

CLASSIC DATA STRUCTURES, 2nd ed. (With CD-ROM)
Debasis Samanta

© 2008 by PHI Learning Private Limited, New Dealhi. All ights reserved. No pan of this book may be
reproduced in any lorm, by mimeograph or any other means, without permission in writing from the
publisher.

Warning and Disclaimer

The author and the publisher are not responsibka for any loss or damage arising from the use of CO-ROM included
with this book. The CO-ROM includad with this book has no commercial valug and cannot be sold soparately.
ISEN-978-81-203-3731-2

The export rights of this book are vested solely with the publisher.

Saventeenth Printing (Second Edition) - July, 2009

Published by Asoke K. Ghash, PHI Learning Private Limited, M-97, Connaught Circus,
New Delhi-110001 and Printed by Rajkamal Electric Press, Plot No. 2, Phase-IV, Kundli, Haryana.

Contents

—_—————
Preface xili
Preface to the First Edition xv
1. Introduction and Overview 1-11
Ll Definiti !
1.2 Concept of Data Structures 4
L3 Overview of Data Structures 6
1.4 Implementation of Data Structures b
1.5 Organization of the Book 10
2. Arrays 12-35
21 Definiti 3

2.2 Terminology 13
2.3 One-Dimensional Array 14
2.3.1 Memory Allocation for an Array

i4

2.3.2 Operations on Arrays 15
2.3.3 Application of Arrays 21

Contents VIl

4.5 Applications of Stacks 111)
4.5.1 Evaluation of Arithmetic Expressions 11
150 Code G on for Stack Machi 121
4.5.3 Implementation of Recursion 123
154 F al Calculati 125
4.5.5 Quick Sort 128
456 Tower of Hanoi Problem /33
4.5.7 Activation Record Management 136
4.6 Problems to Ponder 150
References 152
2. Queues 153-188
51 Introduction [53
59 Definiti 55
5.3 Representation of Queues 156
5.3.1 Representation of a Queuve using an Array 156
5.3.2 Representation of a Queue using a Linked List 159
54 Various Queue Structures 160
5.4.1 Circular Queue 160
542 Deque 164
54.3 Priority Queue 167
5.5 Applications of Queues 172
3.5.1 Simulation F72
5.5.2 CPU Scheduling in a Multiprogramming Environment 183
353 Round Robin Algorithm 185
5.6 Problems to Ponder 187
References 1588
6. Tables 189-211
6.1 Rectangular Tables 180
6.2 Jagged Tables 190
£3 Inverted Tables [93
6.4 Hash Tables [94
6.4.1 Hashing Techniques 194
6.4.2 Collision Resolution Technigues 199
643 Closed Hashing 200
644 Open Hashing 205
6.4.5 Comparison of Collision Resolution Techniques 207
6.5 Problems to Ponder 210

References 211

vili contents
1. Trees 212-415
7.1 Basic Terminologics 214
7.2 Definition and Concepts 216
7.2.1 Binary Trees 217
7.2.2 Properties of a Binary Tree 218
7.3 Representations of Binary Tree 222
7.3.1 Linear Representation of a Binary Tree 223
7.3.2 Linked Representation of a Binary Tree 226
7.3.3 Physical Implementation of a Binary Tree in Memory 228
7.4 Operations on a Binary Tree 230
141 Inserion 230
142 Deletion 234
743 Traversals 237
744 Merging together Two Binary Trees 248
7.5 Types of Binary Trees 249
7.5.1 Expression Tree 250
7.5.2 Binary Search Tree 254
7.5.3 Heap Trees 266
754 Threaded Binary Trees 276
7.5.5 Height Balanced Binary Tree 289
156 Red-black Tree 304
7.5.7 Splay Tree 333
7.5.8 Weighted Binary Tree 351
759 Decision T 362
16 Trees and Forests 366
7.6.1 Representation of Trees 367
17 B Trees 375
7.3.1 B Tree Indexing 376
7.7.2 Operations on a B Tree 377
7.7.3 Lower and Upper Bounds of a B Tree 40
7.8 B+ Tree Indexing J01
7.9 Tre Tree Indexing 403
7.8.1 Trie Structure S04
7.9.2 Operations on Trie 405
7.9.3 Applications of Tree Indexing 408
7.10 Problems to Ponder 410
References Jid
8. Graphs 416494
8.1 Introduction 4/6

8.2 Graph Terminologies 418

Contents 1X

8.3 Representation of Graphs 422
8.3.1 Set Representation 423
8.3.2 Linked Representation 424
8.3.3 Matrix Representation 425
8.4 Operations on Graphs 431
8.4.1 Operations on Linked List Representation of Graphs 431
842 Operations on Matrix Representation of Graphs S44
8.5 Application of Graph Structures 454
85.1 Shortest Path Problem 456
8.5.2 Topological Sorting 466
853 Minimum Spanning Trees 470
8.54 Connectivity in a Graph 477
8.6 BDD and Iis Applications 487
861 Conversi f Decision Tree i RDE 83
8.6.2 Applications of BDD 490
8.7 Problems to Ponder 492
References 494

9. Sets 495-527

10.

9.1 Definition and Terminologies 497
9.2 Representation of Sets 498
9.2.1 Linked List Representation of Set 498
922 Hash Table Represeniation of Seis 499
923 Bit Vector Representation of Sets 499
924 Tree Representation of Sets 500
9.3 Operations of Sets 506
9.3.1 Operations on List Representation of Set 506
932 Operations on Hash Table Representation of Set 511
9.33 Operations on Bit Vector Representation of Set 513
934 Operation on Tree Representation of Set 517
94 Applications of Sets 521
9.4.1 Spelling Checker 321
942 Information System using Bit Strings 522
95 Problems to Ponder 526
References 527

Sorting 528-711

10.1 Basic Terminclogies 529
10.2 Sorting Techniques 531

4 Classic Data Structures

With the built-in data types, programming languages provide users with a lot of advantages of
processing of various types of data. For example, if a user declares a variable of type Real (say),
then several things are automatically implied, such as how to store a value for that variable,
what are the different operations possible on that type of data, what amount of memory is
required to store, etc. All these things are taken care of by the compiler or the run-time system
manager.

Abstract data type

When an application requires a special kind of data which is not available as a built-in data type,
then it is the programmer’s responsibility to implement his own kind of data. Here, the
programmer has to specify how to store a value for that data, what are the operations that can
meaningfully manipulate vaniables of that kind of data, amount of memory required to store a
variable. The programmer has to decide all these things and accordingly implement them.
Programmers’ own data type is termed abstract data type. The abstract data type is also
alternatively termed user-defined data type. For example, suppose we want to process dates of
the form dd/mm/yy. For this, no built-in data type is known in C, FORTRAN, and Pascal. If
a programmer wants to process dates, then an abstract data type, say Date, has to be devised
and various operations such as adding a few days to a date to obtain another date, finding the
days between two dates, obtaining a day for a given date, etc, have to be defined accordingly.
Besides these, programmers should decide how to store the data, what amount of memory will
be needed to represent a value of Date, etc. An abstract data type, in fact, can be built with the
help of built-in data types and other abstract data type(s) already built by the programmer. Some
programming languages provide a facility to build abstract data types easily. For example, using
struct/class in C/C++, and using record in Pascal, programmers can define their own data types.

1.2 CONCEPT OF DATA STRUCTURES

A digital computer can manipulate only primitive data, that is, data in terms of 0's and 1’s.
Manipulation of pamitive data 15 inherent within the computer and does not require any extra
effort on the part of the user. But in our real-life applications, various kinds of data other than
the primitive data are involved. Manipulation of real-life data (also termed user data) requires
the following essential tasks:

1. Srorage represemation of user dara: User data should be stored in such a way that the
computer can understand it

. Rerrieval of stored data: Data stored in a computer should be retrieved in such a way
that the user can understand it.

3. Transformation of user data: Various operations which require to be performed on user
data so that it can be transformed from one form to another.

2]

The basic theory of computer science deals with the manipulation of various kinds of data,
wherefrom the concept of data structures comes in. In fact, data structures constitute the
fundamentals of computer science. For a given kind of user data, its structure implies the
following:

Introduction and Cuerview 5

1. Domain (2): This is the range of values that the data may have. This domain is also
termed data object.

2. Function (7): This is the set of operations which may legally be applied 1o elements of
the data object. This implies that for a data structure, we must specify the set of
operations,

3. Axioms (~#): This is the set of rules with which the different operations belonging to 7
can actually be implemented.

Now we can define the term data structure,
A data structure D is a triplet, that is, D = (D, 7, #) where D is a set of daia object, 7 is
a set of functions and A is a set of rules to implement the functions. Let us consider an example.
We know that for the integer data type (int) in the C programming language the structure

includes the following types:
2 = (0, £1, £2, 43, ..}
? = {+l T *'r "l %)
A

{A set of binary arnthmetics to perform addition, subtraction, division,
multiplication, and modulo operations.)

It can be easily recognized that the triplet (2, Z. A4 is nothing but an abstract data type. Also,
the elements in set 2 are not necessarily from primitive data; it may contain elements from some
other abstract data types. Altermatively, an implementation of a data structure D is a mapping
from 2 10 a set of other data structures Dy, i = 1, 2, ..., n, for some n. More precisely, this
mapping specifies how every object of 2 is 1o be represented by the objects of D;, i = 1, 2,
... 1. Every function of I must be written using the function of the implementing data structures
Dy i=1,2, .. n The fact is that each of the implementing data structures is either a primitive
data type or an abstract data type. We can conclude the discussion with another example.

Suppose, we want to implement a data type, namely Complex as an abstract data type.
Any variable of the complex data type has two parts: a real part and an imaginary part. In our
usual notation, if z is a complex number, then z = x + iv, where x and y are the real and
imaginary parts, respectively. Both x and y are of the Real data type which is another abstract
data type (available as a built-in data type). So, the abstract data type Complex can be defined
using the data structure Real as

Complex z {
x : Real
v : Real

}
Now the set D of Complex can be realized from the domain of x and ¥ which is Real in
this case. Let us specify the set of operations for the Complex data type, which are stated as 7
?= {&.] @t +, ?- II }

Assume that z; = x; + ivy and z2 = a3 + iy, are two data of the Complex daa type. Then we
can define the rules for implementing the operations in #, thus giving axioms . In the current
example, for the Complex data type

6 Classic Data Structures

A=
2= @ =0 +x)+ily +y)
2= - =(x) —x) + iy = y2)
2= @ =0 Xx -y Xy +ilx Xy +xxy)
I=n+
_ XXty Xy XY, -x XY,
J‘:2+J-’:z 122*'}’:2
x :

z=Vz = : .

)

Note that how different operations of the Complex data type can be implemented using the

3 3 I3] (Eﬂmplﬂx L‘anugﬂtﬂ}
no+y© o +y’

z=|zl= Jxi+y’

operations +, —, X, /, of the implementing data structure, namely Real.

Assignment 1.1

Implement Date as an abstract data type which consists of dd/mm/yy, where dd varies from
1 to 31, mm varies from 1 to 12 and yy is any integer with four digits.
Specify ‘7 consisting of all possible operations on variables of type Dare and then

define 4 to implement all the operations in 7. Assume the implementing data structure(s)
which is/are necessary.

1.3 OVERVIEW OF DATA STRUCTURES

In computer science, several data structures are known depending on the areas of application.
Out of them, a few data structures are frequently used in almost all application areas and with
the help of which almost all complex data structures can be constructed. These data structures
are known as fundamental data structures or classic data structures. Figure 1.2 gives a

classification of all classic data structures.

i Cllﬂi:dlllsﬂ'l.ldl.l'l‘ll
]

MNon-inear

I Linear data structures I

[
[|
[Amays | [Linked ists] [Stacks | [Queues |

i Mon-linear data structures]
I
[I |
[Trees | | Graphs | [Tables | [sets |
Figure 1.2 Classification of classic data structures.

{complex addition)
{complex subtraction)
(complex multiplication)

{complex division)

(complex magnitude)

Arrays a5

4 15 14 1
9 -] 7 12
5 10 11 a
16 3 2 13

Figure 2.15 A magic square with SUM = 34,

(a) Write a program to read a set of integers for a square matrix and then decide whether
the matrix represents a magic square or not.
(b) Write a game program as follows:
(i) Read the size of the square matrix, N x N,

(ii) Display a square matrix (now it is blank) of N x N.

(iii) Allow the player to insert data into the matrix as displayed (you should give a
chance to the user to confirm the entry and to alter the previous entries, if
desired).

{(iv) After the completion of all the entries from the player, count the score as
follows: '
Score = 0 (zero) if it is not a magic square. Otherwise score = T + P*100, where
T is the time required in seconds and P is the number of alteration of
entries.

The player’s performance will be judged by the minimum score achieved other than
ZETO,

REFERENCES
Gotlieb, C.C. and L.R. Gotlieb, Dara Types and Structures, Prentice Hall, Englewood Cliffs,
New Jersey, 1986.

Horowitz, Ellis, and Sartaj Sahni, Fundamentals of Data Structures, Computer Science Press,
Rockville, Maryland, 1985,

Kruse, Robent L., Bruce P. Leung and L. Clovis Tondo, Dara Structures and Program Design
in C, Prentice Hall of India, New Delhi, 1995,

Tremblay, Jean Paul, and Paul G. Sorenson, An Introduction to Data Structures with
Applications, McGraw-Hill, New York, 1987.

I_J:_r_lked Lists]

An array is a data structure where elements are stored in consecutive memory locations. In order
to occupy the adjacent space, a block of memory that is required for the array should be
allocated before hand. Once the memory is allocated, it cannot be extended any more. This is
why the array is known as a static data structure. In contrast to this, the linked list is called
a dynamic data structure where the amount of memory required can be varied during its use.
In the linked list, the adjacency between the elements is maintained by means of links or
pointers. A link or pointer actually is the address (memory location) of the subsequent element.
Thus, in a linked list, data (actual content) and link (to point to the next data) both are required
to be maintained. An element in a linked list is a specially termed node, which can be viewed
as shown in Figure 3.1. A node consists of two fields: DATA (to store the actual information)
and LINK (to point to the next node).

LINK

DATA #———t—3 Link to the next noda

Figure 3.1 Node: an element in a linked list.

Linked Lists 37

3.1 DEFINITION

A linked list 1s an ordered collection of finite, homogeneous data elements called nodes where
the lincar order is maintained by means of links or pointers.

Depending on the requirements the pointers are maintained, and accordingly the linked list
can be classified into three major groups: single linked list, circular linked list, and double
linked list.

3.2 SINGLE LINKED LIST

In a single linked list each node contains only one link which points to the subsequent node in
the list. Figure 3.2 shows a linked list with six nodes.

Here, N1, N2, ..., N6 are the constituent nodes in the list. HEADER is an empty node
{having data content NULL) and only used to store a pointer to the first node N1. Thus, if one
knows the address of the HEADER node from the link field of this node, the next node can be
traced, and so on. This means that starting from the first node one can reach to the last node
whose link field does not contain any address but has a null value. Note that in a single linked
list one can move from left to right only; this is why a single linked list is also called one way
list.

3.2.1 Representation of a Linked List in Memory

There are two ways to represent a linked list in memory:
1. Static representation using array
2. Dynamic representation using free pool of storage
Static representation

In static representation of a single linked list, two arrays are maintained: one array for data and

the other for links. The static representation of the linked list in Figure 3.2 is shown in
Figure 3.3.

HEADER
Mol Jwfl T
N1 N2 N3
™
— r .
T " B
f.d-‘f; ll'l, “B

Figure 3.2 A single linked list with six nodes.

38 Classic Data Structures

DATA LIMK
a 2 GG E 50
42 - - e
43 14 [A7
/"45 59 41
Header ﬁ Bfl :}{
47 45
48] 00 e
49
50| 64 43
“E“"“’”T Array o
Imalm R pﬂiﬂlﬂm

Figure 3.3 Stalic representation using arrays of the single linked list of Figure 3.20.

Two parallel arrays of equal size are allocated which should be sufficient to store the entire
linked list. Nevertheless this contradicts the idea of the linked list (that is non-contagious
location of elements). But in some programming languages, for example, ALGOL, FORTRAN,
BASIC, etc. such a representation is the only representation to manage a linked list.

Dynamic representation

The efficient way of representing a linked list is using the free pool of storage. In this method,
there is a memory bank (which is nothing but a collection of free memory spaces) and a memory
manager (a program, in fact). During the creation of a linked list, whenever a node is required
the request is placed to the memory manager; the memory manager will then search the memory
bank for the block requested and, if found, grants the desired block to the caller. Again, there
is also another program called the garbage collector; it plays whenever a node is no more in
use; it returns the unused node to the memory bank. It may be noted that memory bank is
basically a list of memory spaces which is available to a programmer. Such a memory
management 1s known as dyramic memory management. The dynamic representation of linked
list uses the dynamic memory management policy.

The mechanism of dynamic representation of single linked list is illustrated in
Figures 3.4(a) and 3.4{b). A list of available memory spaces is there whose pointer is stored in
AVAIL. For a request of a node, the list AVAIL is searched for the block of right size. If
AVAIL is null or if the block of desired size is not found, the memory manager will return a
message accordingly. Suppose the block is found and let it be XY. Then the memory manager
will return the pointer of XY to the caller in a temporary buffer, say NEW. The newly availed
node XY then can be inserted at any position in the linked list by changing the pointers of the
concerned nodes. In Figure 3.4(a), the node XY is inserted at the end and change of pointers
is shown by the dotted arrows. Figure 3.4(b) explains the mechanism of how a node can be
returned from a linked list to the memory bank.

Linked Lists

39

Awail

Header

o1 |

Figure 3.4{a) Allocation of a node from memory bank to a linked list.

Header

Figure 3.4(b} Returning a node from a linked list to memory bank.

Linked Lists Bt

the free list is saved following an allocation and is used to begin search for the subsequent
request. The idea of this strategy is to reduce the search by avoiding examination of smaller
blocks that, in the long run, tend to be created at the beginning of the free list as it happens
in the case of first-fit allocation.

Comparison amonyg the strategies

All these strategies are for variable sized blocks. With these strategies, we encounter the
problem of fragmentation, a problem which never occurs in the case of fixed size requests.
There are two types of memory fragmentation: internal fragmentation and external
fragmentation.

Internal fragmentation

External fragmentation makes the memory management system inefficient as it results in a large
number of small blocks and hence a long list for searching. In order to get rid of this problem,
we can refuse to split a block into small pieces, one of which might be very small; instead what
we can do is that allocate the entire block which is larger than the requested size. This excess
space is termed ‘hole’, which is ‘allocated but unused’. This is wasted in the sense that this hole
cannot be allocated any more. This phenomenon of partitioning the total unused storage into
available blocks and allocating these blocks with some portion of these blocks remaining
unused but not available, is called internal fragmentation.

External fragmentation

If a large number of storage blocks are requested and allocated, the linked list of available
storages can be reasonably lengthy and the average block size becomes small and there remain
probably very few blocks which are large. If a request for a large block is received, it may have
to be denied because there is no single block on the free list that is big enough, even though
the total amount of free storage (in the small blocks) may be much greater than the requested
amount. This phenomenon of decomposing the total available storage into a large number of
relatively small blocks is called external fragmentation.

Fragmentation is a major problem in any dynamic memory management system and should
be handled carefully. All the above-mentioned strategies suffer from the fragmentation problem.

First-fit and best-fit are among the most popular strategies in a dynamic memory
management system. As indicated earlier, first-fit is generally faster because it terminates as
soon as a free block. large enough to house a new partition, is found. The best-fit method, on
the other hand, does not use the first suitable block found, but instead continucs the search until
the smallest suitable block has been found. This, although, tends to save larger blocks at times,
which may be needed later to service large requests. Thus, the best-fit method requires a search
of the entire list, while the average length of search for the first-fit would be half of the best-
fit or even less. Furthermore, the best-fit method has the unfortunate tendency to produce a
large number of very small free blocks, and these are often unusable by almost all requests. In
principle, the first-fit is faster, but it does not minimize wastage of memory for a given
allocation. Best-fit is slower and it tends to produce small leftover free blocks that may be too
small for subsequent allocation. However, when processing a series of requests starting with an
initially free memory, neither strategy has been shown to be superior to the other in terms of
wasted memory.

B2 Classic Data Structures

Worst-fit prevents what the best-fit does; it reduces the rate of production of small blocks.
However, some simulation studies indicate that the worst-fit allocation is not very effective in
reducing wasted memory in processing a series of requests.

Next-fit as discussed, is a modification of the first-fit strategy. In general, the next-fit does
not outperform the first-fit in reducing the amount of wasted memory.

So far as processing speed is concerned, a rough comparison can be made as per their order
of superiority, which is specified below:

Next-fit > First-fit > Best-fit, Worst-fit

The boundary tag system uses a slight vanation of the above-mentioned strategies. It uses
the next-fit storage allocation strategy and does not consider a block for allocation which if
allocated leaves a small block of size < & That is, our pool of free storage will not contain any
free block of size < £ where £is chosen by a statistic based on the nature of requests. As per
the next-fit strategy, after allocating a block, search for the subsequent request will continue
from the next block of these allocated blocks, and let AVAIL store the address of such a next
block.

Algorithm GetNodeNextFit_BTS

Input: N, the size of the block requested, e the minimum size of a block for fragmentation, and
AVAIL being the pointer to the block on the list from where the search for the desired block
is to be continued.

Qutput: ptr, the pointer of the block of required size if available else message.

Data siruciure: Linked structure for the boundary ing system,

Steps:

1. ptr = AVAIL /! AVAIL is the current pointer lo a block in the list
2. flag=0 ff This flag is used to indicate the continuity of search
3. While (flag = 0) do

4 If (ptr—SIZE > N) then /f 1f large enough block is found
5 diff = ptr—SIZE - N {f Difference between block size and requirement
6 If (diff < ¢) then // Fragmenltation test suggests for whole block allocation
7. pirl = ptr—=LLINK

8 ptr2 = ptr—RLINK /I Delete the block from the list
9. ptrl=RLINK = ptr2

10. ptr2—LLINK = pirl
11. pir=TAG = |
12. (ptr+ptr—51ZE - 1) - TAG=1 # Block is allocated
13. AVAIL = pir2 {f Block for next search
14, flag = 1 f/ Block is found
15. Return(ptr) {f Return ptr to the caller
16. Else /I Allocate the lower words in the block
17. ptr—SIZE = diff

Linked Lists B3

18. (ptr + diff — 1) = UPLINK = ptr /{ Make the upper words in the block free
19, (ptr + diff - 1) -2TAG =0

20, AVAIL = ptr

21. ptr = pir + diff {I Allocate the last words of the block and
22, ptr—SIZE = N I/ set its fields as allocated
23, pir—TAG = 1

24, (prr+N-1) 2TAG =1

25, flag = 1 /f Block is allocated
26. EndIf

28, Else

29, If (ptr=RLINK = AVAIL) then

30, Print “Block size is insufficient or memory underflow”

3l flag = 1 f Exit
32 Else

KR ptr = pr—RLINK i Move to the next block
34, EndIf

35, EndIf

36. EndWhile

37. Stop

It may be noticed that whenever a block is allocated, it is only required to change the field TAG
and SIZE; the other fields like LLINK, RLINK and UPLINK are not at all required to be
updated. This is because for an allocated block these fields are useless information.

3.9 DEALLOCATION STRATEGY

When a block is no more in use, it is required to be returned to the pool of free storages so
that other programs can use this storage space. The boundary tag system not only inserts this
block to the list of free blocks, but also combines this newly inserted block with its adjacent
block(s). The various cases of this type of combining during the deallocation are illustrated in
Figure 3.26.

Here, we assume a total 20K memory space and 5 programs, viz. PL, P2, P3, P4 and P5
which are using i, occupying memories of sizes 4K, 2K, 4K, 5K, and 2K, respectively.
Suppose, P3 releases its space of 4K and it is inserted into the list of free storage. In this
situation, the available list of storage contains two non-adjacent free blocks of size 4K and 3K,
as shown in Figure 3.26(a).

Now consider the case when Pl releases the block allocated to it. This block has a right
adjacent block and hence two blocks will be combined into one. Figure 3.26(b) depicts it.

Next, let us consider the case, when P2 releases the block of size 2K. As there are two
adjacent free blocks of this block, it is possible to fuse these three blocks into one.
Figure 3.26(c) illustrates this case. '

84 Classic Data Structures

P3 fread this bhock Fraa spaco
P5 P4 P2 P1
| 2K | BK | 4K | 2K 4K | b
1 2K TK 1K 13K 17K 20K
Header 7K 17K

49
5
O
=
[
JL_.

|{1|Il— Iﬂl -
(a) Map for tolal 20K memory space and its comesponding list of frae blocks
A 3
2K [5K [ax| [2x (4K [aK
1 2K TH 1K 13K 17K 20K
T 13K
[nlr ul.-
(b} Frea storage list when P1 releases the block of 4K
P2 freed this block
ps | P4
o EK [ax| [2K] 3
1 2K TH 20K
0 [13K __l
lulI—

{c) Free storage space when P2 releasas a block of size 2K
Figure 3.26 Deallocation of blocks in a boundary tag system.

The process of combining two adjacent blocks is very straightforward in the boundary tag
system. Here is the use of two TAG fields in each block. Whenever a block is returned, the
system will search the TAG fields of its adjacent blocks. If the TAG field(s) 1s/are found as
zero, then combination can be carried out by changing a few pointers. Four cases of
combination may arise. Changes in pointers for four cases are illustrated in Figure 3.27.

Linked Lists

ptr
R o (Wlelo| |TRT T e |0 o
” S]
7/ R
vail Vool
[o]e [0 e
!:I E I‘H::“"u @
@@
Y ptr -
L "
o 0[N ¥~
Mewly available free
block having no fres
block(s) adjacent 1o it
Dl

{a) Case 1: Newly freed block does not have any adjacent blocks on both sides

Avail
\
L o . C e
= 01017 |LxTle|® wein | ~_so| ° =
o ach
F o[e
T
: . ! [o[n]
@i \ Newly available free
. block has a left
5 ez adjacent free block B
[Te

(b} Case 2: Newly freed block has only a laft adjacent block as free

Figure 3.27 Continued.

85

ptr1 pir2 pir3
L "'-._--x""‘"-h _._,_,.-E"—__"-.--..___L
!—_—_ﬂﬂ---, o] [. Je[o] & T alo] Te
Bi
@ ® o L_mE-
@ e
[alo] Tef
Newiy available
block B2 has
right adjacent _—
frea block B1 i
B1 -'"
(c) Case 3: Newly freed block has only a right adjacent block as free
ptr3
0] |e
T
[ofe}—

(d) Case 4: Newly freed block has a left as well as right adjacent free blocks
Figure 3.27 Deallocation strategy in a boundary tag system.

From Figure 3.27, it can be understood how a very recent freed block can be combined with
its adjacent free block(s) to build a larger block in the list of storages. The following is the
algorithm ReturnNode_BTS describing the above illustrated cases of combining the free blocks
when a free block is returned to the memory system.

Linked Lists 87

Algorithm ReturnNode_BTS(PTR)

Inpur: A list of free storage having AVAIL as the pointer to the header of the lists; PTR is the
pointer of the block to be deallocated.

Chutpur: A list of free storage with newly free block inserted into it

Data structure: Linked link structure for boundary tag system.

Steps:
1. n=FPIR=SIZE
/* Both adjacent blocks of the newly freed block are not free */
2. Case 1: ((PTR - 1) -»TAG = 1) and ((PTR + n) -TAG = 1)
SRR Insert at front *4%
3. PTR—=TAG =0 Il Set the TAG fields of the new block as free block
4. (FTR + n - 1) 23TAG =0
5. (PTR + n = 1) -»UPLINK = PTR /f Set the UPLINK
6. pirl = AVAIL—RLINK I Pointer to the first block in the list
1. ptrl—=LLINK = PTR #f Change the pointer as shown (1) in Figure 3.27(a)
8. PTR—RLINK = pirl I/ Change the pointer as shown (2) in Figure 3.27(a)
9. AVAIL—RLINK = PTR I/ Change the pointer as shown (3) in Figure 3.27(a)
10. PTR—LLINK = AVAIL 7 Change the pointer as shown (4) in Figure 3.27(a)
£ Only lefr adjacent block to the newly freed block is free ¥/
11. Case 2: ({PTR - [).TAG = 0) and ({(PTR + n).TAG = 1)
S Append after the left adjgcent block **%/
12. ptrl = (PTR. - 1) =UPLINK {f Obtain the pointer to the left free block
13. ptrl—SIZE = ptrl »SIZE + n /f Update the size of left block which
Hfincludes new free block
14. (ptrl + n — 1) =2TAG =0 /' Set the TAG of the newly combined block
15. (ptrl + n — 1) =UPLINK = ptrl
/I Set the UPLINK as shown (1) in Figure 3.27(b)
/* Only right adjacent block to the newly freed block is free */
16. Case 3: ((PTR - 1).TAG = 1) and (PTR + n). TAG =0
/%% Append right adjacent block after the newly freed block **%/
18. purl = (PFTR = 1) =2UPLINK
19. pur2 = ptrlRLINK
20. ptr3 = pir2—RLINK
21. ptr3—LLINK = pirl #/ Change of pointer as shown (1) in Figure 3.27(c)
22, PTR—RLINK = ptr3 {/ Change of poinler as shown (2) in Figure 3.27{c)
23, FTR—LLINK = pirl #f Change of pointer as shown (3) in Figure 3.27(c)
24, ptrl—RLINK = PTR {! Change of pointer as shown (4) in Figure 3.27(c}
235, PTR—SIZE = n + purl2—SIZE N Change the size of the newly combined block
26. (FTR + n - 1} =UPLINK = PTR #f Set UPLINK fields of the newly
/f combined block
27. (pirl + n = 1} =2TAG =0 1 Set TAG field of the newly combined block
A+ Borh the lefi and right adjacent blocks to the newly freed block are free */
28, Case 4: ((FTR - 1) =2TAG = 0) and ({(PTR + n) =2TAG = 0)
S Append new free block afier left adjacent block and right adjocent block ¥%/

{Conrd.)

B8 Classic Data Structures

20, ptrl = (PTR - 1) - UPLINK /! Pointer to the left adjacent block
io. ptr2 = pirl sRLINK /I Pointer to the right adjacent block
s ptr3 = ptr2—RLINK
32. ptrl—=RLINK = ptr3 // Change of pointer as shown (1) in Figure 3.27(d)
33, ptr3i—LLINK = ptrl {// Change of pointer as shown (2) in Figure 3.27(d)
34, ptrl1—=SIZE = ptrl—=SIZE + n + ptr2—SI1ZE /f Change the size of newly
{/ combined block
35. (pirl + pirl 35IZE - 1) STAG =0 f Set the TAG field of the
/I newly combined block
36. (pirl + ptr1—=SIZE - 1) - UPLINK = pirl /f Set UPLINK field as shown (3)
/I in Fig. 3.27(d)
37. Stop
Assignment 3.9

(a) What modification would you suggest in order to make the algorithm
GetNodeNextFir_BTS as GetNodeFirstFit_BTS based on the first-fit allocation strategy?

(b) Write an algorithm for availing a node based on the best-fit storage allocation strategy.

(c) Procedure ReturnNode_BTS maintains a list of free storages. For a given request, this
list is to be searched from header node whose pointer is AVAIL. One modification is
suggested as “Recently freed block is for the consideration of next service”™. What

’ necessary change you should incorporate in the procedure RerurnNode_BTS and
GetNodeNextFir_BTS to incorporate the suggested modification?

MY TR L

3.10 BUDDY SYSTEM

So far we have discussed that the block sizes are either fixed or completely arbitrary. The buddy
system is another storage management system which restricts the sizes of blocks to some fixed
set of sizes, These blocks of restricted sizes are maintained in a linked list. Whenever a request
for a block of size N comes, the number M, the smallest of the fixed sizes but equal to or larger
than N, is determined, and a block of size M is allocated, if available on the list. If a block of
size M is not available, then a larger block, if available, is split into two sub-blocks (known as
buddies), each of them are also of fixed sizes, and this process is repeated until a block of size
M is produced.

A buddy system specifies the restricted sizes as Fy, F), ..., Fyyax for blocks according to
some pattern. One principle for the specification of block sizes is the use of the recurrence
relation

Fo=F_ +F._. k<ns MAX
for a given k and MAX
.Fu = Cu.. .F| = Cl- aeey .F;‘_| B Cli—l

with initial conditions.

Linked Lists 80

For example, if k = 1 and F = 8, then the block sizes are 8, 16, 32, 64, 128, That is,
the block sizes are successive powers of 2; and the buddy system based on such fixed sizes is
called the binary buddy system. Another buddy system which restricts the fixed sizes to the
Fibonacci sequence is called the Fibonacci buddy system. This system is for k= 2 and F, = §,
F; = 13; the sizes of the blocks then are B, 13, 21, 34, 55, 89, ..., elc. Nole that, Fy, F;, F,, eic.
are specified based on the applications, that is, how much small sizes of the blocks it may
require.

When a request for a memory space comes to the system, it searches for a block whose size
is nearer to but not smaller than the size of the requested block; if such a block is found then
it will be allocated; otherwise the next larger block or the largest block in the list (depending
on the allocation strategy) will be split successively till the block having the size nearest 1o the
required size is found. On the other hand, whenever a block is returned to the system, it will
be combined with another free block into a larger free block if these two blocks were the
buddies that were formed by some previous splitting. If this larger free block is again qualified
as a buddy, then it will be recombined with its partner buddy, if it is free and this process of
reformation will continue till no buddies fit for coalescing are present.

To illustrate the above allocation and deallocation techniques, let us consider the Fibonacei
buddy system which restricts the block sizes as 8, 13, 21, 34, 55, 89 and 144; assume that 144
is the largest block possible, that is, maximum memory available. Figure 3.28 illustrates a few
cases of allocation and deallocation.

From Figure 3.28, the following facts are evident: initially the system maintains a free block
of size 144, say. When a request for a block of size 30 comes, it splits into two buddies, namely
89 and 55 and 55 is again split into two buddies, namely 34 and 21. As 34 is the nearest block
size so it is allocated. Figure 3.28(a) illustrates this. Now for a subsequent request for a block
of size 50, it searches and finds that a block of size 89 is available. As 89 is too large for the
request, a split occurs into 55 and 34 and then the block of size 55 is allocated for the request.
This is illustrated by Figure 3.28(b). Figure 3.28(c) illustrates the case when a block of size 55
is returned to the system. As 55 and 34 are free buddies, so they are combined into a block of
size 89, Block 89 has no free buddy, so here merging comes to a halt. On the other hand,
deallocation for a block of size 34 [Figure 3.28(d)] first combines 34 and 21 as they are free
buddies into a large block of size 55. Next, 55 and 89 are free buddies, so another combination
yields the largest block of size 144.

Our next discussion is to define the structure of a node which will be suitable to manage
the above-mentioned operations. For this we can decide the following structure:

LLINK =—® | FREE | SIZE | CODE | &= RLINK

Two link fields, LLINK and RLINK, store the addresses of the predecessor and the
successor of the block. The SIZE field stores the size of the block. Instead of storing the
absolute size of the block we will store the index value for the size in the recurrence relation
which the buddy system assumes. For example, in the case of Fibonacci buddy system, F, =
Fu_y + Fya, with Fg = 8, F; = 13, we will assume the value for SIZE field as

Qo0 Classic Data Structures

Absolute size (F,) SIZE (n)
FD = 3 EF
F,=13 1
Fy=21 2
Fy=34 3
Fy =355 4
Fy =89 5
Fy =144 6

and so0 on. Another field CODE has enough significance in this system. This field will store the
information whether two blocks are buddies or not. A clever solution has been suggested by
Hinds (in Proceedings of IEEE Symposium on Foundations of Computer Science, Vol. 19, 123—
130, 1978) in order to decide the buddy property of blocks in a Buddy system; the solution is
mentioned below:

Inidally: CODE =10 /{This is for the largest block in the system

Splitting: CODE; ger = CODEppgent + 1 //On splitting a parent block, two blocks
CODEgigur = 0 fnamely LEFT and RIGHT will result
Merging: CODEpspent = CODEqgpr //On merging of two buddies the resultant
//block has CODE which is one less than its
Meft buddy

89‘/1 “\55
N

(a) Allocation for a request of block size 30
/ 1“\
55
SN /N —
55 34 34 21

~— 55— - 34 —>e—21

a1 -— g a2

3

b

144 -

(b) Ancther allocaticn in response to a request for a block of size 50

144
144

55 ‘]
34 “l

(b9)
55 @

89— —=e—01—=

ic} Deallocation of block size 55
Figure 3.28 Continued.

102

Classic Data Struchires

3.2

3.3

34

3.5

3.6

3.7

Swap two adjacent elements

(a) by interchanging the elements

(b) by adjusting only the pointers (and not the data).

In both cases, assume that the elements are stored in (i) a single linked list (ii) a double
linked list. Which method out of (i) and (ii) might appear better? Why?

Given a single circular linked list containing a set of data, obtain the following from this
data structure:

{a) Reverse the direction of links.

{b) For the given two elements in the list, find the distance (that is, the number of nodes)
berween them.

Write an algorithm and implement it with C++ in each case.

Given a single linked list containing any type of data, obtain the following:
{a) Reverse the ordering of the data.
(b) Suppose X and ¥ are two nodes in the list. Add all the nodes between X and ¥ (both
are inclusive) so that
(1) X is the first node in the list.
(i1) Y is the last node in the list.

Let A and B be two lists representing two polynomials. Obtain the operation to find

(a) C=A+ B, where C is a list representing a polynomial and is obtained by adding
two polynomials A and B,

(b) C=A - B, where C is a list representing a polynomial and is obtained by subtracting
two polynomials A and B.

{c) C =A* B, where C is a list representing a polynomial and is obtained by
multiplicating two polynomials A and B.

The following are the sorting algorithms which can be performed on the set of data

which are stored in a single linked list.

(a) Bubhle sort

(b) Selection sort

{c) Insertion sort

{(d) Radix sort

{e) Quick sort

Write the generic code for the above-mentioned sorting methods using the linked list

data structure. Obtain a comparative study of the above sorting methods.

Suppose two lists INPUT and SPLITTER containing data of the same type are given, as
shown in Figure 3.34. All the elements are to be split into three lists, LIST1, LIST2 and
LIST3, based on the SPLITTER so that LIST] contains all the data less than any data
in SPLITTER, LIST2 contains data equal to any data in SPLITTER and LIST3 contains
all the data greater than any data in SPLITTER. Write an algorithm for this. Implement
the algorithm with C++.

Linked Lists 103

38

3.9

3.10

n

Inpust

/ SZIF - \

List1 List 2 List3

Figure 3.34 Splitting of data.

In programming languages such as BASIC and FORTRAN, we cannot maintain the list
structure as there is no pointer concept. But in some cases lists are very much useful.
Give an idea. as to how using two arrays one for DATA and the other for LINK, the
concept of (a) single linked lists, (b) double linked list, and (c) single circular linked list
can be obtained.

An alternative to the standard deletion strategy, a lazy deletion, is known. Here, the
deletion of an element takes place logically but not physically. This is done by
marking the node as deleted (using an extra bit field). The nodes containing a deleted
tag remain in the list. If there are as many marked nodes as non-marked elements
(50:50), the entire lists should be traversed to eliminate the marked nodes using
standard deletion.

{a) Write an algorithm for lazy deletion.
(b) Implement your algorithm with C++.
(Hint: Use the principle of inheritance for the list traversal and usual deletion.)

Suppose, a university has to maintain a list of all students, a list of all subjects and a
record of which student has registered for which course. Give an idea as to how using
linked list structures, the above information can be maintained.

{Hint: Use multi-lists implementation of sparse matrix where the header column for
course, header row for subjects and an entry corresponds to a student who registered in
the subject of the course.)

It is required 1o maintain a library database using a number of lists as mentioned below:

The list BOOKS contains the information like title, accession number and tag field (to
indicate whether a book is issued or not) for all the books in the library. Note that each
book can be held in multiple copies, but their accession numbers are different.
Another list SUBSCRIBERS will contain the name, the borrower number and the list of
books (with the date of issues) issued. Assume that a subscriber can be issued up to five
books at the most and no more than two copies of the same book.

(a) Design a suitable data structure using a single linked list.
(b) Write a menu driven program using C++ for the following:
(i) To issue a book
(i) Return a book
(iii) Show the list of books issued to a subscriber
{iv) Given a title, find out to whom it has been issued.

104 Classic Data Structures

REFERENCES

Donal E. Knuth, The Art of Computer Programming, Addison-Wesley, Reading, Massachusetts,
1984. '

Jean Paul Tremblay and G. Paul, Sorenson, An Introduction to Data Structures with
Applications, McGraw-Hill, New York, 1987.

John Welsh, John Elder and David Bustard, Sequential Frogram Structures, Prentice-Hall,
Englewood Cliffs, New Jersey, 1981.

R. Hind, Efficient Dynamic Storage Management with Buddy System, Proceedings of IEEE
Symposium on Foundations of Computer Science, Vol. 19, 123-130, 1978).

Thomas L. MNaps, Introduction to Data Structures with C, West Publishing Company,
West Virginia, 1986.

Stacks

4.1 INTRODUCTION

A stack is a linear data structure and very much useful in various applications of computer
science. The implementation of the majority of systems programs is simplified using this data
structure, Before discussing this data structure, let us first consider a few examples of the stack
phenomenon.

Shunting of trains in a railway yard

Suppose there is a railway yard with a single track. Trains enter into the railway yard for
placement, and when they exit, it is just in opposite order to that they had entered, i.e. the last
train comes out first {see Figure 4.1).

Shipment in a cargo
For the shipment of goods, they are loaded into a cargo compartment. At the destination, they

are unloaded exactly in the opposite sequence to that in which they were loaded. That is, the
goods loaded last get unloaded first.

Plates on a tray

Suppose a chef placed the dishes on a tray one above the other. The waiter served the dishes
to the customers in the opposite order that the chef placed them, that is, the dish at the top which
105

106 Classic Data Structures

? S L
D
o l—EI O »
b Goods in a cargo
-~
o
in ©

O || out
p—
=~
]
o}
o
—

I .

Trains in a railway yard
Figure 41 Some examples of stacks.

was placed last by the chef is serviced first. The first dish placed by the chef on the tray is
serviced last by the waiter.

From the above examples, it is clear that a stack is something which follows the last-in first-
out strategy. This is why a stack is alternatively termed LIFO (Last-In-First-Out).

4.2 DEFINITION

A stack is an ordered collection of homogeneous data elements where the insertion and deletion
operations take place at one end only.

Like an array and a linked list, a stack is also a linear data structure but the only difference
is that in the case of the former two, insertion and a deletion operations can take place at any
position. The insertion and deletion operations in the case of a stack are specially termed PUSH
and POP, respectively, and the position of the stack where these operations are performed is
known as the TOP of the stack. An element in a stack is termed an ITEM. The maximum
number of elements that a stack can accommodate is termed SIZE. Figure 4.2 shows a typical
view of a stack data structure,

PUSH POP

tem1 —TOP
tem 2]
tem 3]
tem 4

P

Bottom
Figure 4.2 Schematic diagram of a stack.

Stacks 107

4.3 REPRESENTATION OF A STACK

A stack may be represented in the memory in various ways. There are two main ways: using
a one-dimensional array and a single linked list. Representations of stacks in a memory are
discussed in the following two sections.

4.3.1 Array Representation of Stacks

First we have to allocate a memory block of sufficient size to accommodate the full capacity
of the stack. Then, starting from the first location of the memory block, the items of the stack
can be stored in a sequential fashion.

In Figure 4.3(a), ITEM; denotes the ith item in the stack; | and u denote the index range
of the array in use; usually the values of these indices are I and SIZE respectively. TOP is a
pointer to point the position of the array up to which it is filled with the items of the stack. With
this representation, the following two ways can be stated:

EMPTY: TOP =1

FULL.: TOP z u

Index 1D Array Stack_Head
i tem1 |Betiom l -
I+1 ltem 2 @iﬁ;‘-} »> |[ﬂml P P SR [
[+2 . - T
& & TDﬂ ¥
fai=1 Item; — Top Ilemz2
3
u ltem
Sre=u4+i=1
(a} Array representation of a stack (b} Linked list representation of a stack

Figure 4.3 Two ways of representing stacks.

4.3.2 Linked List Representation of Stacks

Although array representation of stacks is very easy and convenient but it allows the
representation of only fixed sized stacks. In several applications, the size of the stack may vary
during program execution. An obvious solution to this problem is to represent a stack uvsing a
linked list. A single linked list structure is sufficient to represent any stack. Here, the DATA
field is for the ITEM, and the LINK field is, as usual. to point to the next item. Figure 4.3(b)
depicts such a stack using a single linked list.

In the linked list representation, the first node on the list is the current item that is the item
at the top of the stack and the last node is the node containing the bottom-most item. Thus, a
PUSH operation will add a new node in the front and a POP operation will remove a node from
the front of the list. The SIZE of the stack is not important here because this representation
allows dynamic stacks instead of static stacks, as with arrays.

108 Clnssie Data Structures

In the linked list representation of a stack, whether a stack is empty or not can be
ascertained by testing the LINK field of the STACK_HEAD node. Note that a test for overflow
is not applicable in this case.

44 OPERATIONS ON STACKS

The basic operations required to manipulate a stack are:

PUSH To insert an item into a stack
POP To remove an item from a stack
STATUS To know the present state of a stack

Let us define all these operations of a stack. First, we will consider the above-mentioned
operations for a stack represented by an array.
Algorithm Push_Array
Inpur: The new item ITEM to be pushed onto it.

Ourput: A stack with a newly pushed ITEM at the TOP position.
Data structure; An array A with TOP as the pointer.

Steps:
1. If TOP = SIZE then
2. Print “Stack is full”
3. FElse
4. TOP = TOP + 1
5. A[TOP] = ITEM
6. EndIf
7. Stop

Here, we have assumed that the array index varies from 1 to SIZE and TOP points the
location of the current top-most item in the stack. The following algorithm Pop_Array defines
the POP of an item from a stack which is represented using an array A.

Algorithm Pop_Array

Input: A stack with elements.

Output: Removes an [TEM from the top of the stack if it is not empty.
Data structure: An array A with TOP as the pointer.

Steps:

1. fTOP < 1 then

2, Print “Stack is empty”
3. Else

4, ITEM = A[TOP]

5. TOP = TOP - 1

6. EndIf

7. Stop

Stacks 100

In the following algorithm Status_Array, we test the various states of a stack such as whether
it is full or empty, how many items are right now in it, and read the current element at the top
without removing it, etc.

Algorithm Status_Array

Input: A stack with elements.

Ouitput: States whether it is empty or full, available free space and item at TOP.
Data structure: An array A with TOP as the pointer.

Siteps:

If TOP < 1 then
Print “Stack is empty™
Else
If (TOP 2 SIZE) then
Print “Stack is full”
Else
Print “The element at TOP is”, A[TOP)
free = (SIZE — TOPYSIZE * 100
Print “Percentage of free stack is”, free
10. EndIf
11. EndIf
12. Stop

W hLB =

Now let us see how the same operations can be defined for a stack represented with a single
linked list.

Algorithm Push_LL

Input: 1TEM is the item to be inserted.

Chutpur: A single linked list with a newly inserted node with data content ITEM.

Data structure: A single linked list structure whose pointer to the header is known from
STACK_HEAD and TOP is the pointer to the first node.

Steps:

1. new = GetNode(NODE)

£ Insert at fromt %/
new—DATA = ITEM

. new—=LINK = TOP

TOP = new
STACK_HEAD—=LINK = TOP
Stop

Algorithm Pop_LL

Input: A stack with elements.

Output: The removed item is stored in ITEM.

Data structure: A single linked list structure whose pointer to the header is known from

STACK_HEAD and TOP is the pointer to the first node.

TR

110 Classic Data Structures

Steps: .

If TOP = NULL
Print “Stack is empty”
Exit

Else
ptr = TOP—LINK
ITEM = TOP—DATA
STACK_HEAD-LINK = pir
TOFP = ptr

EndIf

Stop

SOmNa W

[

The operation Stafus now can be defined as follows:

Algorithm Status_LL()

Inpur: A stack with elements.

Qutpur: Status information such as its state (empty or full), number of items, item at the TOP,
Data structure: A single linked list structure whose pointer to the header is known from
STACK_HEAD and TOP is the pointer to the first node.

Steps:

1. ptr = STACK_HEAD—LINK
. If (ptr = NULL) then
Print “Stack is empty”
Else
nodeCount = 0
While (ptr 2 NULL) do
nodeCount = nodeCount + 1
ptr = ptr—=LINK
EndWhile
Print “The item at the front is”, TOP—=DATA, “Stack contains™, nodeCount,
“Number of items”
11. EndIf
12. Stop

SeoNpumeEw

_—

Assignment 4.1

Using only PUSH, POP and STATUS as the basic operations defined in Section 4.4, write
the procedures to solve the following problems.

(a) Read the top-most element in the stack. (Note that read will not remove the element.)
(b) Visit all elements in a stack. (Preferably without using another stack).

{c) Search for an item in the stack.

(Mote: You should consider both types of memory representations of the stack.)

Stocks 111

Assignment 4.2 (Multiple stack)

In several applications, more than one stack may be required together. Some stacks overflow
whereas others are nearly empty. Suppose an application requires two stacks X and Y
(Figure 4.4). One can define an array A with N, elements for stack X and another array B with
N, elements for stack ¥. Now instead of defining two separate arrays A and B, we can define
a single array, say AB, with N = N, + N, elements for X and ¥ together. Let us define the
starting locations of items for stack X and stack Y as AB[1] and AB[N] respectively and X
‘grows’ to the right whereas ¥ ‘grows’ to the left.

lt—= TOPX TOPY =—»

Stack X Stack Y
Figure 4.4 A multiple stack.

With this scheme, overflow will occur only when X and Y together have more than N
elements. This technique will usually decrease the number of situations of occurrence of
overflow even though we have not increased the total amount of space reserved for the two
stacks.

Using this scheme, we need the modified versions of PUSH_A and POP_A operations as
PUSH_X, PUSH_Y, POP_X, and POP_Y. Similarly, the operation STATUS_AB has to be
defined to test the state of empty or full, percentage of space occupied by X and Y, etc.
Write the basic operations for the implementation of such a multi-stack.

4.5 APPLICATIONS OF STACKS

Various applications of stacks are known. A classical application in a compiler design is the
evaluation of arithmetic expressions; here the compiler uses a stack to translate an input
arithmetic expression into its corresponding object code. Some machines are also known which
use built-in stack hardware called ‘stack machine’. Another important application of a stack is
during the execution of recursive programs; some programming languages use stacks to run
recursive programs. One imporiant feature of any programming language is the binding of
memory variables. Such binding is determined by the scope rules. There are two scope rules

known: the static scope rule and the dvnamic scope rule. Implementation of such scope rules
is possible using a stack known as a run time stack.

The following subsections highlight the above-mentioned applications of stacks.

4.5.1 Evaluation of Arithmetic Expressions

An arithmetic expression consists of operands and operators. Operands are variables or
constants and operators are of various types such as arithmetic unary and binary operators [for
example, — (unary). + (addition), — (subtraction), * (multiplication), / (division), *
(exponentiation), % (remainder modulo), ete.], relational operators (for example, <, >, <=,

112 Classie Deata Structures

< >, »=, ¢lc.), and Boolean operators (such as, AND, OR, NOT, XOR, etc.). In addition to
these, parentheses such as (" and *)° are also used. A simple arithmetic expression is cited
below:

A+B*C/D-E*F*G

The problem to evaluate this expression is the order of evaluation. There are two ways to
fix it. First, we can assign to each operator a precedence and associativity. For example, a set
of usual operators with their precedence and associativity is given in Table 4.1.

Table 4.1 Precedence and associativity of operators

Operators Precedence Assaciativity
— (unary}, +{unary), NOT 6 -
~ {exponentiation) 6 Right to left
* (multiplication), / {division) 5 Left to right
+ (addition), — (subtraction) 4 Left to right
<, €=, +, < >, = 3 Left to right
AND 2 Left to right
OR, XOR 1 Left to right

Thus, with the above rules of precedence and associativity of operators, the evaluation will
take place for the above-mentioned expression in the sequence (sequence is according to the
number 1, 2, 3, ..., etc.) stated below:

A+B*"C/D-E*F"* G

~ S

1 \/ 2

xﬁ !

5\/

&

It should be noted that the above rules for precedence and associativity vary rom one
programming language to another.

Another way of fixing the order of evaluation is parenthesizing the expression fully; this

allows one to override the rules for precedence and associativity. The following is the
parenthesized version of the same expression:

Input: ((A + B) * ((C/D) - (E ~ (F * G))))
(A fully parenthesized expression)
With this parenthesization, the innermost parenthesis part (called sub expression) will be

evaluated first, then the next innermost, and so on; such a sequence of evaluations is shown
below:

Stacks 113

{((A+B)*(IC/D)—(EAF*GH)
\V4

NV
i 2

\

5

3

8

Whatever way we may specify the order of evaluations, the problem is that we must scan
the expression from left to right repeatedly. Hence, the above-mentioned processes are
inefficient because of the repeated scanning required. Another problem is the ambiguity about
how the compiler can resolve to generate a correct code for a given expression. The last
problem mainly occurs for a partially parenthesized expression. These problems can be solved
in the following two steps:

. Conversion of a given expression into a special notation

2. Evaluation/production of an object code using a stack.

Notations for arithmetic expressions

There are three notations to represent an arithmetic expression, viz. infix, prefix and postfix (or
suffix). The conventional way of writing an expression is called infix. For example,

A+B, C-D E=*F GfH,elt.
Here, the notation is

<operand> <operator> <operand>.

This is called infix because the operator comes in between the operands. The prefix notation,
on the other hand, uses the convention

<operator> <operand> <operand>

Here, the operator come before the operands. The following are simple expressions in prefix
notation:

+AB, -CD, *EF, /GH, eic.

The prefix notation was introduced by the Polish mathematician Jan Lukasiewicz and hence
also ermed Folish netation,

The last notation is called the postfix (or suffix) notation where the operator is suffixed by
operands:

<pperand> <operand> <operator>
The following expressions are in postfix notation:
AB+, CD-, EF*, GH/, etc.

The postfix notation is just reverse of the Polish notation, hence it is also termed reversed Polish
notation.

114 Classic Date Structures

It may be noted that in all of the above notations, a unary operator precedes its operand.

An expression given in infix notation can easily be converted into its equivalent prefix
or postfix notation. The following rule is applied to convert an infix expression into a postfix
form.

o Assume the fully parenthesized version of the infix expression.
Moave all operators so that they replace their corresponding right part of parentheses.
o Remove all parentheses.

The following example illustrates this conversion. For simplicity, let us consider a fully
parenthesized expression.

Input: (A + ((B ~ C) = D)) * (E - (A/C)))
(A fully parenthesized expression)

(A+((BAC)-D))"(E-(AIC)))

U L

{(Arrows point from operators to their corresponding right parenthesis.)
((A(BC*"D-+(E(AC/~*
{Operators are moved to their respective right parentheses.)

Output: ABCAD -+ EAC/S - *
(All parentheses are removed yielding the postfix expression.)

A similar technique can be applied to obtain the prefix notation for a given infix notation but
moving the operators corresponds to the left parenthesis.

Three notations for the given arithmetic expression are listed below:

Infix: ((A + ((B~C)-D) * { E - (A/C))

Prefix: * + A - BCD - E/AC

Postfix: ABC*D -+ EAC [- *

The following points may be observed from the above three notations:

I. In both prefix and postfix equivalents of an infix expression, the variables are in the
same relative positions.

2. The expressions in prefix or postfix form are completely parenthesis free.

3. The operators are rearranged according to the rules of precedence of operators.

Out of these three notations, the postfix notation has certain advantages over the other
notations from the computational point of view. The main advantage of postfix is its evaluation.
During the evaluation of an expression in postfix notation it is no longer required to scan the
expression from left to right several times, but scanning is required exactly once. This is
possible using a stack and will be discussed shortly.

Stacks 115

Thus, evaluation of an expression is a two-step process. First, we have to convert the
expression into its postfix notation, and then evaluate this expression in postfix notation. In each
step, the stack is the main data structure that is used to accomplish these tasks.

The uses of the stack for the purpose and the above-mentioned procedures are discussed
below. We will assume the array representation of a stack in our discussions.

Conversion of an infix expression to postfix expression

To formalize the conversion method. we will assume simple arithmetic expressions
containing the +, =, *, /, and " (exponentiation) operators only {i.e. without unary operators,
Boolean operators and relational operators). The expression may be parenthesized or
unparenthesized.

First, we have to append the symbol °)" as the delimiter at the end of a given infix
expression and initialize the stack with (", These symbols ensure that either the input or the
stack is exhausted.

Our next step is iterative: read one input symbaol at a time and decide whether it has 10 be
pushed onto the stack or not. This decision will be governed by Table 4.2,

Table 4.2 In-stack and in-coming priorities of symbols

Symbol In-stack In-coming
prioriry value . priority value

+ = 2

E
(=8
S 00 Wh e
= = =R

From the table, it can be noted that for a symbol we have considered two priority values,
viz. in-stack priority and in-coming prionity values. A symbol will be pushed onto the stack if
its in-coming priority value is greater than the in-stack priority value of the top-most element.
Similarly, a symbal will be popped from the stack if its in-stack priority value is greater than
or equal to the in-coming priority value of the in-coming element. In order to define the
algorithm, we will assume the following functions:

ReadSymbol(): From a given infix expression, this will read the next symbol.
ISP(X): Returns the in-stack priority value for a symbol X.

ICP(X): This function returns the in-coming priority value for a symbol X.
Output(X): Append the symbol X into the resultant expression.

Let as assume that a stack of capacity SIZE is known and TOP is the current pointer in it. PUSH
and POP are usual operations of the stack.

Algorithm InfixToPostfix

Input: E, simple arithmetic expression in infix notation delimited at the end by the right
parenthesis *)’, incoming and in-stack priority values for all possible symbols in an arithmetic
expression.

116 Classic Data Structures

Output: An arithmetic expression in postfix notation.
Data structure: Array representation of a stack with TOP as the pointer to the top-most
element.

Steps:
1. TOP =0, PUSH{'(*) /I Initialize the stack
2. While (TOP > () do
3 item = E ReadSymbol{ } /f Scan the next symbol in infix expression
4, x = POP) // Get the next itemn from the stack
5. Case: item = operand /f Tf the symbol is an operand
& PUSH(x) i The stack will remain same
7 Output(item) { Add the symbol into the output expression
8 Case: item = *), fl Scan reaches to its end
9, While x = (" do /' Till the left match is not found
10, Output(x)

1. x=POP()}

12, EndWhile

13. Case: ISP(x) =z ICP(item)

14. While (ISP(x) = ICP(item)) do

15. Output(x)

16. x = POP()

17. EndWhile

18. PUSH(x)

19, . PUSH (item)

20, Case: ISPix) < ICP(item)

21. PUSH(x)

22, PUSH (item)

23, Otherwise:

Print “Invalid expression”
24, EndWhile
25. Stop

Note: This 15 a procedure irrespective of the type of memory representation of the stack to
convert an infix expression to its postfix form using the basic operations of the stack, namely
PUSH and POP. These operations can be replaced with their respective versions and hence
implementable to stack with any type of memory representation.

EXAMPLE 4.1

Let us illustrate the procedure InfixToPaostfix with the following arithmetic expression:
Frpat: (A+B) » C - (D*¥Ey/F) (infix form)
Symbol reading: 1 234567 8910111213141516

Stacks 117

Read Stack Cutput
symbol
Initial i

1 ()

2 (il A

3 i+ A

4 ((+ AB

5 [AB+

6 " AB+

7 (* AB+C

8 (- AB +C»

g (-1 AB+CH

10 (= AB+CH~D

11 (-(* ' AB+C"D

12 (-(* AB + C ~ DE

13 (- AB+CADE*
14 (=7 AB + C A~ DE *
13 (=7 AB+C~DE*F
16 AB+C~DE*F/-

Owpur: AB+ C*DE* F/ - (postfix form)

The above procedure assumes that the input infix expressions are according to the right syntax.
So, if the input expression is not correct, its postfix form will not be correct. Extending the same
idea, we can incorporate relational, Boolean and unary operators in the above procedure.

{a)

(b)

(c)

Assignment 4.3

Verify the algorithm InfixToPostfix for producing the postfix notations of the following
from the infix notations.
A +ByrCAaD*E<-FIG

(i) A+*B-C

(iit) (A +B) * (C-D)

(iviA*(+B)-C/D

Modify the algorithm InfixToPostfix to convert an infix expression containing Boolean
operators and relational operators and unary operators to their equivalent postfix form.

For the algorithm InfixToPostfix, we assume that the input expression is correct. That
is, there is no error checking performed. But the input expression may not be well
formed always: expressions having two operands together or two binary operators
together or unmatched parentheses are some common mistakes. Write a procedure, so
that it will check for the correct expression at the time of producing the postfix form,

Evaluation of a postfix expression

For a given expression in postfix notation, it can be easily evaluated. The following algorithm
EvaluatePostfix is used to evaluate an arithmetic expression in postfix notation using a stack.

118 Classic Data Structures

Algorithm EvaluatePostfix

fnput: E, an expression in postfix notation, with values of the operands appearing in the
expression.

Output: Value of the expression.

Data structure: Array representation of a stack with TOP as the pointer to the top-most
element.

Steps:
1. Append a special delimiter *#° at the end of the expression
2. item = E.ReadSymbol{) /! Read the first symbol from E
Y. While (item = *#') do
4, If {(item = operand) then
5 PUSH(item) /f Operand is the first push into the stack
6. Else
7. op = item /i The item is an operator
8 ¥ = POP() # The right-most operand of the current operator
9. x = POP() / The left-most operand of the cumrent operator
10. t=xopy /f Perform the operation with operator “op’ and operands x, y
11. PUSH({n /! Push the result into stack
12, Endif
13. item = E.ReadSymbol() fl Read the next item from E
14, EndWhile
15. walue = POP() i Get the value of the expression
16. Return{value)
17. Stop
EXAMPLE 4.2

To illustrate the algorithm EvaluatePostfix, let us consider the following expression:
Infix: A+ (B*C)/D
Postfix: ABC*D/ +
Inpu: ABC*D/+#withA=2B=3,C=4andD =46

Read svmbol Stack
A 2 PUSH{A = 2)
B 23 PUSH(B = 3}
C 234 PUSH(C = 4)
* 212 POP(4), POP(3), PUSH(T = 12)
D 2126 PUSH(D = 6)
/ 22 POP(6), POP(12), PUSH(T = 2)
+ 4 POP{2), POP(2), PUSH(T = 4)
value = POP()

Stacks 1109

Conversion of a postfix expression to a code

Using a stack, we can easily generate an assembly code for an expression given in reverse
Polish notation (postfix). In order to simplify our example, we will assume the arithmetic
expressions with four arithmetic operations— + (addition), — (subtraction), * {multiplication)
and / (division) only—and the assembly codes are in single address form. The following
assembly code mnemonics are assumed:

LDA A To load the accumulator with the memory content of A and the content of A will
remain unchanged.

STA B To store the content of the accumulator in memory location B.

ADD A To add the value of memory content A with the value of the accumulator and
the result will be stored in the accumulator; the value of memory content A will
remain unchanged.

SUB B To subtract the value of memory content B from the value of the accumulator
and the result will be stored in the accumulator; the memory content £ will
remain unchanged.

MUL € To multiply the value of memory content C with the value of the accumulator
and the result will be stored in the accumulator; the memory content C will
remain unchanged.

DIV D To divide the value of the accumulator by the value of the memory content D
and the result of the division will be stored in the accumulator; the value of the
memory content D will remain unchanged.

EXAMPLE 4.3

For example, let the infix expression be A + B and its postfix form be AB+. The assembly code
for this expression will be

LDA A
ADD B
STAT

For writing such codes, let us assume one procedure ProduceCode(A, B, op, Temp) with four
arguments. For instance, with AB +, op is ADD and Temp is T. With these, the algorithm for

converting a postfix expression 1o its equivalent assembly code, PestfixToCode, is framed as
follows:

Algorithm PostfixToCode

Inpur: An arithmetic expression E in postfix notation.

Outpur: Assembly code.

Dara structure: A stack with TOP as the pointer to the top-most element.

120 Classic Date Structures

Steps:
1. Append a delimiter “# at the and of the expression
2. item = E.ReadSymbol() /f Read the first symbol from the expression
. i=L,TOP=0 M Stack is initialized; an integer will be used as index

4. While (item 2 ‘#") do

5. Case: item = operand

6. PUSH{item) ff Push the item into the stack
1. Case: item = %’

8. x = POP(} /f Pop two operands from the stack
9. vy = POP{)

10, ProduceCode(y, x, *ADD’, Ti) ff Ti is the ith temporary
11. PUSH (Ti)

12. Case: item = *~’

13. x = POP{)

14, ¥ = POP(}

15. ProduceCode(y, x, ‘SUB’, T

16, PUSH(Ti)

17. Case: item = *#'

18. x=POP()

19. y = POP(}
20, ProduceCode(y, x, ‘MUL’, T7)
21. PUSH(Ti)
22, Case! item = 'f'
23, x=POP)
24, y = POP{)
25. ProduceCode (y, x, ‘DIV’, Ti)
26. PUSH(T?)
27. Otherwise;
28. Print “Error in input”
29, Exit
30. item = E . ReadSymbol() ff Read for the next symbol from E
3l i=i+ 1 {/ The index is incremented
32. EndWhile
33. Stop

EXAMPLE 44

The above algorithm is illustrated with the following example:
Infix: (A+B)*C/D
Posifix: AB+C*D/J
fput: AB+C*D/#

Stacks 121

The production of codes according to the algorithm PosifixToCade is given below:

Scanned Content of siack Action Code generated
symbal
A A PUSH(A}
B AB PUSH(B)
+ Tl =B, y=A LDA A
PRODUCE_CODE(A, B, *ADD",T1) ADD B
PUSH(T1) STA TI
C 1L PUSHIC)
L T2 x=C, y=TI LDA Ti
PRODUCE_CODE(TI, C, '"MUL',T2) MUL C
PUSH(T2) 5TA T2
D T2 D PUSH(D)
/ T3 x=D,y=T2 LDA T2
PRODUCE_CODE(TZ, D, ‘DIV’, T3) DIV D
PUSH(T3) 5TA T3
T3 Stop
Assignment 4.4

(a) Consider an expression which contains relational and Boolean operators. Formulate the
precedence values required for these operators to convert such an expression to reversed
Polish notation.

(b) Modify the algorithm PostfoxToCode so that it will also handle the unary operators.

{c} Modify the algorithm PostfoxToCode for the six relational operators <, >, <=, >=, <>,
=) and four Boolean operators (AND, OR, NOT, XOR).

4.5.2 Code Generation for Stack Machines

In Section 4.5.1, we discussed the generation of codes for a given arithmetic expression in
postfix form. The codes are of the type called single address codes. These codes are for those

machines which maintain a number of registers; the registers are to store the temporaries. One
pmblcm u.sirlg other machines, which have a very limited number of rd:gis!‘.ﬂl's, i5 how to handle

the storage of intermediate results.

Some machine architectures are known which use a stack instead of registers to store
temporaries or intermediate results; obviously the stack size in this case should be adequate
enough to handle a large expression. Here, we will present the description of a simple
hypothetical machine to illustrate the concept of code generation for the postfix form of
arithmetic expressions.

Let us assume the following set of instructions (given in mnemonic forms) of the stack
machine.

122 Classic Data Structires

PUSH <name> To load from memory onto stack. This instruction loads an operand from
the memory location named <name> and places the content of <name>
into the stack.

POP <name> To store the top element of the stack in memory. The content of the top
of the stack is removed and stored in the memory location referenced by
<names>.

Let us assume that our machine performs the following arithmetic operations only:
ADD, SUB, MUL, DIV

Assume that the operations can be stated with zero-address operation code. Operands are
expliciily mentioned as top two elements mn the stack. The operations are as stated below:

S[TOP = 1] = S[TOP - 1] & S[TOP]
TOP =TOP - 1

where @stands for an operation. This simply means that, for an operation, the operands are from
the top two elements, the result is stored at the second top location and the stack pointer is
decremented by one.

To illustrate the hypothetical machine, let us consider the following arithmetic expressions:

A=B*C-A
The corresponding postfix notation can be obtained as follows:
ABC*A-=
The instruction code according to the stack machine i1s as given below:
PUSH A /l Load operand A into the stack
PUSH B {f Load operand B into the stack
PUSH C /! Load operand C into the stack
MUL {f Multiply B * C
PUSH A /f Load operand A into the stack
SUB {l Subtract B * C - A
POP A /f Store the result in the memory location for A

The various states of the stack are depicted in Figure 4.5.

c A
B |7 B | [Bc| [Bc| [pca
A A Y Al [T '
Empty PushA PushB PushC MUL PushA SUB POP

Stack
Figure 4.5 Evaluation of an arithmetic expression using a stack machine.

Stacks 123

To generate machine codes for a stack machine when an arithmetic expression is given in
postfix notation, an algerithm PostfixToCodeForStackMachine is described below.

Algorithm PostfixToCodeForStackMachine

Input: An arithmetic expression E in postfix notation.

Ourput: Equivalent codes for stack machine

Data structure: Array representation of a stack with TOP as the pointer to the top-most
clement.

Steps:
1. Add a delimiter “#" at the end of the expression
2. item = E.ReadSymbol() {// To read an element from the expression E
3. While (item # ‘#°) do
4 If (item = anOperand) // For the operand only
5 ProduceCode(*PUSH’, item)
6. Else /! Ttem is the operator
7 Case: item = ‘+'
B ProduceCode (*ADD")
9. Case: item = *-'
10. ProduceCode (*SUB")
L1. Case: item = ‘'
12 ProduceCode ("MUL")
13 Case: item = *f
14. ProduceCode (*DIV")
15. EndIf
16, item = E.ReadSymbaol() !/ Read the next symbol from E
17. EndWhile
18. Stop

Here, we assume the procedure ProduceCode() which will add the code into the list of codes.
It may be observed that the above-mentioned procedure PostfixToCodeForStackMachine
generates the optimized code. Here, the stack operations PUSH and POP are only involved,
which perfectly fit the process of generating the object code from the postfix notation.

4.5.3 Implementation of Recursion

Recursion is an important tool to describe a procedure having several repetitions of the same.
A procedure is termed recursive if the procedure is defined by itself. As a simple example, let
us consider the case of calculation of the factorial value for an integer n.

Ml=nxm-1)xmh-Dx-xIx2xl
ar
nt=nx{n-1)

The last expression is the recursive description of the factorial whereas the first is the iterative
definition. Using a pseudo code, the above two types of definitions are expressed as follows:

124 Classic Data Structures

Factorial_I

Input: An integer number N,

Output: The factoral value of N, that is N

Remark: Code using the iterative definition of factorial.

Steps:
1. fact =1
2. For{i=11to N)do
3 fact = 1 * fact
4, EndFor
5. Return(fact) /I Return the result
6. Stop

Here, Step 2 defines the iterative definition for the calculation of a factorial. Now, let us see
the recursive definition of the same.

Factorial_R /[Code using the recursive definition of factorial
Input: An integer number N.
Outpur: The factoral value of N, that is N1,

Remark: Code using the recursive definition of factorial.

Steps:
1. If (N =10) then {f Termination condition of repetition
2. fact = 1
3. Else
4. fact = N * Factorial_R(N - 1)
5. EndIf
6. Return{fact) #f Return the result
7. Stop

Here, Step 4 recursively defines the factorial of an integer N. This is actually a direct translation
of n! =n * (n = 1)! in the form of Factorial_R (n) = n * Factorial_R (n = 1). This definition
implies that n! will be calculated if (n = 1)! is known, which in wrn if (n = 2)! is known and
so on until n = 0 when it returns 1 (Step 1).

The question that arises is how this definition can be implemented. We will see that a data
structure stack can be used for this purpose. Some programming languages such as C, Pascal,
which have a dynamic memory management mechanism, can directly accept the recursive
definition of procedures; compilers of these programming languages are responsible to produce
an object code suitable for execution using a stack (called run rime stack). In other
programming languages such as FORTRAN, COBOL, BASIC, which do not have a dynamic
memory management mechanism, it is the vser’s responsibility to define and maintain the stack
in order to implement the recursive definition of the procedure.

For an illustration, let us consider the calculation of 5! using the recursive definition. To
do this, the following steps are needed:

Stacks 125

Steps:

1. 5! =35%4!

2 4! = 4*3!

3 3 =32

4 21 = 2!

5. 1T = 1*0!
[0t =1
1 1t =1

8 21=2

9. It=6

10. 4! =24

11. 5t =120

Here, it is required to push the intermediate calculations till the terminal condition is reached.
In the above calculation for 5!, Steps 1 to 6 are the push operations. Then subsequent pop
operations will evaluate the value of intermediate calculations till the stack is exhausted.

To control the recursion, we have to maintain the following stacks:

Stack(s) for parameter(s) /I To store the parameter(s) with which the recursion is
defined

Stack(s) for local variable(s) // To hold the local variable(s) that are used within the
definition
A stack to hold the return address.

From the above list of stacks it is evident that the number of stacks required is as many
as there are parameters in the procedure. For some procedure which does not use any local
variable, no stack is required for that purpose. Similarly, a stack to hold the return address may
not be required for some recursive procedure,

Details about implementing recursive procedures using a stack are illustrated in the
following sections with some well-known problems. Let us assume that all stacks are
represented using an array structure, Also, assume that the sizes of stacks are adequate to run
a procedure.

We will illustrate the implementation of three popular recursive computations:

1. Calculation of factorial value
2. Quick sort

3. Tower of Hanoi problem

For each problem, we will describe the recursive description, then the translation of the
recursive description to a non-recursive version using stacks.

4.5.4 Factorial Calculation

Recall that the factorial for an integer N can be defined recursively as follows:

126 Classic Data Structures

Factorial(N)
Steps:
1. If (¥ = 0) then
2 fact =1
3. Else
4, fact = N * Factorialil¥ - 1)
5. Endlf
6. Return (fact)
7. Stop

To implement the above, we require two stacks: one for storing the parameter N and another
to hold the return address. No stack is necessary to store local variables, as the procedure does
not possess any local variable. Let these two stacks be PARAM (for parameter) and ADDR (for
return address).

We assume PUSH(X, Y) operation to push the items X and ¥ into the stack PARAM and
ADDR, respectively.

Algorithm FactorialWithStack

Input: An integer N, and MAIN, the address of the main routine, say.
Output: Factorial value of N (that is N?).

Data structure: Array representation of stack.

| Steps: |

val = N, top = 0, addr = Step 15
PUSH (val, addr) {f Initialize the stack
val = val = 1, addr = Step 11 ff Mext value and returm address
If {val = 0) then
fact = 1
Go to Step 12
Else
PUSH{val, addr) # Val pushed into PARAM and addr pushed into ADDR
Go to Step 3
10. EndIf
11. fact = val * fact
12. val = POP_PARAMI(), addr = POP_ADDR()
13. Go o addr
14. Return (fact)
15. Stop

R R

Note that Steps 3-10 control PUSH and Steps 11-13 are POP operations. Here, the stacks are
initialized by the calling value and address of the Return statement, that is, Step 14.
POP_PARAM() and POP_ADDR() are the two POP operations assumed on two stacks
PARAM and ADDR, respectively.

The above implementation is illustrated for ¥ = 5 in Figure 4.6.

Stacks 127
Action Execution Step Stack comtent
1. val=5, TOP=0 1
addr = Step 10
PUSH(S, Step 10) 2 PARAM] S
] HF
val=4, addr = Step7 g ADDR 11?
2. val <=0 4 5 | 4
PUSH(4, Step 7} & 017
t
3 val=3, addr=Step7 3
val == 0 4 5 4 3
PUSH(3, Step7) 6 1w|7|7
3
4, ﬂ:i :ddr:Etep? E s 1alalz
PUSH(2, StepT) B wlz|7]|7
t
8. val=1, addr=Step? 3
val <= 0 4 5 2 1
PUSH(1, Step 7) 6 10 7|7
*
6. val=0, addr=Step? 3
val=0 4 5| 413 2|1
fact =1 5 10 7 T 7
t
7. val=1, addr=Step7 a 5 ale |1
X
8. val=2, addr=5tep7 8 5 4 3 2
fact=2"1(=2) 7 ol 71717
P X
g. val=3, addr=Step7 514)3
fact=3"2(=6) wl7]|7
¥ X
10. val=4, addr=Step? 8 5| 4
fact=4"6{=24) 7 017
} X
11, val=5, addr=5tep7 8 5
fact=5"24(=120) 7 10
} x
12. (Goto Step 7 10

Figure 4.6 Computation of a factorial (recursively) using a stack.

128 Classic Datu Structures

It may be observed that writing an iterative version for the calculation of a factorial is not
only easy but its execution is also efficient. The example for factorial calculation using a stack
is only of theoretical interest to illustrate the stack mechanism of a recursive procedure execution.

The next two examples highlight the actual advantages of stacks in recursion.

455 Quick Sort

One useful application of a stack is to sort a number of data using the quick sort algorithm. The
quick sort algorithm is based on the divide and conquer technique. The principle behind the
divide and conquer technique is to divide a problem into a number of sub-problems. Again each
sub-problem is divided into a number of smaller sub-problems and so on till a sub-problem is
not decomposable. Solving a problem means solving all the sub-problems.

In the case of quick sort, the list to be sorted is partitioned into two sub-lists so that sorting
these two sub-lists is sorting the main list; sorting the sub-list again follows the same procedure
recursively. Note that partition is to be done in such a way that sorting of the sub-lists is the
sorting of the original list. The question is how can this be done. One simple idea is to select
any element in the list (let it be the first element and be termed pivor element). Place the pivot
element on the list so that all the elements before the pivot element are smaller and all the
elements after the pivot element are larger than it. As an illustration, let us consider the
following list of numbers to be sorted:

79 63 35 21 48 59 87 52 28

Here, 41 is selected as the pivot element, which is encircled. In order to place 41 in its right
position, first compare this element with the element at the extreme right end (shown with an
upright arrow below it, we call this the pointer), swap the elements if they are not in order (that
is, if the element at the extreme right end is smaller than the pivat elemenr), otherwise move
the pointer to left one step and repeat the comparison. In the given list, we see that the pivot
element is greater than the element at the extreme right end and hence they are swapped. The
list after the swap operation is shown below:

28 ?Tf.: 65 35 21 48 59§ 52

We see that this swap places the pivot element at the extreme right end. We now compare the
pivot element with the element which is next to the element just swapped, see the pointer). In
this case, a swap will occur if the comparison tells that they are not in order (that is, the pivor
element is smaller than the element on the lefr), otherwise move the pointer to right one step
and repeat the comparison. In the above list, the comparison leads to a swap operation and the
list after the swap appears as shown below.

28 a5 35 21 48 59 87 512 79

Stacks 129

Repeatedly applying the above steps one can get the following observations. Comparisons
with the pivol will shift the pointer to the left side from 52 to 87, 87 to 59, 59 10 48 and 48
to 21, when we find that the pivot element is larger than 21. So a swap will take place:

28 21 63 35 @ 48 39 B7 3l 79

f

Comparing from left, we get the following change:

% 21 @ 35 65 48 S99 81 s2 19

!

Another comparison from right yields
28 2] a5 63 48 59 87 52 79

Now, we should stop as we have scanned the entire list {as the pointer has reached the pivot)
and we observe that 41 is now placed in its final position, and we get two sub-lists, one
containing all the elements to the left of 41 which are smaller than 41 and another list to the
right of 41 containing elements which are larger than 41,

28 2] 35 6 48 59 B7 52 79

This explains how we can partition a given list into two sub-lists. It may be noted that the two
sub-lists are not necessarily of equal length. After getting the two sub-lists, we have to apply
the same procedure on each sub-list. Then a sub-list is divided into two other sub-lists and the
repetition continues until there is a sub-list containing no elements or a single element (this is
the terminal stage of the repetition over a sub-list). Basically, the repetition is in a recursive
manner. Now, here is the application of a stack. Whenever a sub-list is divided into two sub-
lists, one sub-list has to be pushed onto the stack before sorting the other list. When taking care
of this list, pop the next list to be considered and the procedure will continue till the stack is
empty.

The quick sort algorithm now can be defined recursively as follows: Let L be the original
list and FL, EL be the locations of the front and end elements of L, respectively.

Algorithm QuickSort

Inpur: L is the list of elements under sorting with FL and EL being the two pointers at the two
extremes.

Output: The list L is sorted in ascending order.

Remarks: List is in the form of an array and the algorithm is defined recursively.

130 Classic Data Structures

1. If (EL-FL <1) then {/ Termination check: List is empty or contains a single element
2, Exit # Terminate the QuickSort for the list
3. Endlf

4. loc = Divide{FL, EL) M Partition the list into two sub-lists
5 If({loc-FL)>1 #f If the leftmost list L contains more than one element
6. QuickSort(FL, loc-1} i Apply quick sort on the leftmost list
7. EndIf

8. If (EL-loc) = 1 ff If the rightmost sub-list contains more than one element
9. QuickSort(loc+1, EL) /I Apply quick sort on the rightmost list
10. EndIf
11. Stop

Note that a sub-list can be identified by the location of its two extreme elements. Here,
SizeOf(L) is assumed to determine the number of elements in L.
Before going to describe quick sort using a stack, let us assume the following:

(i) The list of elements is stored in an array A.

(i) In order, to push a list onto the stack we actually push the locations of the first element
and the last element; hence two stacks are required. Let these two stacks be
represented using two arrays, namely FRONT and END.

The quick sort algorithm uses a procedure Divide(). Let us define it next.

Algorithm Divide

Inpur: FL and EL are boundaries, that is, the locations of the front and end elements of the list
to be divided.

Output: LOC is the location of the pivot element which is between the two sub-lists after the
divide.

Data structure: Array representation of a stack with TOP as the pointer to the top-most
element.

Steps:

1. left = FL, right = EL /! Initialization: left and right are two pointers at the extremes
2. loe=FL #f loc denotes the location of the pivot
3. While (loc = right) and (A[loc] = Alright]) do // Compare from right, pivot is being at left
4, right = right-1 #f Move to the left
5. EndWhile

6. If (loc = right} then N List is scanned fully or list contains a single element
7. Return (loc) ! Element is placed in its final position
8. Else / Elements are not in order and hence swap
Q. Swap (Afloc]. Alright]) /f Interchange the pivot and the element on the right of it
10, left = loc+l /f Set the left marker
11. loc = right {f New position of the pivot element
12, EndIf

(Contd.)

Stacks 131

20,
21

13.
14.
15.
16.
17.
18.
19.

22,
23.
24,

While (loc # left) and (Alloc] 2 Alleft]) do # Compare from left pivot is being at right

left = left + 1 /f Move to the right
EndWhile
If (loc = left) then /f List is fully scanned as it contains a single clement
Return(loc) /i Element is placed in its final position
Else // Elements are nat in order and swap
Swap (Afloc], Alleft]) I Interchange the pivot and the element on the left of it
right = loc — 1 A Set the right marker
loc = left /f New position of the pivot element
Endlf
Go to Step 3 {/ Repeat the steps of scanning
Stop

Now, we shall define the quick sort algorithm.

Algorithm QuickSort

Inpur: An array A with N elements

Outpur: Sorted list of elements in A in ascending order

Data structure: Array representation of stack with TOP as the pointer to the top-most element.

Steps:

. fl=kLel=N {f Boundaries of the list
2. top = NULL, 1 Stacks are empty initially
3 IEN=1) /1 If the list is not empty or has more than a single element
4. PUSHIf], el} {/ Push the values into their respeclive stacks
5. EndIf

6. While (top = NULL) do M Till the stack is not empty
1. POP(1], el) /f Pop a sub-list from stacks
8. Divide (f1, el, loc) fI Divide the list into two sub-lists and get the position of pivot
9, If (1 < loc — 1) then // Test for left sub-list whether it has more than one element
10. PUSHI1, loc = 1) // The left sub-list is large enough and will be considered later
11, EndIf
12, If (el > loc + 1) then /f Test for right sub-list whether it has more than one element
13. PUSH(loc + 1, el} // The right sub-list is large enough and will be considered later
14, EndIf
15. EndWhile
16. Stop

An illustration of recursive execution of quick sort using stacks is shown in Figure 4.7.

In the above algorithm QuickSori(), we assume PUSH(FL, EL} to push FL and EL into the

FRONT and END of stacks, respectively. Similarly, POF(FL, EL} is to POP the items from two
stacks FRONT and END and they are stored as FL and EL, respectively. The details of the
quick sort method are illustrated through an example as shown in Figure 4.7. Note that an

132 Classic Data Structures

TOP
6 2 3 4 5 6 T 8 9 10 FRONT| 1
A 79|65(35|21(48 | 59|87 | 52|28
@ REAR | 10
Input fist Stack
{(a) Initialty the antire fist (1, 10) Is Pushed info the stack
TOP
¥
1 2 3 4 5 6 7 8 8 10 eroNT!| 1 1 5
Al2B|121)35 EB5|48 | 59|87 | 52|79
REAR | 10 | 10
e || + L2 -

{b) The list {1, 10) is POPed and divided Into two sub-lists L1{1, 3) and L2(5, 10)
using the Divide precedure and pushed into the stack

TOP

'

12 3 4 5 B 7 8 9 10 FRONT! 1| 5 | g

A2 21135141 52455‘98? 79

—L1—» - 2

REAR | 3 | 7 |10

{c) The list (5, 10} is POPed and divided into two sub-lists L1(5, 7) and L2(9, 10)
using the Divide procedure and pushed into the stack

TOFR

1

i 2 3 4 &5 6 7 8 & 10 FRONT/| 1 5

Azaz13541524359a579

REAR | 3 | 7

+|__1* L2 iz NULL

{d) The list {9, 10) is POPed and divided into two sub-lists L1(9, 9} and
L2{empty) using the Divide procedure.
Mo push operation for either list as they are either empty or containing single element.

TOP

N t

1 2 3 4 5 8 7 8 9 10 cront[
A| 28|21 |35 |41} a8 (52) 59|67 |87

REAR | 3

L1 L2
{&) The list (5, 7} s POPed and divided into two sub-lists L1(5, 5) and
L2(7. 7) using the Divide procedure.
Mo push operation for either list as each of them contains a single element.

TOP

'
4 5 6 7 8 9 10

FRONT
41| 48[52153 [65) 79 | BY

Al 21 .

-— A
L2

B e

() The ligt (1, 3} is POPed and divided into two sub-lists L1{1, 1) and
L2(3, 3} using the Divide procedura.
No push operation lor either list as each of them contains a single element.

Figure 4.7 llustration of recursive execution of quick sort using stacks.

Stacks 133

element with a dotted circle indicates that the element is placed at the final position. The circled
element is the present pivot element. A *X" in the stack pointer position indicates the deletion
of the entry, that is a POP.

The above discussion of the quick sort technique is in the context of the application of a
stack and hence we emphasize its use in the algorithm. A general version of the quick sort
technique, its implementations and variations are discussed in Chapter 10, Section 10.5.4.

4.5.6 Tower of Hanoi Problem

Another complex recursive problem is the tower of Hanoi problem. This problem has a
historical basis in the ritual of ancient Vietnam. The problem can be described as follows:

Suppose there are three pillars A, B and C. There are N discs of decreasing size so that no
two discs are of the same size. Initially, all the discs are stacked on one pillar in their decreasing
order of size. Let this pillar be A. The other two pillars are empty. The problem is to move all
the discs from one pillar 1o another using the third pillar as an auxiliary so that

e Only one disc may be moved at a time.
® A disc may be moved from any pillar to another pillar.
& Al no time can a larger disc be placed on a smaller disc.

Figure 4.8 represents the initial and final stages of the tower of Hanoi problem for N = 5 discs.

A E A B c

C
M

Figure 4.8 Tower of Hanoi problem with 5 discs.

The solution of this problem can be stated recursively as follows:
Move N discs from pillar A to C via the pillar B means

Moving the first (N — 1) dises from pillar A to B,
Moving the disc from pillar A to C.
Moving all (N = 1) discs from pillar 8 to C.

The above solution can be described by writing a function, say Move(N, ORG, INT, DES),
where N is the number of discs, ORG, INT and DES are origin (from pillar), intermediate (via
pillar) and destination (to pillar), respectively. Thus, with this notation, Move(3, X, Z, ¥) means
moving 5 discs from pillar X to pillar ¥ taking the intermediate pillar as Z. With this definition
in mind, the problem can be solved with recursion as follows:

Algorithm Move

Input: Number of discs in the tower of Hanoi N, specification of ORG as from the pillar and
DES as to the pillar, and INT as the intermediate pillar.
Output: Steps of moves of N discs from pillar ORG to DES pillar.

134 Classic Data Structures

Steps:

1. If N> 0 then i/ N =0 is the termination condition
2 Move{N - 1. ORG, DES, INT)

3 ORG — DES (Move from ORG to DES)

4, Move (N - 1, INT, ORG, DES)

5. EndIf

6. Stop

For N = 3, how will this recursion solve the problem as shown in Figure 4.9.

Move (1, A, B, C) A=C

Move (2, A, G, B) TR - R—— A— B

Move (1, C, A, B) - C—B

Move (3, A, B, C) ————— & 3 0 oot oy (03
/Hht"ﬂfi.E,G,A} B A

Move (2, B, A,) B o G BoC

MoveE (1, A,B,C) A-C
Figure 4.9 Tower of Hanoi (with N = 3) solution with recursion.

Now, let us implement this recursion using stacks. For this purpose, we have to assume the
following stacks.

S5TN is to store the number of discs
STA is to store the pillar of origin
STB is to store the intermediate pillar
STC is to store the destination pillar

STADD for the return address

PUSH(N, X, Y, Z, R) and POP (N, X, Y, Z, R) are the two stack operations over these stacks
and are expressed as follows:

PUSH(N, X, Y, Z R) POP(N, X, Y, Z R)
TOP = TOP + | N = STN[TOP]
STN[TOP] = N X = STA[TOP]
STA[TOP] = X Y = STB[TOP]
STB[TOP] = ¥ Z = STC[TOP]
STC[TOP] = Z R = STADD[TOP]
STADD[TOP] = R TOP = TOP - |

With these assumptions, the recursive implementation of the tower of the Hanoi problem
will be defined as follows:

Stacks 135

Algorithm HanoiTower

Inpur: N = number of discs, A = origin, B = intermediate and C = destination pillar.
Output: Steps of movements.

Data structure: Array representation of a stack.

Steps:
1. top = NULL {{ Initially all the stacks are empty
2. org="A",int="B,des="'C',n=N {f Initialization of the parameters
3. addr = Step 26 // Return to the end step
4. PUSH(n, org, int, des, add) /! Push the initial value to the stacks
5. If (STN[top] = 0) then /f Terminal condition reached
6. Go to STADD[top]
7. Else # Translation of move (N - 1, A, C, B)
8. n = STN[top] - 1
9. org = STA[top]

10. int = STC[top]
Il. des = STB|top]

12 addr = Step 15 {1 After completing these moves return to Step 6
13. Go to Step 4

14. EndIf

15. POP(n, org, ini, des, r)

16. Print “Move disc from:™ org — des if Move the nth disc from A 1o C
17. Do the following:

18. n = STN[top] = 1 H Translation of move (N = 1, B, A, C)
19. org = 5TB[top]

20. int = STA[top]

21. des = STC[top]

22. addr = Step 24

23. Go to Step 4

24. POP(n, org, int, des, r)

25. Gotor {/ Return address
26. Stop

To verify the algorithm HanoiTower, the reader can trace down the steps for N = 1, N =2,
N =3, and N = 4 discs. It may be observed that the minimum number of moves required with
N discs is 2V - 1.

I Assignment 4.5

| The celebrated Fibonacci sequence (denoted as Fy, Fy, Fs, Fs, ..., F,) is as below:
13 12922, 3,:5,78,7153 ..

| The above sequence can be defined using recursion as follows:

' ifn=0orn=1thenF,=1

1_36 Classic Data Structures

Else F, = Fy) + Fp3

Show how this Fibonacci sequence can be generated by writing a recursive program and
show how recursive implementation can be done using a stack

Assignment 4.6
To compute the greatest common divisor (GCD) of two integers M and N, the recursive
definition (called Euclid’s algorithm) as follows:

GCD(N. M) ifN>M

GCDM,)= M, ifN=20

GCD(N, MOD(M, N)), otherwise

Here MOD(M, N) is the module function which returns the remainder when M is divided by N.
Write a recursive program for the above implementation using a stack,

4.5.7 Activation Record Management

Before discussing the application of stacks to the management of activation records, let us say
a few words about its theory.

The block structured (also called procedural) programming language allows a user to
define a number of variables having the same name or different names in various blocks. The
scope of a variable is defined as the regions (that is the blocks) over which the variable is
accessible. For example, consider the block structured program depicted in Figure 4.10.

A

Bﬂndamx

Declara X

Refer 1: X

Refer 2 : X

Figure 4.10 A block structured program.

Here, the variable X is declared in block A as well as in block C. Now references of the
variable name at locations say, Refer 1 and Refer 2, are corresponding to which declaration?
This can be decided by a scope rule. There are two scope rules: the static scope rule and the
dynamic scope rule. The static scope rule defines the scope of a name in terms of the syntactic

Stacks 137

structure of a program. This rule is called ‘static’ because one can delermine a variable's
definition by looking at the program text alone.
The static scope rule can be defined as below:

® The scope of a variable declared in a particular block consists of that block, exclusive
of any block nested within it that declares the same identifier,

» If a variable is not declared within a block, then it obtains the declaration from the next
outer block, if not there then the next outer block, and so on until a declaration is
found. Such a rule is known as the ‘most closely nested rule’.

Thus, with this rule, reference of a variable at Refer 2 (see Figure 4.10) will be resolved
from the declaration in block A, whereas reference at Refer 1 will be resolved from the
declaration in block C.

In the dynamic scope rule, on the other hand, reference of an identifier is resolved during
the execution of the program and the same variable name may be defined at several points
within the same program, that is, the variable name may change its definition as the execution
proceeds. This is why the dynamic scope rule is also termed *fluid binding'. This rule is stated
as follows.

The declaration of a variable is referred from the most recently occurring and still
active definition of the name during the execution of the program.

For example, consider the program structure shown in Figure 4.11. P is the main program.
During its execution. at a certain point, the procedure ‘call A" occurs. Here, procedure A is in the
currently active block P. So, for any reference, X in A will be obtained from the declaration in P.

For the other procedure ‘call2 €, as it itself has declaration for X (Declare 3) so any
reference of X will be resolved from that only. Now, suppose B is on execution. B in turn calls
Procedure A (as “call4 A”). Here, reference of X will be obtained from Declare 2 as B is the most
recently occurring block. Thus, for a given reference of X in A, its declaration is once resolved
from Declarel and another from Declare 2 in the same program.

P

Declare 1 . X

call3 C
Refer1: X

Daclare 2 1 X

call4 A

Declare 3 1 X
Refer 2 : X

calll A
call2 C
calld B

Figure 411 Dynamic scope rule.

138 Classic Data Structures

Assignment 4.7
Let us consider the following program structure:

MAIN
Boolean b = TRUE

Procedure P

!f Begin

i Qutput (k)
End

Procedure Q

| Boolean b = FALSE
| | Begin
Qutput (b);
| call P;
{ End

BEGIN fMMAIN
call P;
call G;

END

What output will you find (a} if the scope rule is static and (b} if the scope rule is dynamic.

Implementation of scope rules using stack

The next question that arises is how to implement a scope rule. This is completely a burden
on the system programmer. Actually, the implementation of scope rules is meant to solve
the problem of allocation of memory variables that are declared in different blocks. As we
know, there are two different types of storage allocations, namely sratic storage allocation
and dynamic storage allocation. The static storage allocation is easy to implement and
efficient from the execution point of view. Here, all variables which are required for a
program are allocated during compile time. This is why static storage allocation is known
as a compile time phenomenon. In this scheme, each subprogram/subroutine of a program
is compiled separately and the space required for them is reserved till the completion of
execution of the program. The space required for a program is, thus, just the sum of the
space needed for the program and the subprograms—the space never changes as the
program is running.

On the other hand, in dynamic storage allocation, the space for memory variables is
allocated dynamically, that is, as per the current demand during the execution. When a
subprogram is invoked, space for it is allocated and the space is returned when the subprogram
completes its execution. Thus, the space required to run a program is not fixed as in static
allocation; rather it varies as the program is executed.

We are to discuss the implementation of scope rules using the dynamic memory allocation
strategy. Easy implementation is possible using a stack called a run time srack. In this

Stacks 1390

implementation, when a subprogram is invoked, a block of memory required for it is allotted
and as soon as the execution is completed it is freed. A single chunk of storage, called an
activation record, is used for this purpose. An activation record typically contains the following
information:

Storage for variables local to the subprograms.

Declaration of the procedures and pointers (address of the starting location) to the
definitions of procedures in the subprogram.

The return address (after the end of subprogram, where the control should return).
A pointer to the activation record of the location (the location of the block to which
the subprogram belongs).

Thus, for the above-mentioned information, the structure of an activation record can be
represented as shown in Figure 4,12,

Storage for local
vanables

Declaration of
procedures and their
starting addresses

Return address

Pointer to the location

Figure 412 Structure of an aclivation record.

A stack for storing the activation records needs to be maintained during the execution of
a program (note that this stack should be with list structure because of the dynamic nature of
the programs).

‘When the program control enters a new subprogram, its activation record is pushed onto
the stack and when the subprogram finishes its execution, the control returns to an address
which can be obtained from the field ‘Return Address’ of the activation record and this
activation record is removed from the stack by updating the stack pointer.

For example, for a program as shown in Figure 4.13, where A is the main program, it
invokes B, B in tum invokes € and D. When a subprogram finishes its execution, then the next
subprogram to be resumed can be decided by maintaining a stack.

Next, we will see, how the scope of a memory variable can be resolved. To do this, let us
first consider the pseudo code of a program, as listed in Figure 4.14.

A program structure
Figure 413 Execution of program and its run-time stack.

]
n2
03
M

L
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
24
29
30
31
3z
33
34

Program MAIN
A B, C:integer

Stack Action
A Activation record of
A is pushed
AB Alnvokes B
ABC Bcalls C
AB C complates axacution
ABD Bcalls D
AB D completes execution
A Retum to A
Run-time stack

Procedure ()
Begin
A=A4l
C=0C42
End
Procedure R
C: integer
Begin
C=2;
call Q;
B=A+B
End
Procedure S
B, C:integer;
Procedure ()
Begin
A=Al
C=C+1
End
Begin
B=3
C=1
call
call R

End
Begin

Eﬂtﬂ:ﬁ-
= Il n
- L TC I -

call 5

End

Figure 4.14 A block structured program.

Stacks 141

This program requires a total of five activation records. These are displayed in Figure 4.15.

MAIN Q
A.B Cinteger |a
C{4), R(10)
S(22)
L #+Retum address &—— Heturn address
MAIM (1) 3 Main caller itsalf &—1— Address of the caller
Activation record for Activation record for
MAIN procedure G in MAIN
R 5
C :integer B, C :integer
Q(18)
8——— Ratum address @——— Retum address
&—— Address of the &——— Address of the
— caller callar
Activation record for Activation record for
procedure B in MAIN procedure S in MAIN
Q3
®—— Return address
B-——— Addrass of the
caller

Activation record for
procadure Qin 5

Figure 4.15 Activation records of various procedures.

However, the field for the pointer to the locator depends on the scope rule. For the dynamic
scope rule, there is no need to maintain such a field.

Now, during the execution, the activation records of various procedures are either to be
pushed or to be popped to and from the stack as per the requirement of the program. We will

consider the stack represented with a single linked list, whose node structure is as shown in
Figure 4.16.

142 Classic Data Structures

Pointer to the
activation record

!

L - » Pointer 1o the
neaxt node

Figure 4,16 Node structure for linked list representation of a stack.

implementation of static scope rule

The reference of a variable will be resolved by consulting the current activation record, if it is
not resolved here then it will be resolved from the activation records of its caller, and so on.

Here the caller means a program/subprogram which calls the subprogram under discussion.
The run-time stack view during the execution of the program MAIN (Figure 4.14) is

illustrated in Figure 4.17.
TOP

L1 X
A=7?

B=7
C=?

Q(4} R(10) S(22)

Line 34

(a) MAIN begins its execution at line 28, Its aclivation record is PUSHed inlo the stack

TOP
? [. -
+ MAIN
C=17 A=1, B=2, C=3 |=
Qi4) R{10) 5(22)
Line 33 Line 34
L o L

(b) Program control reaches the line 32, R is invoked and its activation record is PUSHed into the stack
Figure 4.17 Continued.

Stacks 143

TOP
'
L - | *
I CHMAIN) ; R —I— MAIN
C=2 | A=3,B=2,C=5
Q(4) R{10) 5(22)
Line 13 Line 33 Lina 34
.—-I -

ic} Procedure R begins its exacution at line 10 and invokes procedure O al line 12. As Q is not in R, 50 from its
painter to the caller it is resolved and the corresponding activation record of Q is pushed. Execution of G begins
al line 4. References of A and G (at line 5 and 6) are resolved from MAIN, the cuter block of Q.

TTP
o |* "Le
s R ! MAIN
C=2 | A=3,Bs5,C=5 e
Q(4) R(10) S(22)
Line 33 Line 34
. .

{d) When Q finishes its execution, control gats the relum address from i1s activation
recard which is ling 13, Activation record of Q s removed. Now, references o B
and A at line 13 are ablained from thair dectarathon in MAIMN,

TOP

'

s |* e

Y s 7 MAIN

B=7GC=7? ™ Ax3, B=5,Cs5 e
as) Q(4) R{10) 5(22)
Line 34 Line 34

- L

{e) When R completes its execution, control retums to line 33; the procedure S is invoked whose reference
is resolved by the current activation record namely, MAIN and record of S is PUSHed into the stack

Figure 4.17 Continued.

144 Classic Data Structiures
TTP
T : Qis) T ° 5 I MAIN
........... + B=3C=1 "| A=3,B=5,C=5 |-
............ 0[18) Q(4) R(10) 5(22)
Line 26 Line 34 Line 34
-— " .

{f) Procedure S begins its execution at line 22 and when control reaches the line 25 it
involves the procedure Q. The reference of Q is resolved from the current activation record,
that is, of 5 and then the activation record of Q is then PUSHed into the stack,

TOP

1
L i - "
! as) v s A
B=3C=2 | ["] A=4,B=5 C=5
Q(18) Q{4) R(10) S(22)
Line 26 Line 34 Line 34
- > .

{g) Exacution of O is started and references of A and C at lines 19 and 20
are resolved from 5 and MAIN, respectively.

TOP
'
L - L -
? R I S I MAIN
C=1? B=3C=2 |[3 A=4,B=5 C=5 |
Q(18) Q(4) R{10) S{22)
Lina 27 Line 34 Line 34
.—-| .- ~——

{h) When Q finishas s execution, contral retums to line 28, its activation is then POPed
and procedure R is invoked. This R is resolved from the activation record of MAIN,

Figure 417 Continued.

Stacks
[R . = § | @ = & |® L
+ Q{MAIM) 1) R i 5 i MAIM
c=2 B=3C=2 ¥ A=4,B=5, C=5
—
Qg Q{4) R(10) 5{22)
Line 13 Line 27 Line 34 Line 34
& '——] L &

{1} R begins its execulion at line 10. Reference of C is resolved from the activation record of R.
It again invokes Q for its activation record, R s searched, which in turn searches the activation
record of MAIN; so the reference of Q is resolved from MAIN.

oo v o |® -9 |® o @
] QIMAIN) 1 R 1 s T MAIN
C=2 B=3C=2 o] A=6,B=5, C=7 [+
Q(18) Ql4) R(10) S(22)
Line 13 Line 27 Line 34 Line 34
. o——l . *

{i) Q starts execution at line 5; references of A and C at lines 5 and 6, respectively, are resolved from MAIN.

TOP
’|® el g,
¥ R ¥ s % MAIN
C=2 B=3C=2 o] A=B, B=11, G=7 [+
Q1) Qi4) B(10) 5(22)
Limia 27 Line 34 Line 34
.H1 . -—

(k) When Q finishes its execution, control returns to fine 13, Q's activation record is refurned;
current activation recond is R. References of A and B (at line 13) are resolved from MAIN.
When R finishes its execution al line 14, control gets the retum address the line 27, R is removed;
control next returns to line 27. Line 27 is the end of 5, so § is completed; control returns to line 34
Line 34 is the end of the program MAIN. The execution of the program reaches its end.

Figure 4.1T7{a}-{k) Execulion of MAIN using the stafic scope rule.

146 Classic Data Structures

Implementation of dynamic scope rule

Implementation of the dynamic scope rule is much easier than the implementation of the static
scope rule. For the dynamic scope rule, the structure of an activation record is the same as for
the static scope rule except that here it is not required to maintain a pointer field to store the
address of the locator.

On reference of a variable, its declaration will be searched first from the current
activation record; if not found then the next activation record on the stack and so on tll the
declaration is found or all the records on the stack are searched. As in the static scope rule,
here also the execution of a subprogram starts with pushing its activation record onto the
stack and, when the execution is finished, the activation record is simply wiped out (that is
popped).

For the program structure as mentioned in Figure 4.14, its execution using the dynamic
scope rule is illustrated in Figure 4.18,

TOP

¢
’
'

MAIM

0o >
3w ud

Q{4) R(10) S{22)

Line 34

{a) Main begins its execution at lina 28. Its activation
record is PUSHed into the stack.

T?P
BTN
Cu? A=1,B=2C=3
Q(4) R{10) S(22)
Line 33 Line 34

(b) During the execution of MAIN when control reaches line 32 and call
of R occurs, the activation record of A is PUSHed into the stack.

Figure 4,18 Continued.

Stacks 147

TTF
e 0 -9 |® - 9
3 Q 3 R " MAIN
C=2 A=1,B=2, C=3
C(4) R{10)
S(22)
Ling 13 Line 33 Line 34

() Control reaches line 12, the execution of Q is initiated. This Q will be referred
from the first activation record present in tha stack, thal is, from MAIN.

TOP
. | ® - & |® * B
¥ Q ¥ R i MAIN
C=4 A=3, B=2 C=3
Qi4) R{10)
5(22)
Line 13 Lina 33 Line 34

(d) When Q begins its execution at line 4 the reference of A is from MAIN and that of C is from R.

TOP
'
. >
I R T MAIN
C=4 A=3, B=5, G=3
R Q{4) R{10) 5{22)
Line 33 Line 34

(8) O completes its execution, control retumns to line 13; A and B are
referred from the activation record of MAIN. B is updated.

TOP
1
- .
e e
B=?C=? A=3 B=5, C=3
Q{18) Q(4) R(10) 5(22)
Line 34 Line 34

{f) When R finishes its execution, control retumns 1o line 33; call of & occurs
and the activation record of S is PUSHed into the stack.

Figure 4.18 Continued.

148 Classic Data Structures
TOPR

'

L INE L IR L 2
] Q(s) v 5 + MAIN

B=3C=1 A=3, B=5, C=3
o(18) ﬂ(gr ;_E: 0)

Line 26 Lina 34 Line 34

{g) Execution of S begins at line 22 (referred from MAIN) and references of B and G are from
the activation record of 5. When controd reachas line 25, invocation of Q occurs. Relerance
of O iz resolved from the first occurrence, that is, from the activation of S in stack.

TOP
1
, [- P | - &
, o[s) ! s y MAN
B=3C=2 A=d4, B=5, C=3
Qi4) R{10Y
......... Q{18) S(22)
Lina 26 Lina 34 Lina 34

{h) Q begins its execution at line 18. References of A and C (at lines 19 and 20, respactively)
will be resohved from MAIN and 5, respectively.

i
. | @ - & (@ - .
1 R ¥ 5 ¥ MAIN
C=7 B=3C=2 A=4 B=5, C=3
4) R{10]
Q(18) Q{ST{,EZ{])
Lina 27 Line 34 Lina 34

{i) O finishes its execution and control reacheas line 26, A is inftiated. Its activation
record is PUSHed into the stack, control jumps ta line 10,

TTP
® (@ - § | =~ &
¥ R ¥ 5 ¥ MAIN
C=2 B=3C=2 A=4, B=5, C=3
Q(4) R{10)
aue) S(22)
Line 27 Lina 34 Line 34

(i) During the execution of R, C is resolved from the activalion record of R. Next, when Q is
invoked, refareanca of G is resclved from the first occurrence, that is, from 5. The Q is at line 18.

Figure 4.18 Continued.

Stacks 149

TOP
'
L]

Q(s)

Line 13

L 4 H-

C=3

Q[18)

Line 27

L 3 S

B=3, C=2

Q(4) R(10)
S(22)

Line 34

[
| MAIN

A=5, B=5, C=3

Q(4) R(10)
S(22)

Line 34

(k) During the execution of Q, refarence of A is referred from MAIN and that of C is from R.

TOP
L IR - 9 |® - 9
r R 3] ! MAIN
C=3 B=BC=2 A=5 B=5, C=3
CH4) R(10)
Q{18) s(22)
Line 27 Line 34 Line 34

(i) After Q finishes its execution, control retums 1o line 13. For the reference of B and A at line 13,
B is resolved for S and A is from MAIN. Later, when the execution of R is completed, control
returns ta line 27, which indicates that the execution of S is finished, then control
ratums to line 34 which is the end of the program MAIN.

Figure 4.18 (a)}-{l} Execution of MAIN using the dynamic scope rule.

Assignment 4.8

Consider the following recursive function:

Function Fibonacci (n: integer)

Begin
If (n=0)or (n = 1) then
fibo = 1
else
fibo = Fibonacci (n — 1) + Fibonacci (n - 2)
End

Suppose the size of an activation record required for function Fibonacci (n) is as follows:

For local variables and passed parameter = 4 byles
For return address = 2 bytes
For the node structure (on stack) it requires 4 bytes.

If the above function is run on a computer with a stack of 640 bytes, estimate the
maximum value of n for which the memory will not underflow. Give reasons for your
answer.

150 Classic Data Struchires

Assignment 4.9

Consider the following program:
— Program TEST
—— Procedure A
— Procedure B

Procedure C
Begin A

End A
Begin B
Y:icallA
—End B
Begin A

call B
End A
Begin TEST

X:call A
— End TEST

Assuming suitable activation records for various procedures, draw the display structure
Just after the procedures:
(i) marked as X, and
(1i) marked as ¥
are called.
Make sure to indicate which of the two procedures named A you are referring to.

4.6 PROBLEMS TO PONDER

4.1 Suppose we need to maintain two stacks of the same type of items in a program. If the
two stacks are stored in separate arrays, then one stack might overflow while there are
considerable unused spaces in the other. To avoid this situation it is better to maintain the
two stacks in the same array as shown in Figure 4.19,

Stack A Stack B

.

Botton A Top A Top B Bottom B
Figure 4,19 Double stack structure,

Stacks 151

In this structure, one stack, say A, grows from one end of the array and the other stack,
say B, starting from the other end, grows in the opposite direction, that is, towards the
direction of A.

Write algorithms as well as the C++ program of the above-mentioned double stack
structure for the following operations:

PUSHA, PUSHB, POPA and POPB.

4.2 Repeat the same concept as in Problem 4.1 but for three stacks in an array.
4.3 Draw a schematic diagram showing how to plan six stacks in a single array.
4.4 The efficient method used in evaluating a polynomial of the form

Pyx) = ap" + @™ + ax + - + a7 + a,
is by nesting using Horner’s rule, as shown below:

Po(x) = (- (((@gx + a))x + a)x + = + @))% + 4,
Show how this can be carried out using a stack.
4.5 Consider the following arithmetic expression in postfix notation:

752+*415-/-

(a) Find the value of the expression.
(b} Find the equivalent prefix form of the above expression.
(c) Find the value of the expression from its prefix notation.

4.6 Devise a method to convert an infix expression into its prefix form that includes (,), +,
- I *

4.7 Write a method to convert a postfix expression 1o infix for the same set of symbols as in
Problem 4.6.

4.8 An arithmetic expression is given in postfix form; it is required to convert it into its
equivalent prefix form. Write a method for this.
{Hint: You can use the method as obtained in Problems 4.6 and 4.7 and combine them
suitably.)

4.9 Add the exponentiation operator to your reperioire for Problems 4.6, 4.7 and 4.8.

4.10 In our discussion, we have only been concerned with binary operators. In an arithmetic
expression, there are also some operators like plus (+) and minus (—) which can be used
both for binary as well as unary. Repeat Problems 4.6, 4.7 and 4.8 assuming unary plus
{+) and unary minus (-) operators in the expression.

(Hint: It is an easy matter to distinguish different occurrences of unaries, an operator
denotes a binary operator if it does not occur either at the beginning of an expression or
immediately after a left parenthesis.)

4.11 Consider the following arithmetic expressions:

(a) A™ B C/D
(b) A* B/C

152 Classic Data Structures

(c) ~A+B-CA forA=2B=3C=-4.
A+B*C+DIB+A*C)+D

(e) ABAC+D*E-A*C

Convert the above expression into

(1) Postfix notation
(ii) Prefix notation

4.12 List all the prime factors of the given integers in descending order. (Hint: Use stack.)
4.13 Devise a method that will produce all permutations of the first N integers using stack.

4.14 There is a variation in the original Euclid's algorithm for computing the greatest common
divisor of two integers M and N. According to the modified Euclid's algorithm,

GCDIM =N N) ifM2N
GCD(M,N)={M if N=0
GCDM,N-M) ifN>M

Using only a stack, write a procedure to compute the GCD as per the modified Euclid's
method.

REFERENCES

Bruno, J. L. and T. Lassagne, The generation of optimal code for a stack machine, Jowrnal of

the ACM, July 1975,

Donald E. Knuth, The Art of Computer Programming, Vol. 2, Addison-Wesley, Reading,
Massachusetts, 1984,

Forsythe, AL, T.A. Keenan, et al., Computer Science: A First Course, John Wiley & Sons, New
York, 1986.

Harrison, M.C., Data Structures and Programming, Glenview, Berkeley, California, 1985.

Sethi, Rajeev and J. Ullman, The generation of optimal code for arithmetic expressions, Journal
of the ACM, Vol. 10, October 1970.

Queues

3.1 INTRODUCTION

A gueue is a simple but very powerful data structure to solve numerous computer applications.
Like stacks, queues are also useful to solve various system programs. Let us discuss some
simple applications of queues in our everyday life as well as in computer science before
undertaking the study this data structure.

Queuing in front of a counter

Suppose there are a number of customers in front of a counter to get service (say, to collect
tickets or o withdraw/deposit money in a teller of a bank), Figure 5.1(a). The customers are
forming a queue and they will be served in the order they arrived, that is, a customer who comes
first will be served first.

Countar
pmii

Figure 5.1(a) Queue of customers.
153

154 Classic Data Structures

Traffic control at a tuming point

Suppose there is a turning point in a highway where the traffic has to wrn. See Figure 5.1(b).
All the traffic will have wait in a line till it gets the signal for moving. On getting the *Go’ signal
the vehicles will turn on a first come, first turm basis,

Figure 5.1{b) Traffic passing at a turning point.

Process synchronization in multi-user environment

In a multi-user environment, more than one process is handled by the monitor (operating
system). See Figure 5.1(c). The three different states that a process may have are the following:
READY, RUNNING. and AWAITED. A process is in the READY state when it 1s submiited
to the system for execution. A process is in the RUNNING state if it is currently under
execution. Similarly, a process will be transferred o the AWAITED state when it requires
resource(s) which isfare busy. In order to synchronize the execution of processes, the monitor
has to maintain two queues, namely Q1 and Q2, for READY and AWAITED states respectively
where a process which entered a queue first will be exited first.

Ready Awaited

Figure §.1{c) Queues of processes.

Resource sharing in a computer centre

In a computer centre, where resources are limited compared to the demand, users must sign a
waiting register. See Figure 5.1(d). The user who has been waiting for a terminal for the longest

Queues 155

period of time gets hold of the resource first, then the second candidate, and so on. Here the
waiting list maintains a queue and the first signed will be the first allowed.

%ﬁﬁa

— | #——— Waiting register

Figure 5.1(d) A waiting queue of users in a computer centre.

5.2 DEFINITION

Like a stack, a queue is an ordered collection of homogeneous data elements; in contrast with
the stack, here, insertion and deletion operations take place at two extreme ends.

A queue is also a linear data structure like an array, a stack and a linked list where the
ordering of elements is in a linear fashion. The only difference between a stack and a queue
is that in the case of stack insertion and deletion (PUSH and POP) operations are at one end
(TOF) only, but in a queue insertion (called ENQUEUE) and deletion (called DEQUEUE)
operations take place at two ends called the REAR and FRONT of the queue, respectively.
Figure 5.2 represents a model of a queue structure.

Rear Front
Enqueug — | » | & | o | m | m | —— Dequeue

i
F

Figure 5.2 Model of a queue.

An element in a queue is termed [TEM; the number of elements that a queue can accommodate
is termed LENGTH.

From the examples mentioned in Section 5.1 and the definition as stated above, it is evident
that a data in a queue is processed in the same order as it had entered, that is, on a first-in, first-
out basis. This is why a queue 1s also termed first-in first-out (FIFO).

156 Classic Data Structures

5.3 REPRESENTATION OF QUEUES

There are two ways to represent a queue in memory:

1. Using an array
2. Using a linked list

The first kind of representation uses a one-dimensional array and it is a better choice where a
queune of fixed size is required. The other representation uses a double linked list and provides
a queue whose size can vary during processing.

The following two subsections describe the representation of queues in memory.

5.3.1 Representation of a Queue using an Array

A one-dimensional array, say Q[1 ... N], can be used to represent a queue. Figure 5.3 shows
an instance of such a quene. With this representation, two pointers, namely FRONT and REAR,
are used to indicate the two ends of the queue. For the insertion of the next element, the pointer
REAR will be the consultant and for deletion the pointer FRONT will be the consultant.

0 o=
[|
123 zZz =
ol o gl
Front Roar

Figure 5.3 Amay representation of a queues,

Three states of a queue with this representation are given below:
Quene is empty
FRONT =0
REAR =0 ({and/or)
Quene is full
REAR = N
FRONT =1 (when full by compact)
Quene contains elements = 1
FRONT < REAR
Number of elements = REAR — FRONT + 1|

Mow let us define the operation ENQUEUE to insert an element into a queue.

Algorithm Engueue

Input: An element ITEM that has to be inserted.

Ouwurpur: The ITEM is at the REAR of the queue.

Data structure: () is the array representation of a queue structure; two pointers FRONT and
REAR of the queue Q@ are known.

Quewes 157

Steps:

1. If (REAR = N) then /f Queue is full
2 Print “Queue is full”

3 Exit

4. Else

3 If (REAR = () and (FRONT = 0) then i Queue is empty
6 FRONT =1

7. EndIlf

8 REAR = REAR + | {f Insert the item into the quene at REAR
9 JIREAR] = ITEM

0. EndIf

1

Stop

The deletion operation DEQUEUE can be defined as given below:

Algorithm Dequeue

Input: A queue with elements, FRONT and REAR are the two pointers of the queue Q.
Cutput: The deleted element is stored in ITEM.

Data structures: Q is the array representation of a queue structure,

Steps:

If (FRONT = 0} then
Print “Queuc is empty”
Exit
Else
ITEM = Q[FRONT] N Get the element
If (FRONT = REAR) ff When the quere contains a single element
REAR =0 /f The queue becomes empty
FRONT = 0
Else
10. FRONT = FRONT + 1
11. EndIf
12. Endlf
13. Stop

—

el A

Let us trace the above two algorithms with a queue of size = 10, Suppose the current state of
the queue is FRONT = 8, REAR = 9. Ten operations are requested as under:

1. DEQUEUE 2. ENQUEUE 3. ENQUEUE
4. DEQUEUE 5. DEQUEUE 6. DEQUEUE
7. ENQUEUE 8. ENQUEUE 9. DEQUEUE
10. DEQUEUE

Figure 5.4 presents the status of the queue when these operations are carried oul.

158

Classic Data Structures

Queue at its current state

1 2 3 4 5 6 7 8 8 10
- -
t 1
F 2]
1. Request : DEQUEUE
E]
S 3
2. Request : ENQUEUE FR
- []
> 1
3. Request : ENQUEUE F R
-
= Message Queues is full ’I_ L
4. Request : DEGUEUE
> 1t
5. Request : DEQUEUE FR
-
FR
6. Raquest : DEQUEUE
> Message Queus is ampty

Tt
==

7. Requast : ENGUEUE

tt <
FR

8. Request : ENQUEUE

I
F R

9. Request : DEQUEUE

<
FR

10. Request : DEQUEUE

M <

Figure 54 Operalions on a queue.

Queues 159

There is one potential problem with this representation. From Figure 5.4, we can see that
with this representation, a queue may not be full, still a request for insertion operation may be
denied. For example, on request (3) (in Figure 5.4) 8 rooms are available but insertion is not
possible as the insertion pointer reaches the end of the queue. This is simply a wastage of the
storage. This type of representation can be recommended for an application where the queue
is emptied at certain intervals.

Assignment 5.1

The algorithm Engueuwe may fail even though there is memory space available. One way to
avoid this problem is to rewrite the algorithm Enquene and Deguene. Two solutions are |
suggested as given below:

Suggestion 1: Rewriting the algorithm Enqueue.

Whenever the REAR pointer gets to the end of the queue (Figure 5.5), test whether the
pointer FRONT is at location 1 or not; if not, shift all the elements so that they are wrapped
from the beginning and thus make room for a new item.

Suggestion 2: Rewriting the algorithm Dequeie.

e T P SR DR

t t t t
F R F A

Figure 5.5 Shifting elements when R reaches to the end.

After the end of each deletion, all the elements at the trail are shifted once towards the front;
here the idea is to fix the FRONT pointer always at 1. The queue which follows such
operations is termed a dynamic gueuwe. Rewrite operations ENQUEUE and DEQUEUE for a
dynamic gueue.

5.3.2 Representation of a Queue using a Linked List

One more limitation of a gueuwe, other than the inadequate service of insertion represented with an
array, is the rigidness of its length. In several applications, the length of the queue cannot be
predicated before and it varies abruptly. To overcome this problem, another preferable
representation of a guewe is with a linked list. Here, we select a double linked list which allows us
to move both ways. Figure 5.6 shows the double, linked list representation of a queue. The pointers
FRONT and REAR point the first node and the last node in the list,

Header Frant Rear

| l |

T . Y
.1_l’d . nn‘rmh » m‘raz}o: o & M. |DATAR

b - — S

Figure 5.6 A double linked list representation of a queue.

160 Classic Data Structures

Two states of the queue, either empty or containing some elements, can be judged by the
following tests:
Queue is empty
FRONT = REAR = HEADER
HEADER—RLINK = NULL

Queue contains at least one element
HEADER—RLINK = NULL

The insertion and deletion operations are straightforward and the same as in the algorithm
InsertEnd_DL (for Engueue) and algorithm DeleteFroni_DL (for Dequeue); these two
algorithms are already defined in Section 3.4 of Chapter 3.

Assignment 5.2

Explore the possibilities of representing a queve using an ordinary single linked list or
circularly single linked list.

——

54 VARIOUS QUEUE STRUCTURES

So far we have discussed two different queue structures, that is, either using an array or using
a linked list (and a variation of a queue structure using an array as an assignment). Other than
these, there are some more known queue structures. This section discusses them.

5.4.1 Circular Queue

As pointed at the end of Section 5.3.1, for a queue represented using an array when the REAR
pointer reaches the end, insertion will be denied even if room is available at the front. One way
to avoid this is to use a circular array. Physically, a circular array is the same as an ordinary
array, say A[l ... N], but logically it implies that A[l1] comes after A[N] or after A[N], A[1]
appears. Figure 5.7 shows logical and physical views of a circular array.

Front Rear 5
na=1 I i 1
(a) Circular queue (logical) (b) Circular array (physical)

Figure 5.7 Logical and physical views of a circular queue.

Queues 161

The principle underlying the representation of a circular amray is as stated below:

Both pointers will move in a clockwise direction. This is controlled by the mop operation;
for example, if the current pointer is at ¢ then shift to the next location will be i Mop
LENGTH + 1, 1 £i £ LENGTH (where LENGTH is the queue length). Thus, if i = LENGTH
(that is at the end), then the next position for the pointer is 1.

With this principle the two states of the queue regarding, i.e. empty or full, will be decided
as follows:

Circular queue is empty
FRONT =0
REAR =0
Circular gqueue is full
FRONT = (REAR mop LENGTH) + 1
The following two algorithms describe the insertion and deletion operations on a circular queue.
Algorithm Enqueue_C()
Input: An element ITEM to be inserted into the circular queue.

Output: Circular queue with the ITEM at FRONT, if the queue is not full.

Data structures: CQ be the wrray to represent the circular queue. Two pointers FRONT and
REAR are known.

Steps:
1. If (FRONT = 0} then / When the gueue is emply
2. FRONT =1
3 REAR =1
4, CQ[FRONT] = ITEM
5. Else i Queune is not empty
6. next = (REAR mop LENGTH) + 1
7. If (next # FRONT) then /11 the queue is not full
8. REAR = next
o, CQIREAR] = ITEM
10. Else
11 Print “Queuve is full”
12, EndIf
13. EndIf
14. Stop

Algorithm Dequeune_CQ

Inpur: A queve CQ with elements. Two pointers FRONT and REAR are known.
Outpur: The deleted element is ITEM if the queue is not empty.

Data structures: CQ is the array representation of circular queue.

162 Classic Data Structures

Steps:
If (FRONT = 0) then
Print “Queue is empty”

1

2

3. Exit

4. Else

5. ITEM = CQ[FRONT]

6 If (FRONT = REAR) then # If the queue contains a single element
7 FRONT =0

E. REAR =0

9. Else
10, FRONT = (FRONT mop LENGTH) + |
11. EndIf
12. EndIf
13. Stop

In order to trace these two algorithms, let us consider a circular queve of LENGTH = 4.
The following operations are requested. Different states of the queue while processing these

requests are illustrated in Figure 3.8,

1. ENCQUEUE (A)
ENCQUEUE (C)
DECQUEUE
DECQUEUE
DECQUEUE
DECQUEUE

it U

1

ENCQUEUE (B)
ENCQUEUE (D)
ENCQUEUE (E)
8. ENCQUEUE (F)
10. DECQUEUE
12. DECQUEUE

A

Assume that initially the queue is empty, that is, FRONT = REAR = 0.

Initially the stack is empty

tt
F R
(2) Request : ENQUEUE (B)
Ale
t1
F R <

(4) Request : ENQUEUE (D)

A B c D

| P

F A
Figure 5.8

{1) Request ; EMCQUEUE (A)

A
t1
FR <
(3) Request : ENQUEUE (C)
A B C
1 1
F R <
(5) Request : DEQUEUE
B|lc| oD
f 1
* F R

Continued,

163

{6) Request : ENQUEUE (E)

E c D
T

(8) Request : ENQUELE (F)
E F c D
T

(10) Request : DECQUEUE

E|F
1 j
F R

tt
FR

Figure 5.8 Tracing insertion and deletion operations on a circular queue,

(12) Request : DECQUEUE

(7) Request : DEQUEUE
E c (o]
.t 1
R F
(8) Request : DEQUEUE
E F D
R F =
(11) Request : DECQUEUE
F’
F R =
+— Qluesie is emply

Assignment 5.3

The following two algorithms are proposed for a circular queue.

Algorithm 1 Enqueuel _C()

Steps:

1. If ({(REAR + 1) mop LENGTH = FRONT) then

Exit
Else

Sy ek

EndIf
8. Stop

Algorithm 2 Dequene2_CQ

Steps:

Print “"Queue is full”

CQ[REAR] = ITEM
REAR = (REAR + 1) mon LENGTH

1. If (REAR = FRONT) then

Print “Queue is empty

2
3 Exit
4. Else

5%

(Comnrd.)

164 Classic Data Structures

ITEM = CQ[FRDI"'T_'I:]I

3

6. FRONT = (FRONT + 1) mop LENGTH
7. EndIf

8. Stop

(a) Decide the queue that fits with these algorithms.

(b) Do the two algorithms utilize properly the whole of available memory? If your
answer is ‘NO’, then devise the necessary modification so that this deficiency is
OVercome.

54.2 Deque

Another variation of the queue is known as deque (may be pronounced ‘deck’). Unlike a queue,
in deque, both insertion and deletion operations can be made at either end of the structure.
Actually, the term deque has originated from double ended queue. Such a structure is shown
in Figure 5.9.

FRONT REAR
Daletion —— — Deletion
Insortion —-—— e IPBAMOA

Figure 5.2 A deque structure.

It is clear from the deque structure that it is a general representation of both stack and
queue. In other words, a deque can be used as a stack as well as a queue.

There are various ways of representing a deque on the computer. One simpler way to
represent it is by using a double linked list. Another popular representation is using a circular
array (as used in a circular queue).

The following four operations are possible on a deque which consists of a list of items:

1. Push_DQ(ITEM): To insert ITEM at the FRONT end of a deque.

2. Pop_ DO): To remove the FRONT item from a deque.

3. Inject{ITEM): To insert ITEM at the REAR end of a deque.

4. Eject{): To remove the REAR ITEM from a deque.

These operations are described for a deque based on a circular array of length LENGTH.
Let the array be DQ[1 ... LENGTH].

Algorithm Push_D()

Input: ITEM to be inserted at the FRONT.
Qutput: Deque with a newly inserted element ITEM if it is not full already.
Dara structures: DQ being the circular array representation of a deque.

Quewes 165

Steps:
1. If (FRONT = 1) then /t 1F FRONT is at extreme lefi
2. ahead = LENGTH
3. Else M If FRONT is at extreme right or the degue is empty
4, i (FRONT = LENGTH) or (FRONT = () then
5. ahead = |
6. Else
7. ahead = FRONT - 1 # FRONT is at an intermediate position
8. EndIf
9, If (ahead = REAR) then
10, Print “Deque is full”
11. Exit
12. Else
13. FRONT = ahead /I Push the ITEM
14. DQ[FRONT] = ITEM
15. EndIf
16. EndIf
17. Stop

Algorithm Pop_D(}

f* This algorithm is the same as the algorithm Dequewe_CQ */

Algorithm Inject

f* This algorithm is the same as the algorithm Enqueue_CQ */

Algorithm Eject_DQ

Input: A deque with elements in it

Output: The item is deleted from the REAR end.

Data structures: DQ being the circular array representation of deque.

Steps:

If (FRONT = 0) then
Print “Deque is empty”
Exit
Else
If (FRONT = REAR) then #f The deque contains single element
ITEM = DQIREAR]
FRONT = REAR = 0 /i Deque becomes empty
Else
If (REAR = 1) then f{ REAR is at extreme left
ITEM = DQ[REAR]
REAR = LENGTH
Else
If (REAR = LENGTH) then /I REAR is at extreme right

ITEM = DQIREAR]

166 Clossic Data Structures

15. REAR =1

16. Else M REAR is at an intermediate position
17. ITEM = DQIREAR]

18. REAR = REAR -1

19, Endlf

20, EndIf

21, EndIf

22. EndIf

23. Stop

There are, however, two known variations of deque:

1. Input-restricted deque
2. Output-restricted deque.

These two types of variations are actually intermediate between a queue and a deque.
Specifically, an input-restricted deque is a deque which allows insertions at one end (say REAR
end) only, but allows deletions at both ends. Similarly, an owtput-restricted deque is a deque
where deletions take place at one end only (say FRONT end), but allows insertions at both ends.
Figure 5.10 represents two such variations of deque.

FRONT REAR

l l

—= |nzertion
Deletion ——
-4——— Dalation
(a) Input-restricted deque
FRONT REAR

l l

Insartion ——
+— [nsertion

Delefion +——

(b) OQutput-restricted deque
Figure 5.10 Types of deque.

Assignment 5.4

1. Using the linked list representation of a deque, obtain the four operations PUSHQ(),
POPQ(), INJECT(), and EJECT().

2. Using the circular array representation of a deque, obtain the following:
(a) Insertion operation into an input-resiricted deque.
(b) Deletion operations from an input-restricted deque.

3. Repeat problem 2 for an output-restricted deque.

Quenes 167

54.3 Priority Quene

A priority queue is another variation of queue structure. Here, each element has been assigned
a value, called the priority of the element, and an element can be inserted or deleted not only
at the ends but at any position on the queue. Figure 5.11 shows a priority queue.

FRONT REAR

1 l

alsl«|«x|-|-|P

Pl ||| [P

Figure 511 View of a pricrity queue.

With this structure, an element X of priority p; may be deleted before an element which is
at FRONT. Similarly, insertion of an element is based on its priority, that is, instead of adding
it after the REAR it may be inserted at an intermediate position dictated by its priority value.

Note that the name priority queue is a misnomer in the sense that the data structure is not
a queue as per the definition; a priority queue does not strictly follow the first-in first-out (FIFQO)
principle which is the basic principle of a queue. Nevertheless, the name is now firmly
associated with this particular data type. However, there are various models of priority queue
known in different applications. Let us consider a particular model of priority queue.

1. An element of higher priority is processed before any element of lower priority.

2. Two elements with the same priority are processed according to the order in which they
were added o the queue.

Here, process means two basic operations namely insertion or deletion. There are various ways
of implementing the structure of a priority queve. These are:

(i) Using a simple/circular array
(ii) Multi-queue implementation
(iii) Using a double linked list
(iv) Using heap tree,
We will now see what each of these implementations is. (Heap tree implementation of
priority queue will be discussed in Chapter 7 of this text.)

Priority queue using an array

With this representation, an array can be maintained to hold the item and its priority value. The
element will be inserted at the REAR end as usual. The deletion operation will then be
performed in either of the two following ways:

(a) Starting from the FRONT pointer, traverse the array for an element of the highest
priority. Delete this element from the queue. If this is not the front-most element, shift
all its trailing elements after the deleted element one stroke each to fill up the vacant
position {see Figure 5.12),

168 Classic Data Structures

FRONT REAR

T T
S -

:'LJ k% _iw_J/
Deletion +—— Shift one

Figure 5.12 Deletion operation in an array representation of a priority queue.

This implementation, however, is very inefficient as it involves searching the queue
for the highest priority element and shifting the trailing elements after the deletion. A
better implementation is as follows:

(b) Add the elements at the REAR end as earlier. Using a stable sorting algorithm®, sort
the elements of the queue so that the highest priority element is at the FRONT end.
When a deletion is required, delete it from the FRONT end only (see Figure 5.13).

FRONT REAR
X ¥

Delation -« R - - Insertion

\"'—'— Sort after rn'.m_'_.j

Figure 5.13 Another amay implementation of a priority queue.

The second implementation is comparatively better than the first one; here the only burden
is to sort the elements. The algorithms of the above two implementations are left as assignments
to the reader.

Multi-queue implementation
This implementation assumes N different priority values. For each priority p; there are two
pointers F; and R; corresponding 1o the FRONT and REAR pointers respectively. The elements

between F; and R; are all of equal priority value p;. Figure 5.14 represents a view of such a
structure.

e 3

F-I‘I‘
¥

— M
= 1

Figure 5.14 Multi-queue representation of a priority queue.

With this representation, an clement with priority value p; will consult F; for deletion and
R; for insertion. But this implementation is associated with a number of difficulties:

Quenes 169

(i) It may lead to a huge shifting in order to make room for an item to be inserted.
(i) A large number of pointers are involved when the range of priority values is large.

In addition to the above, there are two other techniques to represent a multi-queue, which
are shown in Figures 5.15(a) and 5.15(b).

It is clear from Figure 5.15(a) that for each priority value a simple queue is to be
maintained. An element will be added into a particular queve depending on its priority value.

The priority queue as shown in Figure 5.15(b) is in some way better than the multi-queue
with multiple queues. Here one can get rid of maintaining several pointers for FRONT and
REAR in several quenes. A multi-quene with multiple queunes has one advantage that one can
have different queues of arbitrary length. In some applications, it is seen that the number of
occurrences of elements with some priority value is much larger than the other value, thus
demanding a queue of larger size.

' '

e—
[l
-
1

g
Z
A

. Elements having
priority value i

-
— T

Priority o, M N = LENGTH
(8) Multiple gueue with simple queues {b) Multiple queue with a matrix
Figure 515 Mulli-queue implementation with multiple simple queues and matrix.

Both the above representations are not economic from the memory utilization point of view;
much of the memory space remains vacant.

Algorithms for insertion and deletion operations for multi-queue implementation are left as
exercises for the student.

Linked list representation of a priority queue

This representation assumes the node structure as shown in Figure 5.16. LLINK and RLINK are
two usual link fields, DATA is to store the actual content and PRIORITY is to store the priority
value of the item. We will consider FRONT and REAR as two pointers pointing the first and
last nodes in the queuve, respectively. Here all the nodes are in sorted order according to the
priority values of the items in the nodes. The following is an instance of a priorily queue:

*A sonting algorithm is stable if the relative positions of two identical ilems remain the same in the unsorted
and sorted list (for details, see Chapter 10).

170 Classic Data Structures

LLINK | DATA |PRIORITY| ALINK

K; A 1’l:j, B 1K:__. E 1k:, Fl2 (o] e |k 2’\

|. L Eﬁj. M SK:, P 4!-::, R|4 (e

REAR
Figure 516 Linked list represantation of a priority queus.

With this structure, to delete an item having priority p, the list will be searched starting from
the node under pointer REAR and the first occurring node with PRIORITY = p will be deleted.
Similarly, to insert a node containing an item with priority p, the search will begin from the
node under the pointer FRONT and the node will be inserted before a node found first with
priority value p, or if not found then before the node with the next priority value. The following
two algorithms Inserr_PQ and Delete_PQ are used to implement the insertion and deletion
operations on a priority queue.

Algorithm Insert_PQ

Inpur: The ITEM and its priority P value of a node that is to be inserted.
Ourput: A new node inserted.
Data structures: Linked list structure of priority queue; HEADER as the pointer to the header.

Steps:

1. ptr = HEADER {f Start from the first node
2., new = GetNode(NODE) /f Avail a new node
3. new—DATA = ITEM {! Get initialized the node with ITEM
4. new—PRIORITY = P

5. While (ptr—RLINK # NULL) and (ptr—PRIORITY < P) do // Search for the position
6. ptr = pr—RLINK

7. EndWhile

8. If (pr—RLINK = NULL) then I If the list is empty or the item is with the largest

: priority value

9, pr=RLINK = new

10. new—LLINK = pir

11, new—HLINK = NULL {{ The node is inserted as the last node
12, REAR = new

13. Else

(Contd.)

Queues 171

14, If (ptr—PRIORITY 2 F) then {f First occurrence 15 found
15. ptrl = ptr—. LLINK /f Insert the new node
16. ptrl1=RLINK = new /f Before the node with prionity > P
17. new=RLINK = pir

18. ptr—LLINK = new

19. new—LLINK = pirl

20. EndIf

21. EndIf

22. FRONT = HEADER—ERLINK {1 Set the FRONT pointer
23. Stop

Similarly, the algorithm for deletion can be described as follows:

Algorithm Delete_PQ

Inpur: The priority P of the element which has to be deleted.
Output: The element that is being deleted.

Darta structures: Linked list structure of priority queve; HEADER as the pointer to the header.

Steps:
1. If (REAR = NULL) then
2 Print "Queue is empty™
3 Exit
4. Else
5. pir = REAR
6 While (ptr—PRIORITY > P) and (ptr # HEADER) do
T
B

ptr = ptr—LLINK

. EndWhile
9, If (ptr = HEADER) or (ptr—=PRIORITY < P)
10. Print “No item with priority”, P
L1. Exit
12. Else
13, If (ptr—priority = P} then
14, ptrl = ptr—LLINK
15. ptr2 = ptr—RLINK
16. If (pir = REAR) i If the last node to be deleted
17. REAR = pirl
18. pirl—RLINK = NULL
19. Else {f Other than last node
20. ptrlRLINK = ptr2 I Deleted
21. ptr2—LLINK = ptrl
22, EndIf
23, EndIf

{Canitd.)

172 Classic Data Structures

24, EndlIf

25, item = ptr—DATA
26. ReturnNoede(item)
27. EndIf

28. Stop

Assignment 5.5

{a) Describe the insertion and deletion algorithms for the following priority queue structures:
(i) Queue represented with a single large array.
(ii) Multi-queue representation with a single large array.
(iii) Multi-queue representation with multiple simple quene.
{(iv) Multi-queve with matrix representation.

(b) The algorithms Insert_PQ and Delete_FP(J assume that the highest priority element will
be deleted first.

Maodify the two algorithms so that the lowest priority element will be deleted first.

5.5 APPLICATIONS OF QUEUES

Numerous applications of queue structures are known in computer science. One major
application of queues is in simulation. Another important application of queues is observed in
the implementation of various aspects of an operating system. A multiprogramming
environment uses several queues to control various programs. And, of course, queues are very
much useful to implement various algorithms. For example, various scheduling algorithms are
known to use varieties of queue structures.

This section highlights a few applications and then illustrates how powerful queues are to
solve different problems.

5.5.1 Simulation

Simulation is modelling of a real-life problem, or in other words, it is the model of a real-life
situation in the form of a computer program. The main objective of the simulation program is
to study the real-life situation under the control of various parameters which affect the real
problem, and is a research interest of system analysts or operation research scientists. Based on
the results of simulation, the actual problem can be solved in an optimized way.

Another advantage of simulation is to experiment the danger area. For example, areas such
as military operations are safer to simulate than to field test, simulation being free from any risk
as well as inexpensive.

Simulation is a classical area where queves can be applied. Before discussing simulated
modelling, let us study a few terms related to it

Any process or situation that is to be simulated is called a system. A system is a collection
of interconnected objects which accepts zero or more inputs and produces at least one output,

Quenes 173

(see Figure 5.17(a)). For example, a computer program is a system where instructions are the
interconnected objects and inputs or initialization values are the inputs and the results obtained
during the execution constitute the output. Similarly, a ticket reservation counter is also a
system (you can easily guess about its input, output and functionality). Note that a system can
be composed of one or more smaller system(s).

A system can be divided into different types as shown in Figure 5.17(b). A system is
discrete if the input/output parameters are of discrete values. For example, a customer arriving
at a ticket reservation counter is a discrete parameter, whereas water flowing through a pipe 1o
a reservoir is an example of a continuous system since the parameter is of the continuous type.

Interconnecied
IMPUT — objects to provide +—— QUTPUT
a functionality

{a) Oulline of a system

SYSTEM

T r

L |

Discrata Continuous Deterministic Slachastic
system sysiem system system
{b) Classificafion of syslems
Figure 5.17 System and simulation.

A system is deterministic if from a given set of inputs and initial conditions of the system,
the final outcome can be predicted. For example, a program to calculate the factorial of an
integer is a deterministic system. On the other hand, a stochastic system is based on
randomness: its behaviour cannot be predicted before hand. As another example, the number
of customers waiting in front of a ticket reservation counter at any instant cannot be forecasted.
There may be some systems which are intermixes of both deterministic and stochastic,

After getting an idea about the various types of systems, let us define various kinds of
simulation models. There are two kinds of simulation models: event-driven simulation and time-
driven simulation; these are decided according to how the state of a system changes, In the case
of time-driven simulation, the systems changes in its states with the change time, and in event-
driven simulation, the system changes its state whenever a new event reaches the system or
exits from the system.

Now let us consider a system, its model for simulation study and then the application of
queues in it. Consider a system as a ticket selling centre. There are two kinds of tickets
available, namely T1 and T2, which customers are to purchase. Two counters Cl and C2 are
available (Figure 5.18). Also assume that the time required for issuing a ticket of T1 and T2
are t; and t, respectively. Two queues QI and Q2 are possible for the counters Cl and C2,
respectively. With this description of the system, two models are proposed:

174 Classic Data Structures

Model 1

e Any counter can issue both types of tickets.

A customer on arrival joins the queue which has a lesser number of customers; if both
queues are equally crowded, then to Ql, the queue of counter Cl.

Model 2

e Two counters are earmarked, say Cl for selling T1 only and C2 for selling T2 only.

® A customer on arrival goes to either queue Q1 or queue (2, depending on whether the
ticket T1 or T2 is to be purchased.

&
7

Figure 5.18 A ticket selling counter.

To simplify the simulation model, the underlying assumptions are made:
1. Queue lengths are infinite.
2. One customer in a queue is allowed to purchase one ticket only.

3. Let A; and A; be the mean arrival rates of customers for tickets T1 and T2, respectively.
The values for 4; and A, will be provided by the system analyst.

4. Let us consider the discrete probability distribution (also called Poisson distribution) for
the arrival of customers to the centre. Poisson distribution gives a probability function
P()=1-e*

where P(f) = the probability that the next customer arrives at time r, and A = the mean
arrival rate. Thus, if we assume N to be the total population of customers in a day, then

N, =N,P(t)=N,(1- ™) (5.1)

is the number of customers who arrived at the centre for ticket T1 at time ¢, and N; = N P(r)
= N,(1- ¢~} is the number of customers who arrived the centre for ticket T2 at
time 1.

5. A clock is maintained with an initial value (to dictate the opening and closing of
counters) when the counter is made available to the customer, etc.

176

Classic Data Structures

With these basic assumptions and definitions, the proposed simulation model may be termed the
discrete deterministic time-driven simulation model. Before describing the algorithms, let us
assume the following keywords that will be assumed in our algorithm:

1.

An abstract data type CUSTOMER to simulate a customer with the following
components:

CUSTOMER

TicketReg—the customer requesting for the type of ticket

e r—time of arrival of the customer

e ,—lime of departure of the customer

e r—amount of time served when a customer is currently under service
SETCUSTOMERI1() and SETCUSTOMERZ2() are the two functions which set the data

for Ticketreq as T1 and T2, t as 1, and 7 for the object of CUSTOMER. 7, in each
case will be set by the current value of the CLOCK.

LENGTH(Q) is a function to return the length of a queue Q.

4. ENQUEUE(CUSTOMER) and DEQUEUE() are the two functions to add a customer

6.

into the queue and to remove a customer from the queue, respectively,

SEECUSTOMER(Q) function is to attend a customer which is at front of a queue Q by
the counterman. This function is actually to read the TicketReq and ¢ for a customer C.

EMPTY((QQ) returns “TRUE’ if the queue Q is empty else ‘FALSE'.

Now, we are in a position to write the algorithms for Modell and Model2, which are stated as
follows:

Algorithm SimulationModel_1

Inputs: Ay = Mean arrival rate of customers for ticket T,
A» = Mean arrival rate of customers for ticket T,
N = Total population assumed
OPEN_HOURS = Total time duration for which the centre remains open in a day
f; = Time required to process for a ticket T,
t> = Time required to process for a ticket Ta
Ouiputs: Ag1 = Average queue length of the queue Q,

Agz = Average queue length of the queue Q,
[y, = Average waiting time of the customers for ticket T,
'y, = Average waiting time of the customers for ticket T,

e = Total service time that the counter C, served

o
]

Taotal service time that the counter C; served

Data structures: Two queues Q1 and Q2 represented with double linked lists. An abstract data
type CUSTOMER.

Queues 177

Steps:
‘ru

A o

10.
1.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21
22,
23.
24.
25.
26.
27.
28.
29,
30.
3L
32
33.
34,

INITIALIZATION */
Q, and Q, are initialized as empty
CLOCK to maintain the current ime is set at zero

Li=L,=0 // These are required for average lengths of Q; and Q,
WT, =WT,=0 /! For storing the waiting times of customers for T, and T,
NT, = NT> = /1 Number of customers served with tickets T, and T,
NCT, =NCT; =0 {/ Number of customers served in counter C,

for ticket T;, T
NC,T; = NC,T, =0 {/ Number of customers served in counter Cs

for ticket T,, T,
MSTART SIMULATION FOR A DAY/
While (CLOCK < OPEN_HOURS) do
*Generate population of customers®/
Ny =N * (1 - eM* CLOCK)
Na=N * (I — e * CLOCK)
*Add customers into the queues®/
I, = Length(Q,) // Current lengths of the queue Q,
I, = Length (Q;) /! Current lengths of the queue Q)
If (N; > N3 then
While (N, > 0) do
¢ = SetCustomerl() #f Customer for T,
Enqueuelic) # Add to the smaller queue
L=l +1
Else
Enqueue2 (C)
fs = [+ + 1
EndIf
Ny=N -1
¢ = SetCustomer2 () ff Customer for T2
If ({; < [;) then # Add to the smaller queue
Enqueuel (c)
L=0hL+1
Else
Enqueuel (c)
Iz = -Iz + 1
EndIf
No=N, - 1
EndWhile

(Cented,)

178

Classic Data Structures

35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49,
50,
51
52.
53.
54.
35.
56.
57.
58.
39.
60.
61.
62.
63.
64.
63.
67.
68.
69.
70.
71.
T2,
73.
74.
715.

While (N, = 0) do /I Add the remaining customer for ticket of type T,

¢ = SetCustomerl ()
If (I; = [) then
Enqueuel (c)
L=H+1
Else
Enqueue2 (c)
|I2 = fz +1

EndIf
Nl = N| -1
EndWhile
Else /! Customers for T, are more than those for Ty, that is, N> > N,

While (¥, > 0) do // One customer from T, type and other from T, type

¢ = SetCustomerl ()
If ({; < I,) then
Enqueuel (c)
.i'] = ‘il +1
Else
Enqueue2 (¢)
lh=5L+1
EndIf
Ny =N -1
¢ = SetCustomer2 ()
If ({; < [;) then
Enquenel {c)
h=hL+1
Else
Enqueune2 ()
la=fh +1
EndlIf
Nz = Nj -1
EndWhile
While (M, > () de
¢ = SetCustomer2 ()
If (1, £ [,) then
Enqueuel (c)
{ i = .irl + 1
Else
Enqueue (c)
L=14+1

/1 Add to the smaller quene

{Comnited}

Qurenes 179

76.
77.
78.
79.

80.
81
82.
83.

85.
86.
a7.
88.
89.

91.
92,
93,

95.
96.
97.
98.

100.
101.
102.
103.
104.

105.
106.
107.
108.
109.
110.

EndIf
Na=N, -1
EndWhile
Li=Ly+,L,=L,+ 1, /i Sum up the lengths of queues for average
calculation
f*Servicing the customers in queues*/
AT COUNTER C*/
If (EMPTY(Q,) = TRUE) then
Go to Step 105
Else
¢ = SeeCustomer(Q1) /f Look for the customer in front of (),
If (c — TicketReq = T,) then /' The customer for ticket type T,
If (c =1 > 0) then M If not finished
c-f=c—-1~-1 ff Service for one unit
Else i Service finished
¢ -2 =CLOCK i Time of completion
WT, =WT, +{c-2-¢c-1) //Waiting time for customer
of T,
NCT, =NCT, + 1 If C, processed one customer of T,
NT, =NT, + 1 / One customer of T, is served
Dequeuel() {f Leave the customer for (},
EndIf
Else /f The customer for ticket type Ta
If (c—-t > 0) then
c—t=c—1-1
Else
c—- 1 = CLOCK
WT:=W2+{€'“ F_P"E'"I}
f'er: = NTE + 1
N’Csz = NC |T2 + 1
Dequenel()
EndIf
EndIf

AT COUNTER C2%
If Empty(Q;) then
Go to Step 135
Else
¢ = SeeCustomer ((),)
If (c- TicketReq =T))
If {¢ = ¢t = 0) then

{Crnted,)

180 Classic Data Structures

111. c—t=c—1-1

112. Else

113, c- 5 = CLOCK

114. WT, =WT, +{(c- 1 ~c~- 1)

115. f'l'Cng = !\'C:T| + 1

116. NI, =NT; + 1

117. Dequeunel()

118. EndIf

119, Else

120. If (¢ = t > 0) then

123. c-t=c—-1-1

124, Else

125. c~ 1, = CLOCK

126. WTz = WTZ t{c=B=c= 1))

127. NT; =ANT; + 1

128, NC:T: = N'Csz +1

129, Dequeue ()

130. EndIf

131. EndIf

132, EndIf

133. EndIf

134, Endlf

135. CLOCK = CLOCK + 1

136. EndWhile # Elapse one time unit
MCOMPUTE RESULTS®

137. Iy = L,/JOPEN_HOURS /I Average queue length of the queue Q,

138. Ig; = L,/JOPEN_HOURS /I Average queue length of the queue Q,

139. 'ty = WTI/OPEN_HOURS // Average waiting time of the customers for ticket T,

140. T = WT2Z/OPEN_HOURS // Average waiting time of the customers for ticket T,

141, T =NC\ T, -1 + NO\T:- 1, // Total service time that the counter C, served

142, Tz = NC,T) -1 + NG, T;- 14 /! Tolal service time that the counter C; served

143. Stop

As stated earlier, the only difference between Model 1 and Model 2 is that in the case of Model
1, a customer either for ticket T, or T, is allowed in any one of the queues, whereas, in the case
of Model 2, queues are earmarked, that is, quene (), is only for the customers of ticket T; and queue
Q; is only for the customers of ticket T,. From the implementation point of view, Model 2 is
simpler than Model |. The algorithm for Model 2 is as follows:

Algorithm SimulationModel_2
Input: Inputs are same as in the algorithm SimulationModel_1

Outpuir: Outputs are same as in the algorithm SimularionModel 1
Data structures: Same as in the algorithm SimulationModel _1

Chieues 181

Steps:

[*INITIALIZATION®/
I. Initialization steps l.a..l.g remain same as in the algorithm SimulationModel_I
#START SIMULATION FOR A DAY*/
2. While (CLOCK < OPEN_HOURS) do
Generate population of customer at the instant CLOCK®/

3. N, =N(1 - 40K,y

4, N, = N(1 — ¢ LK,
*Add customers into the queues®/

5 I, = Length(Q1)

[I, = Length (Q2)

7. While (N, > 0) do M Add all customers for ticket T 1o queue Q
8 ¢ = SetCustomerl()

9, Engueuel(c)

10, |'| = fj + 1

11. Ny=N -1

12, EndWhile

13, While (V> > 0) do i Add all customers for ticket T to queue Qs
14, ¢ = SetCustomer2()

16, Enqueue? {¢)

17. Lh=lh+1

I8, N: = Nz =1

19. EndWhile
20. Ly=1L;+1 /f Length of the queues expands after enqueues
21, Ly=L+1,

f=SERVICING THE CUSTOMERS*/
f*Service at counter O %/
22. If (Empty(Q,) = TRUE} then

23, Go to Step 34

24, Else

25. ¢ = SeeCustomer(Q,)

26. If (¢ — ¢+ > 0) then
c=-t=c—-1-1

28 Else

29, ¢ — & = CLOCK

30 W, =WT,+(c=-0=-¢ = 1)

3l. NT; = NT + 1

32 EndIf

33. EndIf

f*Service at counter C,*/

(Conrd.)

182

Classie Data Structures

34,
30
36.
37.
38.
39.
40,
41.
42,
43.
44,
43.
46.
47,

48.
49.
50.
5L
32.
53,
54.

If (Empty(Q,) = TRUE) then

Go to Step 46
Else
¢ = SeeCustomer (Q,)
If (c —r = 0) then
c-t=c-1-1

Else
¢ - n = CLOCK
W =Wl +(c-n-c-1l)
NT: = NT; + 1
EndIfl
Endlf
CLOCK = CLOCK + 1
EndWhile

* COMPUTE RESULTS */
fq. = L/OPEN_HOURS

2 = LYOPEN_HOURS

Gr; = WTH/OPEN_HOURS
M2 = WT2 / OPEN_HOURS
ey = NCT, -t + NCTz- 12
e = NC;Ty— 1 + NC;Ta - 13
Stop

Il Average queue length of the queue Q,

/f Average queue length of the gueue Q,

Il Average waiting time of the customers for ticket T
M Average waiting time of the customers for ticket T,
/f Total service time that the counter C; served

/f Total service time that the counter C, served

Model 2:

Model 3:

Assignment 5.6 (Simulation of a traffic control system)

Let us consider the case of an automation of a traffic control system. Suppose at a junction
point three roads meet (Figure 5.19). For the traffic on the three roads, three signals X, Y
and Z are available. Only one signal can be turned on at a time to allow the traffic to pass;
for example, if the signal X is on, the traffic from the queue XQ will be allowed to pass
either towards Y or towards Z road whereas the traffic in queues YQ and ZQ will wait for
their signals. Three models are suggested in order to study the performance of the traffic
control:

Model 1:

succession.

turned on.

Each signal when turned on allows to pass equal number of vehicles, say, N in

Different signals allow different numbers of vehicles during their turn, say,
signals X, Y and Z allow N, N; and N; number of vehicles, respectively.

Only that signal will be turmed on where the maximum number of vehicles are
waiting till the number of vehicles waiting are at par with the other remaining
queues. If all the queues contain the same number of vehicles, signal X will be

(Contd.)

Cueucs 183

e e e e —— e — -,

| YQ ZQ

; z

| Figura 519 A junction of three roads.

Assume that if a queue is empty the corresponding signal is not necessary to be turned on.
Write simulation programs to obtain a comparative study using the following arrival rate of
vehicles.

1. According to Poisson’s distribution

2. According to continuous distribution.

55.2 CPU Scheduling in a Multiprogramming Environment

In a multiprogramming environment, a single CPU has to serve more than one program
simultaneously. This section gives a brief idea about how queues are important to manage
various programs in such an environment,

Let us consider a multiprogramming environment where the possible jobs for the CPU are
categorized into three groups;

1. Interrupts to be serviced. A variety of devices and terminals are connected to the CPU
and they may interrupt the CPU at any moment to get a particular service from it.

2, Interactive users to be serviced. These are mainly user’s programs under execution at
various terminals.

3. Batch jobs to be serviced.

These are long-term jobs mainly from non-interactive users, where all the inputs are fed
when jobs are submitted; simulation programs, and jobs to print documents are of this kind.

Here the problem is to schedule all sorts of jobs so that the required level of performance
of the environment will be attained. One way to implement complex scheduling is to classify
the workload according to its characteristics and to maintain separate process queues. So far as
the environment is concerned, we can maintain three queues, as depicted in Figure 5.20. This
approach is often called multi-level quenes scheduling. Processes will be assigned to their
respective queues. The CPU will then service the processes as per the priority of the queues.
In the case of a simple strategy, absolute priority, the process from the highest priority queue
(for example, system processes) are serviced until the queue becomes empty. Then the CPU

184 Classic Data Structures

switches to the queuve of interactive processes which has medium priority, and so on. A lower-
priority process may, of course, be pre-empted by a higher-priority arrival in one of the upper-
level queues.

System
——— ! High-priority queue Emlm'?ﬂ;"
Interactive \
P—._ Medium-priority queue mﬁ. ‘»—» CPU
scheduling N
Batch FCFS
processes
————— Low-priority queue scheduling
Within queue
scheduling

Figure 5.20 Process scheduling with multi-level queues.

Multi-level queues strategy is a general discipline but has some drawbacks. The main
drawback is that when processes arriving in higher-priority guenes are very high, the processes
in a lower-priority queue may starve for a long time. One way out to solve this problem is to
time slice between the queves. Each queve gets a certain portion of the CPU time. Another
possibility is known as muiti-devel feedback queue strategy. Normally in mult-level queue
strategy, as we have seen, processes are permanently assigned to a queue upon entry to the
system and processes do not move between queues. The multi-level feedback queue strategy,
on the contrary, allows a process to move between queves. The idea is to separate out the
processes with different CPU burst characteristics, If a process uses too much of CPU time (that
1s, long run process), it will be moved to a lower-priority queue. Similarly, a process which is
waiting for too long a time in a lower-priority queue, may be moved to a higher-priority queue.
For example, consider a multi-level feedback queuve strategy with three queues 9y, (), and Q4
(Figure 5.21).

Q,
—* =10 —“:
Q, r=20 =
)| FCFs v

To @, 0:|

Figure 5.21 A multi-level feedback gqueue.

Queues 185

A process entering the system is put in queue Q. A process in Q, is given a time quantum
rof 10 ms, say. If it does not finish within this time, it is moved to the tail of queue Q.. If Q,
is empty, the process at the front of queue Q, is given a time quantum 7 of 20 ms, say. If it
does not complete within this time quantum, it is pre-empted and put into queue Q. Processes
in queue Q, are serviced only when queues Q, and Q. are empty.

Thus, with this strategy, the CPU first executes all processes in queue Q. Only when Q)
is empty it will execute all processes in queue (J.. Similarly, processes in queue (y will only
be executed if only queues Q; and (), are empty. A process which arrives in queue Q, will pre-
empt a process in queve Q, or Q.

It can be observed that this strategy gives the highest priority to any process with a CPU
burst of 10 ms or less. Processes which need more than 10 ms, but less than or equal to 20 ms
are also served quickly, that is, they get the next highest priority over the shorter processes.
Longer processes automatically sink to queue Q5; from 5, processes will be served on a first-
come first-serve (FCFS) basis and in the case of a process waiting for too long a time {as
decided by the scheduler) it may be put into the tail of queue Q.

5.53 Round Robin Algorithm

The round robin (RR) algorithm is a well-known scheduling algorithm and is designed
especially for time sharing systems. Here, we will see how a circular queue can be used to
implement such an algorithm. Before going to implement the RR algorithm, we should first
describe the algorithm with illustration. Suppose, there are n processes Py, Py, ..., P, required
to be served by the CPU. Different processes require different execution times. Suppose, the
sequence of processes’ arrivals according to their subscripts, that is, P; comes before P; and,
in general, P, comes after P, ; for 1 < i < n. _

The RR algorithm first decides a small unit of time, called a fime quantum or time slice,
T. A time quantum is generally from 10 to 100 milliseconds. The CPU starts service with P,.
P, gets the CPU for time 7, afterwards the CPU switches to Pa, and so on. When the CPU
reaches the end of time quantum of F, it returns to P and the same process will be repeated.
Mow, during time sharing, if a process finishes its execution before the finishing of its time
quantum, the process then simply releases the CPU and the next process in waiting will get the
CPU immediately.

As an illustration, consider Table 5.2 for the set of processes:

Table 5.2 Table for process and burst time

Process Burst time

P, 7
P, 18
P, 5

The total CPU time required is 30 unit. Let us assume a time quantum of 4 unit. The RR
scheduling for this will be as shown in Figure 5.22.

186 Classic Data Structures

P, Py P.
finished finished finistved
4 & 3

o 4 8 12 15 19 20 24 28 30
Figure 5.22 RR scheduling.

The advantage of this kind of scheduling is reduction in the average turn around time (not

necessarily always true). The turn around time of a process is the time of its completion minus
the time of its arrival. Thus, using the FCFS strategy,

Average tum around time = T+ (T+IH+(T+18+3) :f"g = 20.66 unit

3 3

Whereas, using the RR algorithm,

Average turn around time = 15+30+20 = & =21.66 unit

K]
See the result by repeating the calculations but using the sequence of processes as Ps, Py and Ps.
In time sharing systems any process may arrive at any instant of time. Generally, all the
processes currently under execution are maintained in a queue. When a process finishes its
execution it is deleted from the queue and whenever a new process arrives it is inserted at the
tail of the queue and waits for its turn. To illustrate this, let us consider Table 5.3.

Table 5.3 Table for process events

Process Arrival time Bursr time
B, 0 9
P, 1 3
P 9 5
P, 14 8

The total CPU time required is 25 units. Let the time quantum be 7= 5 unit. Figure 5.23
illustrates the snapshot at various instants with RR scheduling.

MNow let us discuss the implementation of the RR scheduling algorithm. A circular queue
is the best choice for it. It may be noted that it is not strictly a circular queue, because here a
process upon completion is deleted from the queue and it is not necessarily from the front of
the queue rather it can be from any position of the queue. Except this, RR scheduling follows
all the properties of a queue, that is, the process which comes first gets its tumn first.

The implementation of the RR algorithm using a circular queue is straightforward. Here, we
use a variable sized circular gqueue; the size of the queue at any instant is decided by the number
of processes in execution at that instant. Another mechanism is necessary; whenever a process
is deleted, to fill the space of the deleted process, it is required to squeeze all the processes
preceding to it, starting from the front pointer (Figure 5.24). (A detailed procedure for
implementation is left as an exercise to the reader.)

Quenes 187

5.6
5.1

52
53

54

55

5.6

P, finished P, finished
its execution, and delaled
P, initially deleted from from the
in the queue queLe queus P, finished

|) '

ke e ke

P, P, B, Py Py P,
I L] I T T T Ll T T L] T T T T T T T T
a f 5 BT 12 17 22 1‘
P, enters P, enters P, finished,
the queus the gueue removed from
the queye and
the queue is
empty

Figure 523 In and out in a queue during RR scheduling.

| E'

e—
:
a

]

Py Pis

Figure 5.24 Delefion of a process from a circular queue,

PROBLEMS TO PONDER

A queuve is maintained in an array, and F and R are the front location and rear location
of the queue, respectively.

{a) Obtain a formula for N, the number of elements in the queue in terms of F and R.
(b) Write an algorithm to delete the ith element in the queue.

(c) Write an algorithm to insert an item X just after the ith element.

Repeat Problem 5.1 for a circular queue implemented in an array.

Write an algorithm REVERSEQ that will reverse all the elements in a queue. [Hint: Use
a stack.]

Write an algorithm REVERSECQ that will reverse all the elements in a circular queue
which is maintained (i) in an array, (ii) in a singly linked list.

It is required to split a queue into two queues so that all the elements in odd positions are
in one queue and those in even positions are in another queue. Write an algorithm
SPLITQ() to accomplish this. Assume that the queue is maintained in an array.

Repeat Problem 5.5 to obtain the algorithm SPLITCQ() for a circular queue.

188 Classic Datn Structures

5.7 A deque is a generalization of both stack and queue. Show how a deque can be
implemented using two stacks. (That means two stacks are with you, using stack
operations only you have to implement the operations of deque.)

5.8 A generalization of both queue and deque is deck which is stated as “Addition of elements
can be made at the both ends but the deletion can be made either at the end or at the
beginning.”

Write the operation for deck using the operations of queue and deque only.

5.9 A priority queue can be implemented using a matrix PQ and two arrays FRONT and
REAR pointing the front and rear of the queue (Figure 5.25).

Obtain the various operations of a priority queue with such an implementation.

a1

FRONT REAR
Figure 5.25 A priority queue implementation using a matrix and two arrays.

5.10 Repeat Problem 5.9 with N number of double linked lists instead of matrix PQ and two
arrays of pointers FRONT and REAR pointing the front and rear of the lists.

REFERENCES
Ellis Horowitz and Sartaj Sahni, Fundamentals of Data Structures, Computer Science Press,
Rockville, Maryland, New York, 19835,

Jean Paul Tremblay and Paul G. Sorenson, Introduction to Data Structures with Applications,
McGraw-Hill, New York. 1987.

Robert L. Kruse, Bruce P. Leung and L. Clovis Tondo, Dara Structures and Program Design
in C, Prentice-Hall of India, New Delhi.

Thomas L. Naps, Introduction to Data Structures with C, West Publishing Company, West
Virginia, 1986.

Tables

In this chapter, we will discuss another important data structure called rable. This kind of data
structure plays a significant role in information retrieval. As an example, suppose that a set of
.n distinct records with keys K, K, ..., K, are stored in a file. We want to find a record with
a given key value, K. One simplest way is to perform a sequential search, that is, start from the
location of the first record, compare the key K with the key of this record, if found then stop,
else proceed to the next record and continue the same procedure. The searching time required
is directly proportional to the number of records in the file. If the number of records increases
our searching time also increases. However, this searching time can significantly be reduced,
even can be made independent of the number of records, if we use a table called access rable,
This table may store the location of all records in the file. Figure 6.1 shows the use of an
access table to retrieve any record in the file storage. Here, we assume a function f, and if
this function is applied on K it returns i, an index, so that i = fiK). Then the ith entry in the
access table gives us the location of the record with key value K. This method ol accessing
any record is called rable lookup which is, in fact, independent of the number of the records
in the file.

189

190 Classic Data Struchures

K1
K
1

2 .
/ :

fiKy=i e | :

fm .
Access table K,

Figure 6.1 Information retrieval through table lookup.

In this chapter, we will explore the various possible kinds of tables and their usefulness.
The different tables of interest are listed below:

1. Rectangular tables '

2. Jagged tables

3. Inverted tables

4. Hash tables.

The following sections discuss all these tables.

6.1 RECTANGULAR TABLES

Rectangular tables are also known as mairices. Matrices have already been discussed in
Chapter 2, Section 2.4, Since these tables are needed in various applications, almost all
programming languages provide convenient and efficient means to store and access them, so
that the programmer does not have to worry about the implementation details. Rectangular
tables, therefore, do not require any further discussion.

6.2 JAGGED TABLES

Jagged tables are nothing but a special kind of sparse matrices such as triangular matrices, band
matrices, etc., which have already been discussed in Section 2.4.2, Chapter 2. In the jagged
table, we put a restriction that if elements are present in a row (or in a column) then they are
contiguous. Thus in Figures 6.2(a)-(e), all are jagged tables except the table in Figure 6.2(f).

We have seen (in Section 2.4.2) how sparse matrices can be stored in a one-dimensional
array and if the sparse matrices are symmetric in form then how their indexing formula can be
decided so that any element in the matrices can be accessed. Recall the indexing formula for
any element a; in a matrix is

Address (a,) = M +j (6.1)

Tables 191

; 1 fees 7
. e LI oW
Lo sk oww
F & & = y
: : : : ® & 3 & * * o
(o) (c)
o] = A e e ¥, -1 e v __w__.]
. rr & N _____& ___ e
** 0 A& | _____ L
: s .
' o+
_—.- _____ L '—_
«| s | TT==== Foooe Foee
= ¥ *_ — - L7 P Foooe- -
(d) (e i)

Figure 6.2 Jagged tables and sparse matrices.

This formula involves multiplication and division which are in fact inefficient from the
computational point of view. Here, we will discuss another alternative but improved technique,
where we can avoid multiplication and division by setting up an access table whose entries
correspond to the row indices of the jagged table, such that the ith entry in the access table is

Px(i=1)
9

The access table is calculated only once at the time of initiation and can be stored in
memory, it then can be referred each time the access of an element in the jagged table occurs.
It may be noted that even during the initial calculation, for the entries in the access table, it does
not require any multiplication or division but only addition such as

O, L1+ 0+2y+3, ..

In Figure 6.3, the representation of a jagged table is illustrated. For example, if we want
to access dsy (the element in the 5th row and the dth column) then at the 5th location of the
access lable, we see that the entry is 10; hence the desired element is at 14 (= 10+ 4) location
of the array which physically contains the element. It is assumed that the first element of the
table is located at location 1 of the array.

The above-mentioned accessing technique has another advantage over the indexing
formula. We can find an indexing formula even if a jagged table is asymmetric with respect to
the arrangement of elements in it.

For example, in the jagged table shown in Figure 6.2(d), it is difficult to find an index
formula, In this case, however, using an access table. we can easily maintain its storage in an
array and can obtain faster access of elements from it.

192 Classic Data Struchires

H|E
S5|H|E
¥{O[U|R
TIH|E|I R
MIY |[S]E F
IfH|E|S|H|E|Y|O|U|R|T|(H|E|I|R|{M|Y|S|E|L|F
(a) A jagged table and its row-major order
I/H|E|S|H|E|[Y|O|U|R|T|H|E|I|R|M|Y|S|E|L|F
i r 'y 1 §
1|0
2|1
3 2
4} 6
5110
6115

({b) Accessing through access table
Figure 6.3 Access technique of a jagged table.

Figure 6.4 illustrates another example of such accessing. Here, the setting up of the access
table and its use is the same as in the case of a jagged table corresponding to symmetric sparse
matrixes. An entry in the ith location of the access table can be obtained by adding the number
of elements in the (i — 1)th row of the jagged table and the (i — 1)th entry of the access table,
assuming that entry O is the first entry in the access table, and as before, the starting location
of the array storing the elements is 1.

0 L L L3 &

F » ™ = & E] &

n
11 - -
13 - - L] - .

18 .
19 L] ® - L] " L
25 - - -

Figure 6.4 Jagged tables.

Tables 193

Assignment 6.1 y

Consider two jagged tables as shown in Figure 6.5. In one table, the row and column indices
vary from 1 to n, and in the other table, the row index varies from —n to n.

{(a) Devise an index formula for the above two sparse matrices to store in arrays.
(b) Obtain the access tables and set their entries.

0 .
I 1 5 & &
| 2 ®* F W W W
I ¥ & & % & & ¥
|
|
! n-’--- ® & S-I-t W

-n-(n-1)-101 n-1n
Figure 6.5 Two jagged tables for Assignment 6.1.

6.3 INVERTED TABLES

It will be judicious if we discuss the concept of inverted tables with the help of the following
example,

Suppose a telephone company maintains records of all the subscribers of a telephone
exchange as shown in Table 6.1. These records can be used to serve several purposes. One of
them is the alphabetical ordering of the names of subscribers (say, in order to put the name of
the subscriber into a telephone directory). Second, it may be the lexicographical ordering of the
addresses of subscribers (say, for routine maintenance). Third, it could be the ascending order
of the telephone numbers (say, in order to estimate the cabling charge from the telephone
exchange to the location of telephone connection), etc. To serve all these purposes, the telephone
company should maintain three sets of records: one in alphabetical order of the NAME, second,
the lexicographical ordering of the ADDRESS and third, the ascending order of the phone
numbers. But this way of maintaining records leads to the following serious drawbacks:

1. Requirement of extra storage: three times the actual memory.

2. Difficulty in modification of records: il a subscriber changes his address, then we have
to modify this in three storages, otherwise consistency in information will be lost.

However, using the concept of inverted tables, we can avoid multiple sets of records, and
we can still retrieve the records by any of the three keys almost as quickly as if the records
were fully sorted by that key. Therefore, we should maintain an inverted table. In this case,
this table consists of three columns: NAME, ADDRESS, and PHONE as shown in Table
6.1(b). Each column contains the index numbers of records in the order based on the sorting
of the corresponding key. This inverted table, therefore, can be consulted to retrieve
information.

194 Classic Data Structures

Table 6.1 Mulli-key access and its inverted table
(a) Records of a Telephone Exchange

Index Narme Address Phone
1 K.R. Marayana Maker Towers #6 257696
2 A.B. Vajpayee S Vivekananda Road 257459
3 L.K. Advani 11 Von Kasturba Marg 257583
4 Mamta Banerjee 342 Patel Avenue 257423
5 Y. Sinha 5 SBI Road 257504
6 D, Kulkami 369 Faculty Colony 257564
7 T. Krishnamurthy 185 Faculty Colony 257579
] N. Puranjay 409 Medical Colony 257409
9 Tadi Tabi Officers Mess #52 257871

(b) Inverted Table
Name Address Phone
2 7 B
6 6 4
| 1 2
3 8 5
4 9 6
B 4 7
7 5 3
9 2 1
5 3 9

6.4 HASH TABLES

There are other types of tables which help us to retrieve information very efficiently. The ideal
hash table is merely an array of some constant size; the size depends on the application where
it will be used. The hash table contains key values with pointers to the corresponding records.
The basic idea of a hash table is that we have to place a key value into a location in the hash
table; the location will be calculated from the key value itself. This one-to-one correspondence
between a key value and an index in the hash table is known as address calculation indexing
or more commonly hashing. In the present section, we will discuss hashing techniques and their
related issues.

6.4.1 Hashing Technigues

The main idea behind any hashing technique is to find a one-to-one correspondence between
a key value and an index in the hash table where the key value can be placed. Mathematically,
this can be expressed as shown in Figure 6.6, where K denotes a set of key values, I denotes
a range of indices and H denotes the mapping function from K to L

Tables 195

H:K—=1I
Figure 6.6 Concept of hashing.

It may be noted that the mapping is subjective, that is all key values are mapped into some
indices and more than one key value may be mapped into an index value. The function that
governs this mapping is called the hash function. A particular hashing technigue uses a
particular hash function. The hash function plays a dominant role in hashing techniques. There
are two principal criteria in deciding a hash function H:K — [as follows:

1. The function H should be very easy and quick to compute.
2. The function H should as far as possible give two different indices for two different key
values.

As an example, let us consider a hash table of size 10 whose indices are 0, 1, 2, ..., 8, 9.
Suppose a set of key values are: 10, 19, 35, 43, 62, 59, 31, 49, 77, 33, Let us assume the hash
function H is as stated below:

o Add the two digits in the key.
o Take the digit at the unit place of the result as the index; ignore the digit at the tenth
place, if any.

Using this hash function, the mappings from key values to indices and to hash table are
shown in Figure 6.7. In this example, for the given set of key values, the hash function does

K 1 0] 19

10 [1 1[0

19 0 2

35 8 af a8

43 7 4] 59, 31, 7T
B 5

50 4

31 | 4 6133

40 3 7| 43

77 4 8] 35, 62
33 B 9

H:K=1 Hash table

Figure 6.7 Example of hashing.

196 Classic Data Structures

not distribute them uniformly over the hash table; some entries are there which are empty, and
in some entries more than one key value needs to be stored. Allotment of more than one key
value in one location in the hash table is called collision. We have found three collisions for
62, 31 and 77 in the above-mentioned example.

It can be noted that | K | = | |, that is, the number of key values is the same as the size
of the hash table, but this is not the case always. In general, | K | > | T'|.

The following are some hash functions which are very common and popularly applied in
various applications.

Division method

One of the fast hashing functions, and perhaps the most widely accepted, is the division method,
which is defined as follows:

Choose a number k larger than the number N of keys in K. The hash function H is then
defined by

Hik) = k{(MOD h) if indices start from 0

or
H(k) = KMOD h) + 1 if indices start from 1

where k € K, a key value, The operator mon defines the modulo arithmetic operation, which
is equal to the remainder of dividing k by h. For example, if k = 31 and h = 13 then

H(31) = 31(MOD 13) = 5
or

H(31) =31(MOD 13)+ 1 =6

The number f is usually chosen to be a prime number or a number without small divisors, since
this usually minimizes the number of collisions. Generally, k is a prime number and equal to
the size of the hash table.

Midsquare method

Another hash function which has been widely used in many applications is the midsquare
method. The method is defined as follows:

The hash function H is defined by H(k) = x, where x is obtained by selecting an appropriate
number of bits or digits from the middle of the square of the key value k. This selection usually
depends on the size of the hash table. It needs to be emphasized that the same criteria should
be used for selecting the bits or digits for all of the keys.

As an example, suppose the key values are of the integer type, and we require 3-digit
addresses. Our selection criteria are 10 select 3 digits at even positions starting from the right-
most digit in the square. Let us see the address calculations, for 3 distinct keys and with the
hash function, as defined above:

k : 1234 2345 3456
B 1522756 54995025 11943930
H(k) : 525 492 933

Tables 197

Here, we observe that the second, the fourth, and the sixth digits, counting from the right, are
chosen for the hash addresses.

The midsquare method has been criticized because of time-consuming computation
(multiplication operation), but it usually gives good results so far as the uniform distribution of
the keys over the hash table is concerned.

Folding method

Another fair method for a hash function is the folding method. The method can be defined as
follows:

Partition the key k into a number of parts k), k,, ..., k,, where each part, except possibly
the last, has the same number of bits or digits as the required address width. Then the parts are
added together, ignoring the last carry, if any. Alternatively, '

H{k} = j:| + .“'2 + - +.k"

where the last carry, if any, is ignored. If the keys are in binary form, the exclusive-OR
operation may be substituted for addition. There are many variations known in this method. One
is called the fold shifting method, where the even number parts, k2, &4, ... are each reversed
before the addition. Another variation is called the fold boundary methed. Here, two boundary
parts, namely, k; and k,, each are reversed and then added to all other parts. As an example,
let us take the size of each part to be 2; the following calculations are performed on the given
key values (integers) as shown below:

k: 1522756 5499025 11943936

Chopping: 01 52 27 56 05 49 90 25 11 94 39 36

Pure folding: 01 +52+27+56=136 05+49+90+25=169 11 +94+ 39+ 36=180
Fold shifting: 10 +52+ 72+56=190 50+ 49 +09 +25=133 11 +94 +93 + 36 =234
Fold boundary: 10 + 52 4+ 27 + 65 = 154 50 + 49 + 90 + 52 = 241 11 + 94 + 39 + 63 = 207

Folding is a hashing function which is also useful in converting multi-word keys into a single
word so that another hashing function can be used on that. In fact, the term ‘hashing’ comes
from this techmique of ‘chopping’ a key into pieces.

Digit analysis method

The basic idea of this hashing function is to form hash addresses by extracting and/or
shifting the extracted digits or bits of the original key. As an example, given a key value,
say 6732541, it can be transformed to the hash address 427 by extracting the digits in even
positions and then reversing this combination. For a given set of keys, the position in the
keys and the same rearrangement pattern must be used consistently. The decision for
extraction and then rearrangement is based on some analysis. To do this, an analysis is
performed to determine which key positions should be used in forming hash addresses. For
each criterion, hash addresses are calculated and then a graph is plotted, then that criterion
is selected which produces the most uniform distribution, that is with the smallest peaks
and valleys.

198 Classic Data Structures

This method is particularly useful in the case of static files where the key values of all the
records are known in advance.

We have assumed the key values as integers in our previous discussions, but it need not
be so always. In fact, any key value can be represented by a string of characters and then
ASCII values of its constituent characters can be taken to convert it into a numeric value.
Thus, assuming that a key value k = kkyky ... k,, where each k; is the constituent character
in k. The hash function using the division method is stated as below in algorithm
HashDivision.

Algorithm HashDivision

Input: K, the key value in the form of a string of characters whose hash address is to be
calculated.

Output: INDEX, a positive integer as the hash address.

Data structure: Hash table in the form of an array. H is the size of the hash table which is used
for modulo arithmetic operation.

Steps:
. i=1 fI'i is the pointer to the string X
2. keyVal =0 /I To store the keyvalue of K
3. While (K][i] # NULL) do
4. keyVal = keyVal + KJi] f Add the ASCII value of K
T i=i+1 /l Move to the next character
6. EndWhile
7. INDEX = keyVal mop H + 1 f/ Find the remainder modulo
8. Return (INDEX)
9. Stop

The algorithms for other hash functions can be designed likewise; these have been left as
exercises for the student.

' Assignment 6.2

1. Write the algorithms HashMidSquare, HashFoldingPure, HashFoldingShift,
HashFoldingBoundary, for the midSquare method and different variations of the folding
method, respectively, for a given key value K in the form of a string of characters.

| 2. Suppose a file contains 100 records. What should be the size of the hash table and hence
i h? Create an array of key values of the records as hash table. Generate 100 random
numbers and assume them as key values. Apply different hash functions to calculate
hash addresses and load the key values into the hash table.

3, Generate 100 random numbers each of 6 digits, say. Assuming these as static key values,
obtain a digital analysis on it based on three different criteria. Plot a graph for the hash
values obtained with these criteria and then select the best criteria.

N

Tubles 199

4. A hash function will be termed good if it satisfies both the criteria, namely, quick to
compute and uniformity of distribution. The first criteria can be controlled by using a |
suitable technique of computation. For example, suppose, for a key k& = k &k, the hash _'

. function is H(k) = k; + ks * 27 + ks * 27° Using Homer's rule for evaluating a

polynomial, this can be calculated as:

Hik) = (ks* 27 + k3) * 27T + |y
Extend the Horner's rule to compute the hash address for the following:
(@) H(kkoky k)= Y k27"
i=l

Hint: Additions can be replaced by the bit-wise exclusive-OR operation for increased
speed.

() Hkkoky --k,) =y k32" i
i=1 |
Hint: Additions can be replaced by the bit-wise exclusive-OR for increased speed and |
multiplication by 32 is not really a multiplication, it can be done by shifting the bit by 5. |
{c) A hybrid hash function H*(k) of H(k) can be obtained by applying the division method |
over H(k) as stated below: l

H*(k) = H(k) mop h I
h being the size of the hash table.
Obtain the algorithm for such a hybrid hash function.

6.4.2 Collision Resolution Techniques

Whatever the hash function used in hashing, the complete removal of collisions is almost
impossible. This can be emphasized with an example called birth day surprise. Suppose there
is a class of 24 students and they are having the same year of birth. We want to know the
probability that two students have the same date of birth. The probability can be calculated as
follows:

Open the calendar of the year of their birth. Assume that there are 365 days. Start with any

student. and put a tick on his birthday date on the calendar. Now. the probability that the second
student has a different birthday is 364/365. Tick this date off. The probability that a third

student has a different birthday is now 363/365. Continuing this way, we see that if the first
{(n = 1) students have different birthdays, then the probability that the nth student has a different
birthday is
65=(n=1) or 365=-n+1
365 365

Since the birthdays of different people are independent, we obtain the probability that n students
all have a different birthday is

200 Classic Data Structures

364 363 362 xiﬁj—nxl

365 365 365 365

This probability can be calculated as less than 0.5 whenever n 2 24.

In other words, suppose there is a hash table of size 365 and we want to store the records
of all the 24 students based on birthdays as their key values. It is therefore a fifty-fifty chance
that two of the students have the same birthday and hence a collision.

So, collision in hashing cannot be ignored, whatever be the size of the hash table. The next
question arises therefore is what to do if their is a collision? There are several techniques to
resolve the collisions. Two important methods are listed below:

(a) Closed hashing (also called linear probing)
(b) Open hashing (also called chaining).

6.4.3 Closed Hashing

The simplest method to resolve a collision 15 closed hashing. Suppose there is a hash table of
size h and the key value of interest is mapped to an address location i, with a hash function.
The closed hashing then can be stated as follows:

Start with the hash address where the collision has occurred, let it be i. Then follow the
following sequence of locations in the hash table and do the sequential search.

,.1 i+ lp 'r+2| EETTY h| l| 21 BEay i_l
The search will continue until any one of the following cases occurs:

e The key value is found.
® An unoccupied (or empty) location is encountered.
The searches reaches the location where the search had started.

The first case corresponds 1o the successful search and the last two cases correspond to
unsuccessful search. Here the hash table is considered circular, so that when the last location
is reached, the search proceeds to the first location of the table. This is why the technique is
termed closed hashing. Since the technigue searches in a straight line, it is also alternatively
termed linear probing; probe means key comparison.

Let us illustrate the method with an example. Assume that there is a hash table of size 10
and the hash function uses the division method with remainder modulo 7, namely, H(k) = k mop
{7 + 1). Let us consider the build up of the hash table (initially, the table is empty) with the
following set of key values:

15112516 9 8 12 8

The loading of the hash table will take place successively by performing a search for a key and
inserting it into the table in an empty room if the key is not in the table and leaving if it is
overflow, that is, no free room to accommaodate any further key value. This is illustrated in
Figure 6.8.

Tubles 201

1 1 1 1

2 2 15 * 2 15 2 15

e i 3 3

4 4 4 4

5 5 5 11 * . 5 11 .
& 6 3] 6 25
7 T 7 7

8 8 8 8

9] 9 9

10 10 10 10

Initially the insertion of 15 insertion of 11 insertion of 25
hash table

is empty

1 1 1 1

2 15 2| 15 2 15 . 2 15
a 16 s 3 16 = 3 16 3 16
4 4 9 4 9 4 9
|5 11 5 11 & 1 5 11

] 25 & 25 & 25 6 25 *
7 7 T 8 7 [

8 8 . 8 12
a 9 3 9

10 10 10 10
insartion of 16 insartion of 9 insartion of B insartion of 12

Figure 6.8 Building up a hash table.

Next, let us define the operation for searching a key-value and inserting a key-value. The
algorithm HashLinearProbe for searching a key value K in a hash table of size HSIZE is given
below:

Algorithm HashLinearProbe

[npur: K is the key value of search. INSERT is a flag for the insertion operation.

Outpur; Return the location if it is found in the hash table else if INSERT i1s TRUE put K in
the table if table has not overflown otherwise return NULL.

Data structures: A hash table H of size HSIZE in the form of an array.

Steps:

1. flag = FALSE {f Flag for continuation of looping
2. index = HashFunction(X) /I Calculate the hash address using a hash function
3. If (K = H|index]) then ff If there is a hit
4, Return(index)

3. Exit /f End of the execution
6. Else

7. i = index + 1 /! Set to the next location

(Conrd.)

202 Classic Data Structures

R. While (i # index) and (not flag) do

9, IF ({H[i] = NULL) or (H[i] < O)) then M If the cell is free
10, If (INSERT) then ff True option for insertion
11. Hlil=K {f Put the key value into the hash table
12, flag = TRUE

13, EndIf

14. Else # Cell is occupied
15. K (H[i] = K) then #f Match
16. flag = TRUE

17. Returndi)

18. Exit /f End of the execution
19, Else / No match
20, i =i mop h+l #f Closed looping
21. EndIf
22, EndIl
23, EndWhile
24, If (flag = FALSE) and (i = index) then // No match and reach to the siarting point
25. Print “The table is overflow™
26, EndIf
27. Endlf
28. Stop

Note Step 9 in the above algorithm. Here, we assume that whenever a key value is deleted from
the hash table its comresponding entries are made negative instead of NULL. Writing an
algorithm for deleting a key value is straightforward and is left as an exercise.

Drawback of closed hashing and its remedies

The major drawback of closed hashing is that, as half of the hash table is filled, there is a
tendency towards clustering; that is key values are clustered in large groups and as a result a
sequential search becomes slower and slower. This kind of clustering is typically known as
primary clustering,

The following are some solutions known to avoid this situation:

(a) Random probing

(b) Double hashing or rehashing

() Quadratic probing.
Let us briefly discuss each of the above solutions.

Random probing. This method uses a pseudo random number generator to generate a random
sequence of locations, rather than an ordered sequence as was the case in the linear probing
method. The random sequence generated by the pseudo random number generator contains all
the positions between | and A, the highest location of the hash table. An example of a pseudo
random number generator that produces such a random sequence of locations is given below:

i={i+m soph+1

Tables 203

where i is a number in the sequence, and m and h are integers that are relatively prime to each
other (that is, their greatest common divisor is 1). For example, suppose m =5 and h = 11 and
initially i = 2. then the above-mentioned pseudo random number generator generates the
sequence as:

8 39,4105 11,6,1,7, 2

We stop producing the numbers when the first location is duplicated. Observe that here all the
numbers between 1 and 11 are generated but randomly. We can avoid primary clustering if the
probe follows the said random sequence.

Double hashing. Random hashing however is not free form clustering. Another type of
clustering, called secondary clustering, is involved here. In particular, clustering occurs when
two keys are hashed into the same location. In such an instance, if the same sequence of
locations is generated for two different keys by the random probing method then clustering
takes place. An alternative approach to avoid the secondary clustering problem is to use a
second hash function in addition to the first one. This second hash function results in the value
of m for the pseudo random number generator as employed in the random probing method. This
second function should be selected in such a way that the hash addresses generated by the two
hash functions are distinct and the second function generates a value m for the key k so that
m and h are relatively prime. Let us consider the following example.

Suppose H\ (k) is the initially used hash function and H.(k) is the second one. These two
functions are defined as

Hk) = (k mon h) + 1
Hilk) = (kmon (h-4)) + 1
Let i = 11 and k = 50 for an instance. Then, H;(50) = 7 and H»(50) = 2. Therefore, H(50) #

Ho(50), that is, M, and H, are independent and m = 2, h = 11 are relatively prime. Hence, using
i=[(i +2) mop 11] + 1, and initially i = 7, we have the random sequence as

10, 2,5 8, 11,3,.6,9,1,4,7

Now, let us choose another key value which has the same hash address as that of 50 (that is,
7y with the first hash function H,. Let it be 28 (since H(28) = 28 mop 11 + 1 = 7). Then

H:28) =28 mon 7+ 1 =5
So using i = [(i + m) mop 11] with i = 7 and m = 5, we get the sequence:
2,8 3,9 4,10,5, 11,6, 1,7

Thus, for the two key values where the hash address is the same and using rehashing, two
different random sequences are generated, thereby alleviating the secondary clustering.

Quadratic probing. Quadratic probing is a collision resolution method that eliminates the
primary clustering problem of linear probing. For linear probing, if there is a collision at
location i, then the next locations i + 1, i + 2. i + 3, efc. are probed; but in quadratic probing,
the next locations to be probed are i + 1%, i + 2%, i + 3%, etc. Mathematically, if & is the size
of the hash table and H(k) is the hash function then the quadratic probing searches the locations:

204 Classic Data Structures

Hk) +#wmoph fori=1,2, 3, ..

Note that in quadratic probing the increment function is i, It also assumes the hash table as
close (or circular) as in linear probing.

This method, no doubt, substantially reduces primary clustering, but it does not probe all
the locations in the table. Lemma 6.1 gives the information regarding the number of location
that it can probe at most.

Lemma 6.1

If i denotes the size of the hash table then the number of distinct positions that will be probed
is (h + 1)/2,

Proof: Suppose that the hash address for a given key & is x. Then the ith probe will look like
x+itmod h=x+[l+3+5+-+(2-1) mod h

or,
Qi-1<h

. h+1

B, = —— 6.2

i i 5 (6.2)

Hence proved.

Example: Suppose h =11 and the hash address of the key is x. Then the different locations
with a quadratic probe are x, x + LLx + 4, x + 9, x + 5, x + 3 with (11 + 12 = 6 probes.

Drawback of guadratic probing: For linear probing, it is not advisable to let the hash table
get nearly tull because in that case we may have to search the entire table and thus performance
degrades. For quadratic probing, the situation is even more drastic: there is no guarantee of
finding an empty cell once more than half of the table gets full or even before that if the table
size is not prime. Lemma 6.2 supports the above situation.

Lemma 6.2

If quadratic probing is used and the table size is prime, then a new key value can always be
inserted if the table is at least half full.

Proof (By the method of contradiction): Let the table size i be an (odd) prime number greater
than 3. We show that the first Lh!ZJ alternate locations are distinct. Two of these locations are

x+i*Moph and x+ j* mobD h

where 0 < i, j = |_M EJ, and x is the hash address of a key. Suppose by contradiction, these
locations are the same, but i = j. Then
X+ i MoD h = x + j* MoD h

or
(i* =)y Mop h=0

Tables 205

(i-)x{i+jimop k=10

Since h is prime, it follows that either i — j or ¢ + j is divisible by h. Againi#j,1,j = [mzj.
50 (i — j) mop & # 0, The second option is also not possible as i, j < I_MEJ, their sum can never
bemxh form=1,23, ...

Thus, the first Lh:‘EJ alternate locations are distinct. Since the element to be inserted can
also be placed in the location to which it hashes, if there are no collisions, any element has
|_h.|" 2_l locations into which it can be placed. Hence, proved.

In quadratic probing, it is also very crucial that the table size should be a prime. If the table
size is not prime, the number of alternate locations can be severely reduced. As an example,

if the table size is 16, (or a power of 2}, then the only alternate locations would be at distances
1.4, 9, elc.

6.44 Open Hashing

So far we have discussed the closed hashing methods of collision resolution. The closed hashing
method deals with arrays as hash tables and thus we are able to refer quickly to random
positions in the tables. But there are two main difficulties with this technique: First, it is very
difficult to handle the situation of table overflow in a satisfactory manner. Second, the key
values are haphazardly intermixed and, on the average, the majority of the keys are far from
their hash locations, thus increasing the number of probes which degrades the overall
performance. .

To resolve these problems another hashing method called open hashing (also called
separate chaining, or simply chaining) is known, The chaining method is discussed in the
following paragraphs.

The chaining method uses a hash table as an array of pointers; each pointer points a linked
list. That is, here the hash table is an array of list headers. In Figure 6.9, a hash table of size
10 is considered. The index of the hash table varies from O to 9 and key values are taken as
integers. The hash address for a key is decided by its last digit (means the right most digit).

L 10 [X]
v 12 [e—+ 82 [¥]
» 43

| 2 e+ 64 |op~ 54 [X
» 36 [ef+ 16 [X]

W oE = Bt AW N =D
T..I.I."T

AT EN

Figure 6.9 An open hashing.

200 Classic Data Structures

For a given key value, the hash address is calculated. It then searches the linked list pointed
by the pointers at that location. If the element is found it returns the pointer to the node
containing that key value else inserts the element at the end of that list. The implementation of
open hashing is stated in the algorithm HashChaining as follows:

Algorithm HashChaining

Input: K is the item of interest. INSERT is a flag for the option of insertion.

Outpur: If K is found in the hash table then return the pointer of the node which contains the
key value X else insert K into the linked list when the INSERT flag is TRUE.

Data structure: Hash table H having size HSIZE storing pointer to the single linked list
structure.

Steps:

l. index = HashFunction(K) f Calculate the hash address of K
2. pir = Hlindex] /i pir is a pointer to any node in the list
3. flag = FALSE i flag for controlling the search
4, While (ptr # NULL) and (flag = FALSE) do

5 If (ptr—=DATA = K) then /f End of search
6. flag = TRUE

7 Return{ptr)

8. Exit ff End of execution
g, Else
10, pir = ptr.LINK #f Move to the next node
11. EndIf
12. EndWhile
13. If {flag = FALSE) then
14. Print “Key value does not exist”
15. If (INSERT) then
16. InsertEnd_SL{H[index]) ff Insert it into the table
17. EndIf
18. EndIf
19, Stop

A key value if it exist can be deleted from a hash table for which a procedure
HashKeyDelere(...) can be written. This is left as an exercise for the reader.

Advantages and disadvantages of chaining
There are several advantages of the chaining method. The most important advantages are stated
below:
1. An overflow situation never arises. The hash table maintains lists which can contain any
number of key values.

2. Collision resolution can be achieved very efficiently if the lists maintain an ordering of
keys, so that keys can be searched quickly,

Tables 207

3. Insertion and deletion become a quick and an easy task in open hashing. Deletion
proceeds in exactly the same way as deletion of a node in a single linked list.
4. Finally, open hashing is best suitable in applications where the number of key values
varies drastically as open hashing uses dynamic storage management policy.
The only disadvantage of the chaining method is that of maintaining linked lists and extra
storage space for link fields.

Assignment 6.3

As an alternative to the collision resolution technique, bucket hashing can be used. In this
method, the hash table is a collection of buckets and each bucket contains a few number of
key values decided by the bucket size. Let us assume that all buckets are of the same size,
Here, the hash function calculates an address of a bucket and then finally the key value is
searched in that bucket. Figure 6.10 illustrates this concept for a hash table with buckets
whose size is 3,

(a) Compare bucket hashing with open hashing and closed hashing.

(b) Write algorithms to search a key value, insert a key value and delete a key value in
bucket hashing.

Buckel #1 —————»

Bucket #2 =

Buckot g —————— —

Bucket ¥5

L

Bucket #8

Figure 6.10 Bucket hashing.

6.4.5 Comparison of Collision Resolution Techniques

We will conclude the discussion of hash tables by giving an analytical comparison of various
collision resolution techniques discussed. Let us define the load factor, A, of a hash table as

_ Total number of key values
Size of the hash table

(6.3)

208 Classic Data Structures

So A = 1.0 means that the number of key values is the same as the total capacity of the hash
table. We also define S(4) and U(A) as

$(A) = average number of probes for a successful search.
[/(Ay = average number of probes for an unsuccessful search.

These two quantities will measure the performance of collision resolution methods.

Analysis of closed hashing

To analyze the performance of closed hashing, let us assume the case of random probing and
ignore the problem of clustering for the sake of simplicity.

Let us first consider the case of unsuccessful search. It is evident that the probability that
the first probe hits an occupied cell is A, the load factor. The probability that a probe hit an
empty cell is 1 = A The probability that the unsuccessful search terminates in exactly two
probes is therefore A(1 — A). Arguing similarly this way, the probability that exactly k probes
are made in an unsuccessful search is A*'(1 -). The average number of probes for an
unsuccessful search is therefore

UA) = Zkl"’{l —D=@-21) Zu* (6.4a)
k=1 k=1
Since A = 1 and 2&1“ = ! 5, we have
k=l [I _—1}
U =1 -) — _= L (6.4b)
(1-4y 1-4

Next, let us consider the case of a successful search. We can think of this problem through
insertion of key values. Then the number of probes required will be exactly one more than the
number of probes made in the unsuccessful search before inserting the item. Let us consider the
case when the table is initially empty. In that state, key values are inserted one at a time. Now
as the items are inserted, the load factor grows slowly from 0 to A. Thus, we can express the
average number of probes in a successful search as

su]=lrumm
Ao
1 ph 1
_EL 1~.\:Irer
R (6.5)

A 1-4

A similar calculation can be performed for closed hashing with linear probing. This is left as
an assignment for the student.

Tables 209

Assignment 6.4
For closed hashing with linear probing prove that:
by i (6.60)
Sl =2 '
and
U{J]I—L 1+] (6.6b)
T L '

Analysis of open hashing

Let us recall the case of chaining. In chaining, we move to the linked list before doing any
probes. Suppose that a list contains n key values. Assuming that the key values are equally
probable in any list, the expected number of key values on any list is n/h, h being the size of
the hash table. This is nothing but [, the load factor. Now, if the list contains n items, the number
of key comparisons for an unsuccessful search is n. Thus, the average number of probes for an
unsuccessful search is

Ud =4 (6.7)

Now, suppose the search is successful. From the analysis of sequential search over a list of n
items, we can write

n+1

Number of comparisons :lzl' = (6.8)
n i

Assume that an item is equally probable in any place. Since the average number of key values
in any list is A, the average number of probes in a successful search is

S(A}=% 6.9)

We can draw several conclusions from the results thus obtained. Let us draw a graph
{(Figure 6.11) for these results. From this graph, the following points are evident:

1. Open hashing always requires fewer probes than closed hashing.
2. Chaining is especially advantageous when the load factor is significantly low.
3. With closed hashing and successful search, linear probing is not significantly slower if

A is high. For unsuccessful searches, however, clustering will occur which quickly
degenerates into a long sequential search.

We might therefore conclude that if searches are quite likely to be successful and the load
factor is moderate, closed hashing is quite satisfactory, but in other circumstances open hashing
is promising.

210 Classic Data Structures
i —— Closed hashing (Random probing)
---------- Clased hashing (Linear probing)
= Opan hashing
4)
N A2)
15.0 ; o)
(i)
12.0
S(d)
| 9.0
L i
S{A)
6.0
3.0+
0.0 -
a p, number of probes ———» 1.0
Figure 8.11 Comparison of various collision resolution technigues.
6.5 PROBLEMS TO PONDER
6.1 Suppose there is a hash table of size H. If A be the load factor and @ be the word size

6.2

6.3

6.4

for a key value, then find the total storage space required for the following cases:

(a) Open hashing (assume that one word is required for a link field)
{(b) Closed hashing.
A hash function is defined as H(k) = r;, where ry, rs, ..., 1, 15 a sequence of random
numbers between 1 and n (each integer appears exactly once).
(a} Prove that if the hash table is not full then this hashing always resolves collision.
(b) Does this technique eliminate clustering?
(c) If I be the load factor of the table, what is the expected time for a
(1) successful search?
(ii) unsuccessful search?

In quadratic hashing, the probes are carried out in the sequence
H(k) + g*, H(k) + (g = 1), ... H(k) + 1, H(k), H(k) = 1, ..., Hk) - ¢
where g = (h — 1)/2, h being the size of the hash table. Prove that this method resolves

collision and avoids clustering.

In open hashing, we can save time if the nodes in chain are kept in order by key value.
How many probes, on an average will be done in the case of

{a) unsuccessful search?

{b) successful search?

Tables 211

6.5 The hash function should be such that it can be calculated very quickly.

(a) Show how if i is known then (i + 1)* can be obtained from it by addition only.

(b) Show that the following expression generates random numbers between | and m, if
m and ¢ are prime to each other:

¥ = {y +) MOD m expression

Assume a suitable starting value for v.

REFERENCES
Bell, 1., A hash code eliminating secondary clustering, The quadratic quotient method,
Communicarion of the ACM, 13, 1970.
Enbody, R.J. and H.C. Du, Dynamic hashing schemes, Computing Surveys, 20, 1988,

Gonnet, G.H. and R. Baeza Yates, Handbook of Algorithms and Data Structures, Addison-
Wesley, Reading, Massachusets, 1988,

Gotlieb, C.C. and L.R. Gotlieb, Data Types and Structures, Prentice-Hall, Englewood Cliffs,
New Jersey, 1986,

Guibas, L.J. and E. Szemerdi, The analysis of double hashing, Sciences, 16, 1978.

Knuth, D.E., Sorting and Searching, The Art of Computer Programming, 3, Addison-Wesley,
Reading, Massachusetts, 1984,

Maurrer, W.D. and T.G. Lewis, Hash table methods, Computing Surveys, 7, 1995,

McKenzie, B.J., R. Harries, and T. Bell, Selecting a hashing algorithm, Software Practice and
Experience, 20, 1990,

Morris, R., Scatter storage techniques, Communication of the ACM, 11, 1998,

Trees

So far we have learnt about arrays, stacks, queues and linked lists, which are known as linear
data structures. These are termed linear because the elements are arranged in a linear fashion
(that is, one-dimensional representation). Another very useful data structure is the free, where
the elements appear in a non-linear fashion, which requires a two-dimensional representation.
Figure 7.1 is an example of such a representation.

Figure 7.1 Tree—a non-linear representation of data.

There are numerous examples where a tree structure is the efficient means to maintain and
manipulate data. In general, where the hierarchy relationship among data is to be preserved, a

212

Trees 213

tree is used. Figure 7.2 shows a family hierarchy of various members represented as a tree
which maintains the relationship among them.

Figure 7.2 A family hierarchy in the form of a tree.

This hierarchy not only gives the ancestors and successors of a family member, but some
other information too. For example, if we assume the left-side member as a female and the
right-side member as a male then sister, brother, uncle, aunt, grandfather, grandmother, etc. can
also be implied automatically.

As another example, let us consider an algebraic expression

X=@A-B/C* D)+ E)

where different operators have their own precedence value. A tree structure (o represent the
same is shown in Figure 7.3. Here, operations having the highest precedence are at the lowest
level; everything is stated explicitly as to which operands is for which operator. Moreover,
associativity can easily be imposed if we place the operators on the left or right side.

ONOIONRO
o ©

Figure 7.3 An algebraic expression in the form of a tree.

These two examples illustrate how powerful this data structure is to maintain a lot of
information automatically. Besides, there are other advantages of this data structure such as
insertion, deletion, searching, etc. which are more efficient in trees than in linear data structures.

214 Classic Data Structures

Before going to study this data structure, let us introduce the basic terminologies of a tree
which will be referred to in subsequent discussions.

7.1 BASIC TERMINOLOGIES

Node, This is the main component of any tree structure. The concept of the node is the same
as that used in a linked list. A node of a tree stores the actual data and links to the other node.
Figure 7.4(a) represents the structure of a node.

Parent. The parent of a node is the immediate predecessor of a node. Here, X is the parent
of ¥ and Z. See Figure 7.4(b).

Child. If the immediate predecessor of a node is the parent of the node then all immediate
successors of a node are known as child. For example, in Figure 7.4(b), ¥ and Z are the two
child of X. The child which is on the left side is called the lefr child and that on the right side
is called the right child.

DATA l\

RC LC
(8) Structure of a node in a tree
/ | N
Y r

/" 1\ /? 1\

(b) Parent, laft child and right child of a node

&

\
Lled | L] |

(c} A simple froa with 13 nodes
Figure 7.4 A tree and its various components.

Trees 215

Link. This is a pointer to a node in a tree. For example, as shown in Figure 7.4(a), LC and
RC are two links of a node. Note that there may be more than two links of a node.

Root. This is a specially designated node which has no parent. In Figure 7.4(c), A is the roor
node.

Leaf. The node which is at the end and does not have any child is called leaf node. In
Figure 74(c), H, I, K, L, and M are the leaf nodes. A leaf node is also alternatively termed
terminal node.

Level. Level is the rank in the hierarchy. The root node has level 0. If a node is at level [,
then its child is at level + 1 and the parent is at level [— 1. This is true for all nodes except
the root node, being at level zero. In Figure 7.4(c), the levels of various nodes are depicted.

Height. The maximum number of nodes that is possible in a path starting from the root node
to a leaf node is called the height of a tree. For example, in Figure 7.4(c), the longest path is
A—C—-F—J-M and hence the height of this wree is 5. It can be easily seen that i = [, + 1, where
h is the height and [, is the maximum level of the tree.

Degree. The maximum number of children that is possible for a node is known as the degree
of a node. For example, the degree of each node of the tree as shown in Figure 7.4(c) is 2.

Sibling. The nodes which have the same parent are called siblings. For example, in
Figure 7.4(c), J and K are siblings.

Different texts use different terms for the above defined terms, such as deprh for height,
branch or edge for link, arity for degree, external node for leaf node and internal node for a
node other than a leaf node.

| Assignment 7.1

| (a) Observe the tree given in Figure 7.5. Find the following with reference to this tree:
(i) The height of the tree. '
(ii) Level (H), level (C) and level (K).

(iii) Degree of the tree.

(iv) The longest path in the tree.

(v) Parent (M), sibling (I), child (B).

"l_l':' et

216 Classic Data Structures

| (b) In your computer, there is a directory structure. Starting from the root directory to ‘.exe’
E files, draw a tree for the entire file system. Then answer the following:
E

(i} What is the height of the directory system?
{ii) What is the level of the C++ compiler?
(iii)) What is its degree?

(iv) Which file(s) is/are on the longest path?

7.2 DEFINITION AND CONCEPTS

Let us define a tree. A free is a finite set of one or more nodes such that:

(i) there is a specially designated node called the root,
(ii) the remaining nodes are partitioned into n (n > 0} disjoint sets T,, T, ..., T,, where
each T; (i =1, 2, ..., n) is a tree; T, T, ..., T, are called subtrees of the root.

To illustrate the above definition, let us consider the sample tree shown in Figure 7.6.

Figure 7.6 A sample tree T.

In the sample tree T, there is a set of 12 nodes. Here, A is a special node being the root of the
tree. The remaining nodes are partitioned into 3 sets Ty, T5, and Ty; they are sub-trees of the
rool node A. By definition, each sub-tree is also a tree. Observe that a tree is defined
recursively. The same tree can be expressed in a string notation as shown below:

T
*Ee\(T],Tz.T}H

NN

B(E, T},) C(G) D(H, 1 1)

F(K, L)
Or more precisely,
T ={A(B(E, F(K, L)), C(G), D(H, L, Iy

Trees 217

Assignment 7.2
Draw a tree with the given string notation:

(A (B (C (E), F, D), G (H, (TN

7.2.1 Binary Trees

A binary tree is a special form of a tree. Contrary to a general tree, a binary tree is more
important and frequently used in various applications of computer science. Like a general tree,
a binary tree can also be defined as a finite set of nodes, such that:

(i) T is empty (called the empty binary tree), or

(ii) T contains a specially designated node called the root of T, and the remaining nodes
of T form two disjoint binary trees T} and T; which are called the left sub-tree and the
right sub-tree, respectively.

Figure 7.7 depicis a sample binary tree.

Figure 7.7 A sample binary tree with 11 nodes.

One can easily notice the main difference between the definitions of a tree and a binary tree.
A tree can never be empty but a binary tree may be empty. Another difference is that in the
case of a binary tree a node may have at most two children (that is, a tree having degree = 2),
whereas in the case of a tree, a node may have any number of children,

Two special situations of a binary tree are possible: full binary tree and complete binary
tree.

Full binary tree
A binary tree is a full binary tree if it contains the maximum possible number of nodes at all
levels. Figure 7.8(a) shows such a tree with height 4.

Complete binary tree

A binary tree is said to be a complete binary tree if all its levels, except possibly the last level,
have the maximum number of possible nodes, and all the nodes in the last level appear as far
left as possible. Figure 7.8(b) depicts a complete binary tree.

218 Classie Data Structures

(b) A complete binary tree of height 14
Figure 7.8 Two special cases of binary trees.

Observe that the binary tree represented in Figure 7.7 is neither a full binary tree nor a
complete binary tree.

7.2.2 Properties of a Binary Tree

A binary tree possesses a number of properties. These properties are very much useful and are
listed below as Lemmas 7.1-7.7.

' Lemma 7.1
In any binary tree, the maximum number of nodes on level [is 2/, where | = (.

Proof: The proof of the above lemma can be done by induction on [. The root is the
only node on level { = 0. Hence, the maximum number of nodes on level [= 0 is 29 =
| = 2.

Suppose for all i, 0 < i < [and for some /, the above formula is true, that is, the maximum
number of nodes at level { is 2'. Since each node in a binary tree has degree 2, so from each
node at level i, there may be at most 2 nodes at level i + 1. Thus, the maximum number of nodes
at level i + 1 is 2 x 2¢ = 21, Therefore, if the formula is true for any i, then it is also true for
i+ 1.

Hence, the proof (see Figure 7.9).

Trees 219

Level MNodes
o 2°=1
1 2'=2
2 2°24
a 2'=8
.

Figure 7.9 Binary tree showing Lemma 7.1,

Lemma 7.2
The maximum number of nodes possible in a binary tree of height h is 2% — 1.

Proof: The maximum number of nodes is possible in a binary tree if the maximum number

of nodes are present at each level. Thus, the maximum number of nodes in a binary tree of
height h is

i
n:if {where [,, is the maximum level of the tree)
i=0

(using the formula of a geometric series)

From the definition of height, we have h = I,,, + 1, hence we can write

Mo = 2 = | (7.1)

Lemma 7.3
The minimum number of nodes possible in a binary tree of height f is h.

Proof: A binary tree has the minimum number of nodes if each level has the minimum
number of nodes. The minimum number of nodes possible at every level is only one when
every parent has one child. Such kinds of trees called skew binary rrees are shown in

Figure 7.10.

Thus, a skew binary tree is the tree having only one path which contains i number of nodes
if /i is its height. Hence, ng, = h.

220 Classic Data Structures

735

Figure 7.10 Skew binary trees containing the minimum number of nodes.

Lemma 7.4

For any non-empty binary tree, if n is the number of nodes and e is the number of edges,
thenn=¢e + 1.

Proof: By the induction method, we have

Numiber of nodes, n Number of edge n=é+1
€
1 0 1=0+1
2 1 2=1+1
3 2 3I=2+1
4 3 4=3+1
n' n =1 ={n-1+1

Continuing this, let the above be true for any number of nodes n". Thus, n" = ¢’ + 1.
Now, if we add one more node into the binary tree having n’ nodes, then it will increase
one more edge in the binary tree. Thus,

n+l=E+1+1
or
R+l=(n-1+1)+1

where ¢’ = n’ — 1; therefore
n+l=n+1-1+1

This implies that, if the formula is true for any », then it is also true for n + 1. Hence,n = ¢ + 1
is true.

Lemma 7.5

For any non-empty binary tree T, if ny is the number of leaf nodes (degree = 0) and n, is
the number of internal nodes (degree = 2), then ng = ny + 1.

Trees 221

Proof: Suppose n is the total number of nodes in T and n; is the number of nodes having
degree i, 0 £ i £ 2. So, we have

n=ng+n+n (1.2)

as T is a binary tree and no other kinds of nodes are possible.
If ¢ be the number of edge in T, then

e=nmX0+n %1 +nx2

or
e=nm + 2n, (7.3)
Again, from Lemma 7.4, we have
n=e¢+1 (7.4)
Thus, from (7.2) and (7.3), we can write
n=1+n +2n, (7.5)

And from (7.2) and (7.5), we have
fig + 1y +n;=l+n|+2ﬂ1
ar
e (1.6)

Hence, the result.

Lemma 7.6
The height of a complete binary tree with n number of nodes is [log, (n +1)].

Proaf: Let h be the height of the complete binary tree. Then we can write the following
inequality:

nsS20 42V 4224 | 4201
or
ns2h_ 1 (7.7)
ar
i |

Taking logarithm on both sides, we get

h 2 logs(n + 1)
or

h = [loga(n + 1)1 (7.8)

Hence, the result.

Lemma 7.7

The total number of binary trees possible with n nodes is
1/ 34 c.

n+l

(7.9

223 Classic Data Structures

Proof: The proof of this lemma is beyond the scope of this book; it can be obtained from the
The Art of Computer Programming: Fundamental Algorithms, Vol. 1, D.E. Knuth, Addison-
Wesley, Reading, Massachusetts, 1984,

Some other properties of binary tree are given in Assignment 7.3.

Assignment 7.3
Prove that
(a) In a binary tree of height h, there are at most 2" leaf nodes.
(b) The maximum and minimum levels that are possible for a binary tree with n nodes are
Ipax == 1 (7.10a)
Luia = [ogs(n + 1) = 1] (7.10b)

Hinr: A binary tree has a large value for a level when it is a skew tree and the
minimum value for a level when it is a complete binary tree.

{c) A binary tree (other than the skew binary tree) with n nodes must have at least one path
of length [log, (n+1)].

Assignment 7.4

(a) In an m-ary tree (that is, the degree of the tree = m), if n; is the number of nodes of
degree i (i = 0. 1. ..., m). then prove that

=1+ (i-1n, (7.11)

=1

Note: This is a general formula for Lemma 7.5, when m = 2.
(b) Show the various binary trees possible with n = 3, 4 and 5 and then verify the

Lemma 7.7. .
(c) Construct a complete binary tree with 26 alphabets and hence venfy the Lemma 7.0
related to it.

7.3 REPRESENTATIONS OF BINARY TREE

A (binary) tree must represent a hierarchical relationship between a parent node and (at most
two) child nodes. There are two common methods used for representing this conceptual
structure. One is implicit approach called linear (or sequential) representation, where using an
array we do not require the overhead of maintaining pointers (links). The other is explicit
approach known as linked representation that uses pointers. Whatsoever be the representation,
the main objective is that one should have direct access to the root node of the tree, and for
any given node, one should have direct access to the children of it.

Trees 223

7.3.1 Linear Representation of a Binary Tree

This type of representation is static in the sense that a block of memory for an array is allocated
before storing the actual tree in it, and once the memory is allocated, the size of the tree is
restricted as permitted by the memory.

In this representation, the nodes are stored level by level, starting from the zero level where
only the root node is present. The root node is stored in the first memory location (as the first
element in the array).

Following rules can be used to decide the location of any node of a tree in the aray
{assuming that they array index starts from 1):

1. The root node is at location 1.
2. For any node with index i, 1 < i < n (for some n}):

(a) PARENT() = |i/2] (7.12a)
For the node when i = 1, there is no parent.

(b) LCHILD(i) =2 * i (7.12b)
IF2 *i>n, then i has no left child.

(¢) RCHILD{i) =2 *i+ 1 (7.12¢)

If 2*%i41>n,then i/ has no right child.

For example, let us consider the case of representation of the following expression in the form
of a tree:

(A - B) + C * (DIE)

The binary tree will appear as in Figure 7.11(a). The representation of the same tree using an
array is shown in Figure 7.11(b).

OBNOIONO
e ©

(a) A binary tree

12 3 4 5 6 7 8 9 1011 1213 14 15 16

wl=1-lalalc|s| |- | 1" D|E

(b} Array represantation of tha binary troe
Figure 7.11 Sequential representation of a binary iree.

224 Classic Data Structures

The next question that arises is how can the size of an array be estimated? This value can
be obtained easily if the binary tree is a full binary tree. As we know, from Lemma 2, a binary
tree of height h can have at most 2* — 1 nodes. So, the size of the array to fit such a binary
tree is 2" — 1.

To understand this, a full binary tree and the index of its various nodes when stored in an
array are illustrated in Figure 7.12.

Figure 7.12 A full binary tree of height 4 and labels of the nodes
representing array locations of nodes.

One can easily realize the fact that if the tree is a full binary tree then there will be an
efficient use of storage in the array representation (no array location will be left empty); on the
other hand, for a binary tree other than a full binary tree there is a wastage of memory.

Lemma 7.8 gives us an estimation about the maximum and minimum sizes of the array to
store a binary tree with n nodes.

Lemma 7.8

The maximum and minimum sizes that an array may require to store a binary tree with n
number of nodes are

Sizem, = 2" — 1 (7.13a)

Sizey, = 2R _y (7.13b)

Proof If the height of a binary tree denotes the maximum number of nodes in the longest path
of the tree, then for a tree with n nodes the maximum height possible is hiy,, = n. Such a binary
tree is termed a skew binary tree (see Figure 7.13).

Lewvel
0

1

2

n=1

Figure 7.13 A skew binary tree with maximum height.

Trees 225

If we store such a binary tree, then it can be seen that the first location is for the root node,
the third location (22 - 1) for the right child of the root node (second node), the 7th (2° - 1)
location for the right child of the second node (third node), and so on. Thus, for a node at level
i—it is actually the (i + 1)th node—its location in the array is at 2! — 1. So, the last node
(nth node) which is at the (n — 1th level will be at the location (2" — 1), This is therefore the
maximum size of the array. Hence,

Sizegy = 2" - 1 (7.14a)

Now, when the tree is a full (or complete) binary tree, then we need a minimum sized array
to accommeodate the entire tree. In the case of a full or complete binary tree, with n nodes, the
minimum height that is possible is h;, = [loga(n + 1)1 In that case, the last element will be
stored at {2"“ —~ 1}th location. Hence, the minimum size required is

Size,. = 2Ma 1 =W (T _y (7.14b)

min
Note: The maximum and minimum sizes of an array required to store a binary tree can be
expressed, in general, as

Size = 2" - | (7.15)

where /i is the height of the binary tree. Here, if h is minimum then the minimum sized
array will be computed, and if h is maximum then the maximum sized array will be
computed.

Advantages of the sequential representation of a binary tree
The advantages of the sequential representation of a binary tree are:
1. Any node can be accessed from any other node by calculating the index and this is
efficient from execution point of view.
2. Here, only data are stored without any pointers to their successor or ancestor which are
mentioned implicitly.
3. Programming languages, where dynamic memory allocation is not possible (such as
BASIC, FORTRAN), array representation is the only means (o store a iree.

Disadvantages of the sequential representation of a binary tree
With these potentinl advantages, there are disadvantages aos well., These are:

1. Other than the full binary trees, the majority of the array entries may be empty.

2. 1t allows only static representation. It is in no way possible to enhance the tree structure
if the array size is limited.

3. Inserting a new node to the tree or deleting a node from it are inefficient with this
representation, because these require considerable data movement up and down the array
which demand excessive amount of processing time.

226 Classic Data Structures

i Assignment 7.5
(a) Draw the tree structure whose array representation is given in Figure 7.14(a).
(b) Verify the Size,,,, as stated in Lemma 7.8 for the skew binary trees in Figure 7.14(b).

i 1 234 5 6 7 8 9 10 11 12 13 14 15 16

| | I
| iAE.:ﬂ...D.......E

1

(b) Array representation of a treée structure

£l

L] (i) (i)
{b) Skew binary tree
Figure 7.14 .Ftrr:ay and skew sequemlal representatlun of a tree.

7.3.2 Linked Representation of a Binary Tree

In spite of simplicity and ease of implementation, the linear representation of binary trees has
a number of overheads. In the linked representation of binary trees, all these overheads are
taken care of. The linked representation assumes the structure of a node to be as shown in
Figure 7.15.

/,. DATA Q\
/ N

RC Lc
Figure 7.15 Structure of a node in linked representation.

Here, LC and RC are the two link fields used to store the addresses of left child and right
child of a node; DATA is the information content of the node. With this representation, if one
knows the address of the root node then from it any other node can be accessed. The two forms,
that is, ‘tree’ structure and ‘linked’ structure look almost similar. This similarity implies that the
linked representation of a binary tree very closely resembles the logical structure of the data
involved. This is why, all the algorithms for various operations with this representation can be
easily defined.

Using the linked representation, the tree with 9 nodes given in Figure 7.16(a) will appear
as shown in Figure 7.16(b)—(c).

Trees a7

Address MNode contant
HCHILD DATA LCHILD

EINEIN
BB @i
BNEIN

@& ®0©
@ © 74

& & & 8 88 & 8

NEINEN
el -]
NEINEIN

(a) A binary tree {b) A binary tree and its various nodes (physical view)
89
o + | &
75 / k
- - *.
50 40 \\ 62 58 \\
A B c »|
66 74
D E

{c} Logical view of the linked representation of a binary tree
Figure 7.16 Linked representation of a binary tree.

Another advantage of this representation is that it allows dynamic memory allocation; hence
the size of the tree can be changed as and when the need arises without any limitation except

when the limitation of the availability of the total memory is the problem.

However, so far as the memory requirement for a tree is concerned, the linked
representation uses more memory than that required by the linear representation. Linked
representation requires extra memory to maintain the pointers. Some pointers though with null
values, they too need memory to store them. Lemma 7.9 estimates the number of such null links
in a binary tree.

Lemma 7.9

In a linked representation of a binary tree, if there are n number of nodes then the number |
of null links A =n + L :

228 (Classic Data Structures

Proof By the method of induction. Let R be the pointer to the root node of a binary tree
T. If T is empty, that is n = 0 then R = null, thus the number of null links, A =0+ 1 =
n + 1. For a single node, thatisn=1,4=2=1+ 1 =n + . Similarly, for a tree T having
two nodes, A =3=241=n+ 1. Here, it is true for n = 2. Thus, the formula is true for
n=0,1 and 2 (see Figure 7.17). Let it be true for any n = m. Therefore, we can write
A =m+ 1. Now, if we add one more node into T with m nodes, then the number of nodes
will be n" = m + 1. The addition of the new node changes one null link into a non-null value
whereas it incorporates two null links of its own; thus the net increase in null links by this
new node is 1. Hence, we have A =(m + 1) + 1 or A =n" + 1. This shows that if the formula
is true for m then it is also true for m + 1. As m is an arbitrary number, the above relation
1s proved.

A=MNULL n=0 A=1=0+1
(H'
R R
n=1 A=2=1+1 ((

n=2 A=3=2+1
Figure 7.17 Induction for A=n+ 1whenn =0, 1 and 2.

7.3.3 Physical Implementation of a Binary Tree in Memory

In this section, we will see how simple it is to implement a binary tree either using a sequential
{array) or using a linked representation. In fact, the implementation is just a straightforward
translation from the definition of a binary tree to algorithmic description.

The algorithm BuildTree_I(...) is to build a tree using an array of element type DATA and
the algorithm BuildTree_2 (...) is to build a tree using a linked structure. Both the algorithms
will build a tree with user interaction.

The algorithm BuildTree_[I (...) assumes an array A of suitable size to store all the data
elements in a binary tree. The algorithm BuildTree_2 (...) assumes a node structure which is the
same as stated in Section 7.3.2. Both the algorithms follow the recursive definition.

Algorithm BuildTree_1

Inpur: ITEM is the data content of the node [/A binary tree currently with node at [
Qurpur: A binary tree with two sub-trees of node I

Data structure: Array representation of tree.

Trees 220

Steps:
1. If (f = 0) then /1 1f the tree is not empty
2. All] = ITEM /! Store the content of the node [into the array A
3. Node I has left sub-tree (Give option = Y/N)?
4, If (option = Y) then ff If node [has left sub tree
5. BuildTree_1 (2 * !, NEWL) ff Then it is at 2%F with next item as NEWL
a. Else
7. BuildTree_1 (0, NULL) ff Empty sub-tree
8. EndIf
g9, Node I has right sub-tree (Give option = Y/N)?
10. If (option = Y) i If node [has right sub-tree
11 BuildTree_1 (2%/+1, NEWR) {Then it is at 2*[+]1 with next item as NEWR
12. Else
13. BuildTree_1 (G, NULL) # Empty sub-tree
14. EndIf
15. EndIf
16. Stop

Algorithm BuildTree_2

Inpur: ITEM is the content of the node with pointer PTR.
Outpur: A binary tree with two sub-trees of node PTR.
Data structure: Linked list structure of binary tree.

Steps: -
1. If (PTR = NULL) then /f If the tree is not empty
2, PTR—=DATA = ITEM N Store the content of node at PTR
3. Node PTR has left sub-tree {Give option = Y/N)?
4. If (option = Y) then
5. Icptr = GetNode(NODE) If Allocate memory for the left child
6. PTR—-LC = lcptr i Assign it to Left link
7. BuildTree_2 (lcptr, NEWL) /f Build left sub-tree with next item as NEWL
8. Else
9, leptr = NULL
10. PTR—LC = NULL ' Assign for an empty left sub-tree
11. BuildTree_2(lcptr, NULL) // Empty sub-tree
12. EndIf
13. Node PTR has right sub-tree (give option = Y/N)?
14, If {option = Y then
15. reptr = GetNode (NODE) i Allocate memory for the right child
16. PTR—=RC = rcptr # Assign it to right link
17. BuildTree_ 2(rcptr, NEWR) /f Build right sub-tree with next item as NEWR

(Canrd.)

230 Classic Data Structures

18. Else

19. reptr = NULL

20. PTR—RC = NULL /I Assign for an empty right sub-tree
21. BuildTree 2{rcptr, NULL)

22, Endlf

23. EndIf

24, Stop

7.4 OPERATIONS ON A BINARY TREE

The major operations on a binary tree can be listed as follows:

L. insertion. To include a node into an existing (may be empty) binary tree.
2. Deletion. To delete a node from a non-empty binary tree.

3. Traversal. To visit all the nodes in a binary tree.

4. Merge. To merge two binary trees into a larger one.

Some other special operations are also known for special cases of binary trees. These will be
mentioned later on. Now, let us discuss the above-mentioned operations {or general binary trees.

7.4.1 Insertion

With this operation, a new node can be inserted into any position in a binary tree. Inserting a
node as an internal node is generally based on some criteria which is usually in the context of
a special form of a binary tree. We will discuss here a simple case of insertion of a node as
an external node. Figure 7.18 shows how a node containing data content G can be inserted as
a left child of a node having data content E. Two algorithms for two different storages of
representations (viz. sequential storage and linked storage) are stated below.

plale

=)
L]
m
m

]
-

i
E

¥
G

Figure 7.18 Insertion of a node as an external node into a binary tree.

The insertion procedure, in fact, is a two-step process: the first o search for the existence
of a node in the given binary tree after which an insertion is made, and the second is to establish
a link for the new node.

Trees 231

Insertion into a sequential representation of a binary tree (as a leaf node)

The following algorithm uses a recursive procedure Search_SEQ to search for a node containing
data KEY,

Algorithm InsertBinaryTree SEQ)

Inpur: KEY be the data of a node after which a new node has to be inserted with data ITEM.
Ouipur: Newly inserted node with data ITEM as a left or right child of the node with data KEY.

Data structure: Array A storing the binary tree,

Steps:
1. I'= Search_SEQ(1, KEY) {f Search for the key node in the tree
2. If (I = 0) then
3 Print “Search is unsuccessful : No insertion™
4, Exit
5. EndIf # Quit the execution
6. IF(A[2*[] = NULL) or (A[2*{+ 1] = NULL) then / If the key node has empty link(s)
7 Read option to read as left (L) or right (R) i child (give option = L/R)
8. If {option = L) then
q, IF A[2 *] = NULL then {f Left link is empty
L0, A2 *1] = ITEM /! Store it in the array A
L1 Else /f Cannot be inserted as left child
12. Print “Desired insertion is not possible” ff as it already has a left child
13. Exit {/ Return to the end of the procedure
14. EndIf
15, EndIf
16. If {option = R) then {f Move to the right side
17, If (A[2#1 + 1] = NULL) then {f Right link is empty
18. A[Z#!+1] = ITEM /I Store it in the array A
19, Else ff Cannot be inserted as right child
20. Print "Desired operation is not possible’ #as it already has a left child
21. Exit /f Return 1o the end of the procedures
22, EndIf
23, Endlf /f Key node has both the left child and the right child
24. Else # Key node does not have any empty link
25, Print “ITEM cannot be inserted as a leaf node”
26, EndIf
27. Stop

The procedure Search_SEQ(...) can be defined recursively as below:

Algorithm Search_SE(Q)

Input: KEY be the item of search, INDEX being the index of the node from where search will
start,

Ourput: LOCATION, where the item KEY is located, if any.

Data structure: Array A storing the binary tree. SIZE denotes the size of A.

232 Classic Data Structures

Steps:
1. i=INDEX /! Stant from the root node
2. If (A[i] # KEY) then f/ The present node is not the key node
3 If (2*i = SIZE) then fI If left sub-tree is not exhausted
4, Search_SEQ(2 * i, KEY} /f Search in the left sub-tree
5. Else ff Left sub-tree is exhausted and KEY not found
6. If(2*%i+1 < SIZE) then /1 If right sub-tree is not exhausted
7. Search_SEQ (2*i+ 1, KEY) /l Search in the right sub-tree
B. Else I The KEY is found neither in left sub-tree nor in right sub-tree
9, Returni() H Return NULL address for unsuccessful search
10. EndIf

1. EndIf

12. Else

13 Return(i) /f Return the address where KEY is found
14. EndIf

15. Stop

Insertion into a linked representation of a binary tree (as a leaf node)
Let us assume the node structure used in linked representation as stated in Section 7.3.2.
Algorithm InsertBinaryTree _LINK

Input: KEY is the data content of the key node after which a new node is to be inserted and
ITEM is the data content of the new node that has to be inserted.

Outpwt: A node with data component ITEM inserted as an external node after the node having
data KEY if such a node exists with empty link(s), that is, either child or both children isfare
absent.

Data struciure: Linked structure of a binary tree. ROOT is the pointer to the root node.

Steps:

1. ptr = Search_LINK(ROOT, KEY)
2. If (ptr = NULL) then

3 Print “Search is unsuccessful: No insertion”

4, Exit

5. Endlf

6. If (pr—LC = NULL) or (ptr—RC = NULL) it If either or both link(s) isfare empty
7 Read option to insert as left (L) or right (R) child (give option = L/R)

B

9

If (option = L) then /f To insert as left child
If {ptr—LC = NULL) then M If the left link is empty then insert
10. new = GetNode(NODE)
11. new—DATA = [TEM
12, new—LC = new—RC = NULL

(Contd.)

Trees 233

13. ptr—=LC = new

14, Else #f The key node already has left child
15. Print “Insertion is not possible as left child”

16, Exiit /f Quit the execution
17. EndIf

18, Else i 1f option = R}
19. If (ptr—RC = NULL) ff If the right link is empty then insert
20, new = GetNode (NODE)

21, new—DATA = ITEM

22, new=LC = new=RC = NULL

23 pir—RC = new

24, Else /! The key node already has right child
25. Print “Insertion is not possible as right child™

26. Exit ff Quit the execution
27. EndIf

28. Else

29. Print “The key node already has child™ /The key node has no empty child
30. EndIf

3l. EndIf

32. Stop

This algorithm uses the procedure Search_LINK to search for a node containing data KEY; this
procedure can be defined recursively as follows:

Algorithm Search_LINK

Input: KEY is the item of search, PTRO is the pointer to the linked list from where the search
will start.

Output: LOCATION, where the item KEY 1s located, if such ITEM exists,

Data structure: Linked structure of binary tree having ROOT as the pointer to the root node.

Steps:

[. ptr = PTRO // Start from a given node
2. If (pr—DATA # KEY) A If the current node is not the key node
3. If (ptr=sLC # NULL) /1 If the node has left sub-tree
4. Search_LINK(ptr—1.C) If Search the left sub-tree
5. Else /! Key is not in the left sub-tree
. Return{(}

7. Endlf

8. If (pir—RC = NULL) /I If the node has right sub-tree
9. Search_LINK(ptr—RC) {/ Search the right sub-tree
10. Else #f Key is not in the right sub-tree
11. Return(0) {/f Return null pointer

(Cornid.)

234 Classic Data Structures

12 EndIf

13. Else

14, Return(ptr) // Return the pointer to the key node
15. EndIf

6. Stop

Assignment 7.6
(a) Write procedures to form a complete binary tree by inserting nodes one after another.
Assume both the representations of binary tree.
(b) A binary tree is given which is represented using a single array. How can the same tree
be converted into a linked structure? Write the procedure.

(c) Repeat problem (b) when a given binary tree is represented with a linked structure.
Write a procedure to build the same tree which will be stored in an array of suitable
size.

74.2 Deletion

This operation is used to delete any node from any non-empty binary tree. Like the insertion,
the deletion operation also varies from one kind of binary tree to another. Deletion operations
in various cases of binary trees will be discussed in due time. Here, we will consider the case
of deletion of a leaf node in any binary tree. Figure 7.19 shows how a node containing data &
can be deleted from a binary tree,

l'\
L\

—

Figure 7.19 Deletion of an external node in a binary tree.

Let us see how the deletion operation can be carried out for the two kinds of storage
representation of binary trees. In order to delete a node in a binary tree, it is required to reach
at the parent node of the node to be deleted. The link field of the parent node which stores the
location of the node 1o be deleted is then set by a NULL entry. Let us discuss the algorithm
individually.

Trees 235

Deleting a leaf node from the sequential representation of binary trees

Let SIZE be the total length of the array A, where a binary tree is stored. The element that has
to be deleted is ITEM.

Algorithm DeleteBinTree_SEQ

Inpur: Given ITEM as data of the node with which the node can be identified for deletion.
Outpur: A binary tree without a node having data ITEM.
Data srructure: Array A storing the binary tree. SIZE denotes the size of A.

Steps:

flag = FALSE #f Start from the root node

{ = Search_SEQ(1. KEY) ¥ Start searching from starting index

If { = 0 Goto Step 10

IF (A]2 *] = NULL) and (A[2*! + 1] = NULL) /f Test for the leaf node
flag = TRUE i I so, then delete it
Alf) = NULL

Else
Print “The node containing ITEM is not a leaf node”

Q. EndIf

10. If (flag = FALSE)

11. Print “Node does not exist : No deletion”

12. EndIf

13. Stop

[
b

86 ~1 Oh LA o L 1D

Deleting a leaf node from a linked representation of a binary tree

Let ROOT be the pointer to the linked list storing a binary tree. The node that has o be deleted
contains ITEM as data.
Algorithm DeleteBinTree_LINK

Inpur: A binary tree whose address of the root pointer is known from ROOT and ITEM is the
data of the node identified for deletion.

Cutpur: A binary tree without having a node with data ITEM.
Data structure: Linked structure of a binary tree having ROOT as the pointer to the root node.

Steps:
l. pir = ROOT /I Start search from the root
2. If (ptr = NULL) then
3. Print “Tree is empty”
4. Exit & Quit the execution
5. EndIf
6. parent = SearchParent(ROOT, ITEM) {f To find the parent of the desired node
7. Ufiparent # NULL) then £ If the node with ITEM exists

{Conrd.)

236 Classic Data Structures

B. pirl = paremt=LC, ptr2 = parent—RC i/ Get the sibling of the parent node
9, Ifiptrl»DATA = ITEM) then {/ Choose the left sibling with data ITEM for
deletion
10. Ifiptrl—=LC = NULL) and (ptrl—=RC = NULL) then
11. parent—LC = NULL /I Left child is deleted
12 Else
13. Print “Node is not a leaf node: No deletion™
14, EndIf
15. Else #f Choose the right sibling with data TTEM for deletion
16. If(ptr2—LC = NULL) and (ptr2—RC = NULL) then
17. parent—RC = NULL ff Right child is deleted
18. Else
19. Print “MNode is not a leave node: No deletion™
20, EndIf
21, EndIf
22, Else
23, Print “Node with data ITEM does not exist: Deletion fails”
24. EndIf
25. Stop

This algorithm uses a procedure SearchParent to search the parent of a node containing
KEY as data. This procedure can be defined recursively as below:

Algorithm SearchParent

Inpur: TTEM is the item of search, PTR is the pointer to the node from where the search will
start.

Outpur: ‘parent’ is the address of the parent node of the node containing the data ITEM.
Data structure: Linked structure of a binary tree,

Steps:
1. parent = FTR
2. I (PTR—-DATA = ITEM) then
3. pirl = PTR—LC, ptr2 = PTR—RC
4, If (ptr] # NULL) then

5. SearchParent(ptrl) /f Search in the left sub-tree

6. Else /! Key is not in the left sub-tree

1. parent = NULL /f ITEM is not in the left sub-tree, NULL pointer is returned

8. Endlf

9. If (ptr2 = NULL) then

10. SearchParent (ptr2) /l Search in the right sub-tree

1. Else /f Key is not in the right sub-tree

12 parent = NULL / ITTEM is not in the right sub-tree, NULL pointer is
returned

(Cerereed.)

13. EndIf

14, Else

15. Return(parent) /! Return the pointer to the parent node, if any
16. EndIf

17. Stop

Assignment 7.7

A tree can be represented using three parallel arrays. Among them, two are to store links (for
left child and right child) and the third one stores the data content. Such a representation is
shown in Figure 7.20.

Write a procedure to construct a tree and then perform insertion and deletion operations on
it. (Assume the case of leaf node only).

LCHILD DATA RCHILD
&) 1 1 A 1| 3
(8) (©) 2| - 2| B 2| -
3| 4 3| ¢ 3| s
(p) (E) 4| 6 4| D al 7
5 - s| E 5| -
(F) (@) 6| - 6| F 6| -
7| 8 7| G 7| 9
(H) 0 8| - 8| H 8| -
9| 10 g | a| -
(33 10| - 10 J 10| -

Figure 7.20 A binary tree representation with three arrays.

7.4.3 Traversals

The traversal operation is a frequently used operation on a binary tree. This operation is used
to visit each node in the tree exactly once. A full traversal on a binary tree gives a linear
ordering of the data in the tree. For example, if the binary tree contains an arithmetic expression

then its traversal may give us the expression in infix notation, postfix notation or prefix
notation.

Now a tree can be traversed in various ways. For a systematic traversal, it is better to visit
each node (starting from the root) and its subtrees in the same fashion. There are six such
possible ways:

. R T, T, 4 T T, R
2. T, R T, 5. T, R T,
.7 T, R 6. R T, T,

Here, T; and T, denote the left and right sub-trees of the node R, respectively. Consider a binary
tree as shown in Figure 7.21.

233 Classic Data Strucheres

OBNOIONO
® ©®

Figure 7.21 A binary tree representing an arithmetic expression.

Visit 1:
+ T T

+— T T Te

+ - A NaT AT T

+—-AB TglTgT,

+—-AB* Tpls

+-AB*C Tyelcle

+-AB*C/l TyT,

+-AB*CIE Tglely

+-AB*CIE FTgly

+-AB*CIEF
Likewise, one can obtain the other visits as shown below (only the result):
Visit 2:

A-B+C*E/F

Visit 3:

AB-CEF/*+
Visit 4:

FEIC*BA-+
Visit 5:

FIE*C+EB-4A
Visit 6:

+*/FEC-BA

Trees 239

It may be noted that Visit | and Visit 4 are mirror symmetric; similarly, Visit 2 with Visit 5
and Visit 3 with Visit 6. So, out of six possible traversals, only three are fundamental, they are
categorized as given below:

1. RT, T, (Preorder)

2. ' RT, (Inorder)

3. T, T, R (Postorder)

Preorder traversal

In this traversal, the root is visited first, then the left sub-tree in preorder fashion, and then the
right sub-tree in preorder fashion. Such a traversal can be defined as follows:

e Visit the root node R.
& Traverse the left sub-tree of R in preorder.
e Traverse the right sub-tree of R in preorder.

Inorder traversal

With this traversal, before visiting the root node, the left sub-tree of the root node is visited,
then the root node and after the visit of the root node the right sub-tree of the root node is
visited. Visiting both the sub-trees is in the same fashion as the tree itself. Such a traversal can
be stated as follows:

o Traverse the left sub-tree of the root node R in inorder,
o Visit the root node R.
& Traverse the right sub-tree of the root node R in inorder.

Postorder traversal

Here, the root node is visited in the end, that is, first visit the left sub-tree, then the right sub-
tree, and lastly the root. A definition for this type of tree traversal is stated below:

o Traverse the left sub-tree of the root R in postorder
e Traverse the right sub-trec of the root R in postorder
® Visit the rootl node R.

Observe that each algorithm contains three steps out of which two steps are defined
recursively. In preorder, the root is visited first (pre), in inorder, the root is visited in between
the lefi sub-tree and the right sub-tree (in) and in postorder, the root is visited after the left sub-
tree and the right sub-tree are visited (post). Also, it may be noted that if the binary tree contains
an arithmetic expression, then uts inorder, preorder and postorder traversals produce infix,
prefix, and postfix expressions, respectively.

MNext, let us consider the implementation of the above traversals. We will define three
algorithms assuming that a binary tree is represented using a linked structure. For a sequential
representation of a binary tree these can be defined analogously.

Let us assume a process Visit(N) to imply some operation (say, display on the screen,
increasing the number of node counts, etc.) while visiting the node N.

240 Classic Data Strucfures

Inorder traversal of a binary tree
Recall that inorder traversal of a binary tree follows three ordered steps as follows:

o Traverse the left sub-tree of the root node R in inorder.

e Visit the root node R.
Traverse the right sub-tree of the root node R in inorder.

Out of these steps, steps 1 and 3 are defined recursively. The following is the algorithm Inorder
to implement the above definition.

Algorithm Inorder

Inpur: ROOT is the pointer to the root node of the binary tree.
Output: Visiting all the nodes in inorder fashion.

Data structure: Linked structure of binary tree.

Steps:

1. ptr = ROOT {/ Start from ROOT
2. If (ptr # NULL) then M If it is not an empty node
3 Inorder({ptr—LC) ff Traverse the left sub-tree of the node in inorder
4 Visit(ptr) I Visit the node
5. Inorder (ptr—RC) // Traverse the right sub-tree of the node in inorder
6. EndIf

7. Stop

Preorder traversal of a binary tree
The definition of preorder traversal of a binary tree, as already discussed, is presented again as
follows:

e Visit the root node R.

e Traverse the left sub-tree of the root node R in preorder.

¢ Traverse the right sub-tree of the root node R in preorder.

The algorithm Preorder to implement the above definition is presented below:

Algorithm Preorder

Input: ROOT is the pointer to the root node of the binary tree.
Outpur: Visiting all the nodes in preorder fashion.

Data structure: Linked structure of binary tree.

Steps:

1. ptr = ROOT // Start from the ROOT
2. If (pr # NULL) then M If it is not an empty node
3 Visit(ptr) /t Visit the node
4, Preorder(ptr—LC) /f Traverse the left sub-tree of the node in preorder
5, Preorder(ptr—RC) /f Traverse the right sub-tree of the node in preorder
6. EndIf

7. Stop

Postorder traversal of a binary tree
The definition of postorder traversal of a binary tree is repeated below:

o Traverse the left sub-tree of the root node R in postorder,
¢ Traverse the right sub-tree of the root node R in postorder.
e Visit the root node K.

The algorithm to implement the above is given below:

Algorithm Postorder

Inpur: ROOT is the pointer to the root node of the binary tree.
Output: Visiting all the nodes in preorder fashion.

Data structure: Linked structure of binary tree.

Steps:
1. ptr = ROOT {I Start from the root
2. If (ptr # NULL) then [If it is not an empty node
3. Postorder{ptir—=LC)} If Traverse the left sub-tree of the node in inorder
4, Postorder({ptir—RC) /f Traverse the right sub-tree of the node in inorder
5. Visit(ptr) ff Visit the node
6. EndIl
7. Stop

Assignment 7.8

Consider the following arithmetic expression:

(A*(B-C)/(D-E)*(F+G-H)

Construct the binary tree for the above expression (assume the conventional precedence of
operations). Note that parentheses are explicitly mentioned and hence it i5 not necessary 1o
include them in the binary tree.

For the tree so constructed, apply the three tree traversal algorithms and obtain the results
of traversals.

Non-recursive implementation of traversal algorithms

The above-mentioned traversal algorithms are defined recursively and the process is
straightforward in the sense that here a programmer has to convert the definitions into
recursions. A language translator takes the burden to carry out the execution. Another more
potentially efficient approach to these algorithms is the non-recursive implementation using a
stack. This is significantly important both from the execution time point of view and the
programming languages which do not have a dynamic memory management scheme.

To implement the non-recursive versions of the three traversal algorithms, we assume that
a stack is maintained using an array INFO of suitable size and the tree is stored using three
parallel arrays, as shown in Figure 7.22. Let us assume °ptr’ is a variable to locate a node in
the array, that is, DATA[ptr] is the data content of a node which is stored in the array location

(a) Height balanced (b) Height unbalanced
Figure 7.53 Two binary search trees with the balance factors of each node.

It may be noted that a height balanced binary tree is always a binary search tree and a
complete binary search tree is always height balanced, but the reverse may not be true.

The basic objective of the height balanced binary search tree is to perform searching,
insertion and deletion operations efficiently. These operations may not be with the minimum
time but the time involved is less than that of in an unbalanced binary search tree. It may be
realized that the search time in the case of a complete binary search tree is minimum but
insertion and deletion may not be with the minimum time always.

In the following discussion, we will see how an unbalanced binary search tree can be
converted into a height balanced binary search tree. Suppose initially there is a height balanced
binary tree. Whenever a new node is inserted into it (or deleted from it), it may become
unbalanced. We will first see the mechanism to balance an unbalanced tree due to the insertion
of a node into it.

The following steps need to be adopted.

1. Insert node into a binary search tree: Insert the node into its proper position following
the properties of binary search tree.

2. Compute the balance factors: Onm the path starting from the root node to the node
newly inserted, compute the balance factors of each node. It can be verified that a change
in balance factors will occur only in this path.

3. Decide the pivor node: On the path as traced in Step 2, determine whether the absolute
value of any node’s balance factor is switched from 1 to 2. If so, the tree becomes
unbalanced. The node which has its absolute value of balance factor switched from 1 to
2 marked as a special node and called the pivot node. (There may be more than one node
which has its balance factor, | bf| switched from 1 to 2, but the nearest node to the newly
inserted node will be the pivot node.)

4. Balance the unbalance tree; T is necessary to manipulate pointers centred at the pivot
node to bring the tree back into height balance. This pointer manipulation is well known
as AVL roration, the mechanism of which is illustrated next in the text.

AVL rotations

In order to balance a tree, an elegant method was devised in 1962 by two Russian
mathematicians, G.M. Adelson-Velskii and E.M. Lendis, and the method is named AVL
rotation in their honour,

Trees 293

There are four cases of rotations possible which are discussed below:

Case 1: Unbalance occurs due to the insertion in the left sub-tree of the left child of the pivot
node.

Figure 7.54 illustrates the rotation for Case 1. In this case, the following manipulations in
pointers take place:

& Right sub-tree (Ag) of left child (A) of pivot node (P) becomes the left sub-tree of P.
e P becomes the right child of A.

& Left sub-tree (Ap) of A remains the same.
This case is called LEFT-TO-LEFT insertion.

() (")
O — G
A Ag) ™ Ag Py

BAREE
P

After insertion in the left sub-trea Ahar rolation
of the left child of pivot node (P)

Figure 7.54 AVL rotation when unbalance occurs due to insertion in the left
sub-tree of the left child of the pivot node (LEFT-TO-LEFT insertion).

Hlustration. Consider the illustration shown in Figure 7.55. Node 2 is inserted into the
initially height balanced tree (sec Figure 7.55(a)). Here, 6 is the pivotl node because this is the
nearest node from the newly inserted node which has its balance factor switched from I to 2
(see Figure 7.55(b)). This insertion corresponds to the case of LEFT-TO-LEFT insertion. AVL
rotation required is depicted in Figures 7.55(c)~(d). Final height balanced tree is shown in
Figure 7.55(e) with balance factor of each node.

{a) A height balanced binary tree as | b | =1 - (b) After the insertion of 2 into the tree
Figure 7.55 Continued.

294 Classic Data Structures

®
(4) (19

& 6 ®

3 L. \CR{cic]

{c) AVL-rotation as par the LEFT-TO-LEFT (d) After AVL-rotation
(Casa 1) insartion

(&} Halght balanced free with newly insarad
node 2 and after AVL-ratation

Figure 7.55{a)={e) LEFT-TO-LEFT inserlion and AVL rofation to make the tree height balanced.

Case 2: Unbalance occurs due to insertion in the right sub-tree of the right child of the pivot
node. This case is the reverse and symmetric to Case 1. This rotation is illustrated in Figure
7.56. In this case, the following manipulations in pointers take place:

e Left sub-tree (By) of right child (B) of the pivot node (P) becomes the right sub-tree of P.

e P become the left child of B.
e Right sub-tree (Bg) of B remains the same.

This case is known as RIGHT-TO-RIGHT insertion.

P

Aftar ingartion in the ieft sub-tree
of the nght child of pival node (P)

Figure 7.56 AVL rotation when unbalance occurs due to insertion in the right
sub-tree of the right child of the pivot node (RIGHT-TO-RIGHT insertion).

Mustration. Case 2 of AVL rotation occurs due to RIGHT-TO-RIGHT insertion. A situation is
illustrated in Figure 7.57. Due to the insertion of 12, the tree becomes unbalanced (see

SECOND EDITION

Debasis Samanta

Classi Data Structures

This book is the second edition of a text designed for undergraduate engineering courses in Data Structures. The treatment of the
subject matter in this second edition maintains the same general philosophy as in the first edition but with significant additions.
These changes are designed to improve the readability and understandability of all algorithms so that the students acquire a firm

grasp of the key concepts.

The book provides a complete picture of all important data structures used in modern programming practice. It shows:

=+ yarious ways of representing a data structure
-+ different operations to manage a data structure
— several applications of a data structure

The algorithms are presented in English-like constructs for ease of comprehension by students, though all of them have been
implemented separately in C language 1o test their correctness.

KEY FEATURES

@ Fedblack tree and spray tree are discussed in detail

@ Includes a new chapter on Sorting

@ [ncludes a new chapter on Searching

® Includes a new appendix on Analysis of Algorithms for those who may be unfamiliar with the concepts of algorithms
@ Provides pumerous section-wise assignments in each chapter

@ Also included are exercises—Problems to Ponder—in each chapter to enhance learning

The book is suitable for students of (i) computer science, (ii) computer applications, (jii) information and communication technology
(ICT), and (iv) computer science and enginearing.

THE AUTHOR
DEBASIS SAMANTA, Ph.D., is Associate Professor at the School of Information Technology, Indian Institute of Technology
Kharagpur. He is also the author of Object-Oriented Programming with C+ + and Java, published by PHI Learning, New Dalhi.

Dr. Samanta has contributed to numerous journal and conference publications in the areas of Information System Design, Software
Testing, Human Computer Interaction, etc.

You may also be interested in

Database Management Systems, Rajesh Marang
Database Management Systems, R. Panneerselvam
ErnE. s T T T S e T e e e e T]

SEN97A=4L=-203=3731=2

[

7 A el 33
www.phindla.com R

