++)

 if (c[i]!=0)

 insertion(&b[i][0], c[i]);

Repeatedly calls the insertion() function to perform

insertion sort on each of the buckets

for(j=0;j<c[i];j++)

 array[k++]=b[i][j];

Forms the original array from the bucket elements

NoteN The bucket sort algorithm is particularly suited for lists having elements within a specific

range. The above program is based on the assumption that the elements in the input list

are within the range of 0 to 49.

 Assume that an array containing n elements is sorted using bucket

sort technique.

In the worst case, all elements of the list will be placed in a single bucket.

Now, each bucket is sorted using insertion sort, whose efficiency = O(n2)

Thus, worst case efficiency of bucket sort = O(n2)

 Some of the key advantages of bucket sorting technique are:

1. It preserves the order of repetitive values in the list.

2. It performs well for large size lists having elements in a smaller range.

288 Data Structures Using C

The disadvantages of bucket sort are as follows:

 $ & " "

2. It requires additional space to perform the sorting

operation.

10.3 SEARCHING TECHNIQUES

Searching refers to determining whether an element is

present in a given list of elements or not. If the element is

found to be present in the list then the search is considered

as successful, otherwise it is considered as an unsuccessful

search. The search operation returns the location or address of the element found.

There are various searching methods that can be employed to perform search on a data set. The choice

of a particular searching method in a given situation depends on a number of factors, such as

1. order of elements in the list, i.e., random or sorted

2. size of the list

Let us explore the various searching methods one by one.

10.3.1 Linear Search

It is one of the conventional searching techniques that sequentially searches for an element in the list.

It typically starts with the first element in the list and moves towards the end in a step-by-step fashion.

In each iteration, it compares the element to be searched with the list element, and if there is a match,

the location of the list element is returned.

Consider an array of integers A containing n elements. Let k be the value that needs to be searched.

The linear search technique will first compare A[0] with k to find out if they are same. If the two values

are found to be same then the index value, i.e., 0 will be returned as the location containing k. However,

if the two values are not same then k will be compared with A[1]. This process will be repeated until

the element is not found. If the last comparison between k and A[n–1] is also negative then the search

will be considered as unsuccessful.

Figure 10.5 depicts the linear search technique performed on an array of integers.

Fig. 10.5 Linear search

As shown in Fig. 10.5, the value k is repeatedly compared with each element of the array A. As soon as

the element is found, the corresponding index location is returned and the search operation is terminated.

 Check Point

1. What is the worst case efficiency

of bucket sort?

Ans. O(n2).

2. What is the distinctive advantage

of using bucket sort technique?

Ans. It preserves the order of duplicate

elements in the final sorted list.

 Sorting and Searching 289

C
h
a
p

t
e
r

T
e
n

Example 10.14 Write an algorithm to perform linear search on a given array of integers.

linear(arr[], size, k)
Step 1: Start

Step 2: Set i = 0

Step 3: Repeat Steps 4-6 while i < size

Step 4: if k = arr[i] goto Step 5 else goto Step 6

Step 5: Return i and goto Step 9

Step 6: Set i = i + 1

Step 7: If i = size goto Step 8 else goto Step 9

Step 8: Return NULL and goto Step 9

Step 9: Stop

Example 10.15 Write a C program to perform linear search on an array of N elements.

Program 10.7 implements linear search technique in C. It uses the algorithm depicted in Example 10.14.

Program 10.7 Implementation of linear search technique

#include <stdio.h>

#include <conio.h>

#include <stdlib.h>

int linear(int [], int, int); /*Function prototype for performing linear

search*/

void main()

{

 int *arr;

 int i, N, k, index;

 clrscr();

 printf(“Enter the number of elements in the array arr:\n”);

 scanf(“%d”,&N);

 arr = (int*) malloc(sizeof(int)); /*Dynamic allocation of memory for the

array*/

 printf(“\nEnter the %d elements of the array arr:\n”,N);

 for (i=0;i<N;i++)

 scanf(“%d”,&arr[i]); /*Reading array elements*/

 printf(“\nEnter the element to be searched:\n”);

 scanf(“%d”,&k);

 index=linear(arr,N,k); /*Calling linear function*/

 /*Printing search results*/

 if(index==-999)

 printf(“\nElement %d is not present in array arr[%d]”,k,N);

 else

290 Data Structures Using C

 printf(“\nElement %d is stored at index location %d in the array

arr[%d]”,k,index,N);

 getch();

}

int linear(int array[], int size, int num)

{

 int i;

for(i=0;i<size;i++) /*Scanning array elements one by one*/
 if(num==array[i])
 return(i); /*Successful Search*/

 if(i==size)

 return(-999); /*Unsuccessful Search*/

}

Output

Enter the number of elements in the array arr:

8

Enter the 8 elements of the array arr:

3

2

18

33

21

5

99

42

Enter the element to be searched:

33

Element 33 is stored at index location 3 in the array arr[8]

Program analysis

Key Statement Purpose

index=linear(arr,N,k); Calls the linear() function to perform linear search on

the array arr

for(i=0;i<size;i++)

 if (num==array[i])

Compares each array element with the value that needs

to be searched

 Assume that an array containing n elements is to be searched for the

value k. In the best case, k $ " # " '"

the worst case, it would be last element in the list, thus requiring n comparisons.

To compute the efficiency of linear search we can add all the possible number of comparisons and

divide it by n.

Here, –999 is being used as a NULL

value to indicate unsuccessful search.

Sorting and Searching 291

C
h
a
p

t
e
r

T
e
n

Thus, efficiency of linear search = (1 + 2 + … + n) / n

 = n (n+1) / 2n

 = O(n)

A Some of the key advantages of linear search technique are:

1. It is a simple searching technique that is

easy to implement.

2. It does not require the list to be sorted in

a particular order.

The disadvantages associated with it are as

follows:

 '" ?

2. It does not leverage the presence of any

pre-existing sort order in a list.

10.3.2 Binary Search

Binary search technique has a prerequisite – it requires the elements of a data structure (list) to be already

arranged in a sorted manner before search can be performed in it. It begins by comparing the element

that is present at the middle of the list. It there is a match then the search ends immediately and the

location of the middle element is returned. However, if there is a mismatch then it focuses the search

either in the left or the right sub list depending on whether the target element is lesser than or greater

than middle element. The same methodology is repeatedly followed until the target element is found.

Binary search follows the same analogy as that of a telephone directory that we had discussed earlier.

One needs to keep focusing on a smaller subset of directory pages every time there is a mismatch.

However, such a search would not have been possible had the directory entries were not already sorted.

Consider an array of integers A containing eight elements, as shown in Fig. 10.6. Let k = 21 be the

value that needs to be searched.

Fig. 10.6 Binary search

As we can see in Fig. 10.6, the array A on which binary search is to be performed is already sorted.

The following steps describe how binary search is performed on array A to search for value k:

 @ D $ J

2. Now, k is compared with 18. Since k is greater than 18, the search is focused on the right sub

list.

3. The middle element in the right sub list is 33. Since k is less than 33, the search is focused on

the left sub list, which is {21, 33}.

 Check Point

1. What is the efficiency of linear search?

Ans. O(n).

2. What is the key advantage of linear

search?

Ans. It does not require the list to be sorted

in a particular order.

292 Data Structures Using C

 4. Now, again k is compared with the middle element of {21, 33}, which is 21. Thus, it matches

with k.

 5. The index value of 21, i.e., 4 is returned and the search is considered as successful.

Example 10.16 Write an algorithm to perform binary search on a given array of integers.

binary(arr[], size, num)
Step 1: Start

Step 2: Set i = 0, j = size, k = 0

Step 3: Repeat Steps 4-9 while i <= j

Step 4: Set k = (i + j)/2

Step 5: If arr[k] = num goto Step 6 else goto Step 7

Step 6: return k and goto Step 11

Step 7: If array[k] < num goto Step 8 else goto Step 9

Step 8: i = k + 1

Step 9: j = k - 1

Step 10: Return NULL and goto Step 11

Step 11: Stop

Example 10.17 Write a C program to perform binary search on an array of N elements.

Program 10.8 implements binary search technique in C. It uses the algorithm depicted in Example 10.16.

Program 10.8 Implementation of binary search technique

#include <stdio.h>

#include <conio.h>

#include <stdlib.h>

int binary(int [], int, int); /*Function prototype for performing binary

search*/

void main()

{

 int *arr;

 int i, N, k, index;

 clrscr();

 printf(“Enter the number of elements in the array arr:\n”);

 scanf(“%d”,&N);

 arr = (int*) malloc(sizeof(int)); /*Dynamic allocation of memory for the

array*/

 printf(“\nEnter the %d elements of the array arr in sorted format:\n”,N);

 for (i=0;i<N;i++)

 scanf(“%d”,&arr[i]); /*Reading array elements*/

 printf(“\nEnter the element to be searched:\n”);

 scanf(“%d”,&k);

Sorting and Searching 293

C
h
a
p

t
e
r

T
e
n

index=binary(arr,N,k); /*Calling binary function*/

 /*Printing search results*/

 if(index==-999)

 printf(“\nElement %d is not present in array arr[%d]”,k,N);

 else

 printf(“\nElement %d is stored at index location %d in the array

arr[%d]”,k,index,N);

 getch();

}

int binary(int array[], int size, int num)

{

 int i=0,j=size, k;

 while(i<=j)

 {

 k=(i+j)/2;

if(array[k]==num)
 return(k); /*Successful search*/
else if(array[k]<num)

 i=k+1;
 else
 j=k-1;
 }

 return(-999); /*Unsuccessful search*/

}

Output

Enter the number of elements in the array arr:

8

Enter the 8 elements of the array arr in sorted format:

2

3

5

18

21

33

42

99

Enter the element to be searched:

21

Element 21 is stored at index location 4 in the array arr[8]

We must ensure that we input elements in a

sorted manner as that is the prerequisite for

performing binary search.

294 Data Structures Using C

Program analysis

Key Statement Purpose

index=binary(arr,N,k); Calls the binary() function to perform binary search

on the array arr

if(array[k]==num)

 return(k);

Returns the value of k in case of successful search

else if (array[k]<num)

 i=k+1;

 else

 j=k-1;

Updates the values of i and j in case of unsuccessful

search

Best Case The best case for a binary search algorithm occurs when the element to be searched is

present at the middle of the list. In this case, only one comparison is made to perform the search operation.

Thus, efficiency = O(1)

Worst Case The worst case for a binary search algorithm occurs when the element to be searched

is not present in the list. In this case, the list is continuously divided until only one element is left for

comparison.

Let n be the number of list elements and c be the total number of comparisons made in the worst case.

Now, after every single comparison, the number of list elements left to be searched is reduced by 2.

Thus, c = log2n

Hence, efficiency = O(log2n)

 Some of the key advantages of binary search technique are:

1. It requires lesser number of iterations.

2. It is a lot faster than linear search.

The disadvantages associated with it are as follows:

1. Unlike linear search, it requires the list to be sorted

before search can be performed.

2. In comparison to linear search, the binary search

 '" # "

10.3.3 Hashing

So far we have learnt two of the most fundamental

searching techniques, i.e., linear and binary search.

Both these searching techniques find their usage across

varied programming situations. However, in case of large

databases, an altogether different searching technique is widely used. This technique is called hashing.

Hashing finds the location of an element in a data structure without making any comparisons. In

contrast to the other comparison-based searching techniques, like linear and binary search, hashing uses

 Check Point

1. What is the worst case efficiency

of binary search?

Ans. O(log2n).

2. What is the key prerequisite for

performing binary search?

Ans. The key prerequisite for

performing binary search is that the

input list must already be sorted.

 Sorting and Searching 295

C
h
a
p

t
e
r

T
e
n

a mathematical function to determine the location of an element. This mathematical function called hash

function accepts a value, known as key, as input and generates an output known as hash key. The hash

function generates hash keys and stores elements corresponding to each hash key in the hash table. The

keys that hash function accepts as input could be a digit associated with the input elements. In other

words, we can say that a hash table is a data structure, which is implemented by a hash function and

used for searching elements in quick time. In a hash table, hash keys act as the addresses of the elements.

Figure 10.7 depicts the hash functionality.

Fig. 10.7 Hashing

Let us consider a simple example of a file containing information for five employees of a company.

Each record in that file contains the name and a three digit numeric Employee ID of the employee. In

this case, the hash function will implement a hash table of five slots using Employee IDs as the keys.

That means, the hash function will take Employee IDs as input and generate the hash keys, as shown

in Fig. 10.8.

Fig. 10.8 Generating hash keys

In the hash table generated in the above example, the hash function is Employee ID%10. Thus, for

Employee ID 101, hash key will be calculated as 1. Therefore, Name1 will be stored at position 1 in the

hash table. For Employee ID 102, hash key will be 2, hence Name2 will be stored at position 2 in the

hash table. Similarly, Name3, Name4, and Name5 will be stored at position 4, 3, and 5 respectively, as

shown in Fig. 10.5. Later, whenever an employee record is searched using the Employee ID, the hash

function will indicate the exact position of that record in the hash table.

 As we have already learnt, the hash function takes some key values as input, performs

some mathematical calculation, and generates hash key to ascertain the position in the hash table where

the record corresponding to the key will be stored. However, it is quite possible that the hash function

296 Data Structures Using C

generates same hash keys for two different key values. That means, two different records are indicated

to be stored at the same position in the hash table. This situation is termed as collision. As a result, a

hash function must be designed in such a way that the possibility of a collision is negligible. Various

techniques such as, linear probing, chaining without replacement, and chaining with replacement are

used to evade the chances of a collision.

! " Perfect hashing ensures that there is no possibility of collision occurrence. It can

be achieved only when the set of input keys are known beforehand. As a result, collision prevention

measures are programmatically included while developing the hash function.

Example 10.18 Write a program to implement a hash function. Assume that the input keys are

within the range 10001 and 10999.

Program 10.9 Implementation of a hash function

#include <stdio.h>
#include <conio.h>

int hash(int); /*Function prototype for generating hash keys*/

void main()
{
 int key, hk;
 clrscr();

 printf(“Enter the next key:”);
 scanf(“%d”,&key);

 hk = hash(key);

 printf(“\nThe hash key generated for the key %d is %d”,key,hk);

 getch();
}

int hash(int k)
{
 return(k - 10000);
}

Output

Enter the next key: 10765

The hash key generated for the key 10765 is 765

Program analysis

Key Statement Purpose

hk = hash(key); Calls the hash() function to generate the hash key value

Sorting and Searching 297

C
h
a
p

t
e
r

T
e
n

Solved Problems

Problem 10.1 Consider the following array of integers:

35 18 7 12 5 23 16 3 1

Create a snapshot of the above array at each pass if

the bubble sorting technique is applied on it.

Solution

Initial array 35 18 7 12 5 23 16 3 1

Pass 1 1 35 18 12 7 23 16 5 3

Pass 2 1 3 35 18 12 23 16 7 5

Pass 3 1 3 5 35 18 23 16 12 7

Pass 4 1 3 5 7 35 23 18 16 12

Pass 5 1 3 5 7 12 35 23 18 16

Pass 6 1 3 5 7 12 16 35 23 18

Pass 7 1 3 5 7 12 16 18 35 23

Pass 8 1 3 5 7 12 16 18 23 35 (sorted array)

Problem 10.2 Consider the following array of integers:

74 39 35 32 97 84

Create a snapshot of the above array at each pass if the selection sorting technique is applied on it.

Solution
Initial array 74 39 35 32 97 84

Pass 1 32 39 35 74 97 84

Pass 2 32 35 39 74 97 84

Pass 3 32 35 39 74 97 84

Pass 4 32 35 39 74 97 84

Pass 5 32 35 39 74 84 97 (sorted array)

Problem 10.3 Consider the following array of integers:

35 54 12 18 23 15 45 38

Create a snapshot of the above array at each pass if the quick sorting technique is applied on it.

Solution

Initial Array 35 54 12 18 23 15 45 38

Pass 1 18 54 12 35 23 15 45 38

Pass 2 18 15 12 35 23 54 45 38

Pass 3 12 15 18 35 23 54 45 38

Pass 4 12 15 18 35 23 54 45 38

Pass 5 12 15 18 35 23 54 45 38

Pass 6 12 15 18 54 23 35 45 38

Pass 7 12 15 18 38 23 35 45 54

Pass 8 12 15 18 23 38 35 45 54

 Check Point

1. What is a hash table?

Ans. It is a data structure, which is

implemented by a hash function and used

for searching elements in quick time.

2. What is perfect hashing?

Ans. Perfect hashing reduces the

possibility of collision occurrence to zero.

298 Data Structures Using C

Pass 9 12 15 18 23 38 35 45 54

Pass 10 12 15 18 23 35 38 45 54

Pass 11 12 15 18 23 35 38 45 54

Pass 12 12 15 18 23 35 38 45 54

Pass 13 12 15 18 23 35 38 45 54 (sorted array)

Problem 10.4 Draw a flowchart for sorting three integers using insertion sort technique.

FLOWCHART

Summary

© Sorting is the process of arranging the numerical and alphabetical data present in a list, in a

specific order or sequence.

© Searching is the process of locating a specific element across a given list of elements.

© Selection sort works on the principle of identifying the smallest element in the list and moving

it to the beginning of the list.

© Insertion sort method sorts a list of elements by inserting each successive element in the

previously sorted sublist. The insertion of elements requires the other elements to be shuffled

appropriately.

© Bubble sort works by bringing the largest element to the end of the list with each successive

pass.

Sorting and Searching 299

C
h
a
p

t
e
r

T
e
n

© Quick sort is one of the fastest sorting methods that is based on divide and conqueror approach.

It revolves around a key element called pivot to perform the sorting operation.

© Merge sort divides a list into several sublists of equal sizes and sorts them individually. The

sorted sublists are later merged to form the original list.

© Bucket sort distributes the list of elements across different buckets and sorts each of the buckets

individually. These buckets are later merged to form the original sorted list.

© Linear search is one of the conventional searching techniques that sequentially searches for an

element in the list

© Binary search works on an already sorted list to perform the search operation. It repetitively

looks for the middle element of the list until the target element is found.

© Hashing finds the location of an element in a data structure without making any comparisons.

It uses the hash function to determine the location of an element.

© Collision is a situation where the hash function generates same hash keys for two different key

values.

© Perfect hashing ensures that there is no possibility of collision occurrence.

Key Terms

© Pivot It is a key value that is selected and shuffled continuously as per the quick sort algorithm

until it attains its final position in the list.

© Bucket It represents a logical data structure for temporarily storing the elements that fall within

a specific range.

© Hash It is a mathematical function that generates hash keys for indicating the location where

elements are to be stored in the hash table

© Hash table It is a data structure, which is implemented by a hash function and used for searching

elements in quick time.

Multiple-Choice Questions

10.1 Which of the following is the fastest searching technique?

(a) Bubble (b) Quick

(c) Insertion (d) Bucket

10.2 Which of the following searching techniques mandatorily requires the list to be already sorted?

(a) Linear (b) Binary

(c) Hash (d) None of the above

10.3 Which of the following does not have an efficiency of O(n2)?

(a) Selection (b) Insertion

(c) Bubble (d) Merge

10.4 Z $ #" & '" \

(a) O(n2) (b) O(n)

(c) O(n) (d) O(nlogn)

10.5 What is the worst case efficiency of binary search technique?

(a) O(log2n) (b) O(n)

(c) O(nlog2n) (d) O(l)

300 Data Structures Using C

 10.6 Pivot element is associated with which of the following?

 (a) Binary search (b) Quick sort

 (c) Selection sort (d) Hashing

 10.7 Which of the following searching techniques is most suitable for large databases?

 (a) Hashing (b) Linear

 (c) Binary (d) All of the above

 10.8 What is the best case efficiency of binary search?

 (a) O(1) (b) O(0)

 (c) O(n) (d) None of the above

Review Questions

 10.1 What is sorting? List the various sorting techniques.

 10.2 What is searching? List the various searching techniques.

 10.3 Why quick sort is considered the fastest sorting technique?

 10.4 What is a pivot element? Where is it used?

 10.5 Deduce the worst case efficiency of binary search technique.

 10.6 What is bubble sorting? What is it considered to be slow?

 10.7 Explain the insertion and selection sorting techniques with examples.

 10.8 What is hashing? Explain with example.

 10.9 What is a collision? How can it be prevented?

 10.10 Explain the role of buckets in bucket sorting technique.

Programming Exercises

 10.1 Write a program in C that takes as input five integers and displays them in a sorted sequence.

 10.2 Write a C function that applies the bubble sorting technique to sort a set of alphanumeric characters

as per their ASCII values.

 10.3 Write a C program that uses the insertion sorting technique to sort an array of structures. The

sorting must be performed on the basis of one of the structure members.

 10.4 Write a C function that performs linear search on an array of real values.

 10.5 Write a C program that sorts the given set of integers and performs binary search on them.

Answers to Multiple-Choice Questions

 10.1 (a) 10.2 (b) 10.3 (d) 10.4 (a) 10.5 (a)

 10.6 (b) 10.7 (a) 10.8 (a)

11.1 Introduction

11.2 Application of Stacks

 11.2.1 Infix to Postfix Conversion

 11.2.2 Tree Traversal using Stacks

11.3 Application of Queues

11.4 Application of Linked Lists

 11.4.1 Representing Polynomials using Linked Lists

 11.4.2 Representing Other Data Structures using Linked Lists

11.5 Application of Trees

 11.5.1 Using Binary Search Tree to Sort a List

 11.5.2 Using Heap Tree Structure to perform Sorting

11.6 Application of Graphs

Summary

APPLICATION OF DATA

STRUCTURES

11

C

h

a

p

t

e

r

O

u

t

l

i

n

e

302 Data Structures Using C

11.1 INTRODUCTION

In the previous chapters, we learned about various types of data structures, such as stacks, queues, linked

lists, trees and graphs. In this chapter, we will see how these data structures are actually put into use for

solving mathematical and other real-world problems.

11.2 APPLICATION OF STACKS

A stack is a linear list in which elements are added and removed only from one end called top of the

stack. Stacks are based on Last-In-First-Out or LIFO principle that means, the element added last into

the list is the first one to be removed. Inserting an element into a stack is referred as push operation while

removing an element from the stack is referred as pop operation. The various applications of stacks are:

 2.

 3. Tree Traversal

11.2.1

#include<stdio.h>

#include<conio.h>

int stack[100];

int top=-1;

void push(int); /*Function prototype for pushing an element into a stack */

int pop(); /*Function prototype for removing an element from a stack */

int prec(char); /*Function prototype for determining precedence of

operators*/

void main()

{

 char in[100],post[100];

 clrscr();

 !" $!

 gets(in);

 in2post(in);

 getch();

}

 Application of Data Structures 303

C
h

p

E

n

 %

{

 &'+ &'+3+ &'

 + + % 4''

 char t;

 push(“\0”);

 & %

 while(t!=’\0’)

 {

 if(isalnum(t))

 {

 % &

 y++;

 }

 else if(t==’(‘)

 {

 push(‘(‘);

 }

 else if(t==’)’)

 {

 while(stack[top]!=’(‘)

 {

 c=pop();

 % &

 y++;

 }

 c=pop();

 }

 else

 {

 while(prec(stack[top])>=prec(t))

 {

 c=pop();

 % &

 y++;

 }

 push(t);

 }

 77

 & %

 }

 while(top!=-1)

 {

 c=pop();

 % &

 y++;

 }

304 Data Structures Using C

 !8 9 : $!

 3&' 3? 377
 !@ A+ % 3
 !8 8 B C D E G $!
 scanf(“%c”,&a);

 &&J J KK &&JEJ
 {
 & %
 printf(“\nResult = %d\n”,result);
 getch();
 }

 &&J J KK &&JGJ
 {
 '
 }
}

int cal(char post[])
{
 L+ + + +M&'+
 len=strlen(post);
 C M?
 {
 M
 {
 & M NJ'J

 }
 else
 {
 m=pop();
 n=pop();

 C M
 {
 O7J$ & 7L
 break;
 ONJ$ & NL
 break;
 O J$ & L
 break;
 O J$ & L
 break;
 }

 Application of Data Structures 305

C
h

p

E

n

 }
 M77
 }
 if(top>0)
 {
 printf(“Discrepancy between number of operators and operands.”);
 '
 }
 else
 {
 y=pop();
 return (y);
 }
 return 0;
}

int prec(char t)
{
 switch(t)
 {
 O O$ 4'
 O J$ Q
 O7J$ S
 ONJ$ S
 O J$ T
 O J$ T
 O8'J$ '
 $!U " VA
 break;
 }
 return 0;
}

void push(int n)
{
 &&QQ
 {
 printf(“\n\n\tStack Full!”);
 getch();
 4
 }
 stack[++top]=n;
}

int pop()
{
 if(top==-1)

 {

306 Data Structures Using C

 getch();

 }

 return(stack[top—]);

}

" $ 47 X

9 : $ 4 X 7

B C D E G $

Y & S

11.2.2

traversal path in a binary tree.

void preorder(node *r)
{
 node * ptr;
 top=0;
 stack[top]=-1;
 ptr=r;
 C V&GZ^^
 {
 !@ _`A+ N`UG j
 N`YUqx9V&GZ^^
 {
 top=top+1;
 z & N`YUqx9
 }

 N`^" 9V&GZ^^
 & N`^" 9
 else
 {
 ptr=stack[top];
 top=top-1;
 }
 }
 !"GBA
}

11.3 APPLICATION OF QUEUES

Queue is a linear data structure in which items are inserted at one end called ‘Rear’ and deleted from

the other end called ‘Front’. Queues are based on the First-In-First-Out or FIFO principle that means

Application of Data Structures 307

C
h

p

E

n

the data item that is inserted first in the queue is also the first one to be removed from the queue. There

are two key operations associated with the queue data structure: insert and delete.

Queue data structure is mainly used by operating systems and system programs for addressing

situations that require adherence to FIFO principle.

 List down the key application areas of queue data structure.

 Queues are typically used to implement the following:

 !

2. Disk scheduling

3. IO buffer

 " # $

! ! For more information on implementing priority queue, refer to Chapter 7.

11.4 APPLICATION OF LINKED LISTS

% #

 & ' ()* (+ ()* & (+

 %

structures, such as stacks, queues, trees, etc.

 " # $ % & %

 " & / #

 0 / # /# #

 & '

1. Variable

 4

 5

0 & # /# $

storing the result in a separate linked list.

The following structure declaration represents a polynomial term:

struct p_term
{
 int coeff;
 int pow;
 % L
};

 " # ' (% & %

While linked list is itself a data structure, it is also used for implementing other data structures. One of the

key features of a linked list is that it uses dynamic memory management technique for storing data. This

makes linked list-based data structures more efficient as compared to static array-based data structures.

308 Data Structures Using C

! ! To see how linked lists are used for implementing stacks, queues and trees data structures

refer to Chapters 6, 7 and 8 respectively.

11.5 APPLICATION OF TREES

Tree is a non-linear data structure which stores the data elements in a hierarchical manner. A binary tree

is a restricted form of a general tree that can have zero, one or two child nodes but not more than that.

One of the most widely used tree data structures is the binary search tree. It arranges its node elements

in a sorted manner. The node elements in the left subtree are less than the parent node while the node

elements in the right subtree are greater than or equal to the parent node.

11.5.1) * $ ' %

 + 0 # ! / #

 To sort a list using binary search tree, perform the following steps:

1. Read the list elements and create the binary search tree.

2. Read the tree in inorder sequence to generate the sorted list.

Creating Binary Search Tree

The following code snippet shows how an array is used as an input for creating a binary search tree:

.

.

struct BST

{

 UG j

 ^" 9+ YUqx9

};

typedef struct BST node;

void main()

{

.

.

 & GZ^^

int i;

 4' &�SS+��+4X+ +X+TQ+4''+X + �+4Q�

for(i=0;i<10;i+=)

 root = insert(root,list[i]);

.

.

}

 Application of Data Structures 309

C
h

p

E

n

node *insert(node *r, int n)
{
 &&GZ^^
 {
 & L 3
 N`^" 9 & N`YUqx9 & GZ^^
 N`UG j &
 }
 ? N`UG j
 N`^" 9 & N`^" 9+
 ` N`UG j
 N`YUqx9 & N`YUqx9+
 && N`UG j
 ;
 return(r);
}

, & % The following code snippet shows how a binary search tree is traversed in

inorder fashion to generate the sorted list of integers.

.

.
i=0;
.
void main()
{
.
inorder(root);

 !� ^ $A
for(i=0;i<10;i+=)
 printf(“\nlist[%d]=%d”,i,list[i]);
.
}

void inorder(node *r)
{
 V&GZ^^
 {
 N`^" 9
 & N`UG j
 i=i+1;
 N`YUqx9
 }
}

11.5.2 U - /

A heap is a complete binary tree with each node of the tree satisfying the property that the node value

 6 7 / 0 / &

310 Data Structures Using C

greater than their respective subtree nodes. Similarly, a minheap is obtained when all the nodes are less

than their respective subtree nodes.

) &

0

 6 !

 The process of using the heap tree structure to generate a sorted list of integers is called

heap sort. Heap sort is performed by first building a heap and then removing the top element of the heap

one after the other to generate the sorted list.

The following code snippet shows how an element is inserted and stored at an appropriate place in

the heap.

void insert(void)
{
 int parent,ptr;
 n=n+1; /*n is the number of elements in the heap*/
 ptr=n;
 while(ptr>1)
 {
 parent=ptr/2;
 if(element<=heap[parent]) /*element is the new element being inserted

in the heap*/
 {
 heap[ptr]=element; /*heap is a linear array that stores heap elements*/
 return;
 }
 heap[ptr]=heap[parent];
 ptr=parent;
 }

Application of Data Structures 311

C
h

p

E

n

 4 & L x + L

heap*/

 return;

}

0 8 /# # *

heap is empty, the array elements are retrieved to obtain the sorted list.

 6 7 % 7 ! 0 ,#7 -

Graph data structure is similar to the mathematical graph structure, which comprises of a set of vertices

connected with each other through edges. Some of the typical operations performed on a graph data

structure include finding possible paths between two nodes and finding the shortest possible path.

Graph data structure finds its application in varied domains, such as computer network analysis, travel

application, chip designing, gaming, etc.

 8 0 8 # 9 ; 6<8 7 ! $

 i,j

 =

 The following algorithm shows how to perform topological sorting:

 ^U�9 N U L
//E| N U L

while (E| V& GZ^^
{
 i = retreive (E|)
 ^+

 for (E + L
 {
 Delete E +
 L L
 "|

 }
}
if (E + & "��9E U
 B ^U�9
else

 Throw error (graph is cyclic)

 $

© In real programming situations, various instances of these data structures are used in conjunction

to obtain the desired results.

© # #

all the difference.

Index

B+ tree 240

bubble sort 93, 270, 283

Built-in Functions 48

C

Characteristics of an Algorithm 67

Characteristics of Data Structure 75

Circular linked list 126

Circular Linked List Implementation 128

circular queues 185

Collision 295

column major order 97

Complete binary tree 211

Conditional Operator 21

Constants 12

Control Statements 29

D

 79

Data Structure Operations 79

Data Structures 74

Data Types 13

Decision Making Statements 29

Delete 116, 173

Depth First Search 258

deque 199

directed graph 244

Doubly linked list 135

Doubly Linked List Implementation 138

Do-While 37

E

 an algorithm 69

 bubble sort 273

 bucket sort 287

 insertion sort 270

 linear search 290

 Merge Sort 282

A

Adjacency List 250

Adjacency Matrix 246

Algorithms 2, 66

Application of

 data structures 301

 graphs 311

 linked lists 307

 queues 306

 stacks 302

 Trees 308

Arithmetic Operators 20

array 84

 deletion 90

 Implementation of Queues 174

 Implementation of Stacks 151

 insertion 88

 representation 85

 representation of binary trees 212

Arrays 41, 76

Arrays vs. Stacks 149

array traversal 85

Assignment Operators 21

Asymptotic Notation 70

AVL tree 235

B

Balanced binary tree 211

Balanced Trees 234

Big-Oh Notation 70

Binary

 Search 291

 search Tree 224

 tree 210

 tree traversal 217

Bitwise Operators 21

Breadth First Search 257

B tree 239

314 Index

Quick Sort 278

Selection Sort 266

Expression tree 232

F

FIFO 170

File Input/Output Operations 17

Flowchart 3

Flowchart symbols 4

For 39

G

Graphs 78, 244

 implementation 246

 terminology 245

 traversal 257

H

hash function 295

Hashing 294

I

If 29

If else 31

implementation of a binary search tree 227

Increment and Decrement Operators 22

 302

Inorder 217

Input Operations 15

Input-restricted deque 200

Insert 115, 172

Insertion Sort 267

L

LIFO 148

linear data structures 75

linear search 95

Linear Search 288

linked

 implementation of binary tree 219

 Linked Implementation of Queues 180

 Linked Implementation of Stacks 157

 Linked list 76, 113

 linked list Implementation 114, 118

 Linked List Operations 115

 Linked representation of binary tree 213

Logical Operators 22

Logical Representation of Queues 171

Looping Statements 36

M

Matrix 98

matrix operations 100

Merge Sort 279

Multi-dimensional array 41, 43, 97

m-way search trees 238

m-way Trees 238

N

non-linear data structures 75

O

Omega Notation 71

one-dimensional array 85

Operators and Expressions 19

Output Operations 16

Output-restricted deque 200

P

 248

 211

 296

pivot element 274

 61

 150

 302

 217

 ! 24

 217

 118

priority queues 193

 " 2, 5

 5, 67

 150

Q

Queue Operations 172

Queues 77, 170

Quick Sort 274

I

n

d

e

x

R

Red-Black tree 237

Relational Operators 23

Representation of Linked Lists 113

representing polynomial expressions 307

row major order 97

S

Search 117

Searching 95, 288

Selection Sort 263

self-referential structures 114

Shortest path algorithm 253

shortest path matrix 254

Single-dimensional arrays 41, 42

Sorting 92, 262

Space complexity 69

Special Operators 24

Splay rotations 238

Splay Trees 237

Stack Operations 149

Stack Representation in Memory 148

Stacks 77, 148

Strictly binary tree 211

String-handling functions 46

Strings 45

Structure Declaration 54

Structure Initialization 55

Structures vs. Unions 60

Switch 33

T

Theta Notation 73

Threaded Binary Trees 233

Time complexity 69

topological sorting 311

Transpose 106

Trees 78, 209

Tree Terminology 209

Tree Traversal using Stacks 306

types of arrays 84

Types of Data Structures 75

U

undirected graph 244

Unions 58

$ % 50

Using Binary Search Tree to Sort a List 308

& "

Sorting 309

V

Variables 12

W

Warshall’s algorithm 248

While 36

Index 315

	Title
	Contents
	1 C Recap 1
	2 C Recap II
	3 Introdcution to Algorithm and Data Structures
	4 Arrays
	5 Linked Lists
	6 Stacks
	7 Queues
	8 Trees
	9 Graphs
	10 Sorting and Scearching
	11 Application of Data Structure
	Index

