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PREFACE

A centralized database management system (DBMS) is a complex software program
that allows an enterprise to control its data on a single machine. In the past two decades,
there have been many mergers and acquisitions, which have resulted in organizations
owning more than one DBMS. Not all of these systems came from the same vendor. For
example, it is common for an enterprise to own a mainframe database that is controlled
by IBM DB2 and a few other smaller workgroup (or departmental) databases controlled
by Oracle, Microsoft SQL Server, Sybase, or other vendors. Most of the time, users
need to access their own workgroup database. Yet, sometimes, users need to access data
in some other workgroup’s database, or even in the larger, enterprise-level database.
The need to share data that is dispersed across an enterprise cannot be satisfied by
centralized DBMS software. To address this requirement, a new breed of software to
manage dispersed (or distributed data) called a distributed database management
system (DDBMS) is required.

A DDBMS maintains and manages data across multiple computers. A DDBMS can
be thought of as a collection of multiple, separate DBMSs, each running on a separate
computer, and utilizing some communication facility to coordinate their activities in
providing shared access to the enterprise data. The fact that data is dispersed across
different computers and controlled by different DBMS products is completely hidden
from the users. Users of such a system will access and use data as if the data were
locally available and controlled by a single DBMS.

This book addresses the issues in design and development of a DDBMS. In the
chapters that follow we will address the issues involved in developing such a system
and outline different approaches for solving these problems. We will also present two
Java-based frameworks and one Microsoft .NET-based framework that provide the
underlying structure needed to develop a DDBMS.

xxv
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ACCOMPANYING WEBSITE

The official website for this book (www.computer.org/Rahimi_Haug) contains impor-
tant information for the book, such as links to the starter kit software bundles for all
three starter kits (JMS-SKIT, J2EE-SKIT, and DNET-SKIT), error corrections from
the text, and any updates to the source code, book content, or starter kits.

STRUCTURE OF THE BOOK

This book has been organized into 3 distinct units. Unit 1 addresses distributed database
theory. These chapters explore the issues with various aspects of a distributed database
system and discuss the various techniques and mechanisms that are available to address
these issues. Unit 2 (Chapters 10 through 14) focuses on the “state of the practice”
for distributed databases. The initial chapters in this unit present a general data model-
ing overview and discuss several data modeling alternatives. The later chapters focus
on the architectural requirements and present architectural alternatives including the
traditional, top–down design of a homogenous distributed database, the bottom–up
design of a heterogeneous federated database, and two new, nontraditional architectural
approaches that focus on environments with more dynamic deployment characteristics.
Unit 3 (Chapters 15 through 19) focuses on distributed database implementation. The
chapters in this unit examine three platforms suitable for distributed database devel-
opment. Three starter kits are discussed, along with the platforms on which they are
built. The platforms discussed include the Java Message Service (JMS), the Java 2
Enterprise Edition (J2EE), and the Microsoft .NET Framework.

Unit 1: Theory

In order to design and ultimately build a DDBMS, we must first understand what a
distributed database is, what a DDBMS does, and the issues it must overcome. First,
this unit provides an overview of the DDBMS and its required functionality. Then,
it examines each major subset in detail. By examining both the “big picture” and the
“little details,” this unit lays the theoretical foundation for understanding the internal
processing of the DDBMS.

Unit 2: State of the Practice

Because most practitioners will probably not have the luxury of designing a distributed
database environment (DDBE) completely from scratch, this unit examines the archi-
tectural alternatives (and issues) that a practitioner will likely encounter in the real
world. First, we review the differences between conceptual, logical, and physical data
models. Then, this unit focuses on several logical data modeling alternatives (along
with some practical physical considerations) used “in practice” in the real world today.
In order to address the “state of the practice,” this unit explores four (two traditional
and two alternative) DDBE architectures that are designed to be used in an environ-
ment with existing DBMS implementations. Then the general requirements for any
platform capable of implementing a DDBE architectural alternative (including those
that are yet-to-be-invented by the reader) are explored.
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Unit 3: Implementation

Because architectures are large, complicated designs, even the “little details” discussed
in them can seem “miles above the ground” compared to the more “down to earth”
considerations that need to be addressed when attempting to create an actual imple-
mentation. Recent advances in software development have made it much easier to
implement complex, distributed applications. In fact, there are multiple alternatives to
choose from when selecting the platform, development, and deployment details. These
alternatives all have various facilities to support distributed application development
and deployment. In order for a practitioner to become proficient in any particular alter-
native, they need to make a substantial investment of time, effort, and perhaps money
as well. Therefore, in the real world there are several alternatives to choose from, but
there are also strong pressures to use a particular general approach, or even a particular,
specific alternative. Having said that, we must recognize that there are no alternatives
specifically targeted at DDBE implementation. This unit attempts to alleviate some
of the confusion and provide a concrete place to start development of a real DDBE.
This unit examines three implementation alternatives in detail and then for each of the
three alternatives, this unit provides a detailed overview and an extensible framework,
called a starter kit (SKIT). Each SKIT is discussed in detail. An example extension
is presented to demonstrate how the SKIT can be used as the starting point for a real
DDBE project implementation.

CHAPTERS OF THE BOOK

This book consists of 19 chapters as outlined below.

Chapter 1: Introduction

There are two fundamental types of architecture suitable for implementing a database
management system (DBMS). The most well-known and ubiquitous architectural type
is called the Centralized DBMS architecture. It is very well defined, very mature, and so
common that, when the “Centralized” part of the name is omitted and the term “DBMS
architecture” is used, this architecture is assumed by default. The other architectural
type is not as common, not as mature, and not as well defined; it is called the Distributed
DBMS (DDBMS) architecture. In this introductory chapter, we describe both architec-
tural types and then compare and contrast them. Chapter 1 discusses the strengths and
weaknesses of each and motivates the reader to understand which architecture is most
appropriate for his/her situation. This chapter also examines different implementation
alternatives for distributed query execution, and analyzes master–slave and triangular
distributed execution control mechanisms. How to calculate the communication costs
for each execution alternative using two examples is also explained.

Chapter 2: Data Distribution Alternatives

This chapter studies and compares different data distribution design alterna-
tives for a distributed database management system. We analyze fragmentation
alternatives—specifically, horizontal, vertical, and hybrid fragmentation. We discuss
the impact of supporting data replication and consider data placement issues. The
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correctness criteria for each of these approaches will also be outlined. We explain
how a DDBMS provides fragmentation, location, and distribution transparencies and
also discuss how to design a global data dictionary to support these transparencies.
We present some examples of different distribution designs and use them to illustrate
the impact of different data distribution transparencies on user queries.

Chapter 3: Database Control

This chapter focuses on the issues related to security and semantic integrity control
of centralized and distributed database systems. If not controlled, the integrity of a
database is jeopardized when the database is exposed to concurrent transactions. One
of the most fundamental reasons for using transactions is to preserve the integrity
of the data; therefore, both centralized and distributed semantic integrity issues are
presented and discussed. We consider how to leverage the semantic integrity control
mechanisms in our local (centralized) database management systems when implement-
ing distributed integrity control and discuss the impact of data distribution on the
distributed and local enforcement implementation. We examine four implementation
alternatives for implementing semantic integrity enforcement and evaluate the advan-
tages and disadvantages of each and present a mechanism for analyzing the costs
associated with enforcing semantic integrity in a distributed system by focusing on the
number of messages required for different implementation alternatives.

Chapter 4: Query Optimization

In a centralized system query optimization is either rule-based or cost-based. Regardless
of the approach to optimization in a centralized system, the main object of the query
optimizer is to minimize response time for the query. The cost components of query
optimization are CPU time and disk access time. It turns out that disk access time is
the dominant factor in the cost of the query. As such, most query optimizers focus on
minimizing the number of disk I/Os and therefore minimizing the disk access time. This
chapter will focus on processing queries in a distributed database management system.
We extend the concept of query processing in a centralized system to incorporate
distribution. In a distributed database management system, the cost components of
a query processing time are local CPU time, local disk access time for all servers
involved in the query, and the communication cost required for synchronization of
these servers activities. Because the communication cost is the dominant cost factor in a
distributed query, distributed query optimization needs to focus on minimizing this cost.
We discuss optimization alternatives for distributed queries that focus on reducing the
number of messages required to execute a query in a distributed system. To minimize
the communication cost, one needs to make sure that the system has an optimized
distribution design and that the proper allocation of information to different database
servers has been made. It has been shown that to solve this problem considering all
factors involved is an NP-hard problem. Therefore, the goal is to solve the problem
not in an optimal fashion but close to it.

Chapter 5: Controlling Concurrency

This chapter covers the concurrency issues in a distributed database management sys-
tem. We start by defining what a transaction is and the properties that a transaction
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must satisfy in a database management system and then review concurrency control
alternatives for a centralized database management system and outline two classes of
concurrency control algorithms (pessimistic and optimistic). We analyze how these
alternatives are changed to accommodate the needs of a distributed database manage-
ment system concurrency control. Because each class of algorithms can be implemented
using either locks or timestamps, we will evaluate the advantages and disadvantages
for both locking-based and timestamp-based implementations of concurrency control
algorithms. Most concurrency control approaches use locking as the main mechanism
for providing isolation.

Chapter 6: Deadlock Handling

When locks are used, transactions that concurrently run in the system may get into a
deadlocked state. A deadlock is defined as a state of the system where two or more
transactions are stuck in an infinite waiting cycle. This means that each transaction
in the cycle is holding one or more locks and waiting to obtain another lock that
is currently being held by one of the other transactions in the cycle. Because each
transaction does not release the locks it is holding, all transactions will wait indefinitely.
This chapter discusses the three classical approaches for dealing with the deadlock
problems in a centralized system: namely, deadlock prevention, deadlock avoidance,
and deadlock detection and how these approaches can be used within a distributed
database management system, as well as the advantages and disadvantages of each
approach. It explains the use of preacquisition of all locks for deadlock prevention
approaches and discusses how the wait–die and wound–wait algorithms provide for
deadlock avoidance. A centralized and a distributed deadlock detection and removal
approach is also presented.

Chapter 7: Replication Control

Replicating a table or fragment can improve the availability, reliability, and resiliency
of our data (as discussed in Chapter 2) and can greatly improve the performance of
our system (especially with respect to query optimization as discussed in Chapter 4).
Unfortunately, environments with replication also have more complicated modification
issues. This chapter discusses the effect of replication in a distributed database man-
agement system. We focus on replication control, which is the techniques we use to
ensure mutual consistency and synchronization across all replicated tables and table
fragments. Controlling replication is an issue specific to distributed database manage-
ment systems. There are many alternatives to controlling replication in a DDBMS
environment, which we categorize as asynchronous or synchronous replication con-
trol algorithms. We discuss the Unanimous, Primary-Copy, Distributed, Voting-Based,
Quorum-Based, and Token-Passing-Based replication control algorithms.

Chapter 8: Failure and Commit Protocols

A DBMS must guarantee that the contents of a database are maintained consistent
even when failures are present in the system. This chapter discusses fault tolerance
in a DBMS, which deals with transaction failures, power failures, and computer
hardware failures. We examine the commit protocols that are used by a DDBMS to
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provide for such a guarantee discuss how the DDBMS determines whether a particular
transaction is safe to commit or not. Also examineed is how the DBMS fault tolerance
mechanism aborts the transaction when it is unsafe, and how the system commits
the transaction when all modifications of a transaction have been successfully written
to the log. In a centralized system, the log manager is responsible for working with
the transaction manager to correctly implement the commit protocols. In a distributed
system, on the other hand, multiple DBMS servers need to coordinate their activities
to make sure that a global transaction can successfully commit or abort at all DBMS
sites where the transaction has made some changes. Therefore, we discuss how the
DDBMS implements distributed commit protocols examine alternative distributed
commit protocols such as two-phase and three-phase commits. One of the most
difficult failures in a distributed system is network partitioning (when a set of
computers are networked together but they are isolated from another set of computers
that are interconnected). When network partitioning happens, there is a danger that
computers in each partition unilaterally decide to commit or abort the transaction. If
the two partitions do not decide on the same action (either both committing or both
aborting the transaction), the integrity of the database will be lost. Therefore, we also
examine a quorum-based commit protocol that deals with network partitioning.

Chapter 9: DDBE Security

This chapter discusses the security issues, including authentication, authorization,
encryption, and programming techniques for improving data privacy and security
in a distributed database environment (DDBE). Since communication is the basis
for cooperating database servers in a DDBE, we have to make sure that server
communication and user access to data are secure; therefore, we examine private-key
and public-key security approaches discuss Secure Sockets Layer (SSL) and Transport
Layer Security (TLS) and explain how certificates of authority are used in a distributed
database system for components and applications (including web-based applications).
We also consider “tunneling” approaches including Virtual Private Network (VPN)
and Secure Shell (SSH) and discuss their potential role in a distributed database
system.

Chapter 10: Data Modeling Overview

This chapter provides an overview of data modeling concepts and techniques, examines
data modeling, and discusses its purpose. We consider different ways to create and
categorize data models and data modeling languages and next, focus on conceptual data
modeling and present three different languages for creating conceptual data models and
diagrams. We explore entity relationship modeling in detail and consider some other
conceptual modeling techniques. We briefly discuss logical data modeling and how
its purpose is different from conceptual data modeling. Similarly, we discuss physical
data modeling and how its purpose is different from both conceptual and logical data
modeling and then briefly consider some of the nomenclature and notations used in
capturing these various types of data models. Finally, we examine how these different
types of data modeling coexist within a heterogeneous database environment.
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Chapter 11: Logical Data Models

This chapter examines four logical data modeling languages used by databases in
the real world. The relational data model is the first modeling language considered
because it is the foundation of many centralized DBMSs. It is also the most-likely
logical modeling language for a DDBE and we examine this language in detail.
The hierarchical data model and the network data model are two logical modeling
languages that are both found in some legacy database systems, particularly on the
mainframe. Therefore, we also look at these languages. Object-oriented programming
(OOP) has become the de facto standard for many organizations. While OOP
applications can access data stored in any format, the most natural format is the format
found in an object-oriented DBMS (OODBMS). This format is also found in so-called
object persistence engines. Object-oriented databases use an object-oriented modeling
language that is fundamentally different from the other modeling languages discussed
in this chapter. Some similarities exist between the languages however, and these are
discussed. For each modeling language, we discuss the notation and nomenclature,
and the rules that need to be followed when converting a conceptual data model
into a data model created using one of these logical modeling languages. We briefly
compare and contrast the four languages and consider some of the issues that need to
be addressed when forward and reverse engineering data models use these languages.

Chapter 12: Traditional DDBE Architectures

In the real world, several different architectural alternatives can be used instead of the
traditional, homogeneous DDBMS, which is designed top–down. Federated databases
or multidatabases are integrated existing database servers that are built from the bottom
up. In a federated database management system, the data that an organization needs
already exists in multiple database servers. These databases may or may not all be of
the same type (same data model and/or data modeling language). This heterogeneous
set of databases needs to be integrated to provide for uniform and relational based
interface for the users of the federated database system. Issues involved in such an
integration are data model translation to relational data model and integration of a set
of relational data models into a federated view.

Chapter 13: New DDBE Architectures

Traditionally, a component or subsystem in a DDBE architecture is not an independent
process. This chapter explores the architecture of distributed database environments.
Most components in a traditional architecture are controlled by one or more subsystems,
and most subsystems are themselves designed with a “chain of command” defined for
the components inside them. Therefore, the first new architecture presented is one
where the components and subsystems work in cooperation with each other rather than
working under the control of each other. Another traditional characteristic found in
most architectures is the simple fact that the subsystems within a DDBE architecture
are not “all created equal.” Certain subsystems in the architecture are designed to be
more important, more authoritative, or simply larger and more sophisticated than others.
This also means that the architecture is somewhat rigid, even when the development
and deployment environments provide dynamic deployment and configuration services.
Therefore, this chapter also presents another new architecture where the subsystems
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are closer to being equal peers. This also allows the environment to be more dynamic
and allow the peer systems to join and leave the environment with relative ease and
flexibility.

Chapter 14: DDBE Platform Requirements

A distributed database environment (DDBE) runs on top of a network of computers.
Each of these computers has its own operating system and perhaps other systems, such
as a local DBMS, that need to be incorporated into the DDBE architecture. Although
each individual computer has its own operating system, there is no such thing as a
completely distributed operating system environment. This means that we must write
a layer of software to sit on top of existing software deployed at each individual com-
puter. We call this layer of software the DDBE Platform. This layer can be architected
(and implemented) in many different ways. Rather than focusing on a specific imple-
mentation, this chapter focuses on the architectural issues and general DDBE Platform
Requirements, in particular, how our DDBE Platform needs to deal with communi-
cation, component naming, architectural security, deployment, distributed transaction,
and general portability/interoperability issues. This chapter also briefly explores some
of the implementations that are capable of providing some (or possibly all) of the
DDBE Platform requirements. We examine RPC and RMI mechanisms for Remote
Calls, the Java Message Service (JMS) implementation for Remote Messaging. We
also present a high-level overview of XML Web Services, which is a relatively new
technique for implementing service providers in a cross-platform fashion.

Chapter 15: The JMS Starter Kit

This chapter considers how to develop a distributed database management system
called a DDBE that can be used to integrate databases from Oracle, Microsoft, IBM,
Sybase, and others. We provide a DDBE starter kit, which serves as a starting point
for developing our own DDBE components and subsystems and includes a framework
and an example extension. It is implemented using Java 2 Standard Edition (J2SE)
augmented by an implementation of the Java Message Service (JMS). We can use
the framework as a base to get a jumpstart in building a heterogeneous distributed
database management system using Java without the additional complexity (or power)
of a full J2EE Application Server. We discuss how to use this framework and how to
create new extensions in order to implement any additional functionality not currently
provided by the framework. Finally, we present the example extension (written using
the starter kit) that uses three databases and discuss the steps required to set up and
run the example.

Chapter 16: The J2EE Platform

This chapter discusses the J2EE platform by presenting a brief overview of the platform
and looking at the specific implementation details for various DDBE Platform Services.
In particular, we identify the J2EE Services defined in the J2EE Specification that
satisfy the requirements we identified in Chapter 14. We also consider the different
implementations to choose from at this time, including Apache Geronimo and JBoss
and examine the remote-ability support provided by Enterprise Java Beans (EJB) and



PREFACE xxxiii

discuss how other J2EE facilities can be used for DDBE projects. Facilities discussed
include the Java Naming and Directory Interface (JNDI), XML Web Services, and RMI,
as well as an overview of the Security, Deployment, and Transaction Management
facilities that J2EE provides.

Chapter 17: The J2EE Starter Kit

Another DDBE starter kit is presented here similar to the one we presented in
Chapter 15. However, this starter kit is implemented using the J2EE platform and is
capable of being ported to several J2EE implementation alternatives with minimal
modifications. We can use this framework as a base to get a jumpstart in building
a heterogeneous distributed database management system using J2EE and the full
power of the subsystems it provides. In particular, the remote-ability and distributed
transaction management facilities make this a more powerful (and more complicated)
implementation than the JMS/J2SE approach we used in Chapter 15. The starter
kit includes a framework and an example extension. We discuss how to use this
framework and how to create new extensions in order to implement any additional
functionality not currently provided by the framework. Finally, we present a simple
example extension (written using the starter kit) that uses three databases and discuss
its design.

Chapter 18: The Microsoft .NET Platform

This chapter uses the Microsoft .NET Framework as a potential DDBE development
platform by presenting a brief overview of the platform and looking at the specific
implementation details for various DDBE Platform Requirements previously identified
in Chapter 14. In particular, we examine the TCP/IP Remoting and HTTP Remoting
implementations for Remote-Code Execution and also explore the general messaging
facilities and support for XML Web Services. We discuss how the Microsoft .NET
Framework-based DDBE platform can provide Directory Services, and by present-
ing also examine how the platform supports Security, Deployment, and Transaction
Management.

Chapter 19: The DNET Starter Kit

This chapter presents another DDBE starter kit, similar to the one in Chapter 17. How-
ever, this starter kit is implemented using the Microsoft .NET Framework. Therefore,
we can use this framework as a base to get a jumpstart in building our own heteroge-
neous distributed database management system using any of the Microsoft .NET Frame-
work supported programming languages (Visual C#, Visual C++, or Visual Basic). The
starter kit leverages the facilities available in the Microsoft .NET Framework-based
platform, and we discuss how the facilities identified in Chapter 18 can be used to
build our own DDBE projects. The starter kit includes a framework and an example
extension we discuss how to use this framework and how to create new extensions in
order to implement any additional functionality not currently provided by the frame-
work. Finally, a simple example extension (written using the starter kit) that uses three
databases and discuss its design is presented.
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USING THIS BOOK EFFECTIVELY

The following describes different paths or “tracks” through the book:

• When this book is used in a classroom environment, it is recommended that Unit
1 be used in its entirety and in the order presented. Depending on the scope of
the class, selected information from Unit 2 should also be included based on
the degree of heterogeneity discussed in the class. This track would most likely
include all of Unit 1 (Chapters 1–9) and at least some parts of Chapters 10 and
11.

• If the class includes any implementation activities or implementation considera-
tions, then once again we recommend that Unit 1 be included, but now Chapters
10, 11, and 14 also have a significant contribution to make. This track should also
include the appropriate chapters from Unit 3 based on the implementation plat-
form chosen. In other words, it should include either the J2EE chapters (Chapters
16 and 17), Microsoft .NET Framework-based chapters (Chapters 18 and 19), or
the JMS chapter (Chapter 15).

• For readers planning to design their own DDBMS architecture in the real world,
Chapter 1 and the chapters in Unit 2 (Chapters 10–14) provide the necessary back-
ground to understand the architectural requirements of the system. Once again,
the appropriate chapters from Unit 3 can be selected based on the development
platform(s) selected for the reader’s implementation.

• Readers working with an existing DDBMS architecture can use Unit 1 as a ref-
erence for the theoretical underpinnings behind the component and subsystem
designs in their implementation. Unit 2 can be used to understand the architec-
tural issues or perhaps to consider changes to their architecture. Unit 3 can be
selected based on the existing development environments or perhaps to implement
prototypes in an alternative development environment.
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1
INTRODUCTION

Distributed: (adjective) of, relating to, or being a computer network in which at least
some of the processing is done by the individual workstations and information is shared
by and often stored at the workstations.

—Merriam-Webster’s 11th Collegiate Dictionary

Database (noun) a [sic] usually large collection of data organized especially for rapid
search and retrieval (as by a computer).

—Merriam-Webster’s 11th Collegiate Dictionary

Informally speaking, a database (DB) is simply a collection of data stored on a com-
puter, and the term distributed simply means that more than one computer might coop-
erate in order to perform some task. Most people working with distributed databases
would accept both of the preceding definitions without any reservations or complaints.
Unfortunately, achieving this same level of consensus is not as easy for any of the
other concepts involved with distributed databases (DDBs). A DDB is not simply
“more than one computer cooperating to store a collection of data”—this definition
would include situations that are not really distributed databases, such as any machine
that contains a DB and also mounts a remote file system from another machine. Simi-
larly, this would be a bad definition because it would not apply to any scenario where
we deploy a DDB on a single computer. Even when a DDB is deployed using only
one computer, it remains a DDB because it is still possible to deploy it across mul-
tiple computers. Often, in order to discuss a particular approach for implementing
a DB, we need to use more restrictive and specific definitions. This means that the
same terms might have conflicting definitions when we consider more than one DB
implementation alternative. This can be very confusing when researching DBs in gen-
eral and especially confusing when focusing on DDBs. Therefore, in this chapter, we
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2 INTRODUCTION

will present some definitions and archetypical examples along with a new taxonomy.
We hope that these will help to minimize the confusion and make it easier to discuss
multiple implementation alternatives throughout the rest of the book.

1.1 DATABASE CONCEPTS

Whenever we use the term “DB” in this book, we are always contemplating a collection
of persistent data. This means that we “save” the data to some form of secondary
storage (the data usually written to some form of hard disk). As long as we shut
things down in an orderly fashion (following the correct procedures as opposed to
experiencing a power failure or hardware failure), all the data written to secondary
storage should still exist when the system comes back online. We can usually think
of the data in a DB as being stored in one or more files, possibly spanning several
partitions, or even several hard disk drives—even if the data is actually being stored
in something more sophisticated than a simple file.

1.1.1 Data Models

Every DB captures data in two interdependent respects; it captures both the data
structure and the data content. The term “data content” refers to the values actually
stored in the DB, and usually this is what we are referring to when we simply say
“data.” The term “data structure” refers to all the necessary details that describe how
the data is stored. This includes things like the format, length, location details for
the data, and further details that identify how the data’s internal parts and pieces are
interconnected. When we want to talk about the structure of data, we usually refer
to it as the data model (DM) (also called the DB’s schema, or simply the schema).
Often, we will use a special language or programmatic facility to create and modify
the DM. When describing this language or facility, authors sometimes refer to the
facility or language as “the data model” as well, but if we want to be more precise,
this is actually the data modeling language (ML)—even when there is no textual
language. The DM captures many details about the data being stored, but the DM does
not include the actual data content. We call all of these details in the DM metadata,
which is informally defined as “data about data” or “everything about data except the
content itself.” We will revisit data models and data modeling languages in Chapters
10 and 11.

1.1.2 Database Operations

Usually, we want to perform several different kinds of operations on DBs. Every DB
must at least support the ability to “create” new data content (store new data values in
the DB) and the ability to retrieve existing data content. After all, if we could not create
new data, then the DB would always be empty! Similarly, if we could not retrieve the
data, then the data would serve no purpose. However, these operations do not need
to support the same kind of interface; for example, perhaps the data creation facility
runs as a batch process but the retrieval facility might support interactive requests
from a program or user. We usually expect newer DB software to support much more
sophisticated operations than minimum requirements dictate. In particular, we usually
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want the ability to update and delete existing data content. We call this set of oper-
ations CRUD (which stands for “create, retrieve, update, and delete”). Most modern
DBs also support similar operations involving the data structures and their constituent
parts. Even when the DBs support these additional “schema CRUD” operations, com-
plicated restrictions that are dependent on the ML and sometimes dependent on very
idiosyncratic deployment details can prevent some schema operations from succeeding.

Some DBs support operations that are even more powerful than schema and data
CRUD operations. For example, many DBs support the concept of a query, which
we will define as “a request to retrieve a collection of data that can potentially use
complex criteria to broaden or limit the collection of data involved.” Likewise, many
DBs support the concept of a command, which we will define as “a request to create
new data, to update existing data, or to delete existing data—potentially using complex
criteria similar to a query.” Most modern DBs that support both queries and commands
even allow us to use separate queries (called subqueries) to specify the complex criteria
for these operations.

Any DB that supports CRUD operations must consider concurrent access and
conflicting operations. Anytime two or more requests (any combination of queries
and commands) attempt to access overlapping collections of data, we have concurrent
access. If all of the operations are only retrieving data (no creation, update, or deletion),
then the DB can implement the correct behavior without needing any sophisticated
logic. If any one of the operations needs to perform a write (create, update, or delete),
then we have conflicting operations on overlapping data. Whenever this happens, there
are potential problems—if the DB allows all of the operations to execute, then the
execution order might potentially change the results seen by the programs or users
making the requests. In Chapters 5, 6, and 8, we will discuss the techniques that a DB
might use to control these situations.

1.1.3 Database Management

When DBs are used to capture large amounts of data content, or complex data struc-
tures, the potential for errors becomes an important concern—especially when the size
and complexity make it difficult for human verification. In order to address these poten-
tial errors and other issues (like the conflicting operation scenario that we mentioned
earlier), we need to use some specialized software. The DB vendor can deploy this
specialized software as a library, as a separate program, or as a collection of separate
programs and libraries. Regardless of the deployment, we call this specialized soft-
ware a database management system (DBMS). Vendors usually deploy a DBMS as
a collection of separate programs and libraries.

1.1.4 DB Clients, Servers, and Environments

There is no real standard definition for a DBMS, but when a DBMS is deployed using
one or more programs, this collection of programs is usually referred to as the DB-
Server. Any application program that needs to connect to a DB is usually referred
to as the DB-Client. Some authors consider the DB-Server and the DBMS to be
equivalent—if there is no DB-Server, then there is no DBMS; so the terms DBMS-
Server and DBMS-Client are also very common. However, even when there is no
DB-Server, the application using the DB is still usually called the DB-Client. Different
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DBMS implementations have different restrictions. For example, some DBMSs can
manage more than one DB, while other implementations require a separate DBMS for
each DB.

Because of these differences (and many more that we will not discuss here), it is
sometimes difficult to compare different implementations and deployments. Simply
using the term “DBMS” can suggest certain features or restrictions in the mind of the
reader that the author did not intend. For example, we expect most modern DBMSs to
provide certain facilities, such as some mechanism for defining and enforcing integrity
constraints—but these facilities are not necessarily required for all situations. If we
were to use the term “DBMS” in one of these situations where these “expected” facil-
ities were not required, the reader might incorrectly assume that the “extra” facilities
(or restrictions) were a required part of the discussion. Therefore, we introduce a new
term, database environment (DBE), which simply means one or more DBs along
with any software providing at least the minimum set of required data operations and
management facilities. In other words, a DBE focuses on the DB and the desired
functionality—it can include a DBMS if that is part of the deployment, but does not
have to include a DBMS as long as the necessary functionality is present. Similarly, the
term DBE can be applied to DBs deployed on a single host, as well as DBs deployed
over a distributed set of machines. By using this new term, we can ignore the archi-
tectural and deployment details when they are not relevant. While this might seem
unnecessary, it will prevent the awkward phrasing we would have to use otherwise.
(If you prefer, you can substitute a phrase like “one or more DB instances with the
optional DBMS applications, libraries, or services needed to implement the expected
data operations and management facilities required for this context” whenever you see
the term “DBE.”) There are times when we will explicitly use the term DBMS; in
those instances, we are emphasizing the use of a traditional DBMS rather than some
other facility with more or less capabilities or limitations. For example, we would use
the term DBMS when we want to imply that an actual DBMS product such as Oracle,
DB2, and so on is being used. If we use the term DBE, we could still be referring
to one of these products, but we could also be referring to any other combination of
software with greater, lesser, or equal levels of functionality. As we shall see, the term
“DBE” can even refer to a larger system containing several other DBs, DBMSs, and
DBEs within it!

1.2 DBE ARCHITECTURAL CONCEPTS

When considering the architecture of a complicated system, such as a DBE, there
are several different ways we can view the details. In this section, we will provide
a very brief and high-level view useful for discussing the archetypical DBE archi-
tectures used later in the chapter and later in the book. We will revisit architectural
concerns in Chapters 12 to 15. For our purposes here, we will merely consider services,
components, subsystems, and sites.

1.2.1 Services

Regardless of the deployment details, we can create logical collections of related func-
tionality called services. For example, we mentioned earlier that many DBs support
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queries; we can call the logical grouping of the software that implements this func-
tionality the query service. We can define services like this for both publicly visible
functions (such as query) and internal functions (such as query optimization). Services
are merely logical collections, which means that they do not necessarily have corre-
sponding structure duplicated in the actual implementation or deployment details. We
call any piece of software that uses a service a service consumer, while any piece
of software implementing the service is called a service provider. Implicitly, each
service has at least one interface (similar to a contractual agreement that defines the
inputs, outputs, and protocols used by the service consumers and providers). These
interfaces can be very abstract (merely specifying an order of steps to be taken) or
they can describe very tangible details such as data types or even textual syntax. Most
of these interface details are usually only present in lower-level design diagrams—not
the high-level architectural or deployment diagrams.

The same piece of software can be both a service consumer and a service provider
and can even consume or provide several different services using many different
interfaces—but it is usually better to limit the number of services involved for an
individual piece of code. Although we can talk about the services as part of the overall
architecture or deployment (like interfaces), we usually do not see them directly repre-
sented in architectural or deployment diagrams. Instead, we usually see the components
and subsystems (which we will discuss further in the next section) implementing the
services in these diagrams. We will discuss services further in Chapter 14.

1.2.2 Components and Subsystems

For our purposes, a component is simply a deployable bundle that provides a rea-
sonably cohesive set of functionality, and a subsystem is a collection of one or more
components that work together toward a common goal. Whenever we want to use the
two terms interchangeably, we will use the term COS (component or subsystem).
Unlike a service, which is merely a logical grouping, a COS is a physical grouping,
which means that it does have a corresponding structure in the implementation. Fre-
quently, we name these COSs after the primary service that they provide. There can
be multiple instances of the same COS deployed within the system. These instances
are often referred to as servers, although we can also use other terminology. For
example, we might see a Query COS defined in the architecture, and several Query
Servers (instances of the Query COS) deployed within the environment. Alternatively,
we might refer to these COSs or their deployed instances as Query Managers, Query
Processors, Query Controllers, or even some other name. Different instances of the
same COS can have different implementation and configuration details, as long as the
instances still provide all the necessary services using the correct protocols and inter-
faces. We usually represent a COS in an architectural diagram as a box or oval with its
name written inside. Deployment diagrams show each COS instance similarly, but usu-
ally the instance name includes some additional hint (such as a number, abbreviation,
or other deployment detail) to help differentiate the instances from each other.

1.2.3 Sites

The term site represents a logical location in an architectural diagram or a deployment
diagram—typically, this is a real, physical machine, but that is not necessarily true.
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For example, we might have a deployment using two sites (named Site-A and Site-
B). This means that those two sites could be any two machines as long as all of the
necessary requirements are satisfied for the machines and their network connections.
In certain circumstances, we could also deploy all of the subsystems located at Site-A
and Site-B on the same machine. Remember, a DDB deployed on a single machine is
still a DDB. In other words, as long as the deployment plan does not explicitly forbid
deploying all the COS instances for that DDB on a single machine, we can deploy
them this way and still consider it a DDB. Architectural and deployment diagrams
depict sites as container objects (usually with the site name and the deployed COS
instances included inside them) when there is more than one site involved; otherwise
it is assumed that everything in the diagram is located in a single site, which may or
may not be named in the diagram.

1.3 ARCHETYPICAL DBE ARCHITECTURES

As we have already discussed, when considering a DBE, there are some bare minimum
requirements that need to be present—namely, the ability to add new data content and
retrieve existing content. Most real-world DBEs provide more than just this minimal
level of functionality. In particular, the update and delete operations for data are usually
provided. We might see some more sophisticated facilities such as the query service and
other services supporting schema operations. In this section, we will briefly consider
the typical services we would expect to see in a DBE. Then, we will consider some
archetypical DBE architectures.

1.3.1 Required Services

Figure 1.1 shows a simplistic architectural diagram for a minimal DBE. The architecture
shown is somewhat unrealistic. In this architecture, there is a separate subsystem for
each service discussed in this section, and each subsystem is named the same as
the service that it provides. These subsystems are contained within a larger subsystem,

Figure 1.1 DBE architectural diagram emphasizing the minimum required services.
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which we call the Data Getter (DG). This DBE provides (at least) three services—they
are named Drd-S, Sec-S, and Semi-S. When reading this diagram, we should recall that
it is a DBE and, therefore, the services shown should be considered vitally important, or
at least expected—but there might be additional services provided by the environment
that are not shown here. For example, this diagram does not show any service providers
for query or command operations but that does not necessarily mean we cannot use
this diagram to discuss a DBE with those facilities—instead, it merely means that
any DBE without those unmentioned facilities is still potentially represented by this
diagram.

Whenever we use an architectural or deployment diagram for a DBE, we are usually
highlighting some requirement or feature of the environment within a specific context;
in this case, we are merely showing what a “bare minimum” DBE must provide, and
the four services shown here satisfy those minimum requirements. Every DBE must
include a service providing the ability to retrieve data from the DB. We will call this
the Data Read Service (Drd-S). Since most DBEs also have at least a basic level
of privacy or confidentiality, there should always be some form of Security Service
(Sec-S). In an effort to be inclusive, we can consider DBEs with “no security” to be
implementing a Sec-S that “permits everyone to do everything.” Any real-world DBE
should have a Sec-S providing both authentication and authorization, which we will
discuss further in Chapter 9. The Drd-S uses the Sec-S to ensure that private data
remains unseen by those without proper permissions. There is usually another service
providing at least some minimal level of integrity checking or enforcement. This other
service is responsible for preventing semantic errors (e.g., data content representing a
salary must be greater than zero, otherwise it is a semantic error). Similar to the Sec-S,
this service can be less than perfect, or perhaps even implemented using an “allow
all modifications” policy if explicit constraints are not defined. We call this service
the Semantic Integrity Service (Semi-S), and we will discuss it further in Chapter 3.
This service can be used by several services, including the Drd-S, which can use it to
provide default values for the content it retrieves (among other possibilities).

1.3.2 Basic Services

In Section 1.1.2, we said that every DB must provide some mechanism for populating
data (otherwise the DB would always be empty), but we also said that each DB might
support different interfaces for the mechanisms they use. Therefore, the ability to
write data is not always implemented as a service, or in the very least, it is not always
implemented in a way that we can incorporate into our DBE architecture. For example,
if the only data population mechanism provided by a particular DBE was a program
that only supported interactive user input (text screens or graphical dialog boxes) then
we could not use that program as a service provider in any meaningful sense. However,
if the DBE does provide a “program-friendly” mechanism to write data, we can call
this the Data Write Service (Dwr-S). Although it is not a required service, and it
is not present in all DBEs, it is typically present in most traditional DBMS products,
and in many other DBEs we will consider. If there is a Dwr-S, then it uses the Sec-S
(to prevent unauthorized data content additions, modifications, and removals) and the
Semi-S (to prevent causing any semantic errors when it adds, modifies, or removes
any data content). Once again, unless we specify the requirements more explicitly, it
is possible for the Sec-S and Semi-S in a particular DBE to provide varying degrees of
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Figure 1.2 DBE architectural diagram emphasizing the basic services.

functionality for these services. Figure 1.2 shows the architectural diagram for a DBE
providing the basic services we just discussed. Here, we show all the services used
to access the data for read or write operations as a single subsystem called the Data
Accessor (DA). We could also have shown the Data Getter subsystem in place of the
Drd-S. However, we did not include it here because the Semi-S and Sec-S are used by
both the read and the write operations. Similarly, we could consider the combination
of the Dwr-S, Semi-S, and Sec-S to be a “Data Setter” subsystem, but these details do
not usually add much value to our diagram. In other words, the DA always implicitly
includes a DG as part of it and the services shown in Figure 1.2.

1.3.3 Expected Services

Every DBE must supply the functionality contained in the DG, and many DBEs will
provide the functionality contained in the DA, but often we expect a DBE to be more
powerful than these minimal or basic scenarios. In particular, we mentioned the query
service earlier, and here we will call it the Query Request Service (Qreq-S). Most
modern DBMSs should provide this as well as some form of Query Optimization
Service (Qopt-S), but neither of these services is a requirement for all DBEs. Typically,
the Qreq-S forms a plan for a query and then passes the plan on to the Qopt-S. The
Qopt-S optimizes the plan and then uses the Drd-S to retrieve the data matching the
query criteria. We will discuss the Qreq-S and Qopt-S further in Chapter 4. We also
mentioned that some DBEs have the ability to execute commands (create, update, and
delete operations with potentially complex criteria). Therefore, in most DBEs providing
DA operations, we would also expect to see an Execution Service (Exec-S) and
Execution Optimization Service (Eopt-S) to encapsulate these command operations.
Again, these are present in most DBMSs, but not necessarily present in all DBEs.
Chapter 3 will explore these services further. Often, there is a “nonprogrammatic”
interface provided to users. In particular, many relational DBMSs support a special
language (called the SQL) and provide batch and/or interactive facilities that users can
employ to pass queries and commands to the DB. We will call the service providing
this function the User Interface Service (UI-S). This service is not always present in
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Figure 1.3 DBE architectural diagram emphasizing the expected services.

a DBE and is usually implemented differently, including different syntax, features, and
restrictions for the queries and commands. However, we would expect most modern
DBMSs (including nonrelational ones) to provide some sort of UI-S. Figure 1.3 shows
an example of a typical DBE providing these expected services.

1.3.4 Expected Subsystems

Figure 1.4 shows a reasonably realistic DBE set of subsystems for the architecture we
looked at in Figure 1.3; it contains all the same services, but we have bundled the ser-
vices into four subsystems: the application processor (AP), the query processor (QP),
the command processor (CP), and the data accessor (DA). Two of the subsystems
(QP and CP) are contained within one of the others (AP), while the other two sub-
systems (AP and DA) are shown as independent packages. Each component has been
allocated to one of the subsystems, and the communication links shown only connect
subsystems rather than the components inside them. Although the communication links
are not quite as detailed, there is no real loss of information when we do this in a dia-
gram. We have placed the Qreq-S and Qopt-S inside the QP. Similarly, we have placed
the Exec-S and Eopt-S inside the CP. The AP subsystem contains the combination of
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Figure 1.4 Typical subsystems of simple DBE with the expected services.

the UI-S, QP, and CP subsystems. All the remaining service components have been
allocated to the DA, which we discussed in Section 1.3.2.

1.3.5 Typical DBMS Services

There can be many other services and subsystems in a DBE, but often these additional
services and subsystems are highly dependent on other details, specific to the partic-
ular DBE being considered. This is especially true when the particular DBE being
focused upon is a DBMS. For example, in a DBE with a Dwr-S, we might include
one or more services to handle conflicting operations. Such a DBE might use one
or more of the following: a Transaction Management Service (Tran-S), a Locking
Service (Lock-S), a Timestamping Service (Time-S), or a Deadlock Handling Ser-
vice (Dead-S)—all of which will be discussed in Chapters 5 and 6. Similarly, most
modern relational DBMSs have a Fallback and Recovery Service (Rec-S), which we
will discuss in Chapter 8. The architectural diagram for a DBE like this is shown in
Figure 1.5; notice that the services shown are implemented as components inside a
single subsystem, called “DBMS” in this diagram. If the DBE is for a DDB, we might
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Figure 1.5 DBE architectural diagram for a typical DBMS.

even have a Replication Service (Repl-S), which is not shown in Figure 1.5 (because
that architecture is not for a distributed DB). We will discuss the Repl-S in Chapter 7.

1.3.6 Summary Level Diagrams

If we wanted to show the high-level architectural details for an environment containing
all of the DBEs just discussed (from Fig. 1.1, 1.2, 1.4, and 1.5) in the same diagram,
only the “most visible” subsystem packages would probably be shown (we would not
see the components or smaller contained subsystems in this diagram). We can always



12 INTRODUCTION

Figure 1.6 Summary level DBE diagrams.

create separate, more detailed diagrams for each subsystem as needed (similar to those
shown previously), but at this level of consideration those details would probably not
add much value. Figure 1.6 is a more reasonable diagram to use when considering the
system at this (or a higher) level. Notice that the site on the left of the diagram (Site-A)
contains the DBE from Figure 1.1. Site-B contains the DBE from Figure 1.2, Site-C
contains the DBE from Figure 1.4, and Site-D contains the DBE from Figure 1.5. Each
DBE consists of a single subsystem, called the DP (which we will discuss further in
Section 1.6.2). The DP contains all the necessary subsystems for the centralized DBE
at each site. If these sites were participating in a distributed DBE, we might only show
the DP box with no internal subsystems displayed.

Although these pictures are useful, they are not a substitute for the actual design
and deployment details (most of which are not shown). The diagrams cannot convey
many subtle details. For example, suppose the DBE at Site-C did not have a QP; this
diagram would still look the same, and the detailed diagram would still look similar
to Figure 1.4, except that the QP would be missing. In this scenario, all data retrieval
would need to use the DA directly. In other words, the DA’s client would need to
iterate over all the data and use program logic in the client to discard unwanted data
values. Similarly, if the CP at Site-C in this scenario did not support subqueries for its
criteria, then the DB-Client might need to iterate over the data values using the DA
and use either the CP or the DA to create, modify, or delete data values in the DB.
The functionality inside the service components (such as the Semi-S or Sec-S) can also
vary greatly between different DBEs: even when the diagram shows these components,
we cannot determine how similar or different the implementation details really are by
merely looking at the pictures. In fact, since most DBMSs have all of the functionality
required by the AP, DA, and DG subsystems, it is also possible for every DBE in the
diagram (including those at Site-A, Site-B, and Site-C) to be a DBMS—if this were
the case, then we would be providing much more than the minimum requirements for
Site-A, Site-B, and Site-C. The opposite is not true, however: Site D must contain a
DBMS, with the expected level of functionality required, and not merely a DG, DA, or
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AP/DA combination. Once again, all of the specific requirements are not shown in these
diagrams and must therefore be found within other diagrams and design documentation.

All of the figures we have looked at so far are architectural diagrams, not deploy-
ment diagrams. This means that the components and subsystems listed in the diagram
could be bundled into several different possible deployment packages. For example,
all of these services could be deployed as a single program, with a single instance
installed on a single machine, which we could then call a DBE or DBMS. An alter-
nate deployment of this same architecture could have several instances of this single
DBE/DBMS program installed on one or more machines. Even though we have only
shown a single DB in the diagram, there might be several DBs deployed—this diagram
does not tell us if we can use the same DBE/DBMS for all of these DBs or if there
must be a separate instance for each one.

1.4 A NEW TAXONOMY

We mentioned earlier that “DBE” is a new term representing several different possible
implementations for similar functionality. Because a DBE considers the system at such
an abstract level, it can be used to refer to a wide variety of possible architectures and
deployments. In this section, we will present a new taxonomy to be used for classifying
all the possible DBE alternatives that we might consider when exploring DB and DDB
issues. For our purposes, we will consider a new taxonomy with four levels, presented
in order from most abstract to most specific. We hope that this arrangement will reduce
the complexity for each successive level and simplify the taxonomic groups (the taxa)
containing the environments that we ultimately want to discuss. Like most taxonomies,
the extreme cases are most useful for understanding the categorical differences between
the taxa, but most real-world DBEs will most likely fall somewhere between the
extremes.

The four levels of categorizations (from most abstract to most specific) are:

• COS distribution and deployment (COS-DAD)
• COS closedness or openness (COS-COO)
• Schema and data visibility (SAD-VIS)
• Schema and data control (SAD-CON)

1.4.1 COS Distribution and Deployment

The first level in our taxonomy is the COS distribution and deployment (COS-
DAD) level. This is perhaps the easiest level to understand, and usually this is the
first classification that we want to make when evaluating a particular DBE. The two
extreme cases that define this level are the completely centralized DBE (CDBE) and
the fully distributed DBE (DDBE).

In a completely CDBE, we must deploy all the DBs, and COS instances on a single
machine. In other words, placing any of the COS instances or DB instances on a
second, separate machine is strictly forbidden. This case includes the initial releases
of most traditional DBMSs (such as Oracle, Sybase, Informix, etc.) and many other
early DBs that did not have a DBMS-Server (such as dBase, Paradox, Clipper, FoxPro,
Microsoft Access, etc.). Most modern releases of DBMSs and DBs have moved away
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from this extreme scenario slightly, since we can often deploy the DB-Clients on a
separate machine for many of these systems. Similarly, some modern DBMSs have
some ability to distribute their DBs (using techniques such as mirroring, etc.), but they
are still essentially a CDBE since the “almost distributed DBs” are not really a “true
DB” in the same sense as the original DB that they attempt to duplicate.

If each COS instance and each DB instance is deployed on a separate machine,
then we have the other extreme (the fully DDBE). Of course, in the real world, we
would probably not go to this extreme—in the very least, it is usually not necessary to
separate components within the same subsystem from each other, and also not necessary
to separate the lowest-level subsystems (such as the DAs) from the DBs (i.e., the files
containing the data structure and content) that they access. Typically, the DDBE will
consist of one or more “coordinating” server instances (providing services across the
entire DDBE) and a set of DBEs that combine to make the DDBE work. We call each
of these DBEs a Sub-DBE (S-DBE), because they combine to form the DDBE in a
way that is similar to how subsystems combine to form a system. Each S-DBE is a
DBE in its own right, which means that each of them is also subject to categorization
too using this taxonomy—in particular, each S-DBE can be either a centralized DBE
or another distributed DBE. Most S-DBEs are centralized environments, especially for
traditional architectures such as the ones we will discuss in Chapter 12. In this book,
we are mostly interested in DDBEs and really only consider the CDBEs when we want
to evaluate some type of DDBE or examine the S-DBE inside a larger DDBE.

1.4.2 COS Closedness or Openness

The second level in our taxonomy is the COS closedness or openness (COS-COO)
level. This level considers the software implementation and integration issues for the
major subsystems, components, and the DB storage itself. Although we will introduce
the two extreme cases for this level (completely open and completely closed), the
COSs in most DBEs will occupy a strata (a series of gradations) within this level
rather than either extreme scenario.

There is no such thing as a commercial off-the-shelf (COTS) DDBE that we can
simply buy and install. Even if there were such a product, we would still probably
want to integrate some of our existing COS instances into the DDBE architecture.
Conversely, if our goal was to create our own DDBE “from the ground up,” it is
doubtful that we would write absolutely everything (including the operating systems,
file systems, etc.) completely from scratch. Therefore, every DDBE needs to integrate
multiple COS instances, some of which we did not write ourselves, regardless of
which architectural alternative we choose to implement. When attempting to integrate
all of these COS instances, we need to consider the public interface exposed by each
COS. Since most of these COSs were not designed with a DDBE specifically in mind,
it is quite possible that the interfaces they expose will not provide everything we
need. Simply put, there are several DDBE algorithms and services that can only be
implemented when we have complete access to the underlying implementation for
the COS instances involved—this is especially true if we want to perform our own
DDBE research. For example, suppose we wanted to develop a new mechanism for
distributed deadlock handling based on a new variation of locking. Obviously, we
could only do this if we were able to see (and perhaps even modify) the underlying
locking implementation details for each Sub-DBE in the environment.
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Subsystems that provide either “unrestrained access” or at least “sufficient access”
to the underlying state and implementation details are open to us, while systems that
do not are closed to us. While most real subsystems provide some level of access,
determining the degree to which a particular subsystem is open or closed depends on
the actual interfaces it exposes and the type of functionality we are trying to implement.
If all the COS instances are open to us, then we have the first extreme case (completely
open). If all the COS instances are closed to us, then we have the other extreme case
(completely closed).

A completely open DDBE can occur in any of these three scenarios:

• If we write all of the components or service instances ourselves (from scratch)
• If we use free and open source software (FOSS) for all the COS instances that

we do not write ourselves
• If we obtain some sort of agreement or arrangement with the COS vendors (for

all the COS instances that we do not write ourselves) allowing us the open access
we need

The first two scenarios are possible, but in order to satisfy either one, we must
completely avoid any non-FOSS, COTS products. Many organizations will be reluctant
or unable to do this. The third scenario is also somewhat unusual, since it would most
likely involve legal contracts and perhaps additional licensing fees. This means that
a completely open DDBE is a very rare situation. A completely closed DDBE can
only occur if we do not have sufficient access to the implementation details for any
of the COS instances in the DDBE: in other words, only if each COS instance in the
DDBE were a black box whose inner mechanisms completely prevented our attempts
to understand or integrate. This is a very common situation for the components inside
a COTS centralized DBE, where we have no access to the inner workings of the
algorithms (such as locking). However, since we cannot buy a COTS distributed DBE,
this extreme scenario is impossible for a DDBE.

Each DDBE can be a slightly different situation, but typically, the COS instances
become “more open” the further removed they are from the DB. This is because there
are many COTS products (such as DBMSs) that we might choose to use in the lower
levels of the architecture (closer to the DB), but the higher-level COS software does
not exist, which means that we need to write the higher-level COS software ourselves.
Remember that any software we write ourselves is always open to us (regardless of
whether we give this access to others).

1.4.3 Schema and Data Visibility

The third level in our taxonomy is the schema and data visibility (SAD-VIS) level. In
this level, we are considering the DB schema and all the data content stored in each
DB in the environment. For a CDBE, this is not very interesting because, typically,
there is only a single DB to consider or all the DBs use the same ML. However, a
DDBE can be a much more complicated consideration. In a DDBE, each DB is actually
under S-DBE, which is a DBE in its own right (usually a CDBE). Different DBEs can
potentially have different MLs, which means that the ML for the DDBE and the ML
for each S-DBE it contains could theoretically be different. In reality, there are not
that many different MLs, so it is not likely that there would be that many different



16 INTRODUCTION

ones used in the same environment; but the simple fact that there might be different
MLs within the same DDBE is important to consider. We will discuss this further in
Chapters 2 and 12.

Assuming that there is an appropriate way to combine the different MLs into a
single (perhaps different) ML, we can now consider the “combined schema” for all
the DBs in the DDBE. If the “most powerful user in the DDBE,” which we will call
the DDB administrator (DDBA), can see all of the data structure across all the DBs,
then we have total schema visibility (TSV). In other words, TSV means that there are
no hidden data structures and there is no structure missing from the combined schema
but present in one of the S-DBE schemas. Similarly, we can consider the data content
for the combined schema and compare it to the data content in each S-DBE. If every
data value present in the S-DBE DBs is visible to the DDBA in the DDBE, then we
have total data visibility (TDV). In other words, TDV means that there is no hidden
data content; there is no data value missing from the DDBE but present in one of
the CDBE DBs. When we have both total schema visibility and total data visibility,
we have the first extreme case for this level, namely, total visibility (TV). TV can
happen in the real world, and in fact, it is a requirement for some particular DDBE
architectures, some of which we will discuss in Chapter 12.

It should be obvious that the other extreme case is not possible—if the combined
schema was empty and all the data content were hidden, then the DDBE would be
completely worthless! If we have some hidden schema, then we have partial schema
visibility (PSV). If we have some hidden data, then we have partial data visibility
(PDV). Having either PSV, PDV, or both PSV and PDV is referred to as partial
visibility (PV). PV is a common occurrence and even a requirement for some particular
DDBE architectures. We will also discuss some of these architectures in Chapter 12.

For the sake of completeness, we will mention that there is one more reason why
this level is not interesting when we are looking at a single CDBE (as opposed to a
DDBE or a Sub-DBE): the TV scenario is really the only possible situation for most
CDBEs.

1.4.4 Schema and Data Control

The fourth level in our taxonomy is the schema and data control (SAD-CON) level. In
this level, we are considering the set of all operations that we are allowed to perform
using only the visible schema and the visible data content (we ignore any operation that
would attempt to use hidden schema or content, since it would obviously fail). Once
again, our primary focus is on the DDBEs. If the DDBA can perform any and every
valid schema operation on the visible combined schema structures, then we have total
schema control (TSC). Similarly, if the DDBA can perform any and every possible
data operation on the visible data content for the DDBE, then we have total data
control (TDC). When we have both TSC and TDC, we have the first extreme scenario,
which we call total control (TC). If there is at least one valid schema operation that
the DDBA does not have permission to perform for some part of the visible combined
schema, then we only have partial schema control (PSC). If there is at least one data
operation that the DDBA does not have permission to perform on some subset of the
visible data content, then we have partial data control (PDC). Having either PSC,
PDC, or both PSC and PDC is referred to as partial control (PC).
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Again, it should be obvious that it is impossible for the other extreme scenario to
exist in either a CDBE or a DDBE. In other words, if the DDBA cannot perform any
valid schema operation on any piece of visible schema, and also cannot perform any
valid data operation on any subset of the visible data, then the DBE is unusable for
any purpose. Like the previous level, the situation for a CDBE is not very interest-
ing, because we would always expect TC. Although TC is possible for many DDBE
architectures (and even required for some of them), PC is also very common for many
DDBEs. For example, many DDBE architectures do not provide schema operations,
and many real-world implementations are fundamentally read-only with respect to the
data content. We will discuss some of these architectures in Chapter 12.

1.5 AN EXAMPLE DDBE

Suppose that our organization has three centralized DBEs deployed as depicted in
Figure 1.7. We have one instance of IBM’s DB2 DBMS running on our IBM main-
frame, which contains mission critical information about the entire organization and
supports our payroll, human resources, and customer fulfillment applications. We
also have two different departmental groups within our organization—one group is
using Oracle’s DBMS to maintain project information and the other group is using
Microsoft’s SQL Server DBMS to keep track of production information.

In this example, even though project information in the Oracle DBE and customer
information in the DB2 DBE are accessed independently most of the time, there are
times when we need to cross-reference the information in these two systems. Suppose a
manager wants to generate a report for each customer, listing details about the customer
as well as details about all the company projects involving that customer. In order to

Figure 1.7 Example of the possible deployment of an organization’s CDBEs.
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satisfy this manager’s requirements, we need to combine information that is stored
in two different DBEs, controlled by two different types of DBMS. We could choose
from two approaches when we attempt to satisfy this manager’s requirements: a manual
approach and an automated approach.

In the manual approach, we would log into each individual server, write some
queries to get the information out of each DB, transfer results from each DB to our
personal workstation, and then write a program that merges all the information into the
final report format. This is a time-consuming process that requires someone familiar
with each hardware platform, each DBE, the communications facilities needed to log
into the systems and transfer the files, and the utilities or programming skills needed
to fetch the information from each system and to merge the files into the final result.
Even when we have someone who can perform all these tasks, we do not have any
easy way to ensure that final report is valid.

For the automated approach, our company needs to combine the three CDBEs
mentioned above into a new, single, DDBE that we need to implement. We can utilize
the services of local DBMSs, each running on a separate computer, and the services of
the communication subsystem (Ethernet, Token Ring, and Internet) to coordinate the
necessary read or query operations. Ideally, users of our new DDBE will be completely
unaware that the data content is dispersed across different computers and is controlled
by different DBMS products—they have the illusion that all of our combined data
content is stored and controlled locally by one system (the DDBE). Our DDBE users
do not need to know anything about the DBMSs we have. They do not need to know the
MLs required for each DBMS, anything about computer hardware running the DBEs,
or any details about how these hardware and software systems are interconnected.
Our users can send a query request to the DDBEs query processor that handles all
the necessary coordination, execution, and merging automatically. Although using this
new DDBE system is very easy, implementing it can be quite difficult.

1.6 A REFERENCE DDBE ARCHITECTURE

In discussing the theory behind a DDB, we will use the DDBE architecture discussed
in this chapter as the reference. We will discuss other architectures in Chapter 12. For
the rest of this chapter, and to set the basis for the discussion of theory and issues in
a distributed database environment, we will further divide the architecture of a DDBE
into an Information Architecture and a Software Architecture.

1.6.1 DDBE Information Architecture

The information architecture for a centralized database environment (CDBE) conforms
to the American National Standards Institute (ANSI) standard proposed and approved
by the Standard Planning and Requirements Committee (SPARC) [SPARC75]
[SPARC76] [SPARC77] called the ANSI/SPARC three-level schema architecture
as depicted in Figure 1.8. This architecture provides for three separate layers of
abstraction—the external, conceptual, and internal schemas. Users of such a system
are assigned external schemas (also known as external views), which they then use
to access the information in the underlying database. These views are created from
the conceptual schema that encompasses the entire set of data in the database. The
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Figure 1.8 ANSI/SPARC three-level schema architecture.

Figure 1.9 DDBE schema architecture.

conceptual schema in a relational system, for example, represents all the information
in a database as a set of relations or tables. At the lowest layer of abstraction, the
internal (or physical) schema represents the data in the raw format. This representation
is not visible to the end user and provides for the application data independence
feature of all DBMSs.

Although, the three-level schema architecture satisfies the needs of a CDBE, it is not
sufficient for a DDBE [Sheth90]. In a DDBE, users’ views must combine information
across different S-DBEs. As such, their views need to be built on top of an integrated
view of local conceptual schemas from the participating DBEs. This requirement adds
a new level of abstraction, the global conceptual schema (GCS), to the three-level
schema architecture; this new architecture is depicted in Figure 1.9.

The GCS is an integrated view of all local conceptual schemas. It provides the basis
for generating the external views for distributed system users. The local conceptual
schemas provide a local view of data stored locally at each S-DBE. Therefore, GCS
can only provide a global conceptual view of data and nothing more. In a distributed
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system where each individual S-DBE is a DBMS using the relational system, the GCS
provides information about all tables in the environment, all primary keys, all foreign
keys, all constraints, and so on. However, the GCS does not contain any information
about where any individual table is stored, how any individual table is fragmented, or
even how many copies of each fragment there are in the DDBE. We need additional
information (not contained in the GCS) to provide for location, fragmentation, and
replication transparencies. We call this augmented GCS (with the additional required
information included) a global data dictionary (GDD).

The GDD contains information about all the data that is available to a distributed sys-
tem user. The GDD contains, in addition to what is in the GCS, information pertaining
to data location, data fragmentation, and data replication.

For example, in the relational world, GDD contains five submodels:

1. Global Conceptual Schema (GCS). The GCS has information about the tables,
columns, data types, column constraints, primary keys, foreign keys, and so
on. This part of the GDD provides for application data independence, which is
required by all DBMS systems according to the ANSI/SPARC standard.

2. Data Directory (DD). The DD has information about the location of the data
fragments. This information typically identifies the site location by specifying
the Universal Resource Locator (URL), site name, IP address, and so on for
the site containing the data. This part of GDD enables a DDBE to provide for
location transparency.

3. Fragmentation Directory (FD). The FD has information about data fragments in
the system. The FD typically contains conditions used for creation of horizontal
fragments, join column for vertical fragments, columns that are part of the vertical
fragments, primary key of the fragments, and so on. This part of GDD provides
for fragmentation transparency.

4. Replication Directory (RD). The RD has information about replication. This typ-
ically includes the number of copies that exist for each table or a fragment of
a table. Note that this information in conjunction with the DD information is
enough to locate every copy of any fragment or a table. This part of GDD
allows a DDBE to provide for replication transparency.

5. Network Directory (ND). The ND has information about the topology, commu-
nication link speed, and so on for all the sites participating in the DDBE. This
part of GDD enables a DDBE to provide for network transparency.

1.6.2 DDBE Software Architecture

Like a centralized DBE, a distributed DBE consists of two main software modules
called the application processor (AP) and the data processor (DP). Each DP provides
the services necessary to connect a local DBE to the distributed environment. The actual
DBE requirements and the specific requirements for the DP services depend on the
approach we are using to implement the software components of the DDBE (Section 1.3
discussed these services, and Figure 1.6 provided four different examples of how a DP
might bundle these services). There are two approaches to software implementation
for a DDBE—they are called top–down and bottom–up. We will discuss the details
of these approaches in Chapter 12. Here, we briefly outline the differences between
them. Figure 1.10 depicts the architecture of a top–down DDBE implementation.
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Figure 1.10 Top–down DDBE software architecture.

When we develop the software components of a DDBE, the APs and DPs can
be deployed separately and can cooperate over a communication network. The AP is
responsible for controlling the user interface and distributed transaction management,
while the DP handles local query optimization, local transaction recovery, and local
transaction execution support. This architecture parallels the information architecture
discussed earlier. The AP uses the GCS and the GDD to handle users’ requests at
the global (distribution) level, while the DPs use the LCSs to execute the subrequests
locally.

When we develop the software components of a DDBE bottom–up, we are really
integrating existing database management systems as local DBEs into the DDBE. In
this approach, many of the DP responsibilities can be delegated to the local DBEs.
This reduces the DP component to nothing more than a thin wrapper surrounding the
local DBE for each site. Figure 1.11 depicts the software components of this approach.

Figure 1.12 depicts the details of the application processor and data processor for
both approaches mentioned above. This example shows a system with one AP and N
DPs. Note that this is a generic logical architecture and does not imply deployment—
we will cover software deployment in Chapter 12. The following two sections outline
the software components of a DDBE. These components are necessary regardless of
the approach used to develop the system.

1.6.2.1 Components of the Application Processor The application processor is com-
posed of two main subsystems. They are the global transaction manager (GTM)
and the distributed execution manager (DEM). The GTM itself is divided into five
subsystems—the user interface (UI) module, the Decomposer, the Merger, the Opti-
mizer, and the Planner. The GTM also contains the global data dictionary (GDD).
The GTM’s overall responsibility is to manage user requests (queries and commands
wrapped inside transactions). The UI accepts user requests and translates them into an
internal representation suitable for processing. After translation, the request is passed to
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Figure 1.11 Bottom–up DDBE software architecture.

the Decomposer to break it up, if necessary, into subrequests that need to be processed
by individual local DP (and DBMS) systems. The Decomposer parses the request first
to find out the name of the tables (fragments), their columns, and predicates (join pred-
icates and nonjoin predicates). The Decomposer then looks up the GDD to find out
information about the location of the tables/fragments that are in the request. Based
on this information, the Decomposer generates a set of local subrequests. These subre-
quests can run on individual local DP systems. The local subrequests are then handed
out to the Optimizer. Similar to a local DBMS, the Optimizer and Planner work together
and use the information they get from the GDD about replication, fragmentation, and
communication link speeds to generate an optimized execution plan. The plan is then
given to the DEM to be carried out.

The underlying DDBE Platform must supply the necessary services to guarantee
the delivery of the requests and the responses. There are several implementation alter-
natives to choose from, but the primary role of whichever one we choose to use is
to hide the specifics of these communication requirements from the DEM. We will
discuss the DDBE Platform requirements in Chapter 14, and we will look at some of
the implementation alternatives in Unit 3.

The job of the DEM is straightforward. The DEM simply executes the steps in the
distributed execution plan by coordinating with the local execution managers (LEMs)
contained within the DPs at the target sites. Once the local sites return the results to
the DEM, they are passed to the Merger subsystem within GTM for assembly. For
example, the Merger may have to join rows from two vertical partitions of a given
table or may have to union rows from two horizontal partitions of a given table. We
will discuss the rules for merging result fragments in Chapter 2.
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Figure 1.12 Generic DDBE software architecture.

1.6.2.2 Components of the Data Processor The data processor consists of the LEM
and the necessary data services we discussed in Section 1.3. Once again, the DDBE
Platform is responsible for providing the necessary communications support at the
local site. It guarantees end-to-end message delivery and hides details and issues with
communications from the rest of the modules at each site. The primary responsibility
of each LEM is to act on behalf of the DEM at the local site. It will receive the
subrequests that pertain to the data at its site, interface with the local DB (through the
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local DBMS, DA, or DG), run the requests, collect the results, and then pass those
results back to the DEM. When the subrequest is a query, these results contain actual
data content; when the subrequests are commands, these results might contain details
about the number of rows affected. In both cases, these results contain execution status
information (success or failure), and perhaps additional details about the execution
(warning messages, error messages, etc.)

1.7 TRANSACTION MANAGEMENT IN DISTRIBUTED SYSTEMS

As discussed, transactions in a distributed system can access data at more than one site.
Each transaction consists of a number of subtransactions that must run at a site where
the data is. Each subtransaction represents an agent for the distributed transaction.
Each agent must be able to commit at a local site for the global transaction to commit.
If the global transaction cannot commit, none of the subtransactions commit either.
Figure 1.13 shows a fund transfer transaction (T1) that transfers the amount “amt”
from account x at Site A to account y at Site B. We designate the agents of transaction
T1 at Sites A and B as T1A and T1B.

How does the system carry out this distributed transaction? The answer depends
on the overhead of communication involved in execution of the transaction. Before
getting into the details of executing this transaction, let us review what we have already
outlined in this chapter. The global transaction manager (GTM) produces the distributed
execution plan. This plan, as we will discuss in Chapter 4, is an optimized plan that the
DEM must execute. The DEM is responsible for carrying out the plan by coordinating
the activities of some LEMs that act as the distributed transaction’s agents.

Figure 1.13 A distributed fund transfer transaction.
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Figure 1.14 An example of a three-site distributed transaction.

Example 1.1 Consider a three-site system as shown in Figure 1.14, where transac-
tion T1 enters the system at Site 1. Transaction T1 needs to reads the total balance
for accounts 100, 200, and 300. Let’s assume that the account table is horizontally
fragmented across three sites. Site 1 holds accounts 1 to 150, Site 2 holds accounts
151 to 250, and Site 3 holds accounts 251 and higher. If X, Y, and Z represent the
balances for accounts 100, 200, and 300, respectively, we can execute this distributed
transaction as follows:

Send "necessary commands" to Site 1 to read "X" from DB1;
Send "necessary commands" to Site 2 to read "Y" from DB2;
Send "necessary commands" to Site 3 to read "Z" from DB3;
Receive "X" from Site 1;
Receive "Y" from Site 2;
Receive "Z" from Site 3;
Calculate Result = X + Y + Z;
Display Result to User;

Note that the Decomposer must know that the account table has three horizontal
fragments called Acct1, Acct2, and Acct3. Based on the fragmentation assumptions we
have made, account 100 is stored at Site 1, account 200 is stored at Site 2, and account
300 is stored at Site 3. For this example, the DEM needs to send two commands to the
LEM at Site 2. One command is to read the balance of account 200. This command
in SQL is “Select bal into Y from Account where A# = 200.” The second command
is an instruction to Site 2 to send the results back to Site 1. Site 1 packages these two
commands in one message and sends the message to Site 2. In response, Site 2 sends
the balance of account 200 in variable Y, as part of a response message, back to Site 1.
Similar commands are sent to Site 1 and Site 3.
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Figure 1.15 Detailed execution plans for DEM and its LEMs.

Since Site 1 cannot add variables X, Y, and Z until all three variables arrive at its
site, Site 1 must perform a blocking receive to achieve the necessary synchronization. A
blocking receive is a receive command that blocks the process that executes it until the
sought data has arrived at the site. Figure 1.15 shows the detailed distributed execution
plan and individual plans for each of the three LEMs. In order for the DEM and the
LEMs to be able to carry out their tasks, some services are required.

At a minimum, the system must have the ability to:

• Find the server address where the agent is going to run
• Remotely activate a process—DEM must activate its agents at remote sites
• Synchronize processes across sites—DEM must wait for LEMs to send their

results to continue
• Transfer commands and receive results from its agents
• Transfer temporary data across sites—a select may return more than one row as

its results
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• Find out and ignore any commands that might be out of order or should not be
processed

• Remotely deactivate a process—DEM needs to deactivate its agents

In the approach we used for coordinating the activities of the DEM and its LEMs, the
DEM acted as the coordinator (Master) and the LEMs acted as the followers (Slaves)
[Larson85]. Figure 1.16 depicts the Master–Slave approach to distributed execution
management.

In the Master–Slave approach, the DEM synchronizes all temporary data move-
ments. In this approach, LEMs send temporary data only to the DEM. Sometimes it is
more beneficial to send temporary data from one LEM directly to another LEM. In this
case, the DEM needs to send the proper commands and actions to the LEMs so that
the LEMs can synchronize their own activities. Larson [Larson85] calls this type of
control triangular distributed execution control. Figure 1.17 shows this type of control
across one DEM and two LEMs.

Example 1.2 For this example, we assume the system has four sites. The user enters
transaction T into the system at Site 0. There are three tables in the system defined as:

Person (SSN, Name, Profession, sal) stored at Site 1
Car (Name, Make, Year, SSN) stored at Site 2
Home (Address, No-of-rooms, SSN) stored at Site 3

For this distributed system, we want to print car and home address information
for every person who makes more than $100,000. Applying a triangular distributed
transaction control approach to this example results in the local execution plans shown
in Figure 1.18. There are four LEMs in this system. These LEMs are numbered 0
through 3, indicating the site at which each runs. Although we do not have any data
stored at Site 0, we must have one LEM there to perform the final join across the
temporary tables that other LEMs send to it. This LEM acts as the merger, which we
discussed in Section 1.1.

The synchronization mechanism used to coordinate the activities of the LEMs is
implemented via the send and receive commands. When a LEM executes a receive
command, it blocks itself until the corresponding data arrives at its site (this is an
example of a blocking execution call or a blocking messaging call; see Section 14.3.1

Figure 1.16 Master–Slave distributed transaction control.
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Figure 1.17 Triangular distributed transaction control.

Figure 1.18 Local execution plans for Example 1.2.

for further details). For our example, the only LEM that can start processing immedi-
ately after activation is LEM 1 (see Figure 1.18a). That is because this LEM does not
execute a receive command right away. On the other hand, all the other LEMs execute
a receive command first. This action blocks these processes until the necessary data
arrives at their sites.

It should be clear by now that the distributed execution plan—the plan that the
DEM must run—contains the local commands that must be sent to the four LEMs.
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Figure 1.19 Distributed execution plan for Example 1.2.

Figure 1.19 depicts the distributed execution plan for this example. This execution
strategy obviously uses a triangular control approach. As seen from this figure, the
distributed execution plan contains only four messages that the DEM must send. Each
one of these messages consists of the commands that one LEM must run. Obviously,
since the DEM and LEM 0 are at the same site (Site 0), the message that the DEM
sends to LEM 0 is a local message.



30 INTRODUCTION

Example 1.3 Assume the table “EMP(EmpID, Name, Loc, Sal)” is horizontally frag-
mented into fragments MPLS−Farg, LA−Frag, and NY−Frag. Each horizontal fragment
stores information about those employees who work at the corresponding location.
LA−Frag stores information about employees who work in LA, NY−Frag contains
information about employees who work in NY, and MPLS−Frag contains information
about employees who work in MPLS. Transaction T enters the DEM deployed in St.
Paul and needs to figure out the average salary for all employees in the company.
An unoptimized query execution plan would try to reconstruct the EMP table from its
fragments by sending all rows from all fragments to St. Paul and then using the SQL
aggregate function AVG(sal) as

Select AVG(sal) From EMP;

If each row of the table takes one message to send from any site to any other site,
this strategy would require as many messages as the total number of employees in
the organization. However, we can execute this transaction using a small number of
messages. The idea is not to materialize the EMP table but to figure out the average
salary from the three fragments mathematically as

AVG(sal) =
(SAL_LA+SAL_MPLS+SAL_NY)/(count_LA+count_MPLS+count_NY)

In this formula, each “SAL” variable represents the total salary for the employees
in its corresponding fragment, and each “count” variable indicates the total number of
employees in its fragment. Once we realize this, we can use the Master–Slave control
as shown Figure 1.20 to get the results. Note that in this figure, we use the LEM at
St. Paul as the merger of the results from the local sites. Since this LEM does not
have to perform any database operation, there is no need for a DBMS at St. Paul. In a

Figure 1.20 Master–Slave execution plan for query in Example 1.3.
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Figure 1.21 Distributed and local execution plans for query in Example 1.3.

nonoptimized approach as discussed above, the St. Paul LEM would require a DBMS
to run the select statement that calculates the average salary.

Figure 1.21 shows the local execution plans for each LEM and the distributed
execution plan for the DEM. As seen from this figure, the Master–Salve execution
control takes six messages. A careful reader realizes that using a triangular execution
control would require only four messages. We leave this as an exercise for the readers.

1.8 SUMMARY

Centralized database environments and specifically distributed database environments
are complex systems composed of many subsystems, components, and services. This
book discusses issues in implementing a DDBE. The emphasis of the book is on
the practical aspects of implementing a DDBE. In this chapter, we have outlined the
architecture of a DDBE and have discussed approaches to controlling the execution of
a transaction.
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1.9 GLOSSARY

Data Content A data value (or set of data values) stored in a database.
Data Model (DM) A representation of the structure of data.
Data Modeling Language (ML) See Modeling Language.
Data Read Service (Drd-S) A DBE service that provides the ability to retrieve data

from the database.
Data Schema See Data Model.
Data Write Service (Dwr-S) A DBE service that provides the ability to write data

to the database.
Database (DB) A collection of data organized according to one or more data models.
Database Client (DB-Client) An agent interfacing to a database either interactively

or as an application.
Database Environment (DBE) A collection of one or more DBs along with any

software providing at least the minimum set of required data operations and man-
agement facilities.

Database Management System (DBMS) A collection of software services or com-
ponents that control access to, and modification of, data in a database.

Database Server (DB-Server) A collection of software services (or a particular
deployed instance of those services) that handles the interface to the database for
database clients.

Deadlock Handling Service (Dead-S) The service that handles deadlocks in a DBE.
Distributed Database (DDB) A collection of software that allows several databases

to operate as though they were part of a single database, even though they are
actually separate and possibly deployed at different sites.

Execution Optimization Service (Eopt-S) A DBE service that optimizes execution
of the user’s create, update, and delete commands.

Execution Service (Exec-S) A DBE service that provides the ability to create,
update, and delete data.

Fallback and Recovery Service (Rec-S) A DBE service that guarantees availability
of the database even when failures happen.

Locking Service (Lock-S) A service that provides for data component locking capa-
bility.

Metadata A piece or set of information about data.
Modeling Language (ML) A vocabulary and set of rules used to define a model.

Typically, there are also hints or suggestions for diagrammatic representations of
the model, but this is not strictly speaking a requirement. For example, consider
the Entity Relationship Modeling technique described by Dr. Chen, the Relational
Model as formalized by Dr. Codd and the ANSI standard, or each proprietary
Structured Query Language (SQL) defined by a particular RDBMS implementation.

Persistent Data Data that is stored to secondary storage (hard drive).
Query A formulation of a user’s request to retrieve data, typically involving some

criteria that control the filtering or formatting of the data that is returned.
Query Optimization Service (Qopt-S) A DBE service that optimizes the plan used

to execute queries.
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Query Request Service (Qreq-S) A DBE service that allows users to query the
data in a database.

Replication Service (Repl-S) A DBE service that manages multiple copies of the
same data (including duplicate tables and/or duplicate databases).

Secondary Storage A storage facility that does not lose its contents upon power
shutdown (hard drive).

Security Service (Sec-S) A service that guards the database against unwanted and
unauthorized access.

Semantic Integrity Service (Semi-S) A service that preserves the integrity and
consistency of the data in a database.

Service A logical collection (specification/design) of well-defined, cohesively related
functionality or a software instance (physical collection) that implements this func-
tionality.

Service Consumer A component or subsystem that uses a set of functionality imple-
mented by some other component or subsystem (consumes a service implemented
by some service provider).

Service Provider A component or subsystem that implements a set of functionality
and makes it available to other components and subsystems (provides a service to
be used by some service consumer).

Subsystem A collection of components and/or subsystems that is part of a larger
system but also a system in its own right.

Timestamping Service (Time-S) A DBE service that creates a real and/or logical
clock reading as a timestamp.

Transaction Management Service (Tran-S) A DBE service guaranteeing that either
all the CRUD operations within a well-defined set (called a transaction or a logical-
unit-of-work) are committed to the database or none of them are committed to the
database.
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2
DATA DISTRIBUTION ALTERNATIVES

In a distributed database management system (DDBMS) data is intentionally distributed
to take advantage of all computing resources that are available to the organization. For
these systems, the schema design is done top–down. A top–down design approach
considers the data requirements of the entire organization and generates a global
conceptual model (GCM) of all the information that is required. The GCM is then
distributed across all appropriate local DBMS (LDBMS) engines to generate the local
conceptual model (LCM) for each participant LDBMS. As a result, DDBMSs always
have one and only one GCM and one or more LCM. Figure 2.1 depicts the top–down
distribution design approach in a distributed database management system.

By contrast, the design of a federated database system is done from the bottom–up.
A bottom–up design approach considers the existing data distributed within an orga-
nization and uses a process called schema integration to create at least one unified
schema (Fig. 2.2). The unified schema is similar to the GCM, except that there can be
more than one unified schema. Schema integration is a process that uses a collection
of existing conceptual model elements, which have previously been exported from one
or more LCMs, to generate a semantically integrated model (a single, unified schema).
We will examine the details of federated database systems in Chapter 12.

Designers of a distributed database (DDB) will decide what distribution alternative
is best for a given situation. They may decide to keep every table intact (all rows and
all columns of every table are stored in the same DB at the same Site) or to break
up some of the tables into smaller chunks of data called fragments or partitions.
In a distributed database, the designers may decide to store these fragments locally
(localized) or store these fragments across a number of LDBMSs on the network
(distributed).

Distributed Database Management Systems by Saeed K. Rahimi and Frank S. Haug
Copyright © 2010 the IEEE Computer Society

35



36 DATA DISTRIBUTION ALTERNATIVES

Figure 2.1 The top–down design process for a distributed database system.

Distributed tables can have one of the following forms:

• Nonreplicated, nonfragmented (nonpartitioned)
• Fully replicated (all tables)
• Fragmented (also known as partitioned)
• Partially replicated (some tables or some fragments)
• Mixed (any combination of the above)

The goal of any data distribution is to provide for increased availability, reliability,
and improved query access time. On the other hand, as opposed to query access time,
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distributed data generally takes more time for modification (update, delete, and insert).
The impact of distribution on performance of queries and updates is well studied
by researchers [Ceri87], [Özsu99]. It has been proved that for a given distribution
design and a set of applications that query and update distributed data, determining
the optimal data allocation strategy for database servers in a distributed system is an
NP-complete problem [Eswaren74]. That is why most designers are not seeking the
best data distribution and allocation design but one that minimizes some of the cost
elements. We will examine the impact of distribution on the performance of queries
and updates in more detail in Chapter 4.

2.1 DESIGN ALTERNATIVES

In this section, we will explore the details of each one of the design alternatives
mentioned earlier.

2.1.1 Localized Data

This design alternative keeps all data logically belonging to a given DBMS at one
site (usually the site where the controlling DBMS runs). This design alternative is
sometimes called “not distributed.”

2.1.2 Distributed Data

A database is said to be distributed if any of its tables are stored at different sites; one
or more of its tables are replicated and their copies are stored at different sites; one or
more of its tables are fragmented and the fragments are stored at different sites; and so
on. In general, a database is distributed if not all of its data is localized at a single site.

2.1.2.1 Nonreplicated, Nonfragmented This design alternative allows a designer to
place different tables of a given database at different sites. The idea is that data should
be placed close to (or at the site) where it is needed the most. One benefit of such
data placement is the reduction of the communication component of the processing
cost. For example, assume a database has two tables called “EMP” and “DEPT.” A
designer of DDBMS may decide to place EMP at Site 1 and DEPT at Site 2. Although
queries against the EMP table or the DEPT table are processed locally at Site 1 and
Site 2, respectively, any queries against both EMP and DEPT together (join queries)
will require a distributed query execution. The question that arises here is, “How
would a designer decide on a specific data distribution?” The answer depends on the
usage pattern for these two tables. This distribution allows for efficient access to each
individual table from Sites 1 and 2. This is a good design if we assume there are a high
number of queries needing access to the entire EMP table issued at Site 1 and a high
number of queries needing access to the entire DEPT table issued at Site 2. Obviously,
this design also assumes that the percentage of queries needing to join information
across EMP and DEPT is low.

2.1.2.2 Fully Replicated This design alternative stores one copy of each database
table at every site. Since every local system has a complete copy of the entire database,
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all queries can be handled locally. This design alternative therefore provides for the
best possible query performance. On the other hand, since all copies need to be in
sync—show the same values—the update performance is impacted negatively. Design-
ers of a DDBMS must evaluate the percentage of queries versus updates to make sure
that deploying a fully replicated database has an overall acceptable performance for
both queries and updates.

2.1.2.3 Fragmented or Partitioned Fragmentation design approach breaks a table
up into two or more pieces called fragments or partitions and allows storage of these
pieces in different sites.

There are three alternatives to fragmentation:

• Vertical fragmentation
• Horizontal fragmentation
• Hybrid fragmentation

This distribution alternative is based on the belief that not all the data within a table
is required at a given site. In addition, fragmentation provides for increased parallelism,
access, disaster recovery, and security/privacy. In this design alternative, there is only
one copy of each fragment in the system (nonreplicated fragments). We will explain
how each of the above fragmentation schemes works in Section 2.2.

2.1.2.4 Partially Replicated In this distribution alternative, the designer will make
copies of some of the tables (or fragments) in the database and store these copies at
different sites. This is based on the belief that the frequency of accessing database
tables is not uniform. For example, perhaps Fragment 1 of the EMP table might be
accessed more frequently than Fragment 2 of the table. To satisfy this requirement, the
designer may decide to store only one copy of Fragment 2, but more than one copy of
Fragment 1 in the system. Again, the number of Fragment 2 copies needed depends on
how frequently these access queries run and where these access queries are generated.

2.1.2.5 Mixed Distribution In this design alternative, we fragment the database as
desired, either horizontally or vertically, and then partially replicate some of the frag-
ments.

2.2 FRAGMENTATION

As outlined earlier, fragmentation requires a table to be divided into a set of smaller
tables called fragments. Fragmentation can be horizontal, vertical, or hybrid (a mix
of horizontal and vertical). Horizontal fragmentation can further be classified into two
classes: primary horizontal fragmentation (PHF) and derived horizontal fragmen-
tation (DHF). When thinking about fragmentation, designers need to decide on the
degree of granularity for each fragment. In other words, how many of the table columns
and/or rows should be in a fragment? The range of options is vast. At one end, we
can have all the rows and all the columns of the table in one fragment. This obviously
gives us a nonfragmented table; the grain is too coarse if we were planning to have at
least one fragment. At the other end, we can put each data item (a single column value
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for a single row) in a separate fragment. This grain obviously is too fine: it would be
hard to manage and would add too much overhead to processing queries. The answer
should be somewhere in between these two extremes. As we will explain later, the
optimal solution depends on the type and frequency of queries that applications run
against the table. In the rest of this section, we explore each fragmentation type and
formalize the fragmentation process.

2.2.1 Vertical Fragmentation

Vertical fragmentation (VF) will group the columns of a table into fragments. VF must
be done in such a way that the original table can be reconstructed from the fragments.
This fragmentation requirement is called “reconstructiveness.” This requirement is used
to reconstruct the original table when needed. As a result, each VF fragment must
contain the primary key column(s) of the table. Because each fragment contains a
subset of the total set of columns in the table, VF can be used to enforce security
and/or privacy of data. To create a vertical fragment from a table, a select statement is
used in which “Column_list” is a list of columns from R that includes the primary key.

Select Column_list from R;

Example 2.1 Consider the EMP table shown in Figure 2.3. Let’s assume that for
security reasons the salary information for employees needs to be maintained in the
company headquarters’ server, which is located in Minneapolis.

To achieve this, the designer will fragment the table vertically into two fragments
as follows:

Create table EMP_SAL as
Select EmpID, Sal
From EMP;

Figure 2.3 The nonfragmented version of the EMP table.
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Create table EMP_NON_SAL as
Select EmpID, Name, Loc, DOB, Dept
From EMP;

EMP_SAL contains the salary information for all employees while EMP_NON_SAL
contains the nonsensitive information. These statements generate the vertical fragments
shown in Figure 2.4a, 2.4b from the EMP table.

After fragmentation, the EMP table will not be stored physically anywhere. But, to
provide for fragmentation transparency—not requiring the users to know that the EMP
table is fragmented—we have to be able to reconstruct the EMP table from its VF
fragments. This will give the users the illusion that the EMP table is stored intact. To
do this, we will use the following join statement anywhere the EMP table is required:

Figure 2.4 The vertical fragments of the EMP table.
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Select EMP_SAL.EmpID, Sal, Name, Loc, DOB, Dept
From EMP_SAL, EMP_NON_SAL
Where EMP_SAL.EmpID = EMP_NON_SAL.EmpID;

Note: This join statement can be used in defining a view called “EMP” and/or can
be used as an in-line view in any select statement that uses the virtual (physically
nonexisting) table “EMP.”

2.2.2 Horizontal Fragmentation

Horizontal fragmentation (HF) can be applied to a base table or to a fragment of a table.
Note that a fragment of a table is itself a table. Therefore, in the following discussion
when we use the term table, we might refer to a base table or a fragment of the table.
HF will group the rows of a table based on the values of one or more columns. Similar
to vertical fragmentation, horizontal fragmentation must be done in such a way that the
base table can be reconstructed (reconstructiveness). Because each fragment contains
a subset of the rows in the table, HF can be used to enforce security and/or privacy of
data. Every horizontal fragment must have all columns of the original base table. To
create a horizontal fragment from a table, a select statement is used. For example, the
following statement selects the row from R satisfying condition C:

Select * from R where C;

As mentioned earlier, there are two approaches to horizontal fragmentation. One is
called primary horizontal fragmentation (PHF) and the other is called derived horizontal
fragmentation (DHF).

2.2.2.1 Primary Horizontal Fragmentation Primary horizontal fragmentation (PHF)
partitions a table horizontally based on the values of one or more columns of the table.
Example 2.2 discusses the creation of three PHF fragments from the EMP table based
on the values of the Loc column.

Example 2.2 Consider the EMP table shown in Figure 2.3. Suppose we have three
branch offices, with each employee working at only one office. For ease of use, we
decide that information for a given employee should be stored in the DBMS server at
the branch office where that employee works. Therefore, the EMP table needs to be
fragmented horizontally into three fragments based on the value of the Loc column as
shown below:

Create table MPLS_EMPS as
Select *
From EMP
Where Loc = ‘Minneapolis’;

Create table LA_EMPS as
Select *
From EMP
Where Loc = ‘LA’;
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Create table NY_EMPS as
Select *
From EMP
Where Loc = ‘New York’;

This design generates three fragments, shown in Figure 2.5a,b,c. Each fragment can
be stored in its corresponding city’s server.

Again, after fragmentation, the EMP table will not be physically stored anywhere.
To provide for horizontal fragmentation transparency, we have to be able to reconstruct
the EMP table from its HF fragments. This will give the users the illusion that the EMP
table is stored intact. To do this, we will use the following union statement anywhere
the EMP table is required:

(Select * from MPLS_EMPS
Union
Select * from LA_EMPS)

Union
Select * from NY_EMPS;

Figure 2.5 The horizontal fragments of the EMP table with fragments based on Loc.
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2.2.2.2 Derived Horizontal Fragmentation Instead of using PHF, a designer may
decide to fragment a table according to the way that another table is fragmented.
This type of fragmentation is called derived horizontal fragmentation (DHF). DHF is
usually used for two tables that are naturally (and frequently) joined. Therefore, storing
corresponding fragments from the two tables at the same site will speed up the join
across the two tables. As a result, an implied requirement of this fragmentation design
is the presence of a join column across the two tables.

Example 2.3 Figure 2.6a shows table “DEPT(Dno, Dname, Budget, Loc),” where
Dno is the primary key of the table. Let’s assume that DEPT is fragmented based
on the department’s city. Applying PHF to the DEPT table generates three horizontal
fragments, one for each of the cities in the database, as depicted in Figure 2.6b,c,d.

Now, let’s consider the table “PROJ,” as depicted in Figure 2.7a. We can partition
the PROJ table based on the values of Dno column in the DEPT table’s fragments with
the following SQL statements. These statements will produce the derived fragments
from the PROJ table as shown in Figure 2.7b,c. Note that there are no rows in PROJ3,
since department “D4” does not manage any project.

Figure 2.6 The fragments of the DEPT table with fragments based on Loc.
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Figure 2.7 The PROJ table and its component DHF fragments.

Create table PROJ1 as
Select Pno, Pname, Budget, PROJ.Dno
From PROJ, MPLS_DEPTS
Where PROJ.Dno = MPLS_DEPTS.Dno;

Create table PROJ2 as
Select Pno, Pname, Budget, PROJ.Dno
From PROJ, NY_DEPTS
Where PROJ.Dno = NY_DEPTS.Dno;

Create table PROJ3 as
Select Pno, Pname, Budget, PROJ.Dno
From PROJ, LA_DEPTS
Where PROJ.Dno = LA_DEPTS.Dno;

It should be rather obvious that all the rows in PROJ1 have corresponding
rows in the MPLS_DEPTS fragment, and similarly, all the rows in PROJ2 have
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corresponding rows in the NY_DEPTS fragment. Storing a derived fragment at
the same database server where the deriving fragment is, will result in better
performance since any join across the two tables’ fragments will result in a 100% hit
ratio (all rows in one fragment have matching rows in the other).

Example 2.4 For this example, assume that sometimes we want to find those projects
that are managed by the departments that have a budget of less than or equal to
500,000 (department budget, not project budget) and at other times we want to find
those projects that are managed by the departments that have a budget of more than
500,000. In order to achieve this, we fragment DEPT based on the budget of the
department. All departments with a budget of less than or equal to 500,000 are stored
in DEPT4 and other departments are stored in the DEPT5 fragment. Figures 2.8a
and 2.8b show DEPT4 and DEPT5, respectively.

To easily answer the type of questions that we have outlined in this example, we
should create two derived horizontal fragments of the PROJ table based on DEPT4
and DEPT5 as shown below.

Create table PROJ5 as
Select Pno, Pname, Budget, PROJ.Dno
From PROJ, DEPT4
Where PROJ.Dno = DEPT4.Dno;

Create table PROJ6 as
Select Pno, Pname, Budget, PROJ.Dno
From PROJ, DEPT5
Where PROJ.Dno = DEPT5.Dno;

Figure 2.9 shows the fragmentation of the PROJ table based on these SQL state-
ments.

Figure 2.8 The DEPT table fragmented based on Budget column values.
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Figure 2.9 The derived fragmentation of PROJ table based on the fragmented DEPT table.

2.2.3 Hybrid Fragmentation

Hybrid fragmentation (HyF) uses a combination of horizontal and vertical fragmenta-
tion to generate the fragments we need. There are two approaches to doing this. In the
first approach, we generate a set of horizontal fragments and then vertically fragment
one of more of these horizontal fragments. In the second approach, we generate a
set of vertical fragments and then horizontally fragment one or more of these vertical
fragments. Either way, the final fragments produced are the same. This fragmentation
approach provides for the most flexibility for the designers but at the same time it is
the most expensive approach with respect to reconstruction of the original table.

Example 2.5 Let’s assume that employee salary information needs to be maintained
in a separate fragment from the nonsalary information as discussed above. A vertical
fragmentation plan will generate the EMP_SAL and EMP_NON_SAL vertical frag-
ments as explained in Example 2.1. The nonsalary information needs to be fragmented
into horizontal fragments, where each fragment contains only the rows that match the
city where the employees work. We can achieve this by applying horizontal fragmen-
tation to the EMP_NON_SAL fragment of the EMP table. The following three SQL
statements show how this is achieved.

Create table NON_SAL_MPLS_EMPS as
Select *
From EMP_NON_SAL
Where Loc = ‘Minneapolis’;

Create table NON_SAL_LA_EMPS as
Select *
From EMP_NON_SAL
Where Loc = ‘LA’;
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Create table NON_SAL_NY_EMPS as
Select *
From EMP_NON_SAL
Where Loc = ‘New York’;

The final distributed database is depicted in Figure 2.10.
Observation: The temporary EMP_NON_SAL fragment is not physically stored

anywhere in the system after it has been horizontally fragmented. As a result, one
can bypass generating this fragment by using the following set of SQL statements to
generate the required fragments directly from the EMP table.

Figure 2.10 The fragments of the EMP table.
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Create table NON_SAL_MPLS_EMPS as
Select EmpID, Name, Loc, DOB, Dept
From EMP
Where Loc = ‘Minneapolis’;

Create table NON_SAL_LA_EMPS as
Select EmpID, Name, Loc, DOB, Dept
From EMP
Where Loc = ‘LA’;

Create table NON_SAL_NY_EMPS as
Select EmpID, Name, Loc, DOB, Dept
From EMP
Where Loc = ‘New York’;

2.2.4 Vertical Fragmentation Generation Guidelines

There are two approaches to vertical fragmentation design—grouping and
splitting—proposed in the literature [Hoffer75] [Hammer79] [Sacca85]. In the
remainder of this section, we will first provide an overview of these two options and
then present more detail for the splitting option.

2.2.4.1 Grouping Grouping is an approach that starts by creating as many vertical
fragments as possible and then incrementally reducing the number of fragments by
merging the fragments together. Initially, we create one fragment per nonkey column,
placing the nonkey column and the primary key of the table into each vertical fragment.
This first step creates as many vertical fragments as the number of nonkey columns in
the table. Most of the time, this degree of fragmentation is too fine and impractical.
The grouping approach uses joins across the primary key, to group some of these
fragments together, and we continue this process until the desired design is achieved.
Aside from needing to fulfill the requirements for one or more application, there are
very few restrictions placed upon the groups (fragments) we create in this approach.
For example, the same nonkey column can participate in more than one group—that
is, groups can have overlapping (nonkey) columns. If this “overlap” does occur, obvi-
ously, it will add to the overhead of replication control in a distributed DBMS system.
As a result, grouping is not usually considered a valid approach for vertical fragmen-
tation design. For more details on grouping see [Hammer79] and [Sacca85]. Hammer
and Niamir introduced grouping for centralized DBMSs and Sacca and Wiederhold
discussed grouping for distributed DBMSs.

2.2.4.2 Splitting Splitting is essentially the opposite of grouping. In this approach,
a table is fragmented by placing each nonkey column in one (and only one) frag-
ment, focusing on identifying a set of required columns for each vertical fragment. As
such, there is no overlap of nonprimary key columns in the vertical fragments that are
created using splitting. Hoffer and Severance [Hoffer75] first introduced splitting for
centralized systems, while Navathe and colleagues [Navathe84] introduced splitting for
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distributed systems. There is general consensus that finding an ideal vertical fragmen-
tation design—one that satisfies the requirements for a large set of applications—is
not feasible. In an ideal vertical fragment design, each application would only need
to access the columns in one vertical fragment. If certain sets of columns are always
processed together by the application, the process used to create this design is trivial.
But real-life applications do not always behave as we wish. Hence, for a database that
contains many tables with many columns, we need to develop a systematic approach
for defining our vertical fragmentation.

As pointed out by Hammer and Niamir [Hammer79], there is a direct correlation
between the number of columns in a table and the number of the possible verti-
cal fragmentation options. A table with m columns can be vertically partitioned into
B(m) different alternatives, where B(m) is the mth Bell number. For large m, B(m)
approaches mm. For example, if a table has 15 columns, then the number of possi-
ble vertical fragments is 109 and the number of vertical fragments for a table with
30 columns is 1023. Obviously, evaluating 109 (or 1,000,000,000) alternatives for a
15-column table is not practical. Instead of evaluating all possible vertical fragments,
designers can use the metric affinity or closeness of columns to each other to decide
whether or not a group of columns should be put in the same fragment. The affinity
of columns expresses the extent to which they are used together in processing. By
combining the access frequency of applications to columns of a table with the usage
pattern of these applications, one can create the affinity matrix that forms the basis for
vertically fragmenting the table.

Splitting in Distributed Systems In this section, we will outline the proposal by Navathe
and colleagues [Navathe84] in conjunction with an example. For further details about
the approach, the reader should see the referenced publication.

Example 2.6 Consider applications “AP1”, “AP2”, “AP3”, and “AP4” as shown.
These applications work on the table “T” defined as “T(C, C1, C2, C3, C4),” where
C is the primary key column of the table.

AP1: Select C1 from T where C4 = 100;
AP2: Select C4 from T;
AP3: Update T set C3 = 15 where C2 = 50;
AP4: Update T set C1 = 5 where C3 = 10;

Usage Matrix For a single site system, these applications are local and will have
the usage matrix depicted in Figure 2.11. As can be seen, the usage matrix is a two-
dimensional matrix that indicates whether or not an attribute (column) is used by an
application. The cell in position (APi, Cj) is set to 1 if application “APi” accesses
column “Cj,” otherwise it is set to 0.

Observation 1: The usage matrix only indicates if a column is used by an appli-
cation. However, the matrix does not show how many times an application accesses
the table columns during a given time period. The access frequency is a term that
represents how many times an application runs in a given period of time. The period
of this measurement can be an hour, a day, a week, a month, and so on—as decided
by the designer. Figure 2.12 depicts the expansion of the usage matrix to include the
access frequency of each application.



FRAGMENTATION 51

Figure 2.11 Single site usage matrix for Example 2.6.

Figure 2.12 Expansion of usage matrix.

Observation 2: Neither the usage matrix nor the access frequencies have any indica-
tion of distribution. In a distributed system, however, an application can have different
frequencies at different sites. For example, in a four-site system, AP2 might run four
times at S2 and three times at S3. It is also possible that AP2 might run seven times
at site S2 and zero times everywhere else. In both cases, the frequency would still be
shown as seven in the usage matrix. Also, each time the application runs at a site it
might make more than one access to the table (and its columns). For example, suppose
we had another application, AP5, defined as follows:

Begin AP5
Select C1 from T where C4 = 100;
Select C4 from T;

End AP1;

In this case, AP5 makes two references to T each time it runs. As a result, the actual
access frequency for AP5 is calculated as “ACC(Pi) * REF (Pi),” where ACC(Pi) is
the number of times the application runs and REF (Pi) is the number of accesses Pi
makes to T every time it runs. To simplify the discussion, we assume “REF(Pi) = 1”
for all processes, which results in “ACC(Pi) * REF(Pi) = ACC(Pi).”

If we include the access frequencies of the applications at each site for our original
example (without AP5), this makes the usage matrix a three-dimensional matrix, where
in the third axis we maintain the frequency of each application for each site. Since such
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Figure 2.13 Access frequencies for a distributed system.

representation is difficult to display on two-dimensional paper, we flatten the matrix
as shown in Figure 2.13.

By adding access frequencies for each application across all sites, we can get the
affinity or closeness that each column has with the other columns referenced by the
same application. This matrix is called the process column affinity matrix, and it is
shown for this example in Figure 2.14.

The first row in this matrix shows the affinity of C1 to C4 (or C4 to C1) for AP1
being 3. Similarly, the third row indicates the affinity of C2 to C3 (or C3 to C2) for
AP3 being 4; C1 to C3 (or C3 to C1) for AP4 being 3; and so on. Note that since
AP2 only uses C4, for AP2 there is no affinity between C4 and other columns. In
order to capture these affinities, we can remove the application names from the matrix
and create a two-dimensional matrix as shown in Figure 2.15. This matrix shows the
affinity of each column of the table with other column(s) regardless of the applications
that use them. We call this the affinity matrix.

Notice in Figure 2.15 that the diagonal cells—cells in position “(i,i)” for “i = 1 to
4”—have value 0. Since the diagonal cells do not store any values, we can calculate
the affinity of column Ci with respect to all the other columns and store this value
in “Cell(i,i)” in the matrix. C1 has an affinity with C3 weighted at 3 and an affinity
with C4 weighted at 3. Therefore, the affinity of C1 across all applications at all sites
is found by summing its affinity weights with all the other columns, “3 + 3 = 6.” We
will insert this total affinity value in “Cell(1,1).” Similarly, C3 has two affinities—one
with C1 weighted at 3 and one with C2 weighted at 4. C3 has the total affinity value of

Figure 2.14 Process column affinity matrix.
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Figure 2.15 The affinity matrix.

Figure 2.16 Affinity matrix with diagonal values calculated.

“3 + 4 = 7” for all applications across all sites, which we insert in “Cell(3,3).” Adding
up all affinities of each column (summing across the rows), we can calculate the total
affinity for each column, storing them in the diagonal cells. Figure 2.16 shows the
results. In the next section, we will discuss an algorithm that generates our vertical
fragmentation design based on the affinity information contained in this matrix.

The Bond Energy Algorithm The information in the affinity matrix shown in
Figure 2.16 can be used to cluster the columns of T together. McCormick and col-
leagues suggest using the Bond Energy Algorithm (BEA) [McCormick72] for this.
This algorithm takes the affinity matrix as an input parameter and generates a new
matrix called the clustered affinity matrix as its output. The clustered affinity matrix
is a matrix that reorders the columns and rows of the affinity matrix so that the
columns with the greatest affinity for each other are “grouped together” in the same
cluster—which is then used as the basis for splitting our table into vertical fragments.
Details of this algorithm are outside the scope of this chapter. In what follows, we will
only discuss the steps in the algorithm for our example.

Step 1: Placement of the First Two Columns . In this step, we place the first two
columns of the affinity matrix into a new matrix (the clustered affinity matrix). In
our example, the first two columns are C1 and C2. According to McCormick and
colleagues, the bond energy of any two columns such as “X1” and “X2”—shown
as “Bond(X1, X2)”—is the row-wise sum of the product of the affinity values for
X1 and X2, taken from the affinity matrix. Figure 2.17 shows this bond energy
calculation for C1 and C2 of our example. In this figure, we created a new matrix
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Figure 2.17 The Bond calculation for columns C1 and C2 of Example 2.6.

by first copying the first two columns from the affinity matrix. Next, we augmented
this new matrix by adding a new “product” column, where we show the result of the
product (multiplication) of the two values in the same row, to the left of the column.
For example, the product for row “C3” in this figure is 12, because “3 ∗ 4 = 12.”
Finally, we augmented it again by including the “Bond” row, which simply stores
the sum of all the product column’s values.

Step 2: Placement of Remaining Columns . In this step, we place each of the remaining
columns (C3 and C4 in our example), one at a time, into the new clustered affinity
matrix—which we have not actually shown yet, but since it only contains C1 and
C2 we can understand what it looks like without presenting it in a separate figure.
First, we will place C3, and then later C4, into the new matrix. The purpose of this
step is to determine where each “new” column should be placed. In our example,
first we need to decide “where” to add the C3 column from the affinity matrix to the
matrix that already contains C1 and C2. For C3, there are three options—to place
the C3 affinity information to the left side of C1 (making it the leftmost column in
our new matrix), to place the C3 information in between C1 and C2, or to place the
C3 affinity information on the right side of C2 (making it the rightmost column in
the new table). We then need to calculate the contribution values of all these possible
placements of the C3 affinity information, using the formula given in Equation 2.1.
Once all contribution values are calculated, we choose the ordering that provides
the highest contribution to the affinity measure.

Bond Contribution Calculation

Cont(X1, X2, X3) = 2 ∗ Bond(X1, X2) + 2 ∗ Bond(X2, X3) −
2 ∗ Bond(X1, X3) (2.1)

In general, when adding an affinity matrix column to the clustered affinity matrix,
we must consider the two boundary conditions—leftmost and rightmost positions
for the new column. The “X2” in the contribution formula is replaced with the
column being considered, while the “X1” is the column to its left and “X3” is
the column to its right. However, when we consider placing the new column in the
leftmost position, there are no columns to the left of it—therefore, we use a pseudo-
column named “C0” to represent this nonexistent column-to-the-left. Similarly, when
we consider placing the new column in the rightmost position, we use another
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pseudo-column named “Cn” to represent the nonexistent column to its right. In our
calculations, both C0 and Cn have an affinity of zero.

Therefore, when we consider adding C3 to the clustered affinity matrix for our
example, there are three ordering options: “(C3, C1, C2)”, “(C1, C3, C2)”, or “(C1,
C2, C3).” To determine which ordering yields the highest value for our affinity
measure, we must calculate the contribution of C3 being added to the left of C1,
between C1 and C2 and to the right of C2. Therefore, we need to calculate “Cont(C0,
C3, C1)”, “Cont(C1, C3, C2),” and “Cont(C2, C3, Cn)” and compare the results.

To calculate the contribution of “(C0, C3, C1),” we need to figure out the bonds
for “(C0,C3),” “(C3, C1),” and “(C0, C1).” Once we have determined these bonds,
we can use Equation 2.1 to calculate “Cont(C0, C3, C1) = 2∗ Bond(C0, C3) +2∗

Figure 2.18 Bonds for (C0, C3, C1) ordering.
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Bond(C3, C1) −2∗ Bond(C0, C1).” Figures 2.18a, 2.18b, and 2.18c depict these
bond calculations. As these figures demonstrate, the Bond function will always
return zero when either C0 or Cn is passed to it as a parameter, because C0 and Cn
always have an affinity of zero.

By replacing the Bond functions with their values in the contribution formula,
we calculate the contribution of this ordering as “Cont(C0, C3, C1) = 2 ∗ 0 + 2 ∗
39 − 2 ∗ 0 = 78.” Similarly, we can calculate the contributions of orderings “(C1,
C3, C2)” and “(C1, C2, C3)” as

For ordering (C1, C3, C2):
Bond(C1, C3) = 39
Bond(C3, C2) = 44
Bond(C1, C2) = 12
Cont(C1, C3, C2) = 2*39 + 2*44 - 2*12 = 142

For ordering (C2, C3, Cn):
Bond(C2, C3) = 44
Bond(C3, Cn) = 0
Bond(C2, Cn) = 0
Cont(C1, C2, C3) = 2*44 + 2*0 - 2*0 = 88

Based on these calculations, the ordering “(C1, C3, C2)” provides the highest
contribution. Using this ordering, Figure 2.19 shows the current definition of the
new clustered affinity matrix. Since this matrix does not have C4 in it yet, it is
called the partial clustered affinity matrix.

After adding C3 to the matrix, we are ready to add the affinity information
for C4 as the final column. Adding C4 to the matrix requires calculating contri-
butions of the orderings “(C0, C4, C1),” “(C1, C4, C3),” “(C3, C4, C2),” and
“(C2, C4, Cn).” The following are the Bonds and contributions of these ordering
options:

For ordering (C0, C4, C1):
Bond(C0, C4) = 0
Bond (C4, C1) = 27
Bond(C0, C1) = 0
Cont(C0, C4, C1) = 2*0 + 2*27 – 2 *0 = 54

Figure 2.19 The partial clustered affinity matrix.
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For ordering (C1, C4, C3):
Bond(C1, C4) = 27
Bond(C4, C3) = 9
Bond(C1, C3) = 39
Cont(C1, C4, C3) = 2*27 + 2*9 – 2*39 = –6

For ordering (C3, C4, C2):
Bond(C3, C4) = 9
Bond(C4, C2) = 0
Bond(C3, C2) = 44
Cont((C3, C4, C2) = 2*9 + 2*0 – 2*44 = –70

For ordering (C2, C4, Cn):
Bond(C2, C4) = 0
Bond(C4, Cn) = 0
Bond(C2, Cn) = 0
Cont((C1, C4, C2) = 2*0 + 2*0 - 2*0 = 0

From these contribution calculations, the ordering “(C0, C4, C1)” yields the
highest contribution and therefore is chosen. Figure 2.20 depicts the final ordering
of affinity information for the columns of table “T” within the clustered affinity
matrix.

Once the columns have been put in the right order, we order the rows similarly,
ending up with the final clustered affinity matrix as shown in Figure 2.21.

Figure 2.20 The clustered affinity matrix after rearranging the columns.

Figure 2.21 The clustered affinity matrix after rearranging the rows and the columns.
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Step 3: Partitioning the Table into Vertical Fragments . Step 3 is the last step in the
process. In this step, we need to split the clustered affinity matrix into a top portion
and a bottom portion as shown in Figure 2.22.

Among all applications that access this table, some access only the columns in
the top corner (TC), some access only the columns in the Bottom Corner (BC),
and the rest access columns in both corners (BOC). We consider (n − 1) possible
locations of the X point along the diagonal, where n is the size of the matrix (also
the number of nonkey columns of the table). A nonoverlapping partition is obtained
by selecting X such that the goal function “Z” as defined below is maximized.

Goal Function: Z = TCW * BCW – BOCW2

In Z, TCW is the total number of accesses by applications to columns in TC (only
the columns in the top corner), BCW is the total number of accesses by applications
to columns in BC (only the columns in the bottom corner), and BOCW is the total
number of accesses by applications to columns in both quadrants (must access at
least one column from TC and at least one column from BC).The partitioning that
corresponds to the maximal value of Z is accepted if Z is positive and is rejected
otherwise. This formula is based on the belief that “good” partitioning strategies
increase the values of TCW and BCW while decreasing the value of BOCW. In
order words, the approach tries to maximize the product TCW * BCW. This also
results in the selection of values for TCW and BCW that are as close to equal as
possible. Thus, the function will produce fragments that are “balanced.” To find the
splitting that yields the best partitioning of columns, we have to split the columns
into a “one-column BC” and “n − 1 column TC” first. We calculate the value of Z
for this starting point and then repeatedly add columns from TC to BC until TC is
left with only one column. From these calculations, we choose the splitting that has
the highest Z value. Recall the affinity matrix for our example (shown here again in

Figure 2.22 Partitioning of the clustered affinity matrix.
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Figure 2.23a). As shown in Figure 2.23b, we begin partitioning the table by putting
C4, C1, and C3 in TC and C2 in BC. In this figure, the “X icon” indicates the upper
left corner of BC and the bottom right corner of TC.

The TC calculation will include the affinity value for all the applications that
access one of the TC columns (C4, C1, or C3) but do not access any BC columns
(C2). In this case, applications AP1, AP2, and AP4 access TC-only columns, AP3
accesses both TC and BC columns, and no application is BC-only. We use the
function “AFF(a)” to represent the affinity for application “a.” In other words, in our
example, this is a short-hand notation for looking at the value for the affinity column
in Figure 2.23a for the row corresponding to application “a.” For this splitting option
in our example, we calculate Z as follows:

TCW = AFF(AP1) + AFF(AP2) + AFF(AP4) = 3 + 7 + 3 = 13
BCW = none = 0
BOCW = AFF(AP3) = 4
Z = 13*0 – 42 = –16

In the next step, the splitting point is going to move to the middle of the matrix,
leaving the TC and BC each with two columns as shown in Figure 2.24. Now, AP1
and AP2 remain the same, but AP3 uses BC-only columns, and AP4 uses columns
that are from both-corners.

For this splitting option, the value of Z is calculated as follows:

TCW = AFF(AP1) + AFF(AP2) = 3 + 7 = 10
BCW = AFF(AP3) = 4

Figure 2.23 The clustered affinity matrix partitioning starting point.
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Figure 2.24 Matrix for second split point.

BOCW = AFF(AP4) = 3
Z = 4*10 – 32 = 40 – 9 = 31

In the next step, the splitting point is going to move to the upper left corner as
shown in Figure 2.25. Now, AP2 is still using only top-corner columns, but AP3 and
AP4 are using bottom-only columns and AP1 is using columns from both-corners.

For this splitting option we have the following:

TCW = AFF(AP2) = 7
BCW = AFF(AP3) + AFF(AP4) = 4 + 3 = 7
BOCW = AFF(AP1) = 3
Z = 7*7 – 32 = 49 – 9 = 40

By now, it should be obvious that this approach creates nonoverlapping partitions
by moving along the matrix diagonal. The proposed algorithm has the disadvantage
of not being able to carve out an embedded or inner block of columns as a partition.
To be able to do this, the approach has to place { C1, C3 } in one partition and
{ C4, C2 } in another partition as shown in Figure 2.26.

We can overcome this disadvantage by adding a SHIFT operation. When the
SHIFT operation is utilized, it moves the topmost row of the matrix to the bot-
tom and then it moves the leftmost column of the matrix to the extreme right.
Figure 2.27a depicts the original matrix, along with an arrow indicating where the
topmost row is supposed to be moved as part of the SHIFT. Figure 2.27b shows the

Figure 2.25 Matrix for the third split point.
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Figure 2.26 Matrix for inner block of columns.

Figure 2.27 Matrix with the final split after the SHIFT operation.
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matrix after the rotation of the topmost row, with another arrow indicating where the
leftmost columns are supposed to be moved as part of the same SHIFT operation.
Figure 2.27c shows the matrix after the rightmost column is rotated. The SHIFT
process is repeated a total of n times, so that every diagonal block gets the oppor-
tunity of being brought to the upper left corner in the matrix. For our example, we
only need to utilize SHIFT once since all other combinations have already been
covered.

After the SHIFT, AP4 is using TC-only columns, AP2 is using BC-only columns,
and AP1 and AP3 are using columns from both-corners. For this splitting option
we have the following:

TCW = AFF(AP4) = 3
BCW = AFF(AP2) = 7
BOCW = AFF(AP1) + AFF(AP3) = 3 + 4 = 7
Z = 3*7 – 72 = 21 – 49 = –28

Among all the positive Z values, the maximum value is 40. This value cor-
responds to the option creating two partitions “(C4)” and “(C1, C2, C3).” As
mentioned before, we need to include the primary key column of the T table in
every vertical fragment. As a result, the two vertical fragments will be defined as
“VF1(C, C4)” and “VF2(C, C1, C2, C3).”

Final Note: We have only discussed the BEA for splitting the table into nonover-
lapping vertical fragments (the primary key is not considered an overlap). Readers are
referred to [Navathe84] and [Hammer79] for information about overlapping vertical
fragments.

2.2.5 Vertical Fragmentation Correctness Rules

Since the original table is not physically stored in a DDBE, the original table must be
reconstructible from its vertical fragments using a combination of some SQL statements
(joins in this case).

As a result, the following requirements must be satisfied when fragmenting a table
vertically:

• Completeness—every data item of the table is in, at least, one of the vertical
fragments.

• Reconstructiveness—the original table can be reconstructed from the vertical
fragments.

• Shared primary key—reconstruction requires that the primary key of the table be
replicated in all vertical fragments (to perform joins).

2.2.6 Horizontal Fragmentation Generation Guidelines

As explained earlier, applying horizontal fragmentation to a table creates a set of
fragments that contain disjoint rows of the table (horizontal disjointness). Horizontal
fragmentation is useful because it can group together the rows of a table that satisfy the
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predicates of frequently run queries. As such, all rows of a given fragment should be in
the result set of a query that runs frequently. To take advantage of this, the designer of a
distributed database system should store each such horizontal fragment at the site where
these types of queries run. This raises the question, “How do we decide which condition
or conditions to use when we horizontally fragment a table?” The answer is formalized
in [Özsu99] and also in [Bobak96]. We will summarize their discussion in this section
and apply their formulation to an example in order to explain the general approach.

To fragment a table horizontally, we use one or more predicates (conditions).
There are different types of predicates to choose from when fragmenting the
table. For example, we can use simple predicates, such as “Sal > 100000” or
“DNO = 1.” In general, a simple predicate, P, follows the format “Column−Name
comparative−operator Value.” The comparative operator is one of the operators
in the set {=,<, >,>=,<=, <>}. We can also use a minterm predicate, M,
which is defined as a conjunctive normal form of simple predicates. For example,
the predicates { Salary > 30,000 ˆ Location = “LA” } and { Salary > 30,000 ˆ
Location<> “LA” } are minterm predicates. Here, the “ ˆ ” operator is read as “AND.”

The set of all simple predicates used by all applications that query a given table
is shown as “Pr = {p1, p2, . . . , pn}.” The set of all minterm predicates used by all
applications that query the table is shown as “ M = {m1, m2, . . . , mk}.” Applying the
minterm predicates M to the table generates k minterm horizontal fragments denoted
by the set “F = {F1, F2, . . . , Fk}.” For this fragmentation design, all rows in Fi, for
“i = 1..k,” satisfy mi.

2.2.6.1 Minimality and Completeness of Horizontal Fragmentation It should be
obvious that the more fragments that exist in a system, the more time the system
has to spend in reconstructing the table. As a result, it is important to have a minimal
set of horizontal fragments. To generate a minimal set of fragments, the following rules
are applied.

Rule 1. The rows of a table (or a fragment) should be partitioned into at least
two horizontal fragments, if the rows are accessed differently by at least one
application.

When the successive application of Rule 1 is no longer required, the designer
has generated a minimal and complete set of horizontal fragments. Completeness
is, therefore, defined as follows.

Rule 2. A set of simple predicates, Pr, for a table is complete if and only if, for any
two rows within any minterm fragment defined on Pr, the rows have the same
probability of being accessed by any application.

Example 2.7 Suppose application “AP1” queries the table “EMP” (see Figure 2.3),
looking for those employees who work in Los Angeles (LA). The set “Pr = {p1: Loc
= “LA”}” shows all the required simple predicates used by AP1. Therefore, the set “M
= {m1: Loc = “LA”, m2: Loc<>“LA”}” is a minimal and complete set of minterm
predicates for AP1. M fragments EMP into the following two fragments:

Fragment F1: Create table LA_EMPS as
Select * from EMP
Where Loc = "LA";



64 DATA DISTRIBUTION ALTERNATIVES

Fragment F2: Create table NON_LA_EMPS as
Select * from EMP
Where Loc <> "LA";

If AP1 were to also (in addition to checking the value of Loc) exclude any employee
whose salary was less than or equal to 30000, then the set of predicates would no longer
be minimal or complete. This additional check would mean that the rows in F1 would
be accessed by AP1 differently depending on the salary of each employee in F1.
Applying the minimality rule mentioned above, we would need to further fragment the
EMP table, if this were the case. The new simple predicates for AP1 would require
changing Pr and M to the following:

Pr = {p1: Loc = "LA",
p2: salary > 30000}

M = {m1: Loc = "LA" Sal > 30000,
m2: Loc = "LA" Sal <= 30000,
m3: Loc <>"LA" Sal > 30000,
m4: Loc <>"LA" Sal <= 30000}

Observation 1: Since there are two simple predicates in Pr, and since for each
predicate we have to consider the predicate and its negative, M will now have four
minterm predicates in it. In general, if there are N simple predicates in Pr, M will have
2N minterm predicates. As explained later in this section, not all minterm predicates
are relevant—the irrelevant predicates must be removed from the set. Therefore, the
actual number of horizontal fragments is usually fewer than 2N .

Observation 2: In forming minterm predicates, we only use conjunctive normal
form (“ˆ”) and do not use disjunctive normal form (“OR”). That is because disjunctive
normal forms create coarser fragments than fragments generated by conjunctive normal
form and hence are not needed.

Example 2.8 As another example, consider table “PROJ (PNO, Pname, Funds, Dno,
Loc),” where the PNO column is the primary key as shown in Figure 2.28.

Also assume two applications (“AP1” and “AP2”) query the PROJ table based on
the following set of simple predicates:

Figure 2.28 The PROJ table.
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The AP1’s simple predicates:
p1: Loc = "MPLS"
p2: Loc = "NY"
p3: Loc = "LA"

The AP2’s simple predicates:
p4: Funds <= 300000

The two applications have a combined set of four simple predicates in Pr, defined
as:

Pr = {Loc = "MPLS",
Loc ="NY",
Loc ="LA",
Funds <= 300000}

Given the four simple predicates in Pr, M will have “24 = 16” different minterm
predicates. The following depicts all these predicates.

m1 = {Loc = "MPLS" ^ Loc = "NY" ^ Loc = "LA" ^ Funds <= 300000}
m2 = {Loc = "MPLS" ^ Loc = "NY" ^ Loc = "LA" ^ Funds > 300000}
m3 = {Loc = "MPLS" ^ Loc = "NY" ^ Loc <> "LA" ^ Funds <= 300000}
m4 = {Loc = "MPLS" ^ Loc = "NY" ^ Loc <> "LA" ^ Funds > 300000}
m5 = {Loc = "MPLS" ^ Loc <> "NY" ^ Loc = "LA" ^ Funds <= 300000}
m6 = {Loc = "MPLS" ^ Loc <> "NY" ^ Loc = "LA" ^ Funds > 300000}
m7 = {Loc = "MPLS" ^ Loc <> "NY" ^ Loc <> "LA" ^ Funds <= 300000}
m8 = {Loc = "MPLS" ^ Loc <> "NY" ^ Loc <> "LA" ^ Funds > 300000}
m9 = {Loc <> "MPLS" ^ Loc = "NY" ^ Loc = "LA" ^ Funds <= 300000}
m10= {Loc <> "MPLS" ^ Loc = "NY" ^ Loc = "LA" ^ Funds > 300000}
m11= {Loc <> "MPLS" ^ Loc = "NY" ^ Loc <> "LA" ^ Funds <= 300000}
m12= {Loc <> "MPLS" ^ Loc = "NY" ^ Loc <> "LA" ^ Funds > 300000}
m13= {Loc <> "MPLS" ^ Loc <> "NY" ^ Loc = "LA" ^ Funds <= 300000}
m14= {Loc <> "MPLS" ^ Loc <> "NY" ^ Loc = "LA" ^ Funds > 300000}
m15= {Loc <> "MPLS" ^ Loc <> "NY" ^ Loc <> "LA" ^ Funds <= 300000}
m16= {Loc <> "MPLS" ^ Loc <> "NY" ^ Loc <> "LA" ^ Funds > 300000}

Observation 3: Simple predicates p1, p2, and p3 are mutually exclusive. This means
that only p1 or p2 or p3 can be true and not any combination of them. For example, if
Loc is set to “MPLS,” then it cannot be equal to “NY” or “LA.” As a result, m1, m2,
m3, m4, m5, m6, m9, and m10 are invalid—we will remove them. This will leave the
following eight minterm candidates:

m7 = {Loc = "MPLS" ^ Loc <> "NY" ^ Loc <> "LA" ^ Funds <= 300000}
m8 = {Loc = "MPLS" ^ Loc <> "NY" ^ Loc <> "LA" ^ Funds > 300000}
m11= {Loc <> "MPLS" ^ Loc = "NY" ^ Loc <> "LA" ^ Funds <= 300000}
m12= {Loc <> "MPLS" ^ Loc = "NY" ^ Loc <> "LA" ^ Funds > 300000}
m13= {Loc <> "MPLS" ^ Loc <> "NY" ^ Loc = "LA" ^ Funds <= 300000}
m14= {Loc <> "MPLS" ^ Loc <> "NY" ^ Loc = "LA" ^ Funds > 300000}
m15= {Loc <> "MPLS" ^ Loc <> "NY" ^ Loc <> "LA" ^ Funds <= 300000}
m16= {Loc <> "MPLS" ^ Loc <> "NY" ^ Loc <> "LA" ^ Funds > 300000}
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Observation 4: m15 and m16 are invalid predicates, because Loc must have one
of the three values mentioned (no blank values, no null values, and no other location
values are allowed). After removing m15 and m16, we will have the following six
minterm predicates:

m7 = {Loc = "MPLS" ^ Loc <> "NY" ^ Loc <> "LA" ^ Funds <= 300000}
m8 = {Loc = "MPLS" ^ Loc <> "NY" ^ Loc <> "LA" ^ Funds > 300000}
m11= {Loc <> "MPLS" ^ Loc = "NY" ^ Loc <> "LA" ^ Funds <= 300000}
m12= {Loc <> "MPLS" ^ Loc = "NY" ^ Loc <> "LA" ^ Funds > 300000}
m13= {Loc <> "MPLS" ^ Loc <> "NY" ^ Loc = "LA" ^ Funds <= 300000}
m14= {Loc <> "MPLS" ^ Loc <> "NY" ^ Loc = "LA" ^ Funds > 300000}

Observation 5: Since Loc can only have one value at a time, we can simplify the
predicates to the following:

m7 = {Loc = "MPLS" ^ Funds <= 300000}
m8 = {Loc = "MPLS" ^ Funds > 300000}
m11= {Loc = "NY" ^ Funds <= 300000}
m12= {Loc = "NY" ^ Funds > 300000}
m13= {Loc = "LA" ^ Funds <= 300000}
m14= {Loc = "LA" ^ Funds > 300000}

Applying these minterm predicates to PROJ, we can generate fragments depicted
in Figure 2.29. Although there are six minterm predicates, only five of them produce
useful results from PROJ. For the current state of the table, only the five fragments
shown actually contain rows, the sixth fragment does not. This fragmentation is minimal
since rows within each fragment are accessed the same by both applications. This
fragmentation is also complete since any two rows within each fragment have the
same access probability for AP1 and AP2.

2.2.7 Horizontal Fragmentation Correctness Rules

Whenever we use fragmentation (vertical, horizontal, or hybrid), the original table is
not physically stored. Therefore, the original table must be reconstructible from its
fragments using a combination of SQL statements. Vertically fragmented tables are
reconstructed using join operations, horizontally fragmented tables are reconstructed
using union operations, and tables fragmented using hybrid fragmentation are recon-
structed using a combination of union and join operations.

Any fragmentation must satisfy the following rules as defined by Özsu [Özsu99]:

• Rule 1: Completeness. Decomposition of R into R1, R2, . . . , Rn is complete if
and only if each data item in R can also be found in some Ri.

• Rule 2: Reconstruction. If R is decomposed into R1, R2, . . . , Rn, then there
should exist some relational operator, �, such that “R = �1≤i≤n Ri.”

• Rule 3: Disjointness. If R is decomposed into R1, R2, . . . , Rn, and di is a tuple
in Rj, then di should not be in any other fragment, such as Rk, where k �= j.
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Figure 2.29 The PROJ table fragmentation based on minterm predicates.

Rule 1 states that during fragmentation none of the data in the original table is lost.
Every data item that exists in the original table is in at least one of the fragments. We
use the term “at least” because vertical fragmentation always requires inclusion of the
primary key column in all vertical fragments.

Rule 2 is required for reconstructiveness. This rule is required because, after frag-
mentation, the original table is not stored in the system anymore. Local DBMS servers
will store fragments as part of their local conceptual schema. Globally, users of a
distributed database system are not aware of the fragmentation that has been applied.
To them, the original table exists as a whole. They will query the original table and
not the fragments. Therefore, the system must be able to reconstruct the original table
from its fragments on-the-fly.

Rule 3 applies to horizontal fragments. Each horizontal fragment is generated by
the application of a minterm predicate to the original table. Therefore, each horizon-
tal fragment houses only the rows that satisfy the corresponding minterm predicate.
Since this is true for all horizontal fragments, rows are not shared across horizontal
fragments.
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2.2.8 Replication

During the database design process, the designer may decide to copy some of the
fragments or tables to provide better accessibility and reliability. It should be obvious
that the more copies of a table/fragment one creates, the easier it is to query that
table/fragment. On the other hand, the more copies that exist, the more complicated
(and time consuming) it is to update all the copies. That is why a designer has to know
the frequency by which a table/fragment is queried versus the frequency by which
it is modified—via inserts, updates, or deletes. As a rule of thumb, if it is queried
more frequently than it is modified, then replication is advisable. Once we store more
than one copy of a table/fragment in the distributed database system, we increase the
probability of having a copy locally available to query.

Having more than one copy of a fragment in the system increases the resiliency of
the system as well. That is because the probability of all copies failing at the same
time is very low. In other words, we can still access one of the copies even if some
of the copies have failed: that is, of course, if all copies of a fragment show the same
values. Therefore, this benefit comes with the additional cost of keeping all copies
identical. This cost, which could potentially be high, consists of total storage cost,
cost of local processing, and communication cost. Note that the copies need to be
identical only when the copies are online (in service). We will discuss the details of
how copies are kept in sync as part of the replication control (in Chapter 7). We will also
discuss calculating total cost of queries/updates as part of managing transactions (in
Chapter 3) and query optimization (in Chapter 4).

2.3 DISTRIBUTION TRANSPARENCY

Although a DDBMS designer may fragment and replicate the fragments or the tables
of a system, the users of such a system should not be aware of these details. This is
what is known as distribution transparency. Distribution transparency is one of the
sought after features of a distributed DBE. It is this transparency that makes the system
easy to use by hiding the details of distribution from the users. There are three aspects
of distribution transparency—location, fragmentation, and replication transparencies.

2.3.1 Location Transparency

The fact that a table (or a fragment of table) is stored at a remote site in a distributed
system should be hidden from the user. When a table or fragment is stored remotely,
the user should not need to know which site it is located at, or even be aware that it
is not located locally. This provides for location transparency, which enables the user
to query any table (or any fragment) as if it were stored locally.

2.3.2 Fragmentation Transparency

The fact that a table is fragmented should be hidden from the user. This provides for
fragmentation transparency, which enables the user to query any table as if it were
intact and physically stored. This is somewhat analogous to the way that users of a
SQL view are often unaware that they are not using an actual table (many views are
actually defined as several union and join operations working across several different
tables).
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2.3.3 Replication Transparency

The fact that there might be more than one copy of a table stored in the system should
be hidden from the user. This provides for replication transparency, which enables the
user to query any table as if there were only one copy of it.

2.3.4 Location, Fragmentation, and Replication Transparencies

The fact that a DDBE designer may fragment a table, make copies of the fragments,
and store these copies at remote sites should be hidden from the user. This provides
for complete distribution transparency, which enables the user to query the table as if
it were physically stored at the local site without being fragmented or replicated.

2.4 IMPACT OF DISTRIBUTION ON USER QUERIES

Developers of a distributed DBMS try to provide for location, fragmentation, and repli-
cation transparencies to their users. This is an attempt to make the system easier to use.
It is obvious that in order to provide for these transparencies, a DDBMS must store dis-
tribution information in its global data dictionary and use this information in processing
the users’ requests. It is expensive to give users complete distribution transparency. In
such a system, although the users query the tables as if they were stored locally, in real-
ity their queries must be processed by one or more database servers across the network.
Coordinating the work of these servers is time consuming and hard to do. In Chapter 1,
we discussed the issues related to distributed query execution. We will also address the
performance impact of providing complete distribution transparency in Chapter 4. In
the rest of this section, we will outline the impact of distribution on a user’s queries.

Example 2.9 Let’s assume that our database contains an employee table as defined
below:

EMP (Eno, Ename, Sal, Tax, Mgr, Dno)

The column “Eno” is the primary key of this table. The column “Dno” is a foreign
key that tracks the department number of the department in which an employee works.
Suppose we have horizontally fragmented EMP into EMP1 and EMP2, where EMP1
contains only employees who work in a department with a department number less
than or equal to 10, while EMP2 contains only employees who work in the departments
with a department number greater than 10. Assume EMP2 has been replicated and there
are two copies of it. Also assume that the company owns three database servers—one
server is in Minneapolis (Site 1), one server is in St. Paul (Site 2), and the third server
is located in St. Cloud (Site 3). The company decides to store EMP1 at Site 1, one
copy of EMP2 at Site 2, and the other copy of EMP2 at Site 3. To see the impact of
this database design on a user’s queries, let’s discuss a very simple query that finds
salary information for “Jones,” who is an employee with employee number 100. If the
system were a centralized DBMS, a user would run the following SQL statement to
find Jones’ information:

Select * from EMP where Eno = 100;
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In this example, our system is a distributed system and the table has been fragmented
and replicated. How would a user write the query in this distributed system? The
answer depends on whether or not the system provides for location, fragmentation, and
replication transparencies. As mentioned in Chapter 1, the global data dictionary (GDD)
stores distribution information for the environment. The impact of data distribution on
user queries depends on how much of the distribution information is stored in the GDD
and how many types of transparency are provided to the user.

Let’s consider three different scenarios, with different degrees of transparency being
provided to the user. For the first case, think of a GDD implementation that does not
store any distribution information—the GDD is basically nonexistent. In this case, the
design, implementation, and administration of the GDD would be trivial, but the GDD
would provide absolutely no transparency to the user. This is clearly the simplest GDD
implementation possible, but from the user’s point of view, it is the hardest to use. The
harder the system is to use, the less likely it will be used in the real world! Suppose we
had the other extreme situation instead. This other case would be a very powerful GDD
providing location, replication, and fragmentation transparencies to the user. While this
would be nice for the user and it is the easiest for the user to use, this other extreme
would obviously require a more complicated design and implementation, and would
also be less trivial to administer. The more complicated a system is to implement
and administer, the less likely it is to become ubiquitous. Somewhere between these
two extremes, we are likely to find the right balance of transparency provided versus
complexity required. In Sections 2.4.1, 2.4.2, and 2.4.3, we will attempt to illustrate the
types of trade-offs that need to be considered as we move from case to case between
these extremes.

2.4.1 No GDD—No Transparency

If the GDD does not contain any information about data distribution, then the users
will need to be aware of where data is located, how it is fragmented and replicated,
and where these fragments and replicas are stored. This means that the users need to
know what information is stored in each of the local systems and then they need to
incorporate this information into their queries. Figure 2.30 depicts the contents of the
local data dictionaries at each of the three sites and the GDD.

Since the GDD does not store any distribution information, the users need to know
this information. Figure 2.31 shows the program that a user writes to retrieve salary
for Jones. Note: We have used the notation “EMP1@Site1” to indicate the need to
run the SQL command against the EMP1 fragment at Site 1. Obviously, this is not a
valid SQL statement and will not be parsed correctly by any commercial DBMS. We
are assuming, however, that our DDBMS has a parser that understands this notation,
translates it into the correct syntax, and actually sends the correct SQL statements to
the right database servers. The notation /*. . . */ represents a comment in SQL.

In this program, the user assumes Jones is in EMP1 and queries EMP1 looking
for Jones. The user had to “hard-code” the location for the table indicating which
site contained the EMP1 table. Since there is only one copy of EMP1 in the sys-
tem, the user specified Site 1. If the employee is not found there, then the employee
might be in EMP2. We have two copies of EMP2 (at Site 2 and Site 3). There is
no need to look in both of them since these are copies of the same fragment. The
user has to decide which site to query for this fragment. In our example, the user has
chosen Site 3. For this simple query, the user needed to write a rather long program,
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Figure 2.30 The GDD and local schemas for Example 2.9.

Figure 2.31 DDBMS with no transparency.
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incorporating fragmentation, replication, and location information directly in the query.
That is because distribution information is not stored in the GDD. In other words, if
there is no GDD, then there is no distribution transparency provided to the user. If any
of these details were to change (the fragmentation design, the number of fragments,
the number of copies, or the locations for any of the tables/fragments/copies) then this
program might stop working! This program would need to be modified, manually, to
reflect the new information before it would work correctly again.

2.4.2 GDD Containing Location Information—Location Transparency

Now let’s assume that the GDD contains location details for the tables/fragments in
the environment, but no details about how the fragments relate to each other or to the
EMP table as a whole. For example, the GDD could store location information in a
special table called “Location−Table” as depicted in Figure 2.32. Assume we have the
same local schemas for this case as we did for the pervious case (see Figure 2.30).

Since the GDD has location information for all the fragments, the system does
provide for location transparency. As a result, the user does not need to specify location
information in the SQL statements. Therefore, the user queries will be a bit simpler
than they were in the previous case. Figure 2.33 shows the query we would write for

Figure 2.32 The Location−Table of the GDD.

Figure 2.33 DDBMS with location transparency.
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this environment in order to answer the same question we considered in the previous
section.

As you can see from this program, all of the location information for the fragments
has been removed from the select statements. In this case, the DDBMS looks up
the location of EMP1 and EMP2 in the Location−Table in the GDD and sends the
SQL statement to the desired site automatically. Although these select statements are
less complicated to create than the ones given before, the user still needs to know that
there are two fragments of the EMP table and that EMP2 has been replicated. The only
benefit is that the user does not need to know where these fragments are stored. If the
GDD stores additional details about each fragment (such as the fragmentation type for
each table, how each fragment is generated, how it fits into the overall fragmentation
plan, and the replication information for each fragment), then the user does not need
to specify any of these details in the program.

2.4.3 Fragmentation, Location, and Replication Transparencies

To provide for location, fragmentation, and replication transparencies, the GDD has to
store fragmentation, location, and replication information. This GDD implementation
is the most complicated and difficult. Conversely, this environment is the easiest for
the user to use. The GDD needs to contain additional tables to store the necessary
information. For example, in addition to the Location−Table shown in Figure 2.32, we
can create a table named “Fragmentation−Table.” This new table contains information
about real tables, real fragments, and “virtual tables.” A virtual table refers to a table
that is reconstructed from a set of fragments—recall that this table does not physically
exist in the DDB! A simple GDD for this scenario is depicted in Figure 2.34. The
local schemas for this example are the same ones we used in the previous sections
(see Figure 2.30). In this case, the DDBMS provides the user with the illusion that
the EMP table exists as a single physical table. As such, the DDBMS needs to store
the definition of a virtual EMP table for users to access. Since the system is providing
complete distribution transparency, the users query the system as if the system were
a centralized system—just like a traditional, nondistributed system. Therefore, getting
the salary for Jones can easily be achieved by the following SQL statement.

Select Sal
From EMP
Where Eno = 100;

Since the EMP table is a virtual table, when processing this query, the system
generates all the proper subqueries (defined against the physical fragments) and then
runs them at the sites where the fragments are stored.

2.5 A MORE COMPLEX EXAMPLE

Let’s consider a more complicated example, in which we will apply a series of hori-
zontal and vertical (hybrid) fragmentation to the table “EMP(eno, name, sal, tax, mgr,
dno).” This fragmentation approach fragments the EMP table into four fragments called
“EMP1,” “EMP2,” “EMP3,” and “EMP4” as shown in Figure 2.35.
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Figure 2.34 GDD for Example 2.9.

Obviously EMP1 and EMP2 both contain information about those employees who
work in the departments numbered less than or equal to 10. Similarly, EMP3 and
EMP4 both contain information about those employees who work in the departments
numbered greater than 10. Figure 2.36 depicts the distribution of the EMP table and
its fragments.

To show the effect of this fragmentation on our queries and commands, let’s assume
that “Smith” is an employee whose employee number is 100 (eno = 100). Smith
currently works in department number 3 (dno = 3). Therefore, Smith’s employee infor-
mation is stored in EMP1 and EMP2. Suppose we need to move Smith to department
number 15 (dno = 15). How do we achieve this? The answer, as explained in the pre-
vious case, depends on what is stored in the GDD. To illustrate the differences between
the transparency alternatives, we will consider how the same operation is performed
against the same schema, in three different scenarios. Each scenario will have a GDD
that provides a different level of transparency.

Again, we will consider the following three levels of transparency:

• The system provides for fragmentation, location, and replication transparency.
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Figure 2.35 The EMP table fragmentation steps.

Figure 2.36 The EMP table distribution.

• The system provides for location and replication transparencies, but no fragmen-
tation transparency.

• The system does not provide for any transparency.

2.5.1 Location, Fragmentation, and Replication Transparencies

Because the system provides for location, fragmentation, and replication transparencies,
we don’t need to worry about any of the distribution details. As a result, our query
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can be written as if it were running in a centralized system. Because Smith needs to
be moved from department 3 to department 15, we have to make a simple update to
the database and indicate the new department number. We can do this move by using
a single, simple SQL statement as shown:

Update Emp
Set dno = 15
Where eno = 100;

We do not need to add any complex logic to ensure the integrity of the database.
The DDBMS knows that EMP is a virtual table. It looks up the fragmentation, location,
and replication details in the GDD. The DDBMS uses this information to translate our
update statement into the necessary SQL statements that need to run on the individual
local systems. The DDBMS then executes the appropriate statements at the appropriate
sites to make the requested updates to the necessary tables/fragments/copies.

2.5.2 Location and Replication Transparencies

In this case, the system provides for location and replication transparencies, but it does
not provide for fragmentation transparency. Like the previous scenario, we do not need
to include any location or replication details in our SQL. However, we do need to know
the fragmentation details and we need to embed these details in our SQL. Unlike the
previous case, our program is hard-coded to work for the old value of dno. In other
words, because the old value of dno was less than or equal to 10, we cannot achieve
this move in a single statement. First, we need to fetch the column values for EMP1
and EMP2 and store them into some program variables. Next, we need to delete the
old values from the EMP1 and EMP2 fragments. Finally, we insert the values of our
variables into the EMP3 and EMP4 fragments.

select name, sal, tax into $name, $sal, $tax
from Emp1
where eno = 100;

select mgr into $mgr
from Emp2
where eno = 100;

delete Emp1 where eno = 100;
delete Emp2 where eno = 100;

insert into Emp3 Values (100, $name, 15);
insert into Emp4 Values(100, $sal, $tax, $mgr);

In this case, we need to make sure that Smith’s information is collected from the
old fragments first to ensure that we do not lose them before we insert them in the
new fragments. This means that we need to use some program variables to hold the
selected information. Program variables $name, $sal, $tax, and $mgr are used to collect
name, sal, tax, and mgr information from EMP1 and EMP2. After this information is
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collected, we delete Smith’s information from EMP1 and EMP2 and insert Smith’s
information into EMP3 and EMP4. It should be obvious that the user would need to
explicitly add transactions and/or locks to this program to ensure the integrity of the
system during this move. We will not discuss locking and commitment/rollback of the
transactions here (see Chapter 6 for details).

Note 1: This program only works when the old department number for Smith
is less than or equal to 10 and the new department number is greater than 10. It
should be obvious that moving Smith from department, say, 15, to department 3 would
require a different program with the deletion of Smith’s information from EMP3 and
EMP4 and insertion of Smith’s information back into EMP1 and EMP2. If, on the
other hand, Smith is currently in department 12, then the move to department 15 only
requires updating Dno in EMP3 and EMP4. Remember, any programs in this system
must embed (hard-code) the fragmentation details defined in Figure 2.36 into the SQL
statements. If any of the fragmentation details change, our program would be broken
until we manually fixed it by hard-coding the new details.

Note 2: We have eliminated error checking in an attempt to not clutter the code.
We should always implement error checking and validation checks in the real code.
For example, in this case we should check whether or not Smith is an employee in the
database, check the current department number, and other details before we perform the
actual update. We will leave implementing the code of a general case as an exercise.

2.5.3 No Transparencies

This is the most complex case from the query-writer’s perspective. In this case, the
distributed database system does not provide for any of the fragmentation, location, or
distribution transparencies. Since these transparencies are not provided by the system,
we need to be aware of the location, fragmentation, and replication information. In
Section 2.5.2, we analyzed the case of location and replication transparencies. Now
that we do not have these transparencies, we have to manually hard-code in our program
all the details that those transparences would normally provide. This makes the program
very hard to write. The code snippet below shows the SQL-like program for this case.
(Note that in the code, we have used the notation “@site X” to indicate that the SQL
statement needs to run at Site X.)

select name, sal, tax into $name, $sal, $tax
from Emp1
where eno = 100 @site1;

select mgr into $mgr
from Emp2
where eno = 100 @site2;

delete Emp1 where eno = 100 @site 1;
delete Emp1 where eno = 100 @site 5;
delete Emp2 where eno = 100 @site 2;
delete Emp2 where eno = 100 @site 6;

insert into Emp3 values (100, $name, 15) @site 3;



78 DATA DISTRIBUTION ALTERNATIVES

insert into Emp3 values(100, $name, 15) @site 7;
insert into Emp4 values(100, $sal, $tax, $mgr) @site 4;
insert into Emp4 values (100, $sal, $tax, $mgr) @site 8;

This program resembles the program we presented in Section 2.5.2. However, since
there are two copies of each fragment, we need to explicitly insert Smith’s information
into each copy of the new fragment and also explicitly delete Smith’s information
from each copy of the old fragment. Once again, we should really explicitly add
transactions or locks to this program to ensure the integrity of the system. Notes 1 and
2 from Section 2.5.2 apply here as well.

2.6 SUMMARY

Distribution design in a distributed database management system is a top–down pro-
cess. Designers start with the data access requirements of all users of the distributed
system and design the contents of the distributed database as well as the global data
dictionary to satisfy these requirements. Once the GDD contents are determined, the
designers decide how to fragment, replicate, and allocate data to individual database
servers across the network. In this chapter, we outlined the necessary steps for such a
design.

We outlined the steps for creating horizontal fragments and vertical fragments of
a table based on a set of requirements. We examined the rules for correct fragmen-
tation design (such as completeness, reconstructiveness, and disjointness). We briefly
discussed the impact of distribution on complexity of user programs to access and
update distributed information.

2.7 GLOSSARY

Access Frequency A measurement reflecting how often an application accesses the
columns of a table during a defined period of time, for example, “fifteen accesses
per day.”

Affinity A measure of closeness between the columns of a table as it relates to a
given application or a set of applications.

Affinity Matrix A matrix that contains the affinity of all columns of a table for all
applications that refer to them.

Bond Energy Algorithm (BEA) The algorithm that calculates a metric that indicates
the benefits of having two or more columns to be put in the same vertical partition.

Bottom–Up A methodology that creates a complex system by integrating system
components.

Clustered Affinity Matrix A matrix that is used for vertical partitioning of columns
of a table based on the Bond Energy Algorithm.

Derived Horizontal Fragmentation A horizontal fragmentation approach that frag-
ments rows of a table based on the values of columns of another table.

Distribution Transparency A type of transparency that hides the distribution details
of database tables or fragments from the end users.
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Fragmentation Transparency A type of transparency that hides fragmentation
details of database tables or fragments from the end users.

Fragment A partition of a table.
Global Conceptual Model A repository of information such as location, fragmenta-

tion, replication, and distribution for a distributed database system.
Global Data Dictionary (GDD) The portion of global conceptual schema that con-

tains dictionary information such as table name, column names, view names, and
so on.

Horizontal Fragmentation The act of partitioning (grouping) rows of a table into a
smaller set of tables.

Hybrid Fragmentation The application of horizontal fragmentation to vertical frag-
ments of a table, or the application of vertical fragmentation to horizontal fragments
of a table.

Local Conceptual Model The conceptual schema that users of a local DBMS
employ.

Location Transparency A transparency that hides location of database tables or
fragments from the end users.

Minterm Predicate A predicate that contains two or more simple predicates.
Partitions Either vertical or horizontal fragments of a table.
Primary Horizontal Fragmentation A horizontal fragmentation of a table based on

the value of one of its columns.
Replication Transparency A transparency that hides the fact that there might be

more than one copy of a database table or fragments from the end users.
Schema Integration The act of integrating local conceptual schemas of the compo-

nent database systems into a cohesive global conceptual schema.
Simple Predicate A condition that compares a column of a table against a given

value.
Top–Down A database design methodology that starts with the requirements of a

distributed system (the global conceptual schema) and creates its local conceptual
schemas.

Unified Schema An integrated, nonredundant, and consistent schema for a set of
local database systems.

Usage Matrix A matrix that indicates the frequency of usage of columns of a table
by a set of applications.

Vertical Fragmentation The act of partitioning the columns of a table into a set of
smaller tables.
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EXERCISES

Provide short (but complete) answers to the following questions.

2.1 Assume EMP has been fragmented as indicated in Figure 2.36. Also, assume
the system does not provide for any transparencies. Write a SQL-like program
that deletes the employee indicated by $eno from the database. Make sure you
perform all the necessary error checking.

2.2 Answer true or false for the statements in Figure 2.37.

2.3 For the EMP table fragmented in Example 2.5, write a single SQL statement that
reconstructs the original EMP table from its fragments.

2.4 An Employee table has the following relational scheme: “Employee (name, sal,
loc, mgr),” where name is the primary key. The table has been horizontally
fragmented into SP and MPLS fragments. SP has employees who work in St.
Paul and MPLS contains all employees who work in Minneapolis. Each fragment
is stored in the city where the employees are located. Assume transactions only
enter the system in NY and there are no employees in NY. Write down the local
schemas and global schema and indicate in which cities these schemas are located
for the following three cases:

(A) The system does not provide for any transparencies.
(B) The system provides for location and replication transparencies.
(C) The system provides for location, replication, and fragmentation transparen-

cies.

2.5 Consider table “EMP(EmpID, Name, Sal, Loc, Dept).” There are four appli-
cations running against this table as shown below. Design an optimal vertical
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Statement#

1

2

3

4

5

6

7

8

9

10

In SQL, vertical fragments are created using the project statement.

The external schemas define the database as the end users see it.

Tuple is another word for a row in a relational database.

Federated databases have three levels of schemas.

Federated databases are formed from the Bottom–Up.

Referential integrity enforced by a DDBMS does not span sites.

Horizontal fragments need to be disjoint.

Distributed DBMSs are formed Top–Down.

Global data dictionary may be copied at some sites in a distributed DBMS.

There are as many physical fragments as there are minterm predicates of a
minimal and complete distribution design.

True/
False

Figure 2.37 True or false questions.

fragmentation strategy that satisfies the needs of these applications. Show steps
for arriving at the answer.

A1: “Select EmpID, Sal From EMP;”
A2: “Select EmpID, Name, Loc, Dept From EMP Where Dept = ‘Eng’;”
A3: “Select EmpID, Name, Loc, Dept From EMP Where Loc = ‘STP’;”
A4: “Select EmpID, Name, Loc, Dept from EMP Where Loc = ‘MPLS’;”





3
DATABASE CONTROL

Database control is one of most challenging tasks that every database administrator
(DBA) faces. Controlling a database means being able to provide correct data to valid
users and applications. A data item must satisfy the correctness condition(s) that have
been defined for it. The correctness conditions that are attached to a piece of data are
called constraints, semantic integrity rules, integrity constraints, or assertions. We
will use these terms interchangeably.

Let’s consider the table “EMP (ENO, Ename, Sal, DNO),” where we store infor-
mation about the employees of an organization. In this table, DNO represents the
department in which the employee works.

Associated with DNO, there are a number of correctness criteria such as:

• DNO is an integer.
• DNO must be between 100 and 999.
• DNO must have a value for each employee.
• DNO value for a given employee must match the value of DNO in the DEPT

table.

If any of these assertions for a given employee is violated, then the employee is not
a valid employee. Semantic integrity rules must be defined before they can be enforced.
Enforcing these assertions is the responsibility of the semantic integrity control module
of the local DBE (see Chapter 1). These topics are discussed here under the topic of
semantic integrity control or simply integrity control.

In addition to definition and enforcement of semantic integrity rules, the access to
the database must be controlled. Only authenticated users with the proper authorization
can be allowed to access the contents of the database. A DBA creates a list of valid
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users and defines the scope of their rights using the control language of the DBE.
These issues are discussed under the topic of access control. Imposters and hackers
must not be able to access and use the information in the database. An environment
must have a sophisticated security mechanism in place to be able to thwart today’s
intruders. Security in a centralized DBE, and more importantly in a DDBE, is very
difficult and costly to implement. We will discuss security issues and different threat
types in Chapter 9.

There are two aspects to access control. The first has to do with authentication and
the second with access rights. Authentication is used to make sure only preapproved
applications and users can work with the database. Most of today’s systems have a
multilevel authentication system that checks the users’ access to the database contents.
Once a valid user has connected to the right database, the privileges that the user has
must also be controlled. This is typically enforced by the DBE. Access rights of a
given user can be defined, controlled, and enforced by the system to ensure that the
user can only work with an allowed portion of the database and perform only allowed
functions.

3.1 AUTHENTICATION

Authentication in a DBE guarantees that only legitimate users have access to data
resources in a DBE. At the highest level of authentication, access to the client computer
(the client is the front-end to the database server) or the database server is controlled.
This is typically achieved by a combination of user-name/password and is enforced by
the operating system. Other and more sophisticated approaches such as biometrics can
also be used (see Chapter 9 for more detail).

Once the user is connected to the computer, accessing the DBE software is con-
trolled by the second level of authentication. At this level, the user may use credentials
that have been assigned by the DBE or the DBE can trust the operating system authen-
tication and allow connection to the DBE software. The first approach is known as
database authentication while the second is known as operating system authenti-
cation. SQL Server and Oracle have similar concepts, although they are not exactly
the same concepts. A login (or account) is used to control access to the DBMS server
while a user is used to control access to a database managed by a server. Some-
times in a DBE these concepts are implemented as separate things, sometimes a single
implementation is used to represent both concepts.

In Oracle 10 g, a user account can use operating system (or external) authentication
for validation. This allows operating system users to connect to the databases controlled
by Oracle server. Oracle trusts the operating system’s authentication and allows the
current user to connect to a given database. Oracle can also use a database user-name
and a password (maintained in the database) to authenticate an account. Assuming
“saeed” is a database user-name with password “secret,” the user will connect to a
given database by providing the combination of saeed/secret and the database name.

In SQL Server 2005, the connection to the DBMS software is controlled by what
is known as a login. A login is an authenticated connection to the server. An operat-
ing system user may login to a database server using two approaches similar to the
way Oracle authenticates users. A login could be authenticated by the operating sys-
tem (Windows) or by SQL Server. Again, operating system authentication is based on
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Figure 3.1 Multilevel security example.

the trust relationship between the operating system and DBMS software. SQL Server
authentication requires a login-name and a password. Regardless of how a login has
been established, to work with a given database, a login must use a database user.
A database user represents a login inside a database. As a result, a given login can
work with multiple databases using multiple database users. Figure 3.1 depicts mul-
tilevel authentication approaches for Oracle and SQL Server. In a DBE, the DBA is
responsible for managing user accounts, logins, and user-names.

3.2 ACCESS RIGHTS

In relational database systems, what a database user can do inside the database is
controlled by the access rights that are given to that user. A user’s access rights
specify the privileges that the user has. For example, user “saeed” may have the right
to create a table, to drop a table, or to add rows to a table. SQL, as the standard for
relational model databases, can be used to specify at a very fine level of granularity
(column level) the operations allowed and disallowed for a given user.

In any large database environment, there are many users, many databases, many
tables with many columns, and many other database objects. As a result, in large
systems, assignment of individual privileges to individual users is a time-consuming
and error-prone task. To reduce the overhead associated with management of rights for
a large system, the concept of a role is used. A role is a construct that can be given
certain authorities within a database (or the server). Figure 3.2 shows the creation of a
role called manager. This role is then given some privileges and, finally, user1 is given
the manager role. After executing these statements, user1 will have all privileges that
have been assigned to the role ‘manager’—user1 plays the role of a manager.



86 DATABASE CONTROL

Figure 3.2 Creation of a role and its assignment to the user “user1.”

3.3 SEMANTIC INTEGRITY CONTROL

A DBMS must have the ability to specify and enforce correctness assertions in terms
a set of semantic integrity rules. The semantic integrity service (Semi-S), which we
discussed in Chapter 1, Section 1.3.1, is used to define and enforce the semantic
integrity rules for the system. This is true for both relational and nonrelational database
systems, such as network, hierarchical, and object-oriented systems. For instance, the
need to enforce uniqueness of the primary key (or its equivalent counterpart) is the
same in all database types, although the approaches used by different systems are
different. Similarly, the need to enforce the existence of a primary key value for a
given foreign key is the same for all database types and data models.

Figure 3.3a depicts a network database DDL statement that declares a record type
called “PART” with two fields, “PART-NO” and “AMOUNT.” PART-NO is considered
the primary key for the record since the field is not allowed to have duplicate values.
PART-NO has an alphanumeric data type of length 5 and AMOUNT has a numeric
data type that has four significant digits and two decimal places. The same record
definition is shown in Figure 3.3b for a relational system.

Figure 3.4a shows an example of referential integrity across two record types in a
network database type. For this system, the SET definition statement guarantees (forces
the Semi-S to check for) a valid association between the two record types, PART and
SUPPLIER. The same requirement in a relational system is shown in Figure 3.4b.

Figure 3.3 Comparing network and relational model DDL statements.
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Figure 3.4 Specifying referential integrity in network and relational models.

For the relational system, the referential integrity requirement is added to the table
definitions using the “ALTER TABLE” statement after the two tables have been
created.

When one or more semantic integrity rules are violated, Semi-S can report, reject,
or try to correct the query or transaction that is performing an illegal operation. For
example, Semi-S can evaluate the SQL query in Figure 3.5a and reject the query since
it knows the Sal column has a numeric data type and the value being compared to
it is a character string. In a smarter DBE, the Semi-S subsystem may try to correct
the query by removing the single quotes from around 40000 and running the query.
This issue has been resolved for the SQL statement in Figure 3.5b, but there is still
a potential issue with the T1 table’s existence (or lack thereof). If T1 exists, the
statement is fine; otherwise, an “object not found” error message must be issued by
the Semi-S.
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Figure 3.5 Example of two semantically incorrect SQL statements.

3.3.1 Semantic Integrity Constraints

A relational DBE supports four basic types of semantic integrity constraints
or rules:

• Data type constraints
• Relation constraints
• Referential constraints
• Explicit constraints

The first three types are called relational constraints and are inherited from the
entity relationship model (ERM); see Chapter 10. These integrity rules are an integral
part of the relational model; see Chapter 11. These rules are often automatically gen-
erated by our data modeling tools—however, the last rule needs to be specified by the
user explicitly in the relational model.

3.3.1.1 Relational Constraints Data type constraints are semantic integrity rules
that specify the data type for columns of relational tables. These are inherited from
the ERM since the domains are tied to the underlying domains on which the attributes
of an entity are defined in the ERM. Some relational database systems may allow
specification of user-defined data types. A data type constrains the range of values
and the type of operations that we can apply to the column to which the data type
is attached. A user-defined data type is a data type that is based on a system data
type and creates a specific data type on top of it. Examples of system-defined data
types supported by most DBMS are Date, Integer, Decimal (X,Y), Float, Char(X),
Varchar(X), Enumerated data types such (‘M’, ‘F’) or (‘Sat’, ‘Sun’, ‘Mon’, ‘Tue’,
‘Wed’, ‘Thu’, ‘Fri’), and Range data types such as (1–31). Figures 3.6a and 3.6b show
two different database implementations of the same user-defined data type concept,
for SQL Server 2005 and Oracle 11 g, respectively. In this example, we create the
“salary” data type, basing it on the “numeric” system data type for SQL Server and
the “number” data type for Oracle.

Relation constraints are the methods used to define a relation (or a table). The
following codifies a table called Employee, which keeps track of the employees of an
organization.
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Figure 3.6 Example of a user-defined data type definition in SQL Server and Oracle.

Create table Employee (
Emp# integer not null,
Name varchar(20) not null,
Emp_Nickname char(10),
DOB date check (DOB LIKE ‘MM-DD-YYYY’),
Sex char(1) in (‘M’, ‘F’),
Primary key (Emp#),
Unique Emp_Nickname);

This code snippet conveys the following constraints:

• The table name “Employee” is unique within a database. This is called a relation
constraint and is inherited from the fact that in the ERM there is a unique entity
type called “Employee.”

• Employees as objects of the real world are kept track of in the database as a set
of rows in the Employee table.

• The Employee table has five columns: Emp#, Name, Emp−Nickname, DOB, and
Sex. Each column has a data type constraint, may have a null or not null constraint,
may have an enumeration constraint, and may have a range constraint.

• The Emp# column must be an integer and must have a value.
• The Name column is of type varchar(20) and must have a value. Since “var-

char(20)” is used as the data type, the Name cannot be longer than 20 characters.
If the Name is shorter than 20 characters, then the actual length of the name will
be used.

• The DOB column is of type Date. This column may be left as null. If the column
has a value for date it has to follow the format ‘MM-DD-YYYY’. Otherwise, the
row is not validated.



90 DATABASE CONTROL

• The Sex column is a one-character field and can be left as null. The Sex column
has an enumeration constraint on it. This constraint limits the value of the column
Sex to either character ‘M’ or ‘F’. Any other value is a violation of this constraint.

• The primary key constraint forces the Emp# column to be unique. If the value of
this column is not unique, the employee is not validated.

• In addition to the Emp#, which is used as a primary key and is unique, each
Employee row’s nickname is also unique. Since a table cannot have two pri-
mary keys, the uniqueness of Emp−Nickname is enforced by a different type of
constraint in the table, known as a unique constraint.

Referential integrity (RI) constraints restrict the values stored in the database so
that they reflect the way the objects of the real world are related to each other. This
constraint is inherited from the ERM by the relational systems. In the database, RI
is implemented by controlling the way the rows in one table relate to the row(s) in
another table. RI in relational systems forces the foreign key values in one table to
correspond to a primary key value in another table. Another way of explaining this
constraint is to say that in a relational database there exists no foreign key that does not
correspond to a primary key. This constraint is enforced by the DBMS automatically.

Figure 3.7 outlines SQL statements that create two tables (Department and
Employee) and enforce two referential integrity constraints defined across them. In
this figure, we create the Department table first. This table has a clause that specifies
the D# column as the primary key of the table. In the Employee table, SSN is defined
as the primary key column of the table. MgrSSN, on the other hand, is defined as
a foreign key that corresponds to the SSN column of the same table. This column
keeps track of the manager of each employee. This constraint is inherited from the
ER model, and it corresponds to the fact that in the real world an employee may be
the manager of one or more employees. In the relational model, this is implemented
by the RI constraint between the SSN and MgrSSN columns of the Employee table.
In the relational model, the DBMS has to ensure that every employee in the database
has a manager by forcing the value of MgrSSN for a given row to equal one other
Employee rows’ SSN value. Actually, the DBMS cannot prevent an employee from
using its own SSN value for this purpose, but that is not a real issue for use here.
We call the employee whose SSN value is used as the MgrSSN value the parent
employee. All employees who use the parent’s SSN as their MgrSSN are called the
children. The DBMS must be told what to do when the SSN for a parent row is
changed or deleted. This is specified in the code via ‘on update’ and ‘on delete’
clauses. In our example, the DBMS is told that when the parent row is deleted, it
should set the value of MgrSSN for all its children to “111111111.” The DBMS is
also told that changing a SSN value that corresponds to one or more MgrSSN values
in the Employee table is not allowed (Restricted). In this case, it does not make sense
to allow an Employee’s SSN value to be changed.

The DNO column in the Employee table is also defined as a foreign key, which
refers to the primary key column of the Department table (D#). This RI keeps track of
which department an employee works in. For this RI, we use the ‘on update’ clause
to tell the DBMS to change the column value for DNO in the Employee table if the
corresponding value of D# in the Department table changes. The ‘on delete’ clause of
this RI indicates that the requirement is to set the DNO value for an employee to the
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Figure 3.7 Example of referential integrity across the Employee and Department tables.

default value when the corresponding department row is deleted from the Department
table (i.e., when the department is closed).

Relation constraints as discussed above are typically applied to a single table. The
SQL standard allows the use of the SELECT statement in the CHECK constraint
to refer to other tables in the same database. To provide for general constraints that
can refer to any number of tables, the SQL standard also allows creation of general
assertions. Assertions are constraints that are not associated with any individual table.
Figure 3.8b illustrates the use of an assertion in conjunction with the database tables
shown in Figure 3.8a. As seen from this figure, the general assertion “No−loan−Issue”
is applied when a customer requests a new loan from the bank. This assertion prevents
the customer being given the loan if the average balance of all the customers’ accounts
is less than or equal to $5000. Similarly, this assertion ensures that the loan will be
denied if the customer already has another loan from the bank (it will not allow the
same customer to have more than one loan).

Some commercial databases, like Oracle, do not support the concept of assertions.
For these products, explicit semantic integrity constraints have to be used. Explicit
constraints are not inherited from the ERM like the other three constraints. We have
to either code these constraints into the application programs that use the database or
code them into the database using the concept of stored procedures and triggers.

Stored procedures and triggers are written programs that use SQL and extensions
to the standard SQL—and, as a result, they are vendor specific. These programs are
stored in the database as opposed to being compiled and stored as object code outside
the database. Stored procedures, similar to any programming language procedures,
are programs that accept input parameters, do some work, and can then return values
through their output parameters. These procedures can be called from other procedures
and/or be activated interactively by the DBMS users. The only difference between a
stored procedure and other procedures is that stored procedures cannot request any
user interaction once they have started. In other words, we cannot input additional
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Figure 3.8 An example of an assertion for a sample bank database.

information into the procedure besides what we have given it as input parameters. The
general syntax of a stored procedure is given below:

Create Procedure Proc_Name (Param_list)
AS
Declaration section;
Begin

Actions;
End Proc_Name;

A trigger is a special kind of stored procedure that is stored in the database. Triggers
are an extension to the standard SQL. The only difference between a trigger and a stored
procedure is that users cannot call a trigger—only the DBMS can do this. Triggers are
run automatically (also known as fired) by the DBMS when certain changes (such as
insert, delete, and update operations) are performed on tables of the database. When
a table has associated triggers, modification statements performed on the table are
monitored by the DBMS and the code of the trigger is fired if the trigger is defined for
that action. For example, if we define a trigger for update on the EMP table, the trigger
code will run automatically every time the value of a column of EMP is changed. The
general syntax of a trigger code is shown below:

Create TRIGGER Trigger_Name ON Table FOR operation AS
Declaration section;
Begin

If Trigger_Condition Exec Proc_Name (Param_list);
. . .

End Trigger_Name;
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The language that Oracle uses for stored procedures and triggers is called PL/SQL,
while SQL Server’s language name is T/SQL. Both languages have many similarities
but at the same time many differences. For example, Oracle allows for triggers to run
either before the modification statement is performed or afterwards. If the trigger runs
before the actual modification statement, it is called a before trigger; otherwise, it
is called an after trigger. While Oracle allows both before and after triggers, SQL
Server only allows after triggers. Also, Oracle trigger code can be defined to run as
many times as the number of rows that are in the target of the modification statement
(which is called a row trigger) or only once regardless of how many rows are affected
(which is called a statement trigger). In the case of the SQL Server, only statement
triggers are supported. A more detailed explanation of stored procedures and triggers
is outside the scope of this book. We encourage interested readers to review any of the
many good books written on the subject. In Examples 3.1 and 3.2, we use PL/SQL
and T/SQL to write the same stored procedure and trigger for comparison purposes.

Example 3.1 Assume the DEPT and EMP tables are defined as shown in Figure 3.9a
in Oracle. We would like to write a stored procedure that will, when given a department

Figure 3.9 An example of a stored procedure and a trigger in PL/ SQL.
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number (v−dno) as an input parameter, delete that department from the DEPT table. For
simplicity, we assume that the department identified by v−dno is stored in the database.
Figure 3.9b shows this procedure implemented in PL/SQL. This code simply deletes
the department that has its Deptno column equal to the input parameter (see procedure
lines 4 and 5). Now, we want to write a trigger that runs when rows are deleted from
the EMP table. If the deleted employee is the last employee in the department, the
trigger uses the above stored procedure to delete the department from the DEPT table
as well. Otherwise, the trigger does not do anything. This trigger is designed to delete
the departments when they lose all their employees and have no employees left in
them. Figure 3.9c shows the PL/SQL code for this trigger. Since the delete operation
may delete more than one row from the EMP table, we need to use a row trigger (see
line 3). Since we are using an after trigger, the target employee row is already deleted
from the EMP table by the time our code runs. To access the department number for
this employee, Oracle maintains the image of the deleted/modified rows in the “:old”
record structure (see line 10) during the execution of the trigger code. Here, the field
“:old.dno” holds the department number for the row being deleted. The trigger code
checks to see if there are any more employees in the department from where the current
employee is being deleted (see lines 8 through 13). If this is the case, the department
is deleted using the stored procedure in line 14.

Example 3.2 This example is exactly the same as Example 3.1, except that the stored
procedure and trigger code are written in T/SQL for SQL Server 2005 DBMS. Note
that since T/SQL does not support row triggers, we have to use the concept of a cursor
(see lines 5 and 6 in Fig. 3.10) to analyze all the rows being deleted from the EMP
table and perform the check for an empty department (see lines 11 through 15). In
T/SQL, the table “deleted” holds an image of all the rows that are the target of the
delete operation during the execution of the trigger code. We use this table to iterate
through all rows that are being deleted. Note that since T/SQL only supports after
triggers, during the execution of the trigger code the target rows have already been
deleted from the EMP table. As a result, the only way to access the department number
for the employees being affected is through the deleted table.

3.4 DISTRIBUTED SEMANTIC INTEGRITY CONTROL

In distributed systems, semantic integrity assertions are basically the same as in cen-
tralized systems (i.e., relation, data type, referential, and explicit constraints). When
considering a distributed system, semantic integrity control issues become more com-
plicated due to distribution. The first question that we have to answer is, “Where are
the semantic integrity rules defined?” When thinking about the location of the rules, we
have to be aware of the fact that some semantic integrity rules are local and some are
distributed. After we define each rule, we need to consider which tables are affected
or referenced by it. When all the tables are deployed in a single database (at a single
site), the rule is a local rule; otherwise, it is a distributed rule. We also need to consider
where each rule should be defined and enforced. It makes sense to have local rules
defined and enforced at the site where all the tables involved are deployed. Deciding
where to define and implement the enforcement for distributed (multisite) rules is a
much bigger challenge. Let’s consider two examples to illustrate these concepts.
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Figure 3.10 An example a stored procedure and a trigger in T/ SQL.

Example 3.3 The RI examples we discussed in Figure 3.7 apply to one database. In
a distributed database, we have more than one DBE and might have an RI constraint
that spans two or more servers because the tables involved may be deployed at different
sites. We might also have an RI constraint that exists in two or more servers because of
replication. For this example, assume a distributed database that consists of two servers
at Site 1 and Site 2. The Department table, as defined in Figure 3.7a, is stored at Site 1
and the Employee table is stored at Site 2. We still have the same two RI requirements
that we had in the previous example for MgrSSN and DNO. These reflect our business
requirements and do not have anything to do with the way we have distributed our data.
Our problem is with the enforcement of the RI requirement between the Employee and
the Department tables. This is a problem, because the two tables are defined on two
different DBMSs and neither system can enforce the RI constraint within a foreign
system. In other words, when Site 2’s DBMS analyzes the ‘Create Table Employee. . .’
statement, it will complain due to the fact that the Department table does not exist at
Site 2—the Department table is defined at Site 1.



96 DATABASE CONTROL

Example 3.4 As discussed in Chapter 2, replication is a design technique that
attempts to provide more resiliency and availability of data by storing tables and their
fragments multiple times. General issues with replication will be discussed in Chapter
7. As far as semantic integrity is concerned, replication creates a unique challenge in
enforcing RI. Let’s assume that CID is the primary key of the Customer table and that
it has been used as a foreign key in the Order table to keep track of customers’ orders.
Furthermore, assume that both the Customer and Order table have been replicated at
Site 1 and Site 2. Let’s also suppose that Site 1 is an Oracle database while Site 2 is
an IBM DB2 database.

If customer C1 places a new order at Site 1, then Oracle enforces the RI requirement
and makes sure that this new order’s CID in the Order table matches the Customer’s
CID. But Oracle does not know (and probably does not care) about the copy of the
Order table deployed at Site 2, which is under the control of DB2. As a result, unless
the DDBE software replicates this new order in the Order table at Site 2, the replicas
of the table will diverge—they are no longer the same. We can also end up with a
more interesting and challenging scenario. Let’s suppose that at the same time that
customer 100 places a new order for item 13 at Site 1, the DBA at Site 2 deletes item
13 from its database. The referential integrity of the Oracle and DB2 databases locally
is enforced and the systems individually are consistent. But, as far as the overall dis-
tributed database is concerned, the database is mutually inconsistent. That is because at
Site 1 we have an order for an item that does not exist at Site 2. These and similar issues
related to semantic integrity constraints have to be addressed by the replication control
software (see Chapter 7). These examples indicate many challenges involved in the
declaration and enforcement of semantic integrity constraints in a distributed system.

The following outlines the additional challenges in distributed semantic integrity
control:

• Creation of multisite semantic integrity rules
• Enforcement of multisite semantic integrity rules
• Maintaining mutual consistency of local semantic integrity rules across copies
• Maintaining consistency of local semantic integrity rules and global semantic

integrity rules

It should be obvious that these challenges are due to database fragmentation, replica-
tion, and distribution. Obviously, the more a database is fragmented and/or replicated,
the more overhead will be involved in creation and enforcement of the integrity rules.
The main component of this overhead is the cost of communication between sites. An
attempt to minimize the cost of communication can reduce the overall overhead asso-
ciated with the creation and enforcement of integrity rules in a distributed database
system. One approach for minimizing communication cost is to try to distribute a
database in such a way that does not create multisite semantic integrity rules. For
example, we should place the EMP and DEPT tables as shown in Figure 3.7a at the
same site due to the existence of the RI rule between them. As another example, we
could avoid vertical fragmentation of any table, since otherwise we would need to
enforce relation constraints across the vertical fragments for each fragmented table.

Much of the work in semantic integrity area has been focused on the specification of
the rules [Stonebreaker74] [Eswaran76] [Machgeles76] [McLeod79] as opposed to how
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the rules are validated [Eswaran76] [Stonebreaker76] [Hammer78]. Badal argues that,
for a given distribution design, when we enforce the semantic integrity rules [Badal79]
it has a big impact on the communication cost. According to Badal, semantic integrity
rules for a transaction can be enforced when the transaction is compiled (compile
time validation), during its execution (run time validation), or after the transaction has
finished executing (postexecution time validation). In the following subsections, we
briefly discuss these three approaches. For each approach, we calculate the cost of the
approach, based on the number of required messages.

3.4.1 Compile Time Validation

In this approach to validation, transactions are allowed to run only after all the semantic
integrity (SI) constraints have been validated. For this approach to work, SI data items
need to be locked so that during validation and afterward, during transaction execution,
they are not changed. It is easy to see that compile time validation is simple to imple-
ment and does not incur any cost for abort operations since we only run transactions
when they are validated—transactions that violate the SI rule do not run at all. On the
other hand, to implement this approach, all the constraint data items need to be locked
for the duration of validation and transaction execution. After a transaction has been
validated, it starts its execution. Note that a transaction that has been validated may
still be rolled back due to concurrency control issues (such as locking and deadlock)
or due to conflicts with other concurrent transactions.

3.4.2 Run Time Validation

In this validation scheme, there is no need to hold transactions back until they are
validated (like we did in compile time validation). Here, transactions are validated
during execution. When there is a need for validation, all the data items involved are
locked and the transaction is validated. If semantic integrity rules are violated, the
transaction is rolled back. There is a larger overhead associated with this approach, as
compared to compile time validation, since invalid transactions need to be rolled back.
On the other hand, the duration for which the constraint data items need to be locked
is shorter. Once a transaction has been validated, it can commit.

3.4.3 Postexecution Time Validation

In this approach, validation is performed after the execution of the transaction but just
before the transaction is committed. If validation fails, transaction will be aborted. It
should be obvious that the cost of abort in this case is the highest since validation
is performed last. Consequently, the lock duration for the data items with which a
transaction is working is also long.

3.5 COST OF SEMANTIC INTEGRITY ENFORCEMENT

In centralized system, the cost of enforcing SI consists of the cost associated with
accessing SI data items, locking these data items, calculating assertions associated
with them, and then releasing the locks. This cost is dominated by the database access
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time, since compared to the CPU cost, database access time (disk I/O) is very slow.
In a distributed system, on the other hand, the validation cost is dominated by the
communication cost between the sites involved in a transaction. The cost of commu-
nication is directly associated with the number of required messages for coordination.
Example 3.5 demonstrates this for a simple distributed system scenario.

Example 3.5 Consider a two-site system where the EMP table is stored at Site
1 and the DEPT table is stored at Site 2. The EMP table has column ENO as its
primary key and a foreign key called “DNO” that indicates in which department the
employee works. The DNO column in the DEPT table is the primary key. Suppose a
human resource manager wants to add a new employee, say, employee 100, who works
for department 10. Let’s assume that this is achieved by a human resource manager
issuing a transaction at Site 1. Obviously, department 10 must exist in this database
since otherwise the referential integrity of the system would be violated. Before we run
this transaction, we must validate the SI requirements of this transaction—we must
confirm that department 10 exists in the system. We achieve this by sending a message
from Site 1 to Site 2 asking if department 10 exists. Site 2’s semantic integrity service
checks the existence of the department and sends us an answer. If “DNO = 10” does
not exist in DEPT, then this transaction is invalid and must be rolled back. Only if the
validation is successful do we continue with the execution of this transaction.

Assuming that this transaction is valid and department 10 exists in the system, we
have to make sure that, during the execution of this transaction, the DNO column of
the DEPT table, representing department 10, does not change. This requires locking
department 10’s row at Site 2 before executing this insert transaction. To do this, Site
1 must send a message to Site 2 requesting it to lock the corresponding row in the
DEPT table. Once the row has been locked, Site 2 sends an acknowledge message
back to Site 1. Upon receiving this message, Site 1 will continue with the insert. If the
execution of this transaction finishes without any problems, then Site 1 must release
the lock on DNO at Site 2. This is accomplished by another message sent from Site 1
to Site 2 and another acknowledgment message sent back from Site 2.

A careful reader has noticed that this example uses a compile time validation
approach—the transaction execution starts only after validation has completed. The
total cost of this approach is six messages—two messages to validate the referential
rule, two messages to lock the row in the DEPT table, and two messages to unlock
the row after the transaction has committed. On the other hand, if we use run time
validation, the total cost of validation will be four messages. We can achieve this by
“piggybacking” the lock request on the validation request message. This also requires
only one acknowledgment message back from Site 2, which reduces the total number
of messages to four. The following three subsections outline the cost associated with
each of the validation approaches in a distributed system.

3.5.1 Semantic Integrity Enforcement Cost in Distributed System

In calculating the cost of semantic integrity enforcement in distributed systems, we
assume the cost of the CPU is negligible as compared to the communication cost. We
also assume that communication cost is directly related to the number of messages
required for each approach. This assumption ignores the amount of data transferred by



COST OF SEMANTIC INTEGRITY ENFORCEMENT 99

each message and simply focuses on the number of messages. Example 3.6 presents a
more complicated example.

Example 3.6 For this example, we are adding a new loan for a customer of the
simple bank database given below (we will use this same database in Chapter 4 as
well).

Customer (CID, CNAME,STREET, CCITY);
Branch (Bname, ASSETS, BCITY);
Account (A#,CID, Bname,BAL);
Loan (L#,CID, Bname, AMT););
Transaction (TID, CID, A#, Date, AMOUNT);

The following are semantic integrity requirements for this database:

• The CID column in Customer table is the primary key.
• CID is a foreign key in the Account, Loan, and Transaction tables.
• Bname is the primary key of Branch table.
• Bname is a foreign key in the Account and Loan tables.
• A customer can have any number of accounts in the bank.
• Each customer’s account must have a positive balance.
• A customer can have any number of loans in the bank but the total amount of all

loans for a customer at any point in time cannot be more than $500,000.

This database is distributed in a four-site system consisting of four database servers
in Minneapolis (MPLS), St. Paul (StP), St. Cloud (StC), and Mankato (MK). The
bank headquarters is in Minneapolis. The Customer table is stored in the Minneapolis
server. There is a branch in St. Paul called the Grant branch, and a branch in St. Cloud
called the Main branch. There are no branches in Mankato. Each branch server hosts
fragments of the Loan and Account tables, for storing those loans and accounts that
have been opened at that branch. Information about all the bank’s branches is stored
in the Branch table in Mankato. The Transaction table is also stored in Mankato and it
stores all bank transactions, such as deposits, withdrawals, and loan payments. A new
loan is added to the bank by performing an insert operation into the Loan table that
provides values for L#, CID, Bname, and AMT. This insert operation must execute
at the branch server where the loan is initiated. For our example, we assume the loan
is initiated in St. Paul at the Grant branch, the loan number is 1234, the amount is
$150,000, and the loan belongs to customer 1111.

The following rules must be validated when we add a new loan for a given customer:

• Since L# is the primary key of the Loan table, its value must be unique—no
existing loan can have the same L# in the bank. Note that there are two loan
tables in the bank, one in StP, and one in StC.

• CID must be associated with one customer in the Customer table.
• Bname must be associated with one branch name in the Branch table.
• A valid AMT value depends on how many other loans this customer has and

whether or not the total of all of this customer’s loan amounts is more than
$500,000 or not.



100 DATABASE CONTROL

The following outlines a compile time validation approach for this transaction:

• Since L# is the primary key in the Loan table, we must validate the nonexistence
of “L# = 1234” in the two loan tables. To do this, the St. Paul site has to look
up “L# = 1234” locally and at St. Cloud. The local lookup is achieved by a local
select as “select count(*) from Loan where L# = 1234.” If this count returns zero
(0), then loan number 1234 is not used locally. After confirming this, the St. Paul
site sends the same select statement to St. Cloud and asks that site to run the
command and return the count. This validation step passes if the count received
from St. Cloud is also zero.

• Since the loan belongs to customer 1111, we must also validate that “CID =
1111” exists in the Customer table. The Customer table is stored in Minneapolis.
Therefore, the St. Paul site has to send a request to the MPLS site asking if
“CID = 1111” is in the Customer table. When St. Paul gets a positive response
back from Minneapolis, this validation step passes.

• Since the new loan is to open in Grant, we must validate the existence of “Bname
= ‘Grant’” in the Branch table. This is achieved by a local select against the
Branch table, at Mankato, checking for existence of a row with “Bname =
‘Grant’.” If such a row exists, this validation step passes. Otherwise, the transac-
tion fails.

• Due to the business rule that no customer should have more than $500,000 in total
loan amounts, we need to validate that the sum of all existing loans combined
with the new loan for this customer is less than $500,000. We can achieve this
in three separate steps. In the first step, we need to calculate the sum of all loan
amounts for customer 1111. We do this by running the SQL statement “select
CID, SUM(AMT) from Loan Where CID = 1111 Group by CID” against the
local Loan table and St. Cloud Loan table. In the second step, we add the two
totals and the new loan amount together, resulting in the new total amount of loans
for the customer. Finally, in the third step, we compare the new total amount from
the second step with $500,000. If the new total amount is less than $500,000, the
transaction is validated—otherwise, the transaction fails.

Figure 3.11 depicts a table that shows how validation steps are carried out by the
St. Paul site.

As seen from this example, sometimes validation is performed by the site where
the SI data item is stored—for example, checking the nonexistence of loan 1234 at
St. Could—and at other times validation has to be performed by the site originating
the transaction—for example, figuring out the new total loan amount for a customer.
In the first case, we must use the site where the SI information is stored to validate;
otherwise, the validation requires sending the entire Loan table from St. Could to St.
Paul, where the existence of the account would be checked. This, obviously, would
take many messages with a large communication cost—and it is not necessary. In the
second case, the validation involves tables from two sites. In situations like this, where
validation involves more than one site, it is better to have the validation performed by
the transaction’s originating site.

3.5.1.1 Variables Used By now, it should be rather clear that the more sites we have
involved in validating a transaction, the more messages we must send for validation.
In comparing the compile time, run time, and postexecution time validation, we are
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not interested in costing individual transactions, but we are interested in figuring out
the average cost of each approach for a large number of transactions. Therefore, we
try to calculate the number of messages required for each option when considering
a large number of transactions in the system. Also, for simplicity and efficiency we
assume that when the transaction’s originating site communicates with another site,
it makes all of its requests together. For instance, suppose Site 1, where transaction
T1 is originated at, needs to read-lock three items at Site 2. To do this, Site 1 sends
one message requesting Site 2 to lock all three items as opposed to sending three
individual read-lock requests. Therefore, it is not as important to know how many
items a transaction needs to read-lock, write-lock, read, and write as it is to know how
many sites these items are stored at, since this determines the number of messages
involved.

Based on the above assumptions, the following are the terms we use in our calcu-
lations:

• There are N transactions in the system that we are trying to validate.
• Out of these N transactions, M will validate—the remaining (N − M) transactions

will fail.
• Each transaction needs to know the average number of sites that it only reads

from. This is necessary to figure out the cost for read-lock requests. We use
Ronly as this average. Ronly indicates how many sites the transaction has to
send a read-lock request to.

• Each transaction needs to know the average number of sites that it only writes
to. This is necessary to figure out the cost for write-lock requests. We use Wonly
as this average. Wonly indicates how many sites the transaction has to send a
write-lock request to.

• Each transaction needs to know the average number of sites that it both reads
from and writes to. We use RW as this average. This is necessary to figure out
the cost for read-lock and write-lock requests. RW indicates how many sites the
transaction has to send a read-lock and write-lock request to.

• All SI-related data items for each transaction need to be read-locked as well. This
is necessary to prevent the SI rules from being changed while a transaction is
validating. Therefore, each transaction needs to know the average number of sites
at which its SI-related data items are stored. We use SIS as this average.

3.5.1.2 Compile Time Validation The compile time SI validation algorithm works
as follows:

1. Read-lock the SI-related data items at SIS sites.
2. These sites either evaluate SI and send the result to the control site or they send

data to the control site, which does the SI validation.
3. If a transaction violates SI, then reject that transaction and terminate it. Otherwise,

continue to step 4.
4. Lock data items at (Wonly + RW + Ronly) sites and execute the transaction.

Note that requests to lock and commands to execute are piggybacked when the
originating site sends a message to a remote site. This eliminates the need for
multiple communications to the same site.
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5. Unlock data items at the sites where successful transactions have com-
mitted.

We can figure out the locking/unlocking and validation cost for this algorithm by
adding up the number of messages generated during each step of the algorithm. The
following shows each individual algorithm step’s cost:

1. Cost = N * SIS: this is the cost of read-locking the SI-related data items.
2. Cost = N * SIS: this is the cost of validating N transactions.
3. Cost = (N − M) * SIS: this is the cost of unlocking the SI-related data items

locked in Step 1 for those transactions that have violated SI, been rejected, and
then terminated.

4. Cost = M * (Wonly + RW + Ronly): this is the cost of locking the data items
used by all the transactions that have successfully validated.

5. Cost = M * (Wonly + RW + Ronly + SIS): this is the cost of unlocking all
data items (including the SI-related data items) for all the transactions that have
validated.

3.5.1.3 Run Time Validation The run time SI validation algorithm works as follows:

1. Read-lock all SI-related data items at SIS sites, read-lock data items for read-only
at Ronly sites, and write-lock data items to read and write at RW sites.

2. Read, compute, and generate final values to write at RW and Wonly sites.
3. Read SI-related data items or ask for the results of validation from SIS sites.
4. If there is a violation, then reject the transaction and unlock by sending messages

and terminating the transaction; otherwise, continue to Step 5.
5. Lock at Wonly sites and execute updates/commit for all successful transactions.
6. Unlock at sites for successful transactions and terminate.

For this algorithm, we can figure out the locking/unlocking and validation cost by
adding up the number of messages generated during each step of the algorithm. The
following shows each individual algorithm step’s cost:

1. Cost = N * (RW + Ronly + SIS): this is the cost to read-lock SI-related and
read-only data items plus the cost to write-lock read and write data items.

2. Cost = None: in this step the control site will perform the necessary computa-
tions.

3. Cost = N * SIS: this is the cost of reading the SI data items (or receiving the
validation results from the sites that store SI data items).

4. Cost = (N − M) * (RW + Ronly + SIS): this is the cost of unlocking read and
write, read-only, and SI data items for transactions that have failed the validation.

5. Cost = M * Wonly: this is the cost to write-lock data items that transactions
write only.

6. Cost = M * (RW + Ronly + Wonly + SIS): this is the cost of unlocking all
locked data items for transactions that have successfully finished.
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3.5.1.4 Postexecution Time Validation The postexecution time SI validation algo-
rithm works as follows:

1. Read-lock data items to read at Ronly sites.
2. Write-lock data items to write or to read and write at Wonly and RW sites.
3. Compute new values to be written.
4. Send new values to the site where they need to be written at Wonly and RW

sites.
5. Send read-lock messages to lock SI-related data items at SIS sites; ask them to

send SI-related data items back or the results of their validation to the control
site.

6. If a transaction fails validation, then send reject messages to all the sites at which
the transaction has written, to undo the work.

7. Unlock the sites at which data items were locked and terminate.

For this algorithm, we can figure out locking/unlocking and validation cost by adding
up the number of messages generated during each step of the algorithm. The following
shows each individual algorithm step’s cost.

1. Cost = N * Ronly: this is the cost to send the read-lock requests to all sites
where the read-only data items reside.

2. Cost = N * (RW + Wonly): this is the cost to send the write-lock requests to all
sites where the data items to be read and written as well as the data items to be
only written reside.

3. Cost = None: the control site performs computation for new values during this
step.

4. Cost = None: this is the cost of sending the new data item values to each site
where they need to be written.

5. Cost = 2N * SIS: this is the cost of locking and either reading the SI-related
data items or requesting and receiving the validation results for those data items
from the SIS sites.

6. Cost = (N − M) * (Wonly + RW + Ronly + SIS): this is the cost of unlocking
the data items that invalid transactions have used.

7. Cost M * (Ronly + Wonly + RW + SIS): this is the cost of unlocking all remain-
ing locked data items.

Example 3.7 In this example, we present a simple eight-site system, location details
for the data items used for a given transaction (T1), and a specific strategy for carrying
out the transaction. We assume the cost of sending a message from any site to any
other site is C units of time.

The following depicts the distribution setup for this example:

• There are eight (8) sites in the system.
• Sites 1 and 2 are the sites that T only reads from.
• Sites 3, 4, and 5 are the sites that T only writes to.
• Sites 6 and 7 are the sites that T reads and writes.
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Figure 3.12 Summary of data item placement for Example 3.7.

• Site 8 is the site that transaction checks SIS.
• T enters the system at Site 4.

Figure 3.12 shows the placement of SIS, Ronly, Wonly, and RW data items for this
transaction.

The following are the cost calculations for this example:

• The cost of locking all sites to write-only is 2C since the transaction enters at Site
4, which is where one of the needed items is, and it needs to send two messages
to Sites 3 and 5.

• The cost of locking all sites to read-only is also 2C since the transaction needs to
send two messages, one to Site 1 and one to Site 2, to read-lock the items there.

• The cost of locking all sites to read and write is 2C since the RW sites are Sites
6 and 7.

• The cost of locking all sites for transaction SI checks is 1C since all such items
are stored at Site 8.

• The cost of reading all information that the transaction needs (after the data items
have been locked) is 10C since the transaction needs to read items from Sites 1,
2, 6, 7, and 8. Since each read requires a message that is sent from Site 4 (where
transaction is) to each site (where the data item is) and also requires that site to
send the response message, the total cost is (2 ∗ 5)C = 10C.

• The cost of writing all information that the transaction needs (after the data items
have been locked) is 4C since Site 4 needs to send the values for the items that
need to be written to Sites 3, 4, 5, 6, and 7. Note that the items on Site 4 are local
and do not require a message. Therefore, we need four messages at the cost 4C.

Based on the costs calculated above, we can determine the cost of the following
execution strategy. We will assume that lock and write commands do not require
acknowledgment messages.

Strategy

• Phase 1. The originating site will lock items at all sites where it needs to lock
them. This phase will cost 7C—2C to read-lock at Sites 1 and 2; 4C to write-lock
at Sites 3, 5, 6, and 7; and 1C to read-lock at Site 8.
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• Phase 2. The originating site will first send messages to read everything it needs.
Then it will send messages to write everything it needs to write. This phase will
cost 14C—10C to read data items at Sites 1, 2, 6, 7, and 8; and 4C to write data
items at Sites 3, 5, 6, and 7.

• Phase 3. The originating site will validate the SI for transaction T. This phase
will cost 2C since all SI data items are stored at Site 8.

• Phase 4. The originating site will unlock the sites it needs to unlock. This phase
will cost exactly the same as Phase 1 (7C) since all data items locked in Phase 1
need to be unlocked.

3.6 SUMMARY

The issues with database control are some of the most challenging issues that a DBA
must address. Controlling the database requires implementing tight security measures
and correct security policies that define the access rights for users and guarantee the
security of the database. This is vital to ensuring the database’s consistency and its
accessibility only by authorized users. Semantic integrity rules are defined when the
database is designed and enforced by the DBMS when the database is used. Semantic
integrity rules can be applied before a transaction runs, during a transaction’s execution,
or after a transaction’s execution (but before it has been committed) with each approach
having some drawbacks and some benefits.

3.7 GLOSSARY

Access Control The action of controlling who can access what contents of the
database.

Access Rights The set of action privileges that are given to a user (or a group of
users).

After Trigger A trigger that runs after the triggering event has been run.
Assertions A set of conditions/rules that are defined for the contents of the database.
Authentication Any technique used to validate the identity of a source or destination

of messages or data.
Before Trigger A trigger that runs before the triggering event has been run.
Compile Time Validation An approach to semantic integrity control that checks

transactions before they run.
Constraints A set of conditions/rules that are defined for the contents of the database.
Data Type A constraint associated with the type of a data item in a database.
Database Administrator (DBA) A person who has ultimate privileges on what can

be done to the database.
Integrity Constraints A set of conditions/rules that are defined for the contents of

the database.
Postexecution Time Validation An approach to semantic integrity control that

checks transactions after they run.
Referential Integrity The fact that for every foreign key value in a table there must

be a corresponding primary key value in the database.
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Relation Constraints A set of rules that apply to the table as a whole.
Relational Constraints A set of constraints that are inherited by the relational model

from the ER (conceptual) model of the database.
Role A grouping of privileges that can be assigned to a database user or another role.
Row Trigger A trigger that runs as many times as the number of rows affected by

the triggering event.
Run Time Validation An approach to semantic integrity control that checks trans-

actions during execution.
Semantic Integrity Rules A set of conditions/rules that are defined for the contents

of the database.
Statement Trigger A trigger that runs only once regardless of how many rows are

affected by the triggering event.
Stored Procedure A procedure that is stored in the database.
Trigger A stored procedure that can only be called by the DBMS when modifying

events such as insert, delete, and update are issued by the database users.
User Defined Data Type A data type that a database user can define, which is based

on the base data types of a DBMS.
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EXERCISES

Provide short (but complete) answers to the following questions.

3.1 Assume the cost of sending a message from any site to any other site is C units
of time for SI validation. Figure out the cost of each one of the phases of the
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following strategy. Also, assume that there are N transactions and, out of these,
M will fail the validation.

Phase 1: Control site read-locks and reads all data that needs to be read.
Phase 2: Control site performs the validation.
Phase 3: Invalid transactions are rejected—locks are released for these trans-

actions.
Phase 4: Control site calculates all the new values that need to be written.
Phase 5: Control site write-locks information at all the sites it needs (no ACK

for locking is required).
Phase 6: Control site writes where it needs to write for successful transactions.
Phase 7: Control site unlocks at the sites that need to be unlocked.

3.2 Assume the following two tables in SQL Server 2005 where EMP(Dno) is a Fkey
that points to DEPT(Dno).

EMP (Eno Integer not null, Dno Integer not null,
primary key(Eno))

DEPT (Dno Integer not null, Mgr varchar(15),
primary key(Dno))

(A) Write a stored procedure that when given a Dno checks the existence of it
in the DEPT table. The procedure returns 1 if the Dno found and −1 if Dno
is not found.

(B) Write a trigger that uses the procedure in part A to validate inserting a row
into the EMP table. The trigger checks the existence of Dno in the DEPT
table. If Dno is found, then the row is inserted. Otherwise, the trigger aborts
the insert.

3.3 Assume the following two tables in Oracle 10 g:

EMP (Eno NUMBER(4) not null, sal NUMBER (10,2), Dno NUMBER
(3) not null)
DEPT (Dno NUMBER(3) not null, Mgr varchar(15), Tot_Emp_sal
NUMBER (12,2) not null)

EMP(Dno) is a Fkey that points to DEPT(Dno), which is a Pkey.

(A) Write a stored procedure that when given an amount increases the value of
the column Tot_Emp_sal with this amount.

(B) Write a trigger that runs when employees are added to the database. The
trigger uses the procedure in part A to update the column Tot_Emp_sal in
the DEPT table to reflect the fact that the new employees are added to their
corresponding departments.

3.4 Consider the bank database discussed in Example 3.6. This database has the
integrity requirements that (1) a loan must belong to one, and only one, cus-
tomer; (2) an account must belong to one, and only one, customer; and (3) a
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customer must own, at least, one loan or one account in the bank—otherwise,
the customer cannot exist in the database. All branches in the bank are located in
either Minneapolis (MPLS) or St. Paul (STP). All accounts belonging to a branch
in MPLS are stored in the database in the MPLS server. Similarly, all accounts
belonging to a branch in STP are stored in the database in the STP server. Smith is
a customer with CID = 100. Smith decides to close the account with A# = 222
by issuing a delete command from an ATM in LA. Explain the steps required to
maintain the integrity of this database when this account is closed.





4
QUERY OPTIMIZATION

In this chapter, we provide an overview of query processing with the emphasis on
optimizing queries in centralized and distributed database environments. It is a well-
documented fact that for a given query there are many evaluation alternatives. The
reason for the existence of a large number of alternatives (solution space) is the
vast number of factors that affect query evaluation. These factors include the number
of relations in the query, the number of operations to be performed, the number of
predicates applied, the size of each relation in the query, the order of operations to
be performed, the existence of indexes, and the number of alternatives for performing
each individual operation—just to name a few. In a distributed system, there are
other factors, such as the fragmentation details for the relations, the location of these
fragments/tables in the system, and the speed of communication links connecting the
sites in the system. The overhead associated with sending messages and the overhead
associated with the local processing speed increase exponentially as the number of
available alternatives increases. It is therefore generally acceptable to merely try to
find a “good” alternative execution plan for a given query, rather than trying to find
the “best” alternative.

A query running against a distributed database environment (DDBE) will have
to go through two types of optimization. The first type of optimization is done at
the global level, where communication cost is a prominent factor. The second type
of optimization is done at the local level. This is what each local DBE performs
on the fragments that are stored at the local site, where the local CPU and, more
importantly, the disk input/output (I/O) time are the main drivers. Almost all global
optimization alternatives ignore the local processing time. When these alternatives were
being developed, it was believed that the communication cost was a more dominant
factor than the local processing cost. Now, it is believed that both the local query cost
and the global communication cost are important to query optimization.
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Suppose we have two copies of a relation at two different servers, where the first
server is a lot faster than the second server, but at the same time, the connection
to the first server is a lot slower than the connection to the second server (perhaps
we are closer to the second server). An optimization strategy that only considered
communication cost would choose the second server to run the local query. This will
not necessarily be the best strategy, due to the speed of the chosen (second) server.
The overall time to run a query in a distributed system consists of the time it takes to
communicate local queries to local DBEs; the time it takes to run local query fragments;
the time it takes to assemble the data and generate the final results; and the time it takes
to display the results to the user. Therefore, to study distributed query optimization,
we need to understand how a query is optimized both locally and globally.

In this chapter, we introduce the architecture of the query processor for a central-
ized system first. We then analyze how a query is processed optimally, discussing
the optimization techniques in a centralized system. The optimization of queries in a
distributed system is explained last. We introduce a simple database that we use in
our examples. We will also provide a brief introduction to relational algebra (RA) in
this chapter, since most commercial database systems use this language as an internal
representation of SQL queries.

4.1 SAMPLE DATABASE

We will use a small database representing a bank environment for our examples. This
database has five relations: Customer, Branch, Account, Loan, and Transaction. In
this database, customers, identified by CID, open up accounts and/or loans in differ-
ent branches of the bank that are located in different cities. This is indicated by the
CID and BNAME foreign keys in the Account and Loan relations. Customers also
run transactions against their accounts. This is shown in the Transaction relation by
the combined foreign key “(CID, A#).” Later in this chapter, when discussing query
optimization alternatives, we will specify the statistics for this database. The following
shows the relations of our example bank database.

CUSTOMER (CID, CNAME, STREET, CCITY);
BRANCH (BNAME, ASSETS, BCITY);
ACCOUNT (A#, CID, BNAME, BAL);
LOAN (L#, CID, BNAME, AMT);
TRANSACTION (TID, CID, A#, Date, AMOUNT);

4.2 RELATIONAL ALGEBRA

Since the introduction of the relational model by Codd in 1970 [Codd70], two classes
of languages have been proposed and implemented to work with a relational database.
The first class is called nonprocedural and includes relational calculus and Quel.
The second class is known as procedural and includes relational algebra and the
Structured Query Language (SQL) [SQL92]. In procedural languages, the query
directs the DBMS on how to arrive at the answer. In contrast, in a nonprocedural
language, the query indicates what is needed and leaves it to the system to find the
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process for arriving at the answer. Although it sounds easier to tell the system what is
needed instead of how to get the answer, nonprocedural languages are not as popular
as procedural languages. As a matter of fact, SQL (a procedural language) is the only
widely accepted language for end user interface to relational systems today.

To start our query processing discussion, we will make the assumption that user
requests are entered into the system as SQL statements. This is because, as we men-
tioned before, one of the goals of a distributed database management system is to
provide a standards-based, uniform, high-level language interface to all the data that
is stored across the distributed system. SQL is typically used as such a high-level lan-
guage interface. Even though SQL is an accepted and popular interface for end users, it
does not lend itself nicely to internal processing. Perhaps the most problematic aspect
of SQL is its power in representing complex queries easily at a very high level without
specifying how the operations should be performed. That is why most commercial
database systems use an internal representation based on relational algebra that spec-
ifies the ordering of different operations within the query. Therefore, to understand
how SQL queries are processed, we need to understand how their equivalent relational
algebra commands work.

Since the detailed discussion of RA is outside the scope of this book, in this chapter
we will only provide an overview of those RA operations that are of interest to query
optimization. We recommend interested readers look at the discussion of the relational
data model in Section 11.1 for a brief review of the terminology, and see [Codd70]
for a more detailed review of the concepts and operations.

For the remainder of this section we will use the following notations:

• R and S are two relations.
• The number of tuples in a relation is called the cardinality of that relation.
• R has attributes a1, a2, . . . , an and has cardinality of K.
• S has attributes b1, b2, . . . , bm and has cardinality of L.
• r is a tuple in R and is shown as r[a1, a2, . . . , an].
• s is a tuple in S and is shown as s[b1, b2, . . . , bm].

4.2.1 Subset of Relational Algebra Commands

Relational algebra (RA) supports unary and binary types of operations. Unary opera-
tions take one relation (table) as an input and produce another as the output. Binary
operations take two relations as input and produce one relation as the output. Note that
regardless of the type of operation, the output is always a relation. This is an important
observation since the output of one operation is usually fed as an input into another
operation in the query. RA operators are divided into basic operators and derived
operators. Basic operators need to be supported by the language compiler since they
cannot be created from any other operations. Derived operators, on the other hand, are
optional since they can be expressed in terms of the basic operators. Greek symbols
are sometime used to represent the RA operators in many textbooks (see Table 4.1).

In this book, we will use the following notation instead:

• SL represents the relational algebra SELECT operator.
• PJ represents the relational algebra PROJECT operator.
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TABLE 4.1 Symbols Often Used to Represent
Relational Algebra Operators
Symbol Name RA Operator

σ Sigma Select
π Pi Project
�� Bowtie Cross product or join

• JN represents the relational algebra JOIN operator.
• NJN represents the relational algebra natural JOIN operator.
• UN represents the relational algebra UNION operator.
• SD represents the relational algebra natural SET DIFFERENCE operator.
• CP represents the relational algebra CROSS PRODUCT operator.
• SI represents the relational algebra SET INTERSECT operator.
• DV represents the relational algebra DIVIDE operator.

4.2.1.1 Relational Algebra Basic Operators Basic operators of RA are SL, PJ, UN,
SD, and CP. In the following subsections, we briefly describe these operators.

Select Operator in Relational Algebra The select operator returns all tuples of the
relation whose attribute(s) satisfy the given predicates (conditions). If no condition is
specified, the select operator returns all tuples of the relation. For example, “SLbal=1200

(Account)” returns all accounts that have a balance of $1200. The result is a relation
with four attributes (since the Account relation has four attributes) and as many rows as
the number of accounts with a balance of exactly $1200. The predicate “bal = 1200”
is a simple predicate. We can use “AND,” “OR,” and “NOT” to combine simple predi-
cates, making complex predicates. For example, we can find the accounts with a balance
of $1200 at branch “Main” using the select expression, “SLbal=1200 AND Bname=‘Main’

(Account).”

Project Operator in Relational Algebra The project operator returns the values of all
attributes specified in the project operation for all tuples of the relation passed as a
parameter. In a project operation, all rows qualify but only those attributes specified
are returned. For instance, “PJ Cname,Ccity (Customer)” returns the customer name and
the city where the customer lives for each and every customer of the bank.

Combining Select and Project We can combine the select and project operators in
forming complex RA expressions that not only apply a given set of predicates to the
tuples of a relation but also trim the attributes to a desired set. For example, assume we
want to get the customer ID and customer name for all customers who live in Edina.
We can do this by combining the SL and the PJ expressions as “PJ CID, Cname (SL
Ccity=‘Edina’ (Customer)).” Note that operator precedence is enforced by parentheses.
In this example, the innermost expression is the SL operation and is carried out first.
This expression returns all customers who live in Edina. Subsequently, the PJ operator
trims the results to only CID and Cname for those customers returned from the SL
operation.
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Union Operator in Relational Algebra Union is a binary operation in RA that com-
bines the tuples from two relations into one relation. Any tuple in the union is in the
first relation, the second relation, or both relations. In a sense, the union operator in
RA behaves the same way that the addition operator works in math—it adds up the
elements of two sets. There are two compatibility requirements for the union operation.
First, the two relations have to be of the same degree—the two relations have to have
the same number of attributes. Second, corresponding attributes of the two relations
have to be from compatible domains.

The following statements are true for the union operation in RA:

• We cannot union relations “R(a1, a2, a3)” and “S(b1, b2)” because they have
different degrees.

• We cannot union relations “R(a1 char(10), a2 Integer)” and “S(b1 char(15), b2
Date)” because the a2 and b2 attributes have different data types.

• If relation “R(a1 char(10), a2 Integer)” has cardinality K and relation “S(b1
char(10), b2 Integer)” has cardinality L, then “R UN S” has cardinality “K +
L” and is of the form “(c1 char(10), c2 Integer).”

Suppose we need to get the name and the address for all of the customers who live
in a city named “Edina” or “Eden Prairie.” To find the results, we first need to create
a temporary relation that holds Cname and Ccity for all customers in Edina; then we
need to repeat this for all the customers in Eden Prairie; and finally, we need to union
the two relations. We can write this RA expression as follows:

PJCID, Cname (SLCcity = ‘Edina’ (Customer))
UN
PJCID, Cname (SLCcity = ‘Eden Prairie’ (Customer))

The union operator is commutative, meaning that “R UN S = S UN R.” Also, the
union operator is associative, meaning that “R UN (S U P) = (R UN S) UN P.”
Applying associativity and commutativity properties to union, we end up with 12
different alternatives for union of the three relations R, S, and P. We will leave it as
an exercise for the reader to enumerate all the possible alternatives for the union of
three relations.

Set Difference Operator in Relational Algebra Set difference (SD) is a binary opera-
tion in RA that subtracts the tuples in one relation from the tuples of another relation.
In other words, SD removes the tuples that are in the intersection of the two relations
from the first relation and returns the result. In “S SD R,” the tuples in the set dif-
ference belong to the S relation but do not belong to R. Set difference is an operator
that subtracts the elements of two sets. In a sense, the set difference operator in RA
behaves the same way that the subtraction operator works in math. There are again
two compatibility requirements for this operation. First, the two relations have to be
the same degree, and second, the corresponding attributes of the two relations have to
come from compatible domains.

Assume we need to print the customer ID for all customers who have an account at
the Main branch but do not have a loan there. To do this, we first form the set of all
customers with accounts at the Main branch and then subtract all the customers with
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a loan at the Main branch from that set. This excludes the customers who are in the
intersection of the two sets (those who have both an account and a loan at the Main
branch) leaving behind the desired customers. The RA expression for this question is
written as

PJCID (SLBcity = ‘Main’ (Account))
SD
PJCID (SLBcity = ‘Main’ (Loan))

Note: The SD operator is not commutative, that is, “R SD S �= S SD R.” That is
because the left-hand side of the inequality returns tuples in R that are not in S, while
the right-hand side returns tuples in S that are not in R. Note, however, that unlike the
union operator, the SD operator is not associative, meaning that “R SD (S SD P) �=
(R SD S) SD P.”

Cartesian Product Operator in Relational Algebra Cartesian product (CP), which is
also known as cross product, is a binary operation that concatenates each and every
tuple from the first relation with each and every tuple from the second relation. CP is a
set operator that multiplies the elements of two sets. In a sense, the CP operator in RA
behaves the same way that the multiplication operator works in math. This operation
is hardly used in practice, since it produces a large number of tuples—most of which
do not contain any useful information. “R CP S” is a relation with L*K tuples and
each tuple is of the form “[a1, a2, . . ., an, b1, b2, . . ., bm].” For example, assume we
have 1000 accounts and 200 loans in the bank. The cross product of the account and
loan relations, written as “Account CP Loan,” will have 8 attributes and as many as
200,000 tuples. Table 4.2 shows some of the tuples in the “Account CP Loan” results.

As seen from the sample tuples in this relation, account information for account
number 100, for customer 111, has been concatenated with all the loans in the bank.
Although this is a valid relation as far as the relational model is concerned, all the
rows except for the ones that have equal values for the two CID attributes are useless
(the tuple with “L# = 167” is valid, but the other tuples are not valid). Therefore, only
tuple number 2, where the account and loan information for customer 111 have been
concatenated, contains meaningful results. We will discuss how to eliminate the tuples
that do not contain meaningful information when we discuss the join operator.

4.2.1.2 Relational Algebra Derived Operators In addition to the basic operators
in RA, the language also has a set of derived operators. These operators are called
“derived” since they can be expressed in terms of the basic operators. As a result, they
are not required by the language, but are supported for ease of programming. These

TABLE 4.2 Partial Cartesian Products Results
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operators are SI, JN (NJN), and DV. The following sections represent an overview of
these operators.

Set Intersect Operator in Relational Algebra Set intersect (SI) is a binary operator
that returns the tuples in the intersection of two relations. If the two relations do
not intersect, the operator returns an empty relation. Suppose that we need to get the
customer name for all customers who have an account and a loan at the Main branch
in the bank. Considering the set of customers who have an account at the Main branch
and the set of customers who have a loan at that branch, the answer to the question
falls in the intersection of the two sets and can be expressed as follows:

PJCname (SLBcity = ‘Main’ (Account))
SI
PJCname (SLBcity = ‘Main’ (Loan))

SI operation is associative and commutative. Therefore, “R SI S = S SI R” and “R
SI (S SI P) = (R SI S) SI P.” As mentioned before, SI is a derived operator. That
is because we can formulate the intersection of the two relations, “R SI S” as “R SD
(R SD S)” by the successive application of the SD operator. We leave the proof as an
exercise for the reader. Hint : Use a Venn diagram [Venn1880].

Join Operator in Relational Algebra The join (JN) operator in RA is a special case
of the CP operator. In a CP operation, rows from the two relations are concatenated
without any restrictions. However, in a JN, before the tuples are concatenated, they
are checked against some condition(s). JN is a binary operation that returns a relation
by combining tuples from two input relations based on some specified conditions.
These operations are known as conditional joins, where conditions are applied to the
attributes of the two relations before the tuples are concatenated. For instance, the
result of “R JNa2 > b2 S” is a relation with “<= L ∗ K” tuples and each tuple is in
the form “[a1, a2, . . . , an, b1, b2, . . . , bm],” satisfying the condition “a2 > b2.” One
popular join condition is to force equality on the values of the attributes of the two
relations. These types of joins are known as equi-joins. The expression “R JNa2=b2 S”
is a join that returns a relation with “<= L ∗ K” tuples and each tuple is in the form
“[a1, a2, . . . , an, b1, b2, . . . , bm],” satisfying the condition “a2 = b2.”

In addition to these, RA supports the concept of natural join, where equality is
enforced automatically on the attributes of the two relations that have the same name.
For example, consider relations “Account(A#, CID, Bname, bal)” and “Branch(Bname,
Bcity, Budget).” Although we can join these relations enforcing equality on any of their
two attributes, the natural way to join them is to force equality on the Bname in Branch
and the Bname in Account. A careful reader notices that this type of join forces equality
on the value of the primary key with the value of the foreign key, resulting in groups
of accounts for each branch. This join is written as “Branch JNBranch.Bname=Account.Bname

Account.” When performing joins of this nature, Relational Algebra knows that the
values of attributes “Branch.Bname” and “Account.Bname” are the same, and therefore,
showing both columns is not necessary. That is why RA drops one of the columns
and only displays one. For our example, this type of join is called a natural join and is
shown as “Branch NJN Account” knowing that equality is forced automatically on the
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Bname attributes. Note that any natural join operation reduces to a Cartesian products
operation if the two relations have no attributes in common.

Figure 4.1 depicts the union, SD, and SI operators in RA using Venn diagrams. The
shaded areas for UN and SD and the cross-hatched area for SI represent the answer
for each operator.

Divide Operator in Relational Algebra Divide (DV) is a binary operator that takes two
relations as input and produces one relation as the output. The DV operation in RA is
similar to the divide operation in math. We will use an example to show how the divide
operation works in relational algebra. Assume we want to find all customers who have
an account at all of the branches located in the city MPLS (each and every branch).
As a city, MPLS has multiple branches located in it. Suppose branches in MPLS are
Main, Nicollet, and Marquette. We are looking for all customers who have at least
one account in every one of these three branches. For instance, Jones who has one
account in Main and one account in Nicollet is not part of the answer, while Smith who
has an account in Main, an account in Nicollet, and an account in Marquette is part of
the answer. Jones would be part of the answer if the question were, “Find customers
who have an account at ANY branch in MPLS.” The key difference between these
two questions is “all” versus “any.” To get the answer, we need to form two sets of
tuples. The first is the set of all customers and the branches in which they have an
account. The second set is the set of all branches in MPLS. A customer is part of the
answer if for that customer the set of customers’ branches contains the set of branches
in MPLS. The operation that performs these steps is the division operation. Figure 4.2
depicts the two sets and the answer after the divide operation.

The expression “S = PJ bname (SLbcity = ‘MPLS’ (Branch))” represents the set of all
branch names in MPLS. The expression “R = PJcname, bname (Account NJN Customer)”

Figure 4.1 Set operations in relational algebra.

Figure 4.2 Set divide operation example.
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Figure 4.3 Divide operation using the basic RA operations.

represents the set of all customer names and their branch names for all customers in
the bank. Hence, the answer can be arrived at by the following:

PJcname, bname (Account NJN Customer)
DV
PJbname (SLbcity = ‘MPLS’ (Branch))

The following explains what the DV operator actually does:

• First, the DV operation performs a group-by on the Cname attribute of the first
relation, which results in a set of branch names for each customer.

• Then, it checks to see if the set of Bname values associated with every unique
value of Cname is the same set or a superset of the set of Bname values from the
second relation. If it is (the same set or superset), then the customer identified by
that Cname is part of the division result.

Since DV is a derived operation it can be expressed using the base RA operations
expressed as follows:

R1 = PJcname(R) CP S
R2 = PJcname (R1 SD R)
R(cname, bname) DV S(bname) = PJcname (R) SD R2

We have shown the results of these steps in Figure 4.3 for the bank example.

4.3 COMPUTING RELATIONAL ALGEBRA OPERATORS

In the previous section, we discussed the use of some relational algebra operators. In
this section, we briefly explain how each operator can be processed. As we will see in
this section, an operator in relational algebra can be computed in many different ways
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depending on the operator type, the available memory, and the disk structures used in
the system. Each execution alternative is known as an access path. The time it takes to
perform any operation in RA has two components. The first component is the amount
of time it takes to process the tuples. This is directly affected by the number of tuples
that have to be examined in memory. For example, to process a selection on R with
1000 tuples, it takes 1000t , where t is the amount of time to process one tuple. This
time is usually much smaller than the time it takes to bring the tuples of a relation
from the disk into memory. The disk access time is usually measured by the number
of disk I/O operations. If R is stored on 100 disk pages, then it might take as many as
100 disk I/Os (in the worst case) to read the entire relation into memory. Many disks
in the market today have a read speed of 9 milliseconds; therefore, we can estimate
that it takes (100 ∗ 10)/1000 or 1 second to read relation R into memory. For the rest
of the discussions in this section, we will use the number of disk I/Os as the metric to
measure the cost of each relational algebra operator.

4.3.1 Computing Selection

As discussed earlier, the select operator in RA examines all tuples in the source relation
and only returns those tuples that satisfy the selection condition. The general form of a
select statement is “SLp (R).” Predicate p is either empty (in which case all tuples in R
are returned), a simple predicate, or a complex predicate formed by combining simple
predicates with “AND,” “OR,” or “NOT.” How tuples within R are examined depends
on the complexity of the predicate p and availability of indexes on attributes of R.

4.3.1.1 No Index on R If R does not have any index and it is not sorted, then the
only way to process the select statement is to scan all disk pages (or disk blocks) of
R. Each page is brought into memory and the tuples inside the page are examined
against the predicate “p.” Once a qualified tuple is found, it is put in the output of
the select operator. Using a relation scan is the most expensive approach to processing
a select, since every tuple in the relation must be examined. The disk I/O cost of
performing a select on R using a relation scan is equal to the number of actual disk
read operations. If we assume the worst case scenario, the pages will be stored on
the disk out of sequence and in such a way that we cannot see two successive pages
within the same read operation. This depends on the number of pages we can read
at a time, the sequence that the pages are stored in on the disk, and the distance
between these pages. If the page and buffer details conform to the worst case, we will
need to read each page as an independent read operation. If the pages are also stored
noncontiguously, and are scattered across the disk, the access time will be even greater
because the performance will be worse than the average read speed. If an attribute of
R is used many times in many select conditions, it might be a good idea to sort the
tuples in R based on this attribute and then use a binary search for access. Similarly,
we can create an index on the attribute and use the index. It is obvious that we have
to spend the time to sort the relation or to create the index once. But in the long run,
having the relation sorted or creating an index on R may be substantially beneficial
for query operations.

4.3.1.2 B+Tree Index on R If R has an index—usually a B+Tree in most modern
DBMSs—keyed on the attribute that is used in the select predicate, we also have the
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option of using this index instead of scanning the relation to qualify all the matching
tuples in the relation. A B+Tree index sorts the key values (the attribute that the index
is built on) at the leaves of the index. Whether or not an index should be used to
process a select depends on the complexity of the select predicate.

Simple Predicates A simple predicate is of the form attribute op value, where op is
a relational operator (one of “=,” “ �=,” “>,” “<,” “<>,” “> =,” and “<=”). Finding
every tuple in the relation whose attribute value satisfies this simple predicate requires
traversing the index tree from the root node to a leaf. Assuming the worst case scenario,
each node in the index tree requires a separate disk read (equivalent to needing one
disk page per index node when no I/O blocking is used); therefore, the number of disk
I/Os required to locate a given target leaf is the same as the height of the index. The
existence of a key value in a leaf node of the index tree indicates that the matching
tuple is in the database. Once a leaf node of the index has been identified, the next
step is to read the disk page(s) containing the actual matching tuple (or tuples) in the
relation. Usually a DBMS stores a rowid as one of the entries in the leaves of the
index, which is then used to directly access the relation’s tuples.

To calculate the actual disk I/O cost of using an index, we have to know (1) if the
index is a unique index or a nonunique index, and (2) whether the index is clustered
or nonclustered. In a unique index, the key value we are looking for can appear at
most once in the leaves of the index, while in a nonunique index, the value may
appear multiple times. In a clustered index, the tuples that are addressed by the key
entries in adjacent leaves are stored “close to each other on the disk” (clustered). In
a nonclustered index, the tuples may be scattered across the disk. As a result, finding
a set of clustered tuples requires fewer disk I/Os than finding the same tuples if they
were not clustered. This is important to know, since the time to access the actual tuples
in the relation is directly affected by the number of key entries found in the index and
how the tuples are stored on the disk.

If all of the matching tuples identified by the index are stored on only one disk page,
we need to spend at most one additional disk access to get to the database page where
the tuple(s) are stored. This is true for both a clustered and a nonclustered index. If,
on the other hand, the index identifies matching tuple(s) that are stored across multiple
pages, the access cost could be much greater. When multiple tuples are returned by
the index search, it is important to know if the index is clustered or not. In a clustered
index, all the tuples that have the same value for the key attribute are stored next to
each other physically on the disk, in contiguous disk pages. Therefore, for a clustered
index the cost of reading all tuples required is much less than it would be for the
nonclustered case. In the best case scenario, it might require only a single disk I/O
to read all the disk pages containing the matching tuples. But, if the index is not
clustered, the matching tuples could be scattered on the disk, and hence, in the worst
case scenario, the cost of retrieving the tuples could be as many additional disk I/Os
as the number of data pages used by the matching tuples—that is, in the worst case,
at least as many as the actual number of matching tuples.

Complex Predicates A complex predicate for a select operation has either a normal
conjunctive or normal disjunctive form. A predicate of normal conjunctive form uses
“AND” to combine simple predicates, while a normal disjunctive form uses “OR.”
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An example of a complex normal conjunctive form is “(attribute op1 value) AND
(attribute op2 value).” In this case, how the select operation is carried out depends on
the availability of indexes on the two attributes used in the predicate. It is possible to
have no such indexes, to have an index only on the first attribute, to have an index only
on the second attribute, to have two indexes (one on each attribute), or to have one
index including both attributes. We have already discussed the “no index scenario,”
which would require a relation scan. If we have an index only on the first attribute, we
can use that index to find the tuple(s) that qualify the first simple component predicate
and then check to see if the value of the second attribute matches the second condition.
A similar process can be used when we have an index only on the second attribute.
The case of having two indexes, one on each attribute, does not really provide any
different access path than the cases we just mentioned involving one index. On the
other hand, if there is a single index including both attributes, that index can be used
to qualify the rows based on the values of both attributes.

When the complex predicate is a disjunctive normal form, such as “(attribute op1
value) OR (attribute op2 value),” the use of the index is not going to reduce the cost.
That is because, although the use of the index on the first attribute would qualify the
tuples that match the first simple predicate, there might be tuples that qualify the second
simple predicate that are not returned by the first index lookup operation. Therefore,
where disjunctive normal form is used, a relation scan usually performs better.

4.3.1.3 Hash Index on R If R has a hash index keyed on the attribute that is used
in the select predicate, we have the option of using this index to perform the selection.
A hash index uses a hash function to calculate the address of a bucket where the
key value corresponding to the hash value is to be stored. As a result, a hash index
has only one level, as compared to the B+Tree, which has multiple levels. To find
a key value in the index, the value is run through the hash function and a bucket
address is generated. The key values in the bucket are then searched to see if a match
exists. If it does, the rowid is used to read the actual tuple from the disk page in
the database. Similar to the B+Tree index, the hash index can be clustered or not.
In a clustered hash index, all the pages that correspond to a given set of keys in a
bucket are clustered together as contiguous pages. In the best case scenario, all of
these matching pages can be fetched by one disk I/O operation; even in the worst case
scenario, the number of read operations required and the delay between the reads will
be minimal.

One of the issues with using hash indexing is collision handling. A collision hap-
pens when two different keys hash into the same value. All keys that collide have
to be put in the same bucket. This can cause a bucket overflow, requiring additional
pages to accommodate the collided keys. Collisions and bucket overflows can cause
additional disk I/Os when the index is used to find matching tuples. In a perfect world,
when there are no collisions, finding the right bucket in the hash index requires only
one disk I/O. If there are collisions, then the bucket itself may span multiple pages,
requiring more disk I/Os just to read all the key values in the bucket. The number
that is typically used to estimate/adjust for overflow is 1.2 disk I/Os. When the search
returns more than one tuple in the result set, we may require as many additional
disk I/Os as the number of tuples returned for a nonclustered hash index. For a clus-
tered hash index we might need as few as one disk I/O to access all the matching
tuples.



COMPUTING RELATIONAL ALGEBRA OPERATORS 123

4.3.2 Computing Join

Joins are the most expensive operations in relational algebra. When joining R and S,
every tuple in R needs to be compared with every tuple in S to see if the join condition
across their attributes is satisfied. When the condition is met, the rows are concatenated
and copied into the result relation. There are many approaches for performing a join.
We will analyze the nested-loop approach (with and without indexes), the sort–merge
approach, and the hash-join approach.

4.3.2.1 Nested-Loop Joins The classical approach to performing a join operation is
a row-based, nested-loop join, which is illustrated in the code snippet given below.
Here, R and S are joined over the attribute “a” of R and the attribute “b” of S. Note
that the operator “||” represents a concatenation operation.

For Each r in R Do /* r is a tuple in R */
For Each s in S Do /* s is a tuple in S */

If r.a = s.b
then add r||s to the output

Next s
Next r

In order to analyze the cost of performing the joins we are going to discuss, we
need to make some assumptions about the two relations involved in the join.

The following assumptions have been made for our discussion example:

• There are “M = 1000” disk pages in R.
• There are “N = 500” disk pages in S.
• R has 100,000 tuples; that is, it has cardinality of “K = 100,000.”
• S has 40,000 tuples; that is, it has cardinality of “L = 40,000.”
• We have allocated three buffers to be used while processing tuples in memory;

each buffer is only as big as a single disk page.
• We use the first buffer to process pages of R, the second buffer to process pages

of S, and the third buffer (the output buffer) for preparing the tuples of the result.
• As the output buffer fills up, its contents are written to the disk to make room for

more result tuples to be prepared.
• All of the tuples are smaller than the disk page size, and just to simplify the

calculations, we will assume that one or more tuples can fit within the disk page
without overlap or wasted space.

To perform the join using a nested-loop approach, we have to spend M disk I/Os to
bring all the pages of R (one-by-one) into memory. For each tuple of R, we have to
bring all the pages of S (one-by-one) into memory and then examine each tuple in S.
Therefore, the number of disk I/Os required is going to be “M + K ∗ N.” Substituting
1000 for M, 100,000 for K, and 500 for N, the actual cost is “1000 + 100,000 ∗ 500” or
50,001,000 disk I/Os! If each disk I/Os takes roughly 9 milliseconds, then this approach
is going to take over 125 hours to complete. This is not an acceptable performance for
two relatively small relations even for today’s high-speed disks.
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To reduce the cost of nested-loop join, we can use a block-oriented nested-loop
join instead. In this approach, we still scan all pages for relation R. For every page of
R, we scan all pages in S. In this case, the cost of the join is “1000+1000 ∗ 500” or
501,000 disk I/Os. Even with this improvement, the amount of time required is over
75 minutes.

Other improvements to block-oriented nested-loop joins are possible. For example,
we can increase the number of buffers to hold all the pages of R in memory and have
two additional buffers, one for the pages of S and one for the output. In this case, the
cost will be as small as “1000 + 500” or 1500 disk I/Os (or 0.225 minutes). In reality,
we may not have buffer space to put all pages in R into memory at once. In this case,
we have to bring a subset of pages of R into memory together. Let’s assume we have
202 buffers. We use 200 of these for R, 1 for S, and 1 for output. The cost in this case
is “1000 + (1000/200) ∗ 500” or 3500 disk I/Os (less than a minute). DBMSs today
allocate a large number of buffers to join relatively large relations in subseconds. We
will discuss these approaches in the next few sections.

Nested-Loop Joins with Indexes What if the two relations involved in the join have
an index on the attribute that is being used for the join? Let’s assume R has an index
on attribute “a” but S does not have an index on attribute “b” as the first scenario. In
this case, we use S as the outer relation and scan all of its tuples first. For each tuple
of S, we use the index on R and check to see if the value of attribute “b” of S is in
the index of R. When a match is found the two tuples are concatenated and the result
is added to the output. This eliminates the need to scan R altogether. The cost of this
approach depends on the type of index on “a.” For our example, if the index on “a” is
a hash index and it is clustered, the cost is “500 + 40000 ∗ (1.2 + 1)” or 88,500 disk
I/Os (a little over 13 minutes). The cost for a nonclustered hash index depends on how
many actual tuples in R qualify for the join. We leave this calculation as an exercise
for the reader.

As the second scenario, let’s assume that there is an index on attribute “b” of S but
no index on attribute “a” of R. In this case, R will be used as the outer relation and S
as the inner relation. The final scenario is where both R and S could have an index on
their join attribute. This setup is not any different from the previous two we considered,
since only one of the indexes can be used. Having an index on each of the attributes
that are used for the join can help to join them, but not when we are using a nested-loop
join—instead this can help a sort-merge join as we will discus in the next section.

4.3.2.2 Sort–Merge Join In this join approach, the two relations involved are sorted
based on the join attribute and then the sorted relations are merged. The overall cost
of the join is the sum of the sort cost and the merge cost.

External Sort The sort–merge join approach requires sorting both relations involved
in the join. The main issue with sorting a large relation is our inability to sort the
relation using one of the popular memory-based sort approaches (such as quick sort,
binary sort, or heap sort) due to insufficient memory. As a result, typical internal sort
approaches cannot be used. Instead, we use an external sort, where the pages of the
relation are brought into memory and sorted internally before the sorted pages are
merged. The number of pages of a relation that can be sorted together in memory at
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the same time depends on the number of buffers available for the sort. The external sort
contains two phases. In Phase 1, an internal sort is used to sort all of the tuples within
each page. In Phase 2, these sorted pages are merged. We will explain a setup known
as a two-way merge that uses three buffers—two input buffers and one output buffer.
Let’s try to sort R consisting of “M = 1000” pages—once again, we will assume that
the tuples fit nicely within the page size and that each buffer is the same size as a
single disk page.

Phase 1 : The Sort Phase. In this phase, each page of R is brought into memory and
is then sorted using one of the fast, internal sort techniques mentioned above. Once
the tuples in the page are sorted, the page is written back to the disk. The cost of this
phase for R is “2 ∗ M” or 2000 disk I/Os since each and every page has to be read
once and written once.

Phase 2 : The Merge Phase. In this phase, the now-sorted pages of R are merged,
by processing two pages at a time—that is, two sorted pages are read in, and then
they are merged. As the tuples are sorted across the two pages, the output is written to
the output buffer. When the output buffer is full, it is flushed (emptied) by writing its
contents to the disk and then resetting the buffer. After each pair of pages is merged,
the tuples in the two pages are sorted. This is known as a run of two pages. After the
first iteration of the merge, we end up with the ceiling of “M/2” runs, each consisting
of two pages. In subsequent merge steps, the results of two such runs are merged to
create runs that are twice as long. This process continues until all pages have been
merged. The cost of the merge phase depends on how many merge passes we make.
Since we use a two-way merge, the number of passes is the ceiling of “Log2 M,” which
is the height of a balanced binary tree with M nodes. In each pass we read every page
of R and write every page. Therefore, the cost of the merge phase is

2W_phase_two_cost = 2 * M * �Log2M�

Therefore, the total cost of the sort is

2W_Total_cost = (2 * M) + (2 * M * �Log2M�)
= 2 * M * (1 + �Log2M�)

For our example, since R has 1000 pages, the cost of sorting R is “2 ∗ 1000 ∗
(1 + 10)” or 22,000 disk I/Os. It should be obvious that the more buffers we allocate
to the sort process the faster the sort can be. At one end of the spectrum, we can sort
the entire relation in memory if we allocated M buffers for input and one buffer for
output. We cannot do this for large relations due to insufficient available memory. We
can, however, allocate the highest number of buffers possible to the sort. If B is the
highest number of buffers we can use, we can allocate “B−1” buffers to the merge
and one buffer to the output and perform a “B−1 way” merge. In this case, the first
phase still takes “2 ∗ M” disk I/Os to sort the tuples in all pages, but it creates “M/B”
sorted runs, each of which is B pages long.

In the merge phase, we merge the pages in “�LogB−1�M/B��” passes. Therefore,
the total cost of the sort is

BW_Total_cost = 2 * M * (1 +�LogB-1�M / B��)
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Assuming we have 201 buffers for the sort, relation R can be sorted in

BW_Total_cost = 2 * 1000 * (1 + �Log2005�)
= 2 * 1000 * (1 + 1)
= 4000 disk I/Os

The typical number of buffers allocated to the sort in today’s DBMSs is 257. This
allows for a 256-way sort–merge and requires only three passes for a relation with
1,000,000 pages and only four passes for a relation of 1,000,000,000 pages!

Merge Merge is the last step in joining two relations using the sort–merge approach.
To merge, each page of the sorted relations must be brought into memory and then
written out. The total cost of merging R and S, for example, is “2 * (M + N).” The
total cost of the sort–merge join for R and S using B buffers is

Total_cost = 2 * M * (1 + �LogB-1�M / B��)
+ 2 * N * (1 +�LogB-1�N / B��)
+ 2 * (M + N)

4.3.2.3 Hash-Join The last alternative access path we will consider in this section
is the hash-join. The hash-join has been gaining a lot of popularity in today’s DBMSs.
The hash-join approach consists of two phases: the partitioning phase and the probing
phase. In the partitioning phase, R and S are each broken up (partitioned) into two
separate collections of nonoverlapping subsets (partitions). A tuple is assigned to a
particular partition by using the same hash function for both relations. When partition-
ing R, attribute “a” is passed to the hash function, while the partitioning of S passes
attribute “b.” Since we use the same hash function for both relations in the partitioning
phase, the matching tuples from both relations, if any, end up in the buckets with
the same address. For example, if all key values between 100 and 200 are hashed to
partition 5 of R, then all tuples with the same key value range in S will also be hashed
into partition 5 of S. In the probing phase of the join, tuples in a partition of R are
only compared to the tuples in the corresponding partition of S. There is no need to
compare the tuples in partition 5 of R, for example, with tuples in partition 7 of S.
This is a very important observation that gives a hash-join its speed. Of course, we
still have to spend the time it takes to partition the two tables based on the values of
the join attribute. But, once we have done that, the probing phase can be carried out
very quickly.

The cost of hash-join is the total cost of partitioning both relations and the cost of
probing. In the partitioning phase, each relation is scanned and is written back to the
disk. Therefore, the partitioning phase cost is “2 ∗ (M + N).” In the probing phase, each
relation is scanned once again. Hence, the total cost of a hash-join is “3 ∗ (M + N).”
Using the statistics we used earlier in this section, the hash-join of R and S will take
“3 ∗ (1000 + 500)” or 4500 disk I/Os or 40.5 seconds. Compared to the nested-loop
join access path, this is a much smaller cost!

4.4 QUERY PROCESSING IN CENTRALIZED SYSTEMS

The goal of the query processing subsystem of a DBMS should be to minimize the
amount of time it takes to return the answer to a user’s query. Obviously, the response
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time metric is the most important to the user. However, there are other cost elements
that the system is concerned with, which do not necessarily result in the best response
time. For example, the system may decide to optimize the amount of resources it uses
to get the answer to a given user’s query or the answers to queries requested by a
group of users. In other cases, we may try to maximize the throughput for the entire
system. This may translate into a “reasonable” response time for all queries rather
than focusing on the response time for a specific query. These goals are sometime
contradictory and do not always mean the fastest response time for a given user or
group of users.

In a centralized system, the goals of the query processor may include the
following:

• Minimize the query response time.
• Maximize the parallelism in the system.
• Maximize the system throughput.
• Minimize the total resources used (amount of memory, disk space, cache, etc.).
• Other goals?

The system might be unable to realize all of these goals. For example, minimizing
the total resource usage may not yield minimum query response time. It is understood
that minimizing the amount of memory allocated to sorting relations can have a direct
impact on how fast a relation can be sorted. Faster sorting of the relations speeds
up the total amount of time needed to join two relations using the sort–merge (see
Section 4.3.2.2) strategy. The more memory pages (memory frames) allocated to
the sort process the faster the sort can be done, but since total physical memory is
limited, increasing the size of sort memory decreases the amount of memory that can
be allocated to other data structures, temporary table storage in memory, and other
processes. In effect, this may increase the query response time.

The center point of any query processor in a centralized or distributed system is
the data dictionary (DD) (the catalog). In a centralized system, the catalog contains
dictionary information about tables, indexes, views, and columns associated with each
table or index. The catalog also contains statistics about the structures in the database.
A system may store the number of pages used by each relation and indexes, the
number of rows per page for a given relation, the number of unique values in the key
columns of a given relation, the types of keys, the number of leaf index pages, and
so on. In a distributed system, the catalog stores additional information that pertains
to the distribution of the information in the system. Information on how relations are
fragmented, the location of each fragment, the speed of communication links connecting
sites, the overhead associated with sending messages, and the local CPU speed are all
examples of the details the catalog may contain in a distributed system.

4.4.1 Query Parsing and Translation

As shown in Figure 4.4, the first step in processing a query is parsing and translation.
During this step, the query is checked for syntax and correctness of its data types. If
this check passes, the query is translated from its SQL representation to an equivalent
relational algebra expression.
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Figure 4.4 Query processing architecture of a DBE.

Example 4.1 Suppose we want to retrieve the name of all customers who have one
or more accounts in branches in the city of Edina. We can write the SQL statement
for this question as

Select c.Cname
From Customer c, Branch b, Account a
Where c.CID = a.CID
AND a.Bname = b.Bname
AND b.Bcity = ‘Edina’;

There are two join conditions and one select condition (known as a filter) in this
statement. The relational algebra (RA) expression that the parser might generate is
shown below:

PJcname (SLBcity = ‘Edina’ (Customer CP (Account CP Branch)))

The DBMS does not execute this expression as is. The expression must go through a
series of transformations and optimization before it is ready to run. The query optimizer
is the component responsible for doing that.

4.4.2 Query Optimization

There are three steps that make up query optimization. These are cost estimation, plan
generation, and query plan code generation. In some DBMSs (e.g., DB2), an extra step
called “Query Rewrite” is performed before query optimization is undertaken. In query
rewrite, the query optimizer rewrites the query by eliminating redundant predicates,
expanding operations on views, eliminating redundant subexpressions, and simplifying
complex expressions such as nesting. These modifications are carried out regardless of
database statistics [Pirahesh92]. Statistics are used in the optimization step to create an
optimal plan. Again, an optimal plan may not necessarily be the best plan for the query.

The RA expression for Example 4.1 does not run efficiently, since forming Cartesian
products of the three tables involved in the query produces large intermediate relations.
Instead, join operators are used and the expression is rewritten as

PJcname (Customer NJN Account)NJN
(Account NJN (SLBcity = ‘Edina’(Branch)))
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This expression can be refined further by eliminating the redundant joining of
Account relation as

PJcname (Customer NJN (Account NJN (SLBcity=‘Edina’ (Branch))))

As we will see later, there are other equivalent expressions that can also be used.
All available alternatives are evaluated by the query optimizer to arrive at an optimal
query expression.

4.4.2.1 Cost Estimation Given a query with multiple relational algebra operators,
there are usually multiple alternatives that can be used to express the query. These
alternatives are generated by applying the associative, commutative, idempotent, dis-
tributive, and factorization properties of the basic relational operators [Ceri84].

These properties are outlined below (the symbol “≡” stands for equivalence):

• Unary operator (Uop) is commutative:

Uop1(Uop2(R)) ≡ Uop2(Uop1(R))

For example,

SLBname = ‘Main’ (SLAssets > 12000000 (Branch) ≡
SLAssets > 12000000 (SLBname = ‘Main’ ((Branch))

• Unary operator is idempotent:

Uop((R)) ≡ Uop1(Uop2((R))

For example,

SLBname = ‘Main’ AND Assets > 12000000 (Branch) ≡
SLBname = ‘Main’ (SLAssets > 12000000 (Branch)

• Binary operator (Bop) is commutative except for set difference:

R Bop1 S ≡ S Bop1 R

For example,

Customer NJN Account ≡ Account NJN Customer

• Binary operator is associative:

R Bop1 (S Bop2 T) ≡ (R Bop1 S) Bop2 T

For example,

Customer NJN (Account NJN Branch) ≡
(Customer NJN Account) NJN Branch
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• Unary operator is distributive with respect to some binary operations:

Uop(R Bop S) ≡ (Uop(R)) Bop (Uop(S))

For example,

SLsal > 50000 (PJCname, sal (Customer)
UN PJEname, sal (Employee)) ≡
(SLsal > 50000 (PJCname, sal (Customer))
UN ((SLsal > 50000 (PJEname, sal (Employee)))

• Unary operator can be factored with respect to some binary operation:

(Uop(R)) Bop (Uop(S)) ≡ Uop(R Bop S)

For example,

SLsal > 50000 (PJCname, sal (Customer))
UN (SLsal > 50000 (PJEname, sal (Employee))) ≡
SLsal > 50000

(PJCname, sal (Customer)) UN (PJEname, sal (Employee))

This is the inverse of the distributive property.

Applying the above properties to the operators of an RA query can create multiple
equivalent expressions. For example, the following eight expressions are equivalent. It
is the responsibility of the query optimizer to choose the most optimal alternative.

Alt1: (SLBname = ‘Main’ (Account)) NJN Branch
Alt2: Branch NJN (SLBname = ‘Main’ (Account))
Alt3: (SLBname = ‘Main’(Branch)) NJN Account
Alt4: Account NJN (SLBname = ‘Main’(Branch))
Alt5: SLBname = ‘Main’ (Account NJN Branch)
Alt6: SLBname = ‘Main’ (Branch NJN Account)
Alt7: (SLBname = ‘Main’ (Account)) NJN (SLBname = ‘Main’(Branch))
Alt8: (SLBname = ‘Main’(Branch))NJN(SLBname = ‘Main’(Account))

For query optimization discussion, it is more convenient to use a query tree instead
of the RA expression. A query tree is a tree whose leaves represent the relations
and whose nodes represent the query’s relational operators. Unary operators take one
relation as input and produce one relation as output, while binary operators take two
relations as input and produce one relation as output. That is why every operator’s
output can be fed into any other operator. Results from one level’s operators are used
by the next level’s operators in the tree until the final results are gathered at the root. All
operators have the same relation-based interface for input and output. This helps with
a uniform interface implementation for the query execution manager. This uniformity
has given rise to the use of this operator model in most commercial systems such
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as System R (DB2), Oracle, Informix, and Ingres. In such systems, each operator’s
implementation is based on the concept of an iterator [Graefe93].

Each iterator has a set of functions (methods in object-orientated terminology) that
can be called when needed. An iterator acts as a producer for the iterator at the next
level and as a consumer for the iterator(s) above it—remember in our representation
of a query tree the leaves are on the topmost level. An iterator has three functions—to
prepare, to produce, and to wrap-up production. These functions are called “Open,”
“Get_Next,” and “Close.” For example, to perform a select using a scan access path,
the operator opens the file that contains the relation to be scanned and allocates enough
input and output memory buffers for the operation. Once opened, the Get_Next function
is called repeatedly to process tuples from the input buffer(s), it qualifies them and
puts them in the output buffer(s). Once there are no more tuples to process, the Close
function is activated to close the file and deallocate the memory buffers. Note that
although the Open and Close functions for all iterators perform similar tasks, depending
on the operator, the work that Get−Next function has to do may vary tremendously.
For instance, a sort–merge to join two relations requires reading the pages for each
relation into memory, sorting them, writing them out, bringing them back, and merging
them to produce the output, as explained in Section 4.3. One of the advantages of the
iterator model is that it naturally supports pipelining, where the output tuples of one
operator can be fed as input into another operator without needing to store them on
the disk (materializing them).

For a given query expression, the query optimizer analyzes all equivalent query trees
that represent the solution space for the query. For the SQL query used in Example 4.1,
the solution space (not considering the trees that produce Cartesian products) consists
of five query trees that can be used to produce the same results as shown in Figure 4.5
[Larson85].

The optimizer analyzes all these trees in the solution space and selects a tree that
is optimal for the query. The first step in the optimization is pruning. In the pruning
step, the “bad” alternative trees are eliminated. The optimizer usually uses a small
set of rules for pruning. One such rule requires that “before joining two relations, the
relations should be reduced in size by applying the select and the project operations.”
Considering this rule, alternatives 2 and 5 perform better than the others do, since they
perform the select operation before the join operation. In the next step, the optimizer
selects trees 2 and 5 and runs them through the cost analysis. In the cost analysis step,
statistics are used to determine/estimate the cost of each candidate tree. In this step,
the tree with the smallest cost is chosen.

The following are statistics about our database:

• There are 500 customers in the bank.
• On average, each customer has two accounts.
• There are 100 branches in the bank.
• There are 10 branches in Edina city.
• Ten percent of customers have accounts in the branches in Edina.

Since there are 1000 accounts in the bank, and 50 customers have accounts in the
branches in Edina resulting in 100 accounts in that city. Let’s also assume that it takes
“t” units of time to process each tuple of each relation in memory. Using the statistics
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Figure 4.5 Alternative query tree for the Example 4.1.

we just discussed, we can calculate the cost of the two chosen alternatives based on
the number of rows that each one processes. Figure 4.6 shows the cost analysis for
these two alternatives.

Analysis of Alternative 2: The first operation in this alternative is the join between
the Customer and the Account relations. The cost of this join is “500 * 1000t,” since
there are 500 tuples in the Customer relation and 1000 tuples in the Account relation.
The join results in the temporary relation “R1.” R1 has 1000 tuples, since every account
must belong to a customer. The second operation selects those branches that are in city
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Figure 4.6 Cost analysis for Example 4.1.

Edina as temporary relation “R2.” Since there are 100 branches in the bank, the select
cost is 100t and R2 has 10 tuples in it. The last operation joins R1 and R2, picking up
the customers for accounts in Edina’s branches. The cost of this join is “1000 * 10t.”
Since there are 100 accounts in branches in Edina, it returns 100 tuples. The total cost
of this alternative therefore is 510,100t.

Analysis of Alternative 5: The first operation in this alternative is the select with
the cost of 100t resulting in relation “R1” with 10 tuples. The second operation joins
the Account relation with R1, storing the accounts that are in Edina in the temporary
relation “R2.” This operation’s cost is “1000 * 10t” and it returns 100 tuples. The last
operation joins Customer and R2, picking up the customers for the accounts in Edina.
The cost of this operation is “500 * 100t” and it returns 100 tuples, which represent
the accounts in Edina.

Since query tree 5’s cost is smaller than query tree 2’s cost, alternative 5 is chosen
for the query. We could have arrived at the same conclusion by noticing that we join
the Account and Customer relations, which are the largest relations in the database, first
in query tree 2—resulting in a higher cost. As a general rule, most DBMSs postpone
joining the larger relations until the select operations and other joins have reduced the
number of tuples in the join operands to a more manageable number.

4.4.2.2 Plan Generation In this optimization step, the query plan is generated. A
query plan (or simply, a plan, as it is known by almost all DBMSs) is an extended
query tree that includes access paths for all operations in the tree. Access paths provide
detailed information on how each operation in the tree is to be performed. For example,
a join operation can have an access path that indicates the use of the block-nested loop
join, hash-join, or sort–merge join, while a select access path can specify the use of
an index (a B+Tree index or a hash index) or a table scan. See Section 4.3 for more
details on access paths.

In addition to the access paths specified for each individual RA operator, the plan
also specifies how the intermediate relations should be passed from one operator to
the next—materializing temporary tables and/or pipelining can be used. Furthermore,
operation combinations may also be specified. For example, select and project opera-
tions can be combined. In this case, after a tuple is qualified, unwanted attributes are
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projected out while the tuple is still in memory. This eliminates reprocessing qualified
rows in a project operation after a select. Other examples of operator combination
include select and join; select and union; project and join; project and union; and
select, project, and join.

Query optimization has been researched for many years and is still the focus of
research due to its importance in centralized and distributed DBEs. Steinbrunn provides
an excellent overview of an alternative approach to query optimization [Steinbrunn97].
Among the proposed algorithms, exhaustive search and heuristics-based algorithms
are most popular. The difference between these two approaches is in the time and space
complexity requirements and superiority of the plans they generate. We will review
these two approaches to optimization next.

Exhaustive Search Optimization Algorithms in this class will first form all possible
query plans for a given query and then select the “best” plan for the query. Dynamic
programming (DP) [Selinger79] (see Section 4.4.2.3) is an example of an algorithm
in this class. Since the solution space containing all the possible query execution
alternatives using DP is very large—it has an exponential time-and-space complexity.
Many different DP algorithms attempting to reduce the solution space and lower the
time and/or complexity have been proposed [Graefe87] [Ono90] [Pellenkoft97]. We
will review two such algorithms in Section 4.4.2.4.

Heuristics-Based Optimization Originally, most commercial DBMSs used heuristics-
based approaches, which are also known as rule-based optimization (RBO)
approaches, as their optimization technique. The algorithms in this class have a
polynomial time-and-space complexity as compared to the exponential complexity of
the exhaustive search-based algorithms, but the heuristics-based algorithms do not
always generate the best query plan [Steinbrunn97]. In this approach, a small set of
rules (heuristics) are used to order the operators in an RA expression without much
regard to the database’s statistics. One such heuristic is based on the observation that
if we reduce the size of the input relations to a join, we reduce the overall cost of the
operation. This rule is enforced by applying the select and/or project operations before
the join. This rule is also known as “pushing” the select and project toward the leaves
of the query tree. Another heuristic joins the two smallest tables together first. This
is based on the belief that since not all tuples from the relations being joined qualify
the join condition, fewer tuples will be used in the next operation of the query tree,
resulting in a smaller overall cost for the query. Another popular heuristic is simply
to disallow/avoid using the cross-product operation, which is based on the fact that
the intermediate result of this operation is usually a huge relation.

These rules (and others like them) are used in many of today’s commercial systems.
In DB2, for example, there is a rule that forbids/avoids the use of an intermediate
relation as the right operand of a join operation. In Oracle 10g, the rule-based optimizer
(RBO) associates weights with each operation and uses the operation with the smallest
weight first. For example, Oracle associates a weight of 5 with a select operation that
uses a unique index, while it assigns a weight of 20 to a relation scan. As a result,
when given the choice, the RBO will use the index lookup to find a single tuple rather
than scanning the table. Oracle’s RBO generates the query plan by applying this rule
repeatedly to all operations in the query tree. One advantage of using a small set of rules
like these is that the optimizer can generate a plan quickly. Although Oracle’s RBO
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is fast, because it applies rules statically—without considering available statistics—it
does not always generate an optimal plan. For instance, perhaps the RBO only considers
nested-loop joins for a particular query, even when a sort–merge join or a hash-join
would perform better (see Section 4.3) for the current state of the database.

4.4.2.3 Dynamic Programming Dynamic programming (DP) is an exhaustive
search-based algorithm used today by most commercial DBMSs. The approach uses
a cost model, such as query response time, to generate a plan with the optimal cost.
This approach is also known as cost-based optimization (CBO). In this section,
we will summarize dynamic programming. For a more detailed explanation of
DP, we refer the reader to [Selinger79]. A good overview of the alternatives for
dynamic programming can be found in [Kossmann00b] and [Steinbrunn97]. Surveys
of query optimization techniques in centralized systems can be found in [Jarke84] and
[Ioannidis96].

For the sake of simplicity when discussing dynamic programming, let’s consider the
case of joining N relations together in an N-way join, that is, “R1 JN R2 . . . JN RN−1
JN RN.” The number of alternatives for joining the N relations is “(2*(N−1))!/(N−1)!”
For example, there are 12 alternatives for joining three tables, 120 alternatives for
joining four tables, and 1680 alternatives for joining five tables. Dynamic programming
uses a cost model to dynamically reduce the solution space and generates an optimal
plan by building the plan one step at a time, from the bottom–up. The algorithm iterates
over the number of relations that have been joined so far and prunes the alternatives
that are inferior (cost more), keeping only the least costly alternatives. In addition to
keeping optimal alternatives, the algorithm may also keep plans that generate a sorted
intermediate relation. These plans are of an “interesting order” and are kept because
having a sorted intermediate relation helps the next join, encouraging it to apply a
sort–merge join as discussed before (since the intermediate result is already sorted,
the overhead is less than it would be otherwise). To illustrate how DP works, let’s
examine a few steps in the DP processing of this N-way join.

Step 1: Generate All 1-Relation Plans. This step generates the access plans for each
of the relations involved in the query. Select and project are the only operations
we consider in this step. All other operations are binary operations, which involve
more than one relation by definition. When considering 1-relation plans, the access
paths for each select and project operation are evaluated and we choose the path
with the smallest cost, discarding the others. For instance, we know that a predicate
of the form “attribute = constant” for a uniquely valued attribute will return either
one tuple or zero tuple. In this case, if a unique index has been created on the
attribute, we have an access path based on a unique index lookup. Alternatively, we
could scan the relation to find the matching tuple. It should be obvious that between
these two access paths, the unique index lookup is faster than the scan, especially
for large relations that occupy many disk pages. Therefore, the plan that utilizes
the index is chosen for the select operation using this relation. Let’s assume that
the optimal access plans, P1, P2, . . . , PN, are kept for relations R1, R2, . . . , RN
correspondingly.

Step 2: Generate All 2-Relation Plans. In this step, the algorithm combines all the
1-relation plans we kept from Step 1 into 2-relation plans and chooses those with
the smallest cost for each pair of relations. Again, the cost of each combination is
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determined by the different access paths available for the join. The 2-relation plans
with the smallest cost are chosen in this step. For example, we know that there are
two alternatives for joining R1 and R2, based on the order of operands—“R1 JN
R2” and “R2 JN R1.” For each alternative, it is also possible to join the two relations
based on any of the join strategies we discussed in Section 3.4. Let’s assume that
our system only supports nested-loop row-based joins and sort–merge joins. For
this system, there will be two ways to join R1 and R2 and two ways to join R2
and R1. Depending on the availability of indexes keyed on the join attributes of the
two relations, the nested-loop join can be implemented in two different ways—one
using the index and one not using the index. As a result, for each pair of relations,
this system has to consider six different join alternatives (each operand ordering
alternative can use one of the two nested-loop join alternatives or the sort–merge
alternative). Since the sort–merge join produces a sorted intermediate relation, this
plan is kept as an interesting order plan, as we discussed earlier. When we consider
the two nested-loop join alternatives, we only keep the plan with the smallest cost
if its cost is less than the cost of the sort–merge join. Assuming that we only keep
one plan for each pair of relations, we can indicate these plans as P12, P13, . . . , P1N,
P21, . . . , PNN−1, where the two digits in the indexes refer to the relations and the
order of their join. In other words, the plan we keep for the join between R1 and
R2 is called “P12,” while the plan we keep for the join between R2 and R1 is called
“P21.”

Step 3: Generate All 3-Relation Plans. In this step, the algorithm combines all the 2-
relation plans from Step 2, with the 1-relation plans from Step 1 to form 3-relation
plans. For example, assume the query calls for “R1 JN R2 JN R4.” Furthermore,
assume that the 2-relation plan P12, which joins R1 and R2 and produces R12, is
kept from Step 2. In this case, “R12 JN R4” and “R4 JN R12” must be considered.
For each one of these alternatives, we consider all the access paths for the join and
keep the optimal plan along with any plans with interesting orders.

Step 4: Generate All 4-Relation Plans. In this step, the algorithm joins the 3-relation
plans from Step 3 with the 1-relation plans from Step 1 to form 4-relation plans.
The algorithm also joins all the 2-relation plans from Step 2 with each other to form
4-relation plans. Again, for each of these alternatives, we consider all the access
paths for each join, keeping the optimal plan and the plans with interesting orders.

Subsequent Steps: The pattern is repeated for each subsequent step, to incrementally
create bigger plans until all N relations have been joined.

Example 4.2 In this example, we will apply dynamic programming to the query
expressed in Example 4.1. We show this query here again for ease of reference.

Select c.Cname
From Customer c, Branch b, Account a
Where c.CID = a.CID
AND a.Bname = b.Bname
AND b.Bcity = ‘Edina’;

Before applying dynamic programming to optimize this query, we need to collect
some additional statistics about our database. This collection of statistics should include
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things like a cost model and further details about the indexes, potential select and join
approaches, and the number of sort buffers available.

For this example, suppose we have collected the following information:

• We use disk I/O as our cost model.
• We have a B+Tree index on attribute Bcity of Branch relation.
• We have 257 buffers allocated for sorting.
• There is a nonunique clustered index on attribute Bname of Account.
• There is a hash index on attribute CID of Customer.
• Each B+Tree has two levels since the relations are relatively small (one or two

pages each).
• Each hash index has 1.2 bucket access I/O cost.
• Select operations can only use scan and index lookup.
• The system only allows nested-loop and sort–merge joins.

Dynamic Programming Steps for Example 4.2

Step 1: 1-Relation Plans. The only select operator in this example is on the Branch
relation looking for branches in city Edina. There are only two possible access
paths that can be considered for the select operation on the Branch relation. One
approach is to scan the entire relation and the other is to use the B+Tree index.
Since there are only 100 branches in the bank, the entire relation can be stored
in one or two disk pages. Therefore, the cost of scan is two disk I/Os. The other
access plan uses the index on Bname to locate each leaf where Edina is stored as
the value. Since the primary key of the Branch relation is Bname, Edina is stored
10 times (one for each branch in Edina). Even though there are multiple values of
Edina stored in the leaves, since the B+Tree index sorts the keys in the leaves,
all values of Edina will probably be stored in one leaf. It takes two disk I/Os to
traverse from the root of the index to reach this leaf. Once we have found the
desired leaf, we have to find database pages where the needed tuples are stored.
Since Branch relation occupies only two disk pages, we have to spend two additional
disk I/Os to read in the tuples. This makes the total cost of using the index four
disk I/Os. As a result, scanning the relation is more efficient than using the index.
Scanning the Branch relation will be used as its access path. This is also what is
called the 1-relation plan for Branch. There are no select operations defined for
Customer or Account. Therefore, scan is the only 1-relation plan that can be used.
Let’s assume plan Pb for Branch, Pc for Customer, and Pa for Account are the ones
we have chosen from the first step. These will be used as the 1-relation plans in
Step 2.

Step 2: 2-Relation Plans. Let’s assume that Rb is a relation that represents the results
of “SL Bcity=‘ Edina’ Branch.” In forming the 2-relation plans, we have to enumerate
all possible ways that our three relations can be joined. Listed in no particular order,
these are:

Group 1:
Pba: Rb JN Account
Pab: Account JN Rb
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Group 2:
Pac: Account JN Customer
Pca: Customer JN Account
Group 3:
Pbc: Rb JN Customer
Pcb: Customer JN Rb

Among these groups, the “Group 3” alternatives (Pbc and Pcb) are not considered
since they join two relations that do not have a common attribute; that is, they
perform cross products. The other four plans in “Group 1” and “Group 2” are
analyzed next. In comparing Pba and Pab, we realize that it is better to use Pba because
this plan does not materialize the temporary results of “SLBcity=‘Edina’ Branch” and
performs the join on-the-fly using Rb as the driver of the join. In this approach,
the value of Bname from the tuples that are returned from the selection is used to
probe into the Account relation. Each probe uses the index on Bname and takes
three disk I/Os (two for tree traversal and one for the cluster of branches with the
same name). Since there are 10 branches in Edina, the total cost of this plan is
“10 * 3 = 30” disk I/Os. In contrast, plan Pab is more expensive since it requires
scanning the Account relation, which takes 1000 I/Os. Therefore, Pba is chosen for
this join. This plan corresponds to “(SLBcity=‘Edina’ Branch) NJN Account,” which
we indicate by the intermediate relation Rba. In comparing Pac and Pca, we realize
that there is an index on the attribute Bname of the Account relation. Since the
join between Account and Customer is on CID, this index cannot be used in the
nested-loop join. As a result, both joins have to be done using sort–merge access
paths. The cost of each alternative using sort–merge is the same since the order of
the join operands does not impact the cost of this join strategy. Therefore, we keep
Pac indicated as the intermediate relation Rac for the next step.

Step 3: 3-Relation Plans. With Pba chosen as the 2-relation plan from Group 1 and Pac

as the plan from Group 2, we need to form all possible 3-relation plans. Since there
are only three relations in the query, we need to join Customer with Pba and Branch
with Pac. The options for this step are

Pbac: Rba JN Customer
Pcba: Customer JN Rba
Pacb: Rac JN Branch
Pbac: Branch JN Rac

We have to choose the least expensive alternative as the final plan for the query.
Since there are four plans and each join can be done utilizing nested-loop or
sort–merge, we will have eight different options. Among these, plan Pbac costs
the least since it can be done on-the-fly. All other plans require scanning of at least
one relation and therefore cost more. The optimizer produces the plan shown in
Figure 4.7 as the optimum plan. Surprisingly enough, this plan is what we indicated
as the best plan in our analysis in Section 4.4.2.1.

Example 4.3 In this example we will use dynamic programming (DP) to join five
relations. In Example 4.2, we applied DP to a three-way join. Although the details of
DP were highlighted in Example 4.2, the example had a small number of alternatives
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Figure 4.7 Dynamic programming optimum plan for Example 4.2.

to deal with and therefore did not show how large the solution space for DP can really
be. To appreciate the time-and-space complexity of DP, we will join five relations: A,
B, C, D, and E. In what follows, we will show all plans generated for each step of the
algorithm. For simplification, we will not consider any plans with “interesting orders.”
Figure 4.8 shows the results from Steps 1 and 2 of the algorithm. In this figure, we
have used the symbol �� instead of JN to represent the join operation. We assume
that A, B, C, D, and E indicate access plans (1-relation paths) chosen from Step 1. In
Step 2, all alternatives for joining the 1-relation plans together to form 2-relation plans
are shown. The 2-relation plans that are kept from Step 2 are named AB for “A JN
B.” This indicates not only the two relations that are joined but also the order of the
operands passed to the join operation. In this respect, AB is different from BA, since

Figure 4.8 Steps 1 and 2 of dynamic programming for Example 4.3.
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in AB relation A is the outer relation (e.g., in a nested-loop join) and B is the inner
relation, while in BA the inner and outer relations are reversed.

Figure 4.9 shows all the 3-relation plans that are generated by combining the kept
2-relation plans from Step 2 and the 1-relation plans from Step 1. From among these
plans we have to choose the 3-relation plans with the smallest cost for each combination
of three relations. Again, ABD is a plan that indicates “AB JN D” and is different from
DAB, which indicates “D JN AB.”

Each 4-relation plan is generated by joining together the plans we kept in the
previous steps. We can join two 2-relation plans (kept from Step 2) together or join a
1-relation plan (kept from Step 1) with a 3-relation plan (kept from Step 3). Figure 4.10
shows all the possible 4-relation plans.

Figure 4.10 also depicts all the 5-relation plans we generated. As shown in this
figure, the 5-relation plans are formed by combining the 1-relation plans from Step 1
with the 4-relation plans we just generated or by combining the 2-relation plans from

Figure 4.9 Step 3 of dynamic programming for Example 4.3.
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Figure 4.10 Steps 4 and 5 of dynamic programming for Example 4.3.

Step 2 with the 3-relation plans from Step 3. There are five such plans that can be
generated based on what was kept in different steps of the DP algorithm. From these
plans, we choose the one with the smallest cost as the final plan, which is shown in
Figure 4.11.

4.4.2.4 Reducing the Solution Space As discussed earlier in this chapter and as
demonstrated by Example 4.3, dynamic programming generates a large solution space
even for a small number of relations. Therefore, it is fairly common for the query
optimizers to sacrifice some of the query response time in return for faster query plan
generation by reducing the solution space. This means the optimizer tries to find an
optimal plan and not necessarily the best plan. The optimizer may actually miss some
better plans trying to save time to generate the plan.
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Figure 4.11 Dynamic programming final plan for Example 4.3.

For instance, the optimizer may only consider a left-deep (or a right-deep) query tree
instead of a bushy tree when analyzing different access paths as depicted in Figure 4.12.
Although a bushy tree may perform better in some situations, the left-deep plan lends
itself better to do the operations on-the-fly. The left-deep plan is the only type of tree
that DB2 allows. Using a left-deep query plan, the execution manager can perform the
second and third joins in our example on-the-fly. As the tuples from the previous join
are produced, they are joined with the relation at the next level. This eliminates the
need to materialize the results of the joins that are necessary for the bushy plan. For
large relations, the intermediate join results could potentially be large and could not
be kept in memory for the next step. Storing these large intermediate relations on disk
can take a considerable number of disk I/Os.

Even considering only one shape for the query tree does not reduce the solution
space dramatically. Consider the case of having to join three relations: A, B, and C.
With a left-deep type of tree, joining these relations can be done in six different ways,
as depicted in Figure 4.13.

Note: In this example, we assume that any relation can be joined with any other
relation. In reality, this may not be the case; that is, A can be joined with B if there is
a common attribute between A and B but not with C if there are no common attributes
between A and C.

Other alternatives to reduce solution space and the cost-and-time complexity of DP
are iterative dynamic programming (IDP) [Kossmann00a] and the greedy approach
[Shekita93], both of which we will review next.

Iterative Dynamic Programming The main issue with dynamic programming is the
space-and-time complexity of the algorithm. DP selects the best possible approach by
forming all possible alternatives for joining the relations in a query from the bottom

Figure 4.12 Left-deep, bushy, and right-deep plan examples.
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Figure 4.13 Left-deep trees to join three relations.

up. The time and space requirements of DP grow exponentially as the number of
relations grows. For a large number of relations, it is fairly common for the algorithm
to exhaust the available memory since DP keeps all the plans generated throughout the
entire process. Thrashing—the constant exchange of information between the memory
and the disk—starts when the computer runs out of memory. One alternative that
specifically addresses the issue with the size of memory is called iterative dynamic
programming (IDP). The IDP algorithm divides the optimization process into a set of
iterations. In each iteration, the algorithm only enumerates up to k-relation plans and
then stops. Parameter “k” is carefully defined ahead of time to prevent exhausting the
available memory based on the number of relations in the query.

For example, if “k = 3”, then in iteration one the algorithm forms only 1-relation, 2-
relation, and 3-relation plans. From the first iteration the best 3-relation plan is selected.
All 1-relation and 2-relation plans that include one or more of the three relations
participating in the chosen 3-relation plan are discarded. Other plans are carried over
to the second iteration. Assuming the same five relations that we used in Example 4.3,
Iteration 1 of IDP generates the same plans as generated by DP for up to 3-relation
plans (see Figures 4.8 and 4.9). From these plans, the plans shown in Figure 4.14a are
kept for Iteration 2. In Iteration 2, the 2-relation plans are formed. Note that although
these are called 2-relation plans, in reality they may contain more than two relations.
If two base relations are joined the plan is a 2-relation plan. If one 2-relation plan is
combined with one 3-relation plan, the result is a 5-relation plan. Figure 4.14b indicates
all the 2-relation plans generated from Iteration 2 for our example. As seen from this
figure, “CE JN DAB” is actually the 5-relation plan that we are seeking. Figure 4.14c
shows the final query plan based on this strategy.

The basic strategy behind IDP is this: if we keep the cheapest k-way plan in each
step, the final plan costs the least based on the chosen plans. What we must keep in
mind is that since we do not consider all possible plans in each step, IDP may actually
miss the optimal overall plan.

Greedy Algorithms Greedy algorithms have a much smaller time-and-space complex-
ity requirement compared to dynamic programming. However, they do not necessarily
produce superior plans [Steinbrunn97]. One can categorize greedy algorithms as a spe-
cial case of IDP with k = 2. Greedy algorithms behave exactly the same as IDP except



144 QUERY OPTIMIZATION

Figure 4.14 Iterative dynamic programming results for Example 4.3.

that only 1-relation and 2-relation plans are formed from plans kept from the previous
iteration. Let’s apply the greedy algorithm to joining five relations A, B, C, D, and E.
For the first iteration, the greedy algorithm generates the same plans as generated by
DP for up to 2-relation (see Figure 4.8). At this point, as shown in Figure 4.15, the
greedy algorithm breaks and selects the best 2-relation plans and all 1-relation plans
that do not include a relation in the chosen 2-relation plan.

Figure 4.15 also shows the 3-relation, 4-relation, and 5-relation plans that the greedy
algorithm generates in the second, third, and fourth iterations, respectively. The final
plan, which is shown in Figure 4.16, is chosen from all the 5-relation plans that we
formed.

4.4.3 Code Generation

The last step in query optimization is code generation. Code is the final representation
of the query and is executed or interpreted depending on the type of operating system
or hardware. The query code is turned over to the execution manager (EM) to execute.
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Figure 4.15 Greedy algorithm applied to Example 4.3.

Figure 4.16 Plan generated by greedy algorithm for Example 4.3.

4.5 QUERY PROCESSING IN DISTRIBUTED SYSTEMS

As mentioned in Chapter 2, there are two distinct categories of distributed systems:
(1) distributed homogeneous DBE (what we called a DDBE) and (2) distributed het-
erogeneous DBE (what we called a MDB). In both of these systems, processing a
query consists of optimization and planning at the global level as well as at the local
database environment (LDBE) level. Figure 4.17 depicts how queries are processed
in a DDBE.
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Figure 4.17 Distributed query processing architecture.

The site where the query enters the system is called the client or controlling site. The
client site needs to validate the user or application attempting to access the relations
in the query; to check the query’s syntax and reject it if it is incorrect; to translate
the query to relational algebra; and to globally optimize the query. In the rest of this
chapter, we will discuss how queries are processed in a traditional DDBMS first and
then point out the challenges that have to be addressed for a MDB or a heterogeneous
database environment.

4.5.1 Mapping Global Query into Local Queries

Recall from Chapter 2 that a global query is written against the global schema. The
relations used in the global query may be distributed (fragmented and/or replicated)
across multiple local DBEs. Each local DBE only works with the local view of the
information at its site and is unaware of how the data stored at its site is related to
the global view. It is the responsibility of the controlling site to use the global data
dictionary (GDD) to determine the distribution information and reconstruct the global
view from local physical fragments.
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Example 4.4 Suppose the EMP relation is horizontally fragmented based on the
value of the LOC attribute as discussed in Chapter 2. Each employee works at one
of three possible locations (LA, NY, or MPLS). The LA server stores the information
about employees who work in LA. Similarly, NY and MPLS servers store the infor-
mation about employees who work at these locations. Now we will consider a query
that needs to retrieve the name of all employees who make more than $50,000. Since
EMP does not physically exist, the global query has to be mapped to a set of local
queries that run against the fragments of EMP as shown below.

Global Query: PJEname (SLsal > 50000 (EMP))
LA’s Query: PJEname (SLsal > 50000 (LA_EMP))
Ny’s Query: PJEname (SLsal > 50000 (NY_EMP))
MPLS’s Query: PJEname (SLsal > 50000 (MPLS_EMP))

The GDD contains rules for reconstructing the original relation from its fragments.
Because the EMP relation is horizontally fragmented, we need to union the fragments
together to reconstruct the original relation. After adding this reconstruction step, the
global query looks like the following:

PJEname (SLsal > 50000 (LA_EMP))
UN
PJEname (SLsal > 50000 (NY_EMP))
UN
PJEname (SLsal > 50000 (MPLS_EMP))

It should be obvious that, just like a local query, there are multiple equivalent
expressions (or query trees) for any extended global query. These alternatives are
generated when we take into account the associative and commutative properties of
the relational algebra binary operators in a query. For instance, applying the associative
property of the UN operation, we can also express the above query by

PJEname (SLsal > 50000 (LA_EMP))
UN
(

PJEname (SLsal > 50000 (NY_EMP))
UN
PJEname (SLsal > 50000 (MPLS_EMP))

)

There are 12 different alternatives that we can use to union these relations, as
discussed before (2 ∗ (3−1)!/(3−1)!). Specifying when and where the SL operation is
performed creates more alternatives to consider. One such alternative is shown below:

SLsal > 50000 (
PJEname (LA_EMP)
UN
(
PJEname (NY_EMP)
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UN
PJEname (MPLS_EMP)

)
)

For each alternative, the global optimizer must also decide where to union these
results together. One approach would be to union all three intermediate relations at
the client or controlling site. Another approach is to use one of the database servers
at MPLS, LA, or NY to perform the union. The anticipated size of each intermediate
relation, the local database server speed, and the communication link speed are factors
that are used to decide on a plan with the smallest communication cost.

The cost of executing each alternative query tree must be examined by the distributed
query optimizer to arrive at the most optimal answer. In a centralized system, the
query tree shape and the available access paths are main drivers of this decision. In a
distributed system, the query tree shape and the associated communication cost are the
main factors. At the global level, the optimizer is not aware of the access paths that
are available at the local sites. Choosing the access paths for a local query is solely
the local optimizer’s responsibility. What impacts the global optimization the most is
the communication cost. The global optimizer must generate a distributed execution
plan for the query that uses the least amount of data transfer. The plan has to specify
where each fragment of data must be accessed, in what order the query steps must be
carried out, and furthermore, how intermediate results are transferred from site to site.

Example 4.5 Consider a simple query that performs a select operation on the Branch
relation in our example bank database. This query enters Site 1 of a three-site system.
To analyze the impact of distributing the Branch relation on the overall execution, we
consider three cases. In the first case, the Branch relation is stored at Site 2 and it is not
fragmented or replicated. In the second case, the Branch relation is replicated and there
are two copies of it, one at Site 2 and one at Site 3. In the third case, the Branch relation
is fragmented horizontally with one fragment stored at Site 2 and another at Site 3.

Case 1: The Branch relation is stored entirely at Site 2. In this case, since the
Branch relation is not fragmented or replicated, the global query is mapped directly
to a local query that must run at Site 2. The results of the select operation need to
be sent back to Site 1 to be displayed to the user. To run the query at Site 2, Site 1
sends a message to Site 2 passing the SL expression to it. We will assume that the
SL command takes one message to send. The number of messages required to return
the results to Site 1 depends on how many tuples of the Branch relation qualify. For
simplicity, we assume that each row of the relation takes one message to be sent.
Therefore, the results require N messages if there are N tuples that are returned from
the select. This alternative requires “N + 1” messages.

Case 2: The Branch relation is replicated with copies stored at Site 2 and Site 3. In
this case, since Branch is replicated but not fragmented, the global query still maps to
a single site local query. Since there are two copies of the relation in the system, the
global optimizer will have to decide where it is best to run the query. In either case, the
number of messages to run the command at the remote site and send the results back
is “N + 1”—the same as Case 1. In this case, the optimizer has to consider factors
such as the local processing speed of each server as well as the communication link
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speed between Site 1 and each of the two candidate sites. If the link speed for both
sites is the same, the processing speed and workload are used to break the tie. But if
the link between Site 1 and Site 2 is much faster than the link between Site 1 and Site
3, running the select operation at Site 2 is better only if the processing speed and load
of servers at Site 2 and Site 3 are the same.

Case 3: The Branch is horizontally fragmented with fragments at Site 2 and Site 3.
In this case, the global query is mapped into two local queries, each running against
one of the two fragments. Since fragments of the Branch relation are not replicated,
the global optimizer has only one option for the site where it needs to run each local
query. As assumed before, the query returns N tuples. In this case, however, the N
tuples reside on two different sites. Let’s assume that N2 and N3 represent the qualified
number of tuples at Site 2 and Site 3, respectively, where “N = N2 + N3.” We need
to union the tuples from Site 2 and Site 3 as the answer to the query.

There are three sites where we can perform the union:

1. Union is performed at Site 1. In this case, as shown in Figure 4.18a, the com-
munication cost is “2 + N2 + N3.”

2. Union is performed at Site 2. In this case, as shown in Figure 4.18b, the com-
munication cost is “2 + N + N3.”

3. Union is performed at Site 3. In this case, as shown in Figure 4.18c, the com-
munication cost is “2 + N + N2.”

Clearly, the lowest communication cost is associated with Plan 1. If Site 1 does not
have a database server to perform the union, Plan 2 or Plan 3 must be considered. If
“N2 > N3,” then Plan 2 is superior. If “N2 < N3,” then Plan 3 is better. If “N2 = N3,”

Figure 4.18 Alternatives for performing union in a three-site distributed system.
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then both plans have the same communication cost. In this case, the optimizer must
consider each database server’s speed and/or load factors to decide where to run the
query. From this discussion, we can summarize that the total processing cost of a
query in a distributed database consists of the amount of time it takes to generate the
distributed query execution plan; the time it takes to send the commands that each
local server must run; the time it takes for the local DBEs to execute the local queries;
and the additional communication cost required between the controlling site and the
local sites for transferring the intermediate and/or final results.

We can draw the following conclusions from Example 4.5:

• The global query is mapped to one or more local queries.
• An extended global query reconstructs the results from local results based on

distribution information.
• Without replication, the global optimizer should run a local query at the site where

the needed fragment is stored.
• With replication, the global optimizer has more than one site where a local query

can run. Given the choice, the global optimizer selects the site that requires the
least amount of communication, has the lowest workload, or is the fastest.

• Each local query is optimized by the local database server as discussed earlier in
this chapter.

• The local query results are merged together using join for vertical fragments and
union for horizontal fragments.

We might conclude that running a query in a distributed system is more expensive
since it requires more than one site to communicate and cooperate their activities.
Although on the surface this seems reasonable, we should not lose sight of the fact
that having multiple database servers gives us the ability to explore parallel execution
of local queries. The challenge is to find a global execution strategy that minimizes the
overall communication cost and at the same time maximizes the amount of parallelism
among available database servers. Query optimizers in distributed systems try to exploit
the hidden parallelisms in executing a query across multiple DBEs. A good database
distribution design fragments and/or replicates a relation in a manner that allows the
most expensive operations of a query to run in parallel. For example, to join two large
relations may require allocation of each relation to an individual processor to utilize
parallel scan, sort, and merge. Query processing can benefit from data distribution if we
can capitalize on the vast amount of processing power available in a distributed system.
These same advantages exist in parallel databases. The difference between distributed
and parallel databases is that the communication cost of a parallel database is much
smaller than that of a distributed system. Therefore, the same amount of data transfer
in a parallel database takes a fraction of the time it takes in a distributed database.
On the other hand, a parallel database environment may use a shared disk or shared
memory or both, which could be a source of contention for the processors involved.
In a distributed system, there is no contention between individual DBEs.

4.5.2 Distributed Query Optimization

As discussed in Section 4.5.1, global optimization is greatly impacted by the database
distribution design. Just like a local query optimizer, a global query optimizer must
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evaluate a large number of equivalent query trees, each of which can produce the
desired results. In a distributed system, the number of alternatives increases drastically
as we apply replication, horizontal fragmentation, and vertical fragmentation to the
relations involved in the query.

Example 4.6 Let us consider joining three relations—A, B, and C—as “A JN B
JN C” in a three-site distributed system. As discussed in Section 4.4.2.2, there are
12 different query trees alternatives that can be used for this purpose. Let’s now
assume that although A is not fragmented, it is replicated, and there are two copies
of it; that B is horizontally fragmented into B1, B2, and B3; and finally, that C is
vertically fragmented into C1 and C2. For this distributed database, since B and C
do not physically exist, we need to reconstruct them from their fragments. To include
reconstruction steps for relations B and C, the global query changes to

A JN B JN C ≡ A JN (B1 UN B2 UN B3) JN (C1 JN C2)

As seen from the mapped global query, the number of relations involved in the
query is raised from three to six, increasing the number of available alternatives to
(2 ∗ (6−1)!/(6−1)! = 30,240. For each alternative, there are many approaches that we
can use to formulate the answer for each intermediate result. This adds another order of
magnitude to the size of the solution space. To analyze the impact of distribution, let’s
assume that we decide to use “B1 UN (B2 UN B3)” to reconstruct B from its fragments.
For this specific alternative, we have the option of running both union operations at
Site 1, both at Site 2, both at Site 3, one at Site 1 and one at Site 2, one at Site 1 and
one at Site 3, and so on. We have two operations and each can be performed at three
sites, which results in “32 = 9” alternatives for where the unions are performed. This
example clearly shows that evaluating all possible plans for a distributed query is not
practical. Instead, we must find a way to arrive at an optimal plan without spending a
great amount of time on it.

4.5.2.1 Utilization of Distributed Resources In a distributed system, there are many
database servers available that can perform the operations within a query. There are
three main approaches on how these resources are utilized. The difference among these
approaches is based on whether we perform the operation where the data is; send the
data to another site to perform the operation; or a combination of the two. We will
examine these three approaches next.

Operation Shipping In this approach, we run the operation where the data is stored.
In order to achieve this, the local DBE must have a database server that can perform
the operation. A good example of the kind of operation that lends itself nicely to
operation shipping is any unary operation such as relational algebra’s select (SL) and
project (PJ). Since a unary operation works on only one relation, the most logical and
most economical in terms of communication cost is to run the operation where the
data fragment is stored. Even for binary operations, such as join and union, we prefer
operation shipping if the two operands of the operation are stored at the same site. Most
of today’s DBMSs such as Oracle, SQL Server, and DB2 prefer operation shipping.
In these systems, an interactive query that enters the system at a client computer does
not run at the client but at the database server, where the data is stored. The results
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are then transferred back to the client. These systems store canned queries such as
stored procedure on the database server as well. The database server activates these
stored procedures upon request from an application or an interactive user at the server,
simulating operation or query shipping.

Data Shipping Data shipping refers to an alternative that sends the data to where
the database server is. This obviously requires shipment of data fragments across the
network, which can potentially lead to a high communication cost. Consider the case of
having to select some tuples from a relation. We can perform the SL operation where
the data is as explained in operation shipping. We can also send the entire relation to
another site and perform the SL operation there. One can argue that in a high-speed
fiber optic communication network, it might be faster to send the entire relation from
a low-speed processor to a high-speed processor and perform the SL operation there.

Data shipping is also used in object-oriented databases as a preferred approach. Page-
based data caching, close to where the use is, will presumably speed up the response
time for queries that run frequently when data does not change often [Dewitt90a]
[Franklin93]. A similar caching approach is proposed for an index lookup by Lomet
[Lomet96]. An index page fault happens when data required by a query is not in the
cache. In this case, the page containing the data is brought into memory. If the cache
is full, the least recently used page will be written back to the disk to make room
available for the required page.

Hybrid Shipping Hybrid shipping combines data and operation shipping. This
approach takes advantage of the speed of database servers to perform expensive
operations such as joins by transferring the smaller relation to the server where the
larger relation resides. Figure 4.19 depicts the three alternatives mentioned above.

4.5.2.2 Dynamic Programming in Distributed Systems The dynamic programming
principles we discussed for centralized systems can also be used for query optimization
in distributed systems. The following example applies dynamic programming to a
distributed database.

Figure 4.19 Operation, data, and hybrid shipping examples.
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Example 4.7 Let’s apply dynamic programming to a simple query in a simple
distributed system. We use the query in Example 4.2. This query prints the name of
all customers who have an account in any branch in city Edina. For ease of reference
we have copied the SQL query for this example here again.

Select c.Cname
From Customer c, Branch b, Account a
Where c.CID = a.CID
AND a.Bname = b.Bname
AND b.Bcity = ‘Edina’;

The following describes the distributed database set up for this example:

• There are three sites to this system.
• The user enters the query at Site 1, making it the controlling site.
• The Branch relation is not fragmented and is stored at Site 3.
• There are two copies of the Customer relation (C1 and C2). C1 is stored at Site

1, and C2 is stored at Site 2.
• The Account relation is horizontally fragmented based on the value of the balance

attribute. All accounts with balances of less than $5000 are in fragment “A1” and
are stored at Site 1, the rest are in fragment “A2” and are stored at Site 2.

• We assume that the network is a high-speed local Ethernet and therefore each
message takes “t” units of time to get from any site to any other site.

• We also assume that sending any tuple from any site to any other site takes one
message and therefore also takes “t” units of time.

• For simplicity, we will assume that all three database servers have the same load
and have the same processing speed.

• Also for simplicity, we will refer to each relation with their alias used in the
query, i.e., Branch is referred to as B, Account as A, and Customer as C.

• We will use operation shipping, that is, perform the operation where the data is
stored.

1-Relation Plans: There are three relations involved in the query. B is not frag-
mented and/or replicated and is stored at Site 3. The 1-relation plan for this relation
is to send the “SLBcity=‘Edina’ (Branch)” command to Site 3. The results of this SL
operation are 100 tuples that we capture in an intermediate relation called “B3.” The
Account relation is fragmented into two fragments. Since we are looking for accounts
in the city of Edina and do not know which of the Edina city accounts have a balance
of more than $5000, we have to query both fragments of Account—A1 and A2. The
Customer relation is replicated. We can use the copy at Site 1 or at Site 2. Since the
communication link speeds, processor load, and processor speed are the same for Site
1 and Site 2, there is no difference between the two 1-relation plans for Customer.
We will choose Site 1 as the target site for the Customer relation. The following are
chosen 1-relation plans for each relation or a fragment of a relation.

Pb: Access Branch relation at Site 3 and run SL there
Results in B3 relation at Site 3
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Pa1: Access A1 relation at Site 1
Pa2: Access A2 relation at Site 2
Pc1: Access C1 relation at Site 1

2-Relation Plans: Since there are three relations and two joins in our query, we
have six different query trees that we can choose from.

Pba: B3 JN A
Pab: A JN B3
Pbc: B3 JN C
Pcb: C JN B3
Pac: A JN C
Pca: C JN A

Note that among these, Pbc and Pcb cannot be considered since they try joining two
relations that do not have a common attribute; that is, they are cross products. We will
consider the other four plans in the next step:

Pba: B3 JN A
Pab: A JN B3
Pac: A JN C
Pca: C JN A

Relation “A” consists of two horizontal fragments “A1” and “A2” that need to be
unioned together. For relation “C,” we have chosen to use copy “C1.” Taking these
into account, the plans are changed into five groups as follows:

Group1:
Pba1: B3 JN A1
Pa1b: A1 JN B3

Group2:
Pba2: B3 JN A2
Pa2b: A2 JN B3

Group3:
Pa1c: A1 JN C1
Pca1: C1 JN A1

Group4:
Pa2c: A2 JN C1
Pca2: C1 JN A2

Group5:
Pa1a2: A1 UN A2

In analyzing the 2-relation plans, we use the rule that says, “When joining two
relations that are stored at different sites, the smaller relation should be sent to where
the larger relation is.”
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Analysis of 2-Relation Plans

• Group 1: For this group, we apply the rule to send the smaller relation to where
the larger relation is for join. As a result, the plan we will take to the next step
is “Pba1: B3 JN A1.”

• Group 2: For this group, the same argument we used for Group 1 applies. We
take “Pba2: B3 JN A2” to the next step.

• Group 3: For this group, we know that both relations are at the same site (Site 1).
This makes the JN a local join. The communication costs of the two alternatives
are also the same. We choose “Pa1c: A1 JN C1” for the next step.

• Group 4: In this case, C1 is a smaller relation and should be sent to where the
larger relation is in order to join them. Therefore, we choose “Pca1: C1 JN A2”
for the next step.

• Group 5: This group has only one plan for it and is therefore kept. In order to
know the cost of this union we need to know how many tuples are in each relation.
Assuming that there are more tuples in A1 than A2, we need to send A2 to Site
1 to union with A1.

The plans that need to be considered in the next phase of dynamic programming
are

Pba1: B3 JN A1 runs at Site 1
Pba2: B3 JN A2 runs at Site 2
Pa1c: A1 JN C1 runs at Site 1
Pca1: C1 JN A2 runs at Site 2
Pa1a2: A1 UN A2 runs at Site 1

3-Relation Plans: For this example, we assume that we do not allow bushy plans.
Therefore, to form a 3-relation plan, we have to combine a base relation with one of
the 2-relation plans we have kept. The following are the 3-relation plan alternatives
we have:

Pba1c: (B3 JN A1 runs at Site 1) JN C1
Pba2c: (B3 JN A2 runs at Site 2) JN C1
Pa1cb: (A1 JN C1 runs at Site 1) JN B3
Pca1b: (C1 JN A2 runs at Site 2) JN B3
Pa1a2b: (A1 UN A2 runs at Site 1) JN B3

All these plans are needed for the next step since they produce different results. The
decision that we have to make is where to run the new joins. The following indicates the
site where the operation should be performed based on the rule we mentioned above.

Pba1c: (B3 JN A1 runs at Site 1) JN C1 runs at Site 1
Pba2c: (B3 JN A2 runs at Site 2) JN C1 runs at Site 1
Pa1cb: (A1 JN C1 runs at Site 1) JN B3 runs at Site 1

(B3 was shipped there)
Pca1b: (C1 JN A2 runs at Site 2) JN B3 runs at Site 2
Pa1a2b: (A1 UN A2 runs at Site 1) JN B3 runs at Site 1
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4-Relation Plans: Although we logically have three relations, we have to consider
4-relation plans since the Account relation has been fragmented into two fragments.
The following are the alternatives:

Pba1c UN Pba2c runs at Site 1
Pa1cb UN Pca1b runs at Site 1
Pa1a2b JN C1 runs at Site 1

Among these alternatives, the cheapest is the first plan since both relations involved
in the operation are locally available at Site 1. This site is also where the user and the
final results need to be displayed. We showed how dynamic programming principles
can be used in conjunction with distributed queries. For the simple example we
discussed above, and even with all the simplifying assumptions we made, application
of dynamic programming to a three-site system created a lot of alternatives. The
reason is that, in distributed systems, fragmentation, replication, availability of
different communication paths for command, and alternatives to data exchange
among sites tremendously increase the number of available alternatives. This creates
a solution space that is very large, even for the simplest of queries. As a result,
it is impractical to try to enumerate all of the alternative query trees in dynamic
programming for distributed queries. Therefore, we need to use heuristics to reduce
the solution space as much as possible before applying dynamic programming.

4.5.2.3 Query Trading in Distributed Systems An alternative to dynamic program-
ming that is based on the principles of trading negotiation is called query trading (QT),
which was proposed by Pentaris and Ioannidis [Pentaris06]. In the QT algorithm, the
control site for a distributed query is called the buyer and each site where a local query
runs is called a seller. The buyer has different alternatives for choosing sites where data
fragments are and also different choices for reconstructing the global results. In this
algorithm, the buyer tries to achieve the optimal total cost for the query by negotiating
services from different local sellers.

For example, assume a relation is replicated at two sites. When the buyer asks
each seller about the cost of performing a select operation on a given relation, each
seller (local server) bids on the select based on the facilities and services that are
locally available. The difference between the prices that two sellers offer for the same
select operation on the same relation is due to differences between each local server’s
processing speed, workload, method of local optimization, and available indexes. The
buyer decides on which seller’s offer to choose to lower the overall cost of the query.
A cost function is used by the buyer to choose the right seller(s). As an example,
assume we need to join relations R1 and R2. Suppose Site 1 has already been chosen
to perform a select on R1. In the next step the buyer needs to decide where the join
operation is going to be performed. It might be cheaper to join R1 and R2 at Site 1
by sending R2 to this site than sending the results of the select from Site 1 to Site 2
where the join will be performed. The buyer’s decision in this case depends on the
prices that Site 1 and Site 2 offer for the join operation. In subsequent steps, the buyer
negotiates with chosen sellers to see if they can perform a larger portion of the query.
This process is repeated until the entire query execution is planned.

The query trading algorithm works by gradually assigning subqueries to local sites.
A site may be a buyer, a seller, or both a buyer and a seller depending on the data
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stored at the site and/or the query that is being performed. During the negotiation, the
buyer simply puts the plan together from the bottom up. The query is not actually
executed until the overall global plan has been determined. The goal of the algorithm
is to create the most optimal plan from local optimized query plans that have been
proposed by the sellers together with the communication cost of reconstructing the
final results.

4.5.2.4 Distributed Query Solution Space Reduction As explained earlier in this
chapter, both dynamic programming and query trading algorithms have to deal with a
large number of alternatives even for simple queries. Attaining the absolute best dis-
tributed query plan, therefore, is too expensive to achieve. The following is a summary
of the rules that can be applied to a query tree in a distributed system to reduce its
solution space [Ceri84].

Apply Select and Project as Soon as Possible This rule is similar to the rule we dis-
cussed earlier for a centralized system. The difference is that in distributed systems,
if the select condition includes the attribute that is used for fragmenting a relation
horizontally, the distributed select may reduce to a single site select.

Example 4.8 Let’s reconsider the EMP relation as defined in Chapter 2, Section
2.2.2. For ease of reference we have shown the EMP relation and its horizontal frag-
ments here again.

EMP (EmpID, Name, LOC, SAL, DoB, Dept);

Create MPLS_EMPS
AS SELECT * FROM EMP WHERE LOC = ‘Minneapolis’;

Create LA_EMPS
AS SELECT * FROM EMP WHERE LOC = ‘LA’;

Create NY_EMPS
AS SELECT * FROM EMP WHERE LOC = ‘NY’;

We issue the following global query against EMP.

Select Name
From EMP
Where LOC = ‘LA’ and Sal > 30,000.

Figure 4.20 shows the query tree that corresponds to this SQL statement.
Since EMP does not exist as a physical relation, to retrieve the tuples of EMP that

satisfy the select condition, we have to qualify the tuples in MPLS_EMPS, LA_EMPS,
and NY_EMPS. To reconstruct EMP, we must union these three horizontal fragments.
Figure 4.21 depicts the expanded global query to include the fragments of the EMP
relation.

Without optimization, the select operation must run against the union of EMP’s
fragments. This approach requires materializing EMP from its fragments at one site
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Figure 4.20 Global query tree for Example 4.8.

Figure 4.21 Expanded global query tree for Example 4.8.

and then executing the select against it. To reduce the communication overhead, we
can apply the select to each fragment and only send the qualified tuples across the
network. Figure 4.22 shows how we reduce communication cost by pushing the select
operation toward the leaves of the tree to get the results.

Simplify Operations on Horizontal Fragments In the query tree just generated, the
optimizer can recognize that the LOC attribute is used as both the predicate for the
select and the condition for horizontal fragmentation. Since the select predicate requires
“LOC = ‘LA’,” the select operations on MPLS_EMPS and NY_EMPS will not return
any tuples. Similarly, the select operation on LA_EMPS does not need to check the
LOC value since all tuples at this site will match that condition. Therefore, the optimizer
should only run the select operation at the LA site. The query tree then is reduced to
what Figure 4.23 shows as a single site query. This rule works well when the select
predicate and the horizontal fragmentation condition are compatible.

Perform Operations Where Most of the Data Is Performing union and join operations
in distributed systems is more expensive when the join and union operands are at
different sites. Example 4.9 explains this.
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Figure 4.22 The “more optimized” expanded global query for Example 4.8.

Figure 4.23 The optimized global query tree for Example 4.8.

Example 4.9 In this example, we try to find the name of each employee who works
in LA or NY and makes more than $30,000. As part of this same query, we also want
to find the the name of the project that has at least one of these employees working on
it. Let’s assume that the EMP relation is horizontally fragmented as discussed earlier
in Example 4.8 and that the PROJ relation is also horizontally fragmented based on
the location of the project. In other words, employees working in LA are only assigned
to the projects originated in LA, while employees working in NY are only assigned to
the projects originated in NY. Figure 4.24 depicts the query tree for this example.

The global optimizer should realize that LA_EMPS and LA_PROJS are colocated
in LA while NY_EMPS and NY_PROJS are colocated in NY. Hence, as shown in
Figure 4.25, the optimizer should first join the corresponding fragments locally and
then union the join results together.

Simplify Join Operations Assume that we have used a hybrid fragmentation for the
EMP relation as discussed in Section 2.2.3 of Chapter 2. In this distribution design,
EMP is first vertically fragmented into two fragments. The first fragment is called



160 QUERY OPTIMIZATION

Figure 4.24 The query tree for Example 4.9.

Figure 4.25 Colocalizing global operations for Example 4.9.

“EMP_SAL” and contains the EmpID and Sal attributes. The nonsalary vertical frag-
ment of EMP is further fragmented horizontally into three fragments that we call
“LA_EMPS”, “NY_EMPS”, and “MPLS_EMPS” for this discussion.

Example 4.10 In this example, a user issues a query that prints the salary for those
employees who make more than $30,000. The query in relational algebra is written as

PJName, Sal (SLSal > 30,000 (EMP))

Since the EMP relation uses a hybrid fragmentation, as shown in Figure 4.26, the
query needs to be expanded to include the fragments.
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Figure 4.26 The expanded query for Example 4.10.

Figure 4.27 Reduced query for Example 4.10.

Because all the predicates and attributes that need to be displayed to the user are
within EMP_SAL, the global optimizer can reduce the query as shown in Figure 4.27
to a single site query.

Materialize Common Subexpressions Once This rule is equivalent to merging the com-
mon leaves and subtrees in a distributed query tree. Example 4.11 explains the use of
this rule.

Example 4.11 Suppose we need to find the manager name and project names for all
employees who work in LA and make more that $30,000. Again, without optimization,
Figure 4.28 represents the global query tree that is created for the query.

In this case, the global query optimizer realizes that the left and right subtrees
of this query are identical and therefore should be materialized once. Based
on this observation, the optimizer creates the optimized query tree depicted in
Figure 4.29.
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Figure 4.28 Unoptimized query tree for Example 4.11.

Figure 4.29 Optimized query tree for Example 4.11.

Use Semi-join to Reduce Communication Cost The semi-join operation is a supportive
operation in relational algebra. It is a different, multistep approach for joining two
relations. Semi-join attempts to qualify the tuples before the relations are actually
joined. In distributed systems, we can use semi-join to qualify the tuples in both
relations that match the join conditions before we send the tuples across the network.
As a result, we do not send any tuples that are not part of the final join results, which
reduces our communication costs. Suppose we were joining two relations with 1000
tuples each. If joining these two relations would ultimately result in only 50 rows, it
would be very beneficial to avoid sending the 950 (or more) rows in each relation that
are not part of the final answer across the network.

Semi-join was first used in SDD−1 [Bernstein81] and then extended and applied
by Apers, Hevner, and Yao [Apers83] to reduce the overall communication cost and/or
total query cost of simple distributed queries. The proposal of using semi-join for
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distributed joins was attractive because original experimental distributed systems had
a slow communication network. As a result, the cost of running distributed queries
in older distributed systems was greatly impacted by the amount of information that
was sent across the network. To explain how the semi-join approach works, we use an
example.

Example 4.12 Let’s consider a distributed system with three sites, where relation
“R” is at Site 1, relation “S” is at Site 2, and the user is at Site 3. The user issues a
query to join R and S over attribute “a” of R and attribute “b” of S as “R JNa=b S.”
As discussed earlier in this chapter, this join can be performed at Site 1 or Site 2 with
different cost ramifications. Either way, one of the relations needs to be shipped across
the network to the other site, where it will then be joined with the other relation. The
rule of thumb is to send the smaller relation to where the larger relation is to reduce the
communication cost. Even for small relations, the cost of sending the entire relation
across the network can be large since every tuple might require more than one message
(for wide relations).

Suppose that R has 500 tuples, S has 200 tuples, and that the number of tuples in
these relations where “a = b” is 50. As a rough estimate, suppose that each tuple is
sent as a single message. Hence, an optimal strategy to performing the join will require
250 messages (200 messages to send S from Site 2 to Site 1 to perform the join and
50 messages to send the results from Site 1 to Site 3 to display to the user).

Semi-join attempts to minimize the communication cost by first finding the tuples
that qualify the join condition and then performing the actual join. To apply semi-join
to join these two relations, we proceed as follows:

Step 1: Do PJa(R) at Site 1 producing temporary relation R1(a)
Step 2: Send R1 from Site 1 to Site 2
Step 3: Do R1 JNa = b S at Site 2 producing temporary relation S1
Step 4: Send S1 from Site 2 to Site 1
Step 5: Join S1 with R producing the final results in R JNa = b S
Step 6: Send results to Site 3 where the user is

Figure 4.30 depicts the steps used in the semijoin for our example.
In Step 1, we cut out attribute “a” of R and create a one-column relation “R1(a).”

The reason for doing this is that attribute “a” is all we need to qualify the tuples in S.
Step 2 is where the main difference between a join and semi-join occurs. In this step,
we send only attribute “a” of R to where S is instead of sending the entire relation R.
Sending a relation with only one attribute is a lot cheaper than sending a wide relation
across the network—perhaps we can even send many tuples in a single message. Once
we join R1 and S at Site 2 into S1, we have identified all of the tuples that qualify the
join condition. But, what is missing from the results are the other attributes of R. For
example, if R is defined as “R(a, c, d, f),” then S1 is lacking “c,” “d,” and “f” attributes
of R. To add these attributes to the rows in S1, we have to send S1 back to where R is
(Step 4) and then join S1 with R (Step 5). Note that in Step 4 we do not send any tuple
that is not part of the final answer and therefore we are not wasting any messages.

The semi-join approach to joining R and S requires fewer messages. Before
presenting the actual number of messages, let’s make an assumption about sending a
column of a relation. We assumed that each tuple of each relation takes one message
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Figure 4.30 Use of semi-join to join relations R and S in Example 4.12.

to send. Suppose that each column of a relation, regardless of the number of tuples
in the relation, takes one message to send as well. Based on this assumption, Step
2 would require 1 message; Step 4 would require 50 messages; and Step 6 would
require 50 messages. The overall cost of this strategy is 101 messages.

The semi-join approach produces the final results at the site where we start the
semi-join process. In Example 4.12, we started with R relation at Site 1 and the results
were produced at the same site. We could have started with the S relation and have
accumulated the results at Site 2. For this example, the cost would have been the same
for both approaches since the final results had to be sent to Site 3. But for a setup
where the user is at Site 2 and runs the same query, it will be much cheaper to start
with S at Site 2 since the final results will be gathered where the user resides.

Note that in Example 4.12, we could have reduced the communication cost by not
sending the attributes that were not necessary for the final results in S1. Example 4.13
includes more optimization for the semi-join approach.

Example 4.13 A more complete form of the query that was used in Example 4.12
is used in this example. Let “R(a, c, d, f)” and “S(b, m, n)” be the two relations we
would like to join. We will consider the following query issued by a user at Site 3.

Select a, c, m
From R, S
Where R.a = S.b;

An optimized semi-join strategy considers what needs to finally be displayed to the
user and only includes the attributes that are either required for the join or part of the
final answer. We have outlined the semi-join steps for this example below:

Step 1: Do PJa (R) at Site 1 producing temporary relation R1(a)
Step 2: Send R1 from Site 1 to Site 2
Step 3: Perform R1 JNa=b S at Site 2 resulting in S2(b, m, n)
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Step 4: Apply PJb, m (S2) at Site 2 producing S1(b, m)
Step 5: Send S1 from Site 2 to Site 1
Step 6: Do S1 JN R resulting in relation R2(a, c, d, f, b, m)
Step 7: Apply PJa, c, m (R2) producing the final results in R3
Step 8: Send R3 to Site 3 where the user is

It should be obvious that since this strategy reduces the number of attributes being
sent (as part of the temporary relation “S1” in Step 5 and the final results in Step 8),
the overall communication cost is reduced. Applying the semi-join algorithm to a join
involving more than two relations requires repeated application of the steps outlined
above. For example, suppose we are joining three relations: “R” (at Site 1), “S” (at Site
2), and “T” (at Site 3) over a common attribute “a.” This requires identifying which
pairs of relations are joined first. The temporary relation produced is then joined with
the third relation. As discussed earlier in this chapter, there are many alternatives for
doing this. One such join ordering is “T JNa=a (R JNa=a S).” To apply the semi-join
approach to this query requires the following steps:

Step 1: Apply PJa (R) at Site 1 producing temporary relation R1
Step 2: Send R1 from Site 1 to Site 2 where S is
Step 3: Join R1 and S at Site 2 producing temporary S1
Step 4: Send S1 from Site 2 to Site 1 where R is
Step 5: Join S1 with R producing the temporary R2 at Site 1
Step 6: Apply PJa (T) at Site 3 producing temporary relation T1
Step 7: Send T1 to Site 1 where R2 is
Step 8: Join R2 and T1 at Site 1 producing temporary relation R3
Step 9: Send R3 to Site 3 where T is
Step 10: Join R3 and T producing the final results

Apers, Hevner, and Yao discuss several algorithms that use semi-join to optimize
simple distributed queries [Hevner79] [Sacco82] [Apers83]. These algorithms focus
on optimizing the overall communication cost or the total query cost for distributed
queries. Interested readers are referred to these references for further readings.

Use Bit Vectors to Reduce Communication Cost Approaches using bit vector filters
instead of join attributes for semi-joins across multiple sites have also been proposed
(see [Babb79] and [Valduriez84]). A similar approach (known as Bloom vectors) was
also proposed by Bloom [Bloom70]. In a 2-relation join, Bloom’s approach uses a bit
vector filter that approximates the join attribute of the first relation. This is sent across
the network from the first site to the second site, where it is used to qualify the tuples
in the second relation involved in the join. Once the tuples from the second relation
are qualified, these tuples are sent back to the first site, where they are joined with the
first relation. Bit vectors are created using a hash function to approximate the values
of the join attributes in a multirelation query. Bit vectors have been used extensively
in parallel databases. Specifically, Dewitt and his colleagues have demonstrated bit
vectors in the Gamma parallel database machine with distributed memory [Dewitt86]
[Dewitt88] [Dewitt90a]. We will use an example to explain their approach.
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Example 4.14 In this example, we will try to join two relations “R(a, c, d, f)”
and “S(b, m, n)” as explained in Example 4.13. Let’s assume that attribute “a” is the
primary key of R, attribute “b” is a foreign key in S pointing to “a”, R has 500 tuples,
and S has 200 tuples. Being a primary key, there are 500 unique values for the attribute
“a” in R. To start, we use a bit vector with 500 bits, each set to zero. We then run
each unique value of the attribute “a” through a hash function, for example, “f (a) =
a MOD 500,” that maps the value of “a” to a number in the range of {0, 1, . . . , 499}.
The corresponding bit for the hashed value is set to 1. For instance, running the key
value 1002 through the hash function turns on bit 2 in the bit vector. Once all values
of “a” have been hashed, we use this vector to qualify the tuples in S. To do so, we
run each value of the attribute “b” of S through the same hash function and generate
a hash value. We then check to see if the bit corresponding to this new hash value is
set in the bit vector. If it is, then the tuple in S qualifies the join condition.

Whenever two or more different values map to the same hash value (or address),
we call it a collision. In our example, our hash function maps both “a = 2” and “a =
502” to value 2. As a matter of fact, all key values 2, 502, 1002, and so on collide to
value 2. It is not necessary to keep track of which values of the join attribute collide
in this approach. That is because it is not necessary to know what the actual values
of “a” or “b” are; we simply need to know each value for “a” that hashes to the same
location as some value of “b” did. For our example, values 2, 502, 1002, and so on
for the attribute “b” also map to 2 and therefore all of these tuples from relation S are
qualified. It is clear that bit vectors can be used to qualify the tuples of two relations in
a join before the join is actually performed in a distributed system. Like the semi-join,
a bit vector filter eliminates the need to send any tuple that is not part of the join across
the network. This results in lower communication costs for distributed queries.

Although Example 4.14 pointed out the usefulness of using a bit vector filter for
joining only two relations, the idea can easily be extended to cover multirelation joins.
Mullin proposed the idea of sending bit vector filters back and forth between the sites
where the relations involved in a multi-join query reside to discard the tuples that are
not part of the final answer [Mullin90]. This reduction process is continued as long as
the number of useful tuples for the join can be reduced.

A Multiphase Approach We have reviewed many alternatives for query optimization
in centralized and distributed database systems. In what follows, we use an example
to bring together some of the ideas that we have discussed so far in this chapter as
a set of simplified rules in a multiphase approach that could generate a near optimal
distributed query plan at a very low communication cost.

The approach works as follows:

• In the first phase, we ignore distribution and decide on a query plan that is best
suited to execute the query.

• In the second phase, we decide on the sites that we will use to access the required
data. The rule we use for site selection is simple. When there is no replicated data,
the site where the required fragment resides is chosen. When there is replication,
we have the choice of selecting any site among all the sites where the copies of
a replicated fragment reside. In this case, we choose the replication site that has
the largest amount of data required by the query.
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• In phase three of the algorithm, we run the operations at the sites where the data is
stored. In other words, we utilize function shipping rather than data shipping. This
phase is carried out as a set of local queries that the chosen sites will optimize
locally and run locally.

• In the last phase of the algorithm, we decide on the sites where we perform
the reconstruction operations, that is, the joining of vertical fragments and the
unioning of the horizontal fragments. Our decision in this phase is again based on
a simple rule. We choose to run the operations at the site(s) where the most data
is located. Since some of the operations may require data that is stored across two
sites (such as join and union), we have no choice but to move the data between
sites—this requires data shipping. Deciding which data to ship is also governed
by a simple rule. We send the smaller operand of any binary relational algebra
operator to where the larger operand is stored.

The following example explains the steps in this approach for a simple distributed
database system.

Example 4.15 In this example, we will use the same relations that we used for query
optimization in a centralized system in Example 4.1. Furthermore, we will assume that
we have a two-site distributed database system where the Customer relation is replicated
at Site 1 and Site 2; the Account relation is stored at Site 1; and the Branch relation
is stored at Site 2. We have shown the query here again for ease of reference.

Select c.Cname
From Customer c, Branch b, Account a
Where c.CID = a.CID
AND a.Bname = b.Bname
AND b.Bcity = ‘Edina’;

This query prints the name of all customers who have an account at any one of the
branches located in city Edina. To optimize the query in our distributed system, we
proceed as follows.

Phase 1: Tree Selection. Disregarding distribution, as discussed for Example 4.1,
there are five alternatives that are candidates for running this query. In Figure 4.31,
we have shown these alternatives again for ease of reference. From these alternatives,
we need to eliminate the ones that do not apply the select before the join. Applying
this rule leaves us with alternatives 2 and 5 as the only two viable options. Next, we
use cost estimation to determine which one of the two alternatives performs better. We
select alternative 5 as the candidate tree since it has a smaller processing cost.

Up to this point in the discussion, we have not considered distribution. In order to
run this query optimally in our two-site distributed system, we need to decide where
each operation is performed. We also need to decide which sites are used to access the
relations and how the intermediate results will be merged to form the final results.

Phase 2: Data Localization. In this phase, we need to decide which sites we will
use to access the relations we need. The rule that we apply here says, “Select the sites
where the most data is.” In our example, Site 1 has a copy of the Customer relation and
the Account relation, while Site 2 has a copy of the Customer relation and the Branch
relation. We know that there are 500 customers in the database and each customer
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Figure 4.31 Five alternative query trees for Example 4.15.

has two accounts. This means that the largest relation in the database is the Account
relation, with 1000 tuples. We also know that the Branch relation has 100 tuples. Based
on these statistics, Site 1 stores much more information than Site 2 does. Applying the
rule above, we choose to access the Customer and the Account relations at Site 1 and
to access the Branch relation at Site 2. Once we have decided where each relation is
going to be accessed, we use the site ID as the subscript of the relation as shown in
Figure 4.32.

Phase 3: Function Shipping. In this step, we will decide where each operation of
the query tree will run. Since there is only one completely local operation in the query
tree (the select on the Branch relation), we must perform the SL at Site 2 (where the
Branch relation is stored). The results of the select are stored at Site 2 as well.

Phase 4: Data Shipping for Binary Operations. Since there are three operations
in the query and each operation can run at either of the two sites, we will have eight
different alternatives to perform the operations of this query as indicated in Figure 4.33.
In each tree, each operation has a subscript indicating the Site ID where the operation
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Figure 4.32 The query tree chosen for Example 4.15.

Figure 4.33 All possible options for data shipping in Example 4.15.

must run. For example, the first option indicates that the SL runs at Site 1; the first
JN runs at Site 1; and the second JN runs at Site 1. The rule that we follow for data
shipping is this: “Always send the smaller relation to the site where the larger relation
is located.” The application of this rule eliminates seven of the alternatives, making
Case 2 the optimal tree for this query.

Stonebreaker has utilized an extended variation of this approach in the Mariposa
system [Stonebreaker96]. Stonebreaker uses ideas from microeconomics and iterative
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dynamic programming to decide on the sites where the local and distributed operations
of the query must run.

4.5.3 Heterogeneous Database Systems

Heterogeneous distributed database systems behave differently from homogeneous dis-
tributed database systems. In a heterogeneous database system, the underlying database
systems are different, maintain their autonomy, and may hide the details of how
they process queries from the outside world. These systems are also called federated
database systems or multidatabase systems in the literature [Sheth90]. The individual
DBEs that make up a heterogeneous database system can support different database
models, for example, relational, hierarchical, network, object-oriented, or text databases
such as BigBook (www.bigbook.com). DBEs in a heterogeneous database system
may also utilize different query processing and optimization approaches. They can be
closed or open to the outside world. If open, they provide an application programming
interface (API). These differences make processing a distributed query in heteroge-
neous database systems a lot more difficult than processing queries in a homogeneous
distributed database system. Kossmann in [Kossmann00b] provides an excellent
survey and an overview of issues involved in query processing and optimization in
heterogeneous database systems. In this section, we summarize some of the challenges
that must be overcome in query processing and optimization in heterogeneous database
systems.

4.5.3.1 Heterogeneous Database Systems Architecture The underlying DBEs of a
heterogeneous system are different in nature and may provide different interfaces to
the outside world. One of the first challenges in integrating heterogeneous DBEs is to
hide the difference in the interfaces these systems expose. Wrappers have been used
ubiquitously in the industry as the approach for doing this [Roth97] [Nelson03]. A
wrapper is a software module that uses the open (or the proprietary) interface of an
underlying DBE and provides a uniform interface to the outside world based on the
capabilities that the DBE provides. Since the de facto standard for query processing in
any heterogeneous database system is SQL, a wrapper exposes a relational model and
SQL as the interface for the system is wraps.

Depending on the capabilities of the underlying component DBEs, wrappers pro-
vide different sets of functionalities. For instance, a relational DBMS wrapper can
support all of the capabilities that a relational DBMS provides. An Excel wrapper
can provide the ability to enumerate the rows in an Excel worksheet as tuples in a
relation. This ability can be utilized to perform a select on the contents of a work-
sheet very much like performing a select operation on a relation. As a result, we can
use an Excel wrapper to join the rows in an Excel worksheet with the rows of a
table exposed by a relational DBMS wrapper. Because of limitations of the BigBook
database, a wrapper for the BigBook database can only provide capability of select-
ing limited information such as business category and the city where the business is
located. The BigBook wrapper is not able to provide the capability to enumerate rows
and, therefore, cannot support joins. Several systems using the wrapper approach to
integrating heterogeneous database systems have been researched and developed over
the past few years. IBM WebSphere Federation Server 9.5, Disco [Tomasic97], Gar-
lic project at IBM [Carey95], and TSIMMIS [Papakonstantinou95] are examples of
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Figure 4.34 Wrapper-based heterogeneous database system architecture.

such systems. Figure 4.34 illustrates a wrapper based architecture for a heterogeneous
database system.

As illustrated in Figure 4.34, each data source in the system is wrapped by a spe-
cific wrapper. Depending on the underlying DBE, a wrapper may be able to provide
either tuple level or block level (a set of tuples that are grouped together) access to the
information that the database controls. The wrapper may also be able to cache infor-
mation outside the database for faster access. According to Wiederhold, wrappers are
not directly used by the client of the heterogeneous database system, but interact with
a layer of software called the mediator [Wiederhold93]. The mediator does not have
the capability to interface directly to the underlying DBE. The mediator can access the
global data dictionary (see Chapter 12 for details) to find out the schema of the local
DBEs and the functionality they provide. The mediator processes the queries that are
posted by the global users; determines the location details for each piece of required
data for the queries being processed by looking up the details in the GDD; exploits
the functionalities that each local DBE provides through its wrapper; and optimizes
the queries at the global level.

4.5.3.2 Optimization in Heterogeneous Databases Query optimization in a heteroge-
neous DDBE is a much more difficult task than query optimization in a homogeneous
DDBE. The reason is that in a homogeneous distributed database system all the DBEs
provide the same and uniform capabilities. This provides the global optimizer with the
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ability to choose any of the DBEs to perform, for example, a join. In a heterogeneous
distributed database system, the mediator does not have the same freedom. In a hetero-
geneous database system, a local DBE may be able to perform a join and the other may
not. Lack of join capability by some of the DBEs (or their wrappers) creates a challenge
for the mediator that does not exist in a homogeneous distributed database system.

For example, in a homogeneous distributed database system, the global optimizer
that needs to join relations “R” and “S” can simply send R from where it resides to the
DBE where S is and ask the DBE server there to process the join. In a heterogeneous
database system, this may not be easily achieved. Suppose that the wrapper for the
DBE that stores S does not have a join capability (such as a BigBook database) and
can only select tuples based on a given predicate. In this case, the mediator has to first
retrieve all tuples for R from the wrapper that interfaces to the DBE where R is stored.
Once all the tuples of the R relation are received, the mediator iterates through all tuples
in R and uses the value of the join attribute of R, one-by-one, to find corresponding
tuples in S. The lack of a join capability within the S wrapper, in effect, forces a
nested-loop join to be carried out by the mediator. This approach is probably a lot
more expensive than having the join be performed by the component DBE, as is the
case for a homogeneous distributed database system.

Another set of differences that may exist between the DBEs in a heterogeneous
database system are called semantic heterogeneity [Sheth90]. For example, Wrapper
1 may interface to a DBE that uses letter grades {A, B, C, D, F} while Wrapper 2
interfaces to a DBE that uses scores between 1 and 10. When integrating the results
from these two local DBEs or when transferring the grade from one DBE to the other,
the mediator has to convert scores of 1 to 10 to letter grades and/or letter grades to
scores in the range of 1 to 10.

Once the capability differences between the local DBEs have been dealt with, the
approach to global optimization for both homogeneous and heterogeneous database
systems is very similar. Once the capabilities of the underlying DBEs are encapsulated
by the wrapper and are presented to the mediator as a set of enumeration rules, dynamic
programming or iterative dynamic programming (see Sections 4.4.2.3 and 4.4.2.4 of
this chapter) can be used by the mediator to optimize global queries in heterogeneous
database systems [Haas97]. In Chapter 12, we provide more details about integration
challenges in heterogeneous database systems.

4.6 SUMMARY

In this chapter, we outlined the available techniques for query optimization in both
centralized and distributed DBEs. We discussed the fact that query optimization is
a complex component of query processing. We provided an overview of relational
algebra as an internal language representation used by all commercial DBMSs to pro-
cess user commands. Access path strategies for different relational algebra operations
were also discussed. We pointed out that even for queries of moderate complexity
the solution space was large. Approaches to reducing the solution space and dealing
with the complexity of the query optimization were outlined. Rules and heuristics for
query optimization were investigated. We reviewed dynamic programming, iterative
dynamic programming, and greedy methods as three alternatives widely used in query
optimization.
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Ideas and techniques used in centralized query optimization were then expanded to
include distribution. We analyzed approaches that were used for query optimization in
homogeneous as well as heterogeneous DDBEs. Most notably, we studied semi-join
and dynamic programming for distributed database environments.

4.7 GLOSSARY

Access Path The method by which a table is accessed as part of an overall query
processing.

Bit Vector Filter A bit-oriented encryption of the join columns to reduce the com-
munication cost between the sites involved in a distributed query.

Bloom Vector A bit-oriented encryption of the join columns proposed by Bloom to
reduce the communication cost between the sites involved in a distributed query.

Catalog A set of system-defined tables that maintain information about structures
defined within one or more databases. “Catalog” is another term for “data dictio-
nary.”

Centralized Database Environment (CDBE) A database environment in which one
computer (server) carries out the users’ commands.

Clustered Index An index in which the table rows that are addressed by sorted key
values are clustered (adjacent) to each other.

Conditional Join A join that requires a condition that two or more columns of the
two tables being joined will have to satisfy.

Cost-Based Optimization (CBO) An optimization approach in which the cost
method is used to find the query plan with the smallest cost out of the possible
query plans for the query.

Data Dictionary A collection of system tables that hold information about the struc-
tures of a database. Data dictionary is also known as the meta-data for the databases
in a DBMS.

Data Shipping An execution strategy in which data is shipped to another computer
to be used in the operation.

Disk I/O The process of reading or writing from/to the hard disk.
Distributed Database Environment (DDBE) A collection of one or more DBs along

with any software providing at least the minimum set of required data operations
and management facilities capable of supporting distributed data.

Dynamic Programming A phased approach to query optimization which eliminates
suboptimal plans until the optimal plan is arrived at.

Equi-join A conditional join that forces equality across two columns of the two
tables being joined.

Global Query A query whose target tables are distributed across multiple computers
or database environments.

Greedy Algorithm An optimization approach that limits the amount of disk storage
and memory used by dynamic programming by only forming 2-relation plans at
each step of the process.

Hash-Join A specific join strategy that uses a hash function to partition the rows of
the two tables being joined and then only joins rows in corresponding partitions.
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Heterogeneous DDBE An environment in which the DBEs are from different ven-
dors and/or support different data models.

Heuristics-Based Optimization An optimization approach that uses heuristics to
eliminate alternatives that do not provide or lead to an optimal query plan.

Homogeneous DDBE An environment in which all DBEs are from the same vendor
and/or support the same data model.

Hybrid Shipping A mix of data and operation shipping.
Iterative Dynamic Programming An iterative approach to dynamic programming

that limits the memory and storage requirements.
Local Query A query whose target tables are on the same computer or database

environment.
Materialization The act of forming and storing the temporary results of a relational

operator.
Memory Frame A container for storing a page in memory.
Memory Page A unit of storage allocation in memory.
Modulus (MOD) Function An operation that returns the remainder of dividing two

numbers.
Nonclustered Index An index in which the table rows are not forced to be adjacent

to each other for consecutive key values of the index.
Nonprocedural Language A language in which the user specifies what is needed

and the system determines the process of arriving at the answer.
Nonunique Index A nonunique index allows key duplication in the index.
Normal Conjunctive Form A complex predicate in which the component predicates

are tied together by the logical operator “AND.”
Normal Disjunctive Form A complex predicate in which the component predicates

are tied together by the logical operator “OR.”
On-the-Fly The process of feeding the results of one relational operator into another

without having to store the results on the disk.
Operation Shipping An execution strategy in which the operation is carried out

where the data is.
Partitioning The act of dividing the rows in a table based on a given condition

applied to a column of the table.
Probing The act of finding a qualified row based on the value of a column typically

using an index.
Procedural Languages A language in which the user specifies the process of arriving

at the answer.
Quel A higher level language based on relational calculus.
Query Optimization The process of finding an optimal query execution plan for a

given query.
Query Plan A plan that specifies a detailed step-by-step execution strategy for a

given query.
Query Processing The process of executing a user’s query.
Query Trading A specific query optimization approach that uses negotiation to arrive

at an optimal query execution strategy.



REFERENCES 175

Query Tree A binary tree that indicates the steps required to arrive at the answer for
the query.

RA Expression A query in a relational algebra representation of a SQL query.
RA Subexpression A subquery in a relational algebra that corresponds to a SQL

query.
Relational Algebra A procedural language in which the programmer specifies the

steps required to get the answer.
Relational Calculus A nonprocedural language in which the programmer specifies

what is needed and the system determines how to get the answer.
Rowid An internal representation of a row inside a relational database.
Rule-Based Optimization (RBO) An optimization approach that uses a small set of

rules to arrive at a near optimal query execution plan.
Semi-join An approach for joining two tables that minimizes the amount of data

transfer between DBEs in a distributed environment.
Solution Space The set of all possible solutions to a problem, for example, all the

implementation alternatives to carry out a given query.
Sort–Merge A join strategy that is carried out in two phases—the sort phase and

the merge phase.
Structured Query Language (SQL) The de facto standard procedural language for

all relational database management systems.
Unique Index An index that allows only unique key values.
Wrapper A software component that wraps a data source and provides a uniform

interface to the outside world by hiding the specifics of its representation and com-
mand interface.
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EXERCISES

Provide short (but complete) answers to the following questions.

4.1 How many alternatives exist for joining three tables together? How many alter-
natives exist for joining four tables and five tables together? Can you extrapolate
from these numbers to arrive at the number of alternatives that can be used to
join N tables together?

4.2 A four-site system has tables R, S, T, and M stored as depicted in Figure 4.35.
The user is at Site 1. Assume each row of any table that has more than one column
can be sent in one message. You can also assume that a one-column table can
be sent in one message. Also assume that the cost of sending each message is
C units of time. There are no costs associated with sending commands. What is
the cost of “(S JN R) JN (T JN M)” if “S JN R” and “T JN M” are done using
semi-join and the final join is done normally? Make sure you show all steps and
cost of communication for each step.

4.3 Assume the four-site system shown in Figure 4.36—the table distribution and
the query tree that prints all information about the employees who work for the
engineering department and have an account in a branch in the city of Edina.
Also assume the user is at Site 2. Let’s assume that 40% of accounts are in
branches in Edina; 50% of employees work for the engineering department; and
10% of employees who work for the engineering department have an account in
a branch in Edina. If each row being sent from each site to any other site takes C
units of time, what is the communication cost of the optimized query tree (results
must be displayed to the user) in terms of C? Make sure you show individual
step’s cost and the total cost. Assume there is no cost associated with sending
the commands.

4.4 In the four-site system shown in Figure 4.37, the user is at Site 1. We need to
print all information about all sales persons who have accounts in a branch in the
city of Edina. We know that 5% of branches are in Edina; 10% of all accounts

Figure 4.35 Relations for Exercise 4.2.
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Figure 4.36 Database setup for Exercise 4.3.

Figure 4.37 Query tree for Exercise 4.4.
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Figure 4.38 Relations for Exercise 4.6.

are in branches in Edina; and 20% of employees are in sales. If processing each
row takes “t” units of time, what is the processing cost of this tree? Make sure
you show all steps and the cost of each step.

4.5 For the distributed database given in Exercise 4.3, what is the cost of an optimal
distributed execution strategy for this query in terms of the number of messages
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required? Assume the cost of sending each row of any table is C units of time.
Assume there is no cost associated with sending the commands. Make sure you
show all steps and the cost of each step.

4.6 For this question, we use a sail club database used in [Ramakrishnan03]. This
database has three tables as shown in Figure 4.38. Suppose we have a query that
returns a sorted order of the sailors with a rating of 10 who have reserved the
boat with ID = 50. The query plan for this question is depicted in Figure 4.38.
Assume the page size is 4000 usable bytes after the page overhead. If the first
join is done by a nested-loop, row-based join and the second join is done by a
sort–merge join, what is the cost of this plan in number of disk I/Os? Assume
that we have five buffers for sorting and all distributions are uniform.





5
CONTROLLING CONCURRENCY

In this chapter, we will discuss the concepts of transaction management and database
consistency control. We start by defining the terms we will use in the rest of the
chapter. We then focus on transaction management as it relates to online transaction
processing (OLTP) systems. The concurrency control service is the DBE service that
is responsible for consistency of the database. In a nutshell, it controls the operations of
multiple, concurrent transactions in such a way that the database stays consistent even
when these transactions conflict with each other. Approaches to concurrency control
are explained next. We introduce concurrency control for centralized DBE first and then
consider distributed DBE. In Section 5.3, we formalize the algorithms for concurrency
control in a centralized DBE. In Section 5.4, we expand the concurrency control for a
centralized DBE to cover the issues in concurrency control for distributed DBEs.

5.1 TERMINOLOGY

Before we discuss how concurrency control applies to the centralized and distributed
databases, it is important to understand the terminology that we are using to describe
the different approaches and issues involved. In particular, we need to have a better
understanding of exactly what a database and a transaction are.

5.1.1 Database

A database is a collection of data items that have a name and a value. The set D{i1, i2,
. . . , iN } represents a database with N data items. Some of these data items must have
a value, they are NOT NULL, and some may have a value, they are NULL. Although
this definition of the database seems simplistic, in reality it is comprehensive and
can represent relational databases, object-oriented databases, hierarchical databases,
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Figure 5.1 A generic database example.

network databases, spreadsheet databases, and flat file databases. Even though we
assume each data item has a name, in reality, all we are saying is that every item is
accessible and/or addressable. Figure 5.1 depicts an example of a database. According
to our definition, there are six data items in this database.

To a person familiar with an Excel spreadsheet, this database represents a sheet with
two rows and three columns. Each cell is addressable by the combination of a row
and column address. The value “2645 France” represents the address for Cindy Smith.
Now assume this is an object-oriented database. For an object-oriented database, “2645
France” presents the address property for the Cindy Smith object while “Paul Jones”
represents a name property for the Paul Jones object. In a relational database, this
example represents a table with two rows and three columns. In a relational database,
the value, “2645 France” is associated with the address column of Cindy Smith’s row.

5.1.1.1 Database Consistency Each data item in the database has an associated cor-
rectness assertion. For example, the social security number for an employee must be a
unique value, age for an employee needs to be a positive number, an employee must
work for one and only one department, the balance of an account needs to be positive
and more than $100, and so on. These are all examples of assertions in a database. A
database is said to be consistent if and only if the correctness criteria for all the data
items of the database are satisfied.

5.1.2 Transaction

A transaction is a collection of operations performed against the data items of the
database. There have been many references to the ACID properties (atomicity, con-
sistency, isolation, and durability) of a transaction in the literature. Instead of simply
repeating these properties, we will use an example to explain a transaction’s properties.

In order to know what a transaction does, we need to know when it starts and when
it ends. We do that by delineating the boundaries of the transaction either explicitly
or implicitly. For our discussions, we will indicate the transaction boundaries using
Begin−Tran and End−Tran. Note that when working interactively with the DBMS
we may not need to use Begin−Tran and End−Tran. That is because, in most DBMSs,
either every user’s operation is considered a transaction or the entire user’s session
is considered as one large transaction. Similarly, when a programmer implements
a transaction, the use of Begin−Tran and End−Tran might be required. The syntax
and precise mechanism used to perform these operations varies, depending on the
DBMS, the database/transaction API, and the programming language/platform being
used to implement the program (we will look at some different mechanisms in Chapters
15–19). In the body of the transaction, one can find some control statements, some
read operations, some write operations, some calculations, zero or more aborts, and
finally zero or one commit operation.
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Example 5.1 This example shows pseudocode (an implementation independent form
of an algorithm) for a transaction that transfers $500 from account X to account Y.

Begin_Tran T1:
Read (account X’s balance) into X
If account X not found Then

Print ’Invalid source account number’
Abort

End If
Read (account Y’s balance) into Y
If account Y not found Then

Print ’Invalid target account number’
Abort

End If
Calculate X = X - 500
If X < 0 Then

Print ’Insufficient funds’
Abort

End If
Calculate Y = Y + 500
Write (account X’s balance) with X
Write (account Y’s balance) with Y
Ask user if it is OK to continue
If Answer is "Yes" Then

Commit
Else

Abort
End If

End_Tran T1;

To simplify our discussion when working with transactions, we will disregard the
calculations performed and only focus on the read and write operations within the
transaction. No information is lost when we do this. That is because the results of
the calculations are reflected in the values that the transaction writes to the database.
The following is the simplified pseudocode for the previous transaction:

Begin_Tran T1:
Read(X(bal))
Read(Y(bal))
Write(X(bal))
Write(Y(bal))

End_Tran T1;

It is important to realize that each transaction contains an ordered list of operations. It
is also important to realize that in a multi-user transaction processing environment, there
could be many transactions running in the system at the same time and their operations
might be interleaved. Therefore, it is important to identify to which transaction each
operation belongs. To do this, we will use a compact (but easy to understand) notation.
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In this notation, read operations are represented by an “R” and write operations are
represented by a “W.” The R and W are followed by a number representing the
transaction to which the operation belongs. We will also use generic data item names
such as “X” and “Y” and put the data item name in parentheses for each operation.
Applying this convention to our fund transfer transaction, we will have the following
new representation of our transaction:

Begin_Tran T1:
R1(X)
R1(Y)
W1(X)
W1(Y)

End_Tran T1;

We can represent this in an even more compact notation, by using a single
formula—“T1 = R1(X), R1(Y), W1(X), W1(Y)” is a straight-line representation of
our T1 transaction. In this representation, it is understood that R1(X) happens before
R1(Y), R1(Y) happens before W1(X), and so on, meaning that the time increases
from left to right.

Now, let’s assume that Alice is a customer who owns account X and account Y.
Let’s also assume that account X has a balance of $1500 and account Y has a balance
of $500. As far as Alice is concerned, the database is in a correct state as long as
the two accounts show the balances we just indicated. Suppose Alice wants to transfer
$500 from account X to account Y. When the transaction completes, the database is
in correct state if both accounts have a balance of $1000. If either account shows any
other balance value, it would indicate that the database is in an inconsistent state (and
Alice would probably be upset). In order to ensure that the database remains correct
and consistent, there are four properties (the ACID properties we mentioned earlier)
that every transaction must satisfy.

• The atomicity property of a transaction indicates that either all of the operations
of a transaction are carried out or none of them are carried out. This property is
also known as the “all-or-nothing” property.

• The consistency property of a transaction requires a transaction to be written
correctly. It is the programmer’s responsibility to implement the code in the
program correctly—so that the program carries out the intention of the transaction
correctly. For the fund transfer transaction example, if we are given two account
numbers representing the source and the target accounts, the programmer has to
make sure the transaction debits the balance of the first account and credits the
balance of the second account. If any other modifications are made to the balances
of these accounts, the program is invalid. The program implementing the fund
transfer transaction must also verify the existence of the account numbers it was
given by the user. In addition to these requirements, the program implementing
the transaction must also check to see if there is enough money in the source
account for the transfer. Note that if Alice inputs the account numbers in the
wrong order, the money will be transferred in the wrong direction, that is, the
reverse order of what she intended. In this case, it was Alice’s mistake—there
is nothing wrong with the program implementing the transaction, and it cannot
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do anything about the mistake. Therefore, the burden of enforcing transaction
consistency is shared between the programmer who codes the transaction and the
user who runs the transaction.

• The isolation property of a transaction requires that the transaction be run without
interference from other transactions. Isolation guarantees that this transaction’s
changes to the database are not seen by any other transactions until after this
transaction has committed.

• The durability property of a transaction requires the values that the transaction
commits to the database to be persistent. This requirement simply states that
database changes made by committed transactions are permanent, even when
failures happen in the system. When a failure happens, there are two types of
changes that can be found in the database. The first type refers to all the changes
made by transactions that committed prior to the failure. The other type refers to all
the changes made by transactions that did not complete prior to the failure. Since
changes made by incomplete transactions do not satisfy the atomicity requirement,
these incomplete transactions need to be undone after a failure. This will guarantee
that the database is in a consistent state after a failure. We will address durability
and handling failures in conjunction with commit protocols in detail in Chapter 8.

As an example of how failures can result in an inconsistent database, assume the
system loses power at some point during the execution of the fund transfer transaction.
This leads to the transaction’s abnormal termination. One can imagine the case where
the debit portion of the transaction has completed but the credit portion has not. In this
case, the savings account balance will be $1000 but the checking account balance is still
$500. This obviously indicates an inconsistent state for the database. The DBMS has to
guarantee that when the power is restored, the savings account balance will be restored
to $1500. Let’s consider another example that demonstrates the ACID properties.

Example 5.2 To see what can go wrong when two transactions that interfere with
each other run concurrently (i.e., what would happen if we did not have the isolation
property), consider the following scenario. Transaction T1 is transferring $500 from
account X to account Y at the same time that transaction T2 is making a $200 deposit
into account Y. We can show the operations of these two transactions as follows:

Begin_Tran T1:
Read (account X′s balance) into X
Read (Account Y′s balance) into Y
Calculate X = X - 500
Calculate Y = Y + 500
Write (account X′s balance) with X
Write (account Y′s balance) with Y

End_Tran T1;

Begin_Tran T2:
Read (account Y′s balance) into Y
Calculate Y = Y + 200
Write (account Y′s balance) with Y

End_Tran T2;
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Assuming the same starting balances as before (account X has a balance of $1500
and account Y has a balance of $500), we can say that after these two transactions
complete, the database is correct if account X′s balance is $1000 and account Y′s
balance is $1200. Any other values for the balances of these accounts will leave the
database in an inconsistent state. Without isolation, one possible scenario interleaves
the operation of T1 and T2 as “R1(X), R1(Y), R2(Y), W1(X), W1(Y), W2(Y).” This
scenario results in account X′s balance being $1000 and account Y′s balance being
$700, which makes the database inconsistent. Another possible scenario interleaves
the operations as “R1(X), R1(Y), R2(Y), W1(X), W2(Y), W1(Y).” This scenario also
produces an inconsistent database since account X′s balance will be $1000 and account
Y′s balance will be $1000. Lack of isolation is the cause of the inconsistency of the
database in both of these two scenarios. In the first scenario, the value of Y that was
written by T1 was lost, and in the second scenario, the value of Y that was written by
T2 was lost. Similar issues can occur when the temporary values of one transaction
are seen by other transactions.

In environments such as banking systems or airline reservation systems, there are a
large number of transactions that run concurrently against the database. In concurrent
transaction processing systems like these, the isolation property enables each transac-
tion to perceive itself as the only transaction running in the system. The concurrency
control subsystem of the DBMS achieves this perception by enforcing transaction iso-
lation using either locking or timestamping. We will discuss how isolation maintains
the consistency of the database later in this chapter.

5.1.2.1 Transaction Redefined Previously, we defined a transaction to be a collec-
tion of operations against the data items of a database without talking about any of
the properties the transaction must satisfy. Now that we have introduced transaction
atomicity, consistency, isolation, and durability, we need to refine the definition of a
transaction. Jim Gray [Gray81] defines a transaction as follows:

A transaction is a collection of user actions mapped to operations against the data items of
the database that, if runs uninterrupted by other transactions and by system failures, trans-
fers the database from one consistent state into another consistent state. If the transaction
aborts, it does not change the state of the database.

Figure 5.2 depicts the life cycle of a transaction as Jim Gray defines it. It is important
to notice that when a transaction finishes (either successfully or unsuccessfully), the
database is left in a consistent state. A successful termination, indicated by a commit,
creates a new consistent state for the database, while an unsuccessful termination,
caused by an abort, restores the consistent state prior to the start of the transaction.
What is equally important is that during the execution of the transaction the database
may or may not be in a consistent state. In our fund transfer example, the state of the
database after the debit has been done, but before the credit is applied, is an example
of an inconsistent state. The database can never be left in this inconsistent state. In
case of a failure in this state, a rollback is required to undo the incomplete work of
the transaction to restore the previous consistent state.
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Figure 5.2 Transaction life cycle.

5.2 MULTITRANSACTION PROCESSING SYSTEMS

Our focus on concurrency control is on on-line transaction processing (OLTP) systems.
An OLTP system is a system with many transactions running at any given point of time.
One characteristic of these systems is the fact that transactions in an OLTP environment
are short-lived transactions and make many changes to the database. These systems are
somewhat different from on-line analytical processing (OLAP) systems that support
decision support system (DSS) or data warehousing. Transactions in OLAP systems
are long-lived and may make little changes to the data warehouse.

Banking systems, airline reservation systems, and systems that monitor the stock
market are typical examples of multitransaction processing environments. At any given
point in time, there may be hundreds or thousands of transactions running concurrently
in the system. Some of these concurrent transactions may interfere with each other. In
these cases, it is important to keep track of how the multiple transactions’ operations
are interleaved. This is what modern database management systems maintain as a
schedule.

5.2.1 Schedule

A schedule is the total order of operations for a set of transactions. A schedule has
sometimes been called a history in the industry. When different transactions run in a
system, they sometimes create a serial schedule and other times a parallel schedule.

5.2.1.1 Serial Schedule A serial schedule is one that contains transactions whose
operations do not overlap in time. This means that at any point in time only one
transaction is running in the system. This schedule is also known as a sequential
schedule. The schedule “S1 = R1(X), R1(Y), W1(X), R2(Y), W2(Y)” is an example
of a serial schedule. This schedule indicates that transaction T1 commits before T2
starts. We show this order as “T1 → T2,” where the “→” indicates commitment
precedence. Figure 5.3 depicts an example of a serial schedule.

5.2.1.2 Parallel Schedule A parallel schedule is one that may contain transactions
whose operations do overlap in time. This means that at any point in time there can be
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Figure 5.3 An example of serial schedule.

Figure 5.4 An example of parallel schedule.

more than one transaction active. This schedule is called parallel or concurrent. The
schedule “S2 = R1(X), R1(Y), R2(Y), W1(X), W2(Y), W1(Y)” is an example of a
parallel schedule. It is not clear what the commitment order is for transactions T1 and
T2 in this case. Figure 5.4 shows an example of a parallel schedule.

Observation: Two or more transactions running in series maintain the consistency
of the database. Figure 5.5 depicts two transactions running in series. It should be
obvious that when transaction T1 starts the database is in Consistent State 1. Without
interference, T1 transforms the database from Consistent State 1 to Consistent State 2.
When T2 starts, it works on the database that is in Consistent State 2 and it transforms
the database to Consistent State 3. Since we cannot expect to run all transactions in the
system in series, we have to be able to determine if a parallel schedule preserves the
consistency of the database. This observation helps to determine if a parallel schedule
preserves the consistency of the database (see Section 5.2.4). The main issue with any
parallel schedule is the fact that the transactions might interfere with one another. Two
transactions interfere with each other when they perform conflicting operations on the
same data item.

Figure 5.5 An example of two transactions running in series.
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Figure 5.6 Conflict matrix.

5.2.2 Conflicts

A conflict occurs when two running transactions perform noncompatible operations on
the same data item of the database. Transactions perform either read or write operations
on data items in the database. A conflict occurs when one transaction writes an item
that another transaction is reading or writing. Figure 5.6 shows the conflict matrix for
two transactions.

As indicated in this matrix, the two transactions can read the same data item without
causing any conflicts, but if either one of them writes to it, at any given point in time,
then the other transaction cannot access it at all. When transactions run concurrently,
the data items they change are not necessarily part of a consistent state of the database.
As a result, isolation is required to hide these inconsistent data items. If isolation is
not enforced, two conflicting transactions may cause some unexpected results. These
unexpected results are called anomalies. In the following, we describe three specific
anomalies caused by conflicts. Assume the following three schedules:

S1= . . . , R1(X), . . . , W2(X), . . .

S2= . . . , W1(X), . . . , R2(X), . . .

S3= . . . , W1(X), . . . , W2(X), . . .

Each of these schedules produces some anomalies that need to be dealt with by the
scheduler. These anomalies are unrepeatable read anomaly (in S1), reading uncom-
mitted data (or dirty read) anomaly (in S2), and overwriting uncommitted data
anomaly (in S3). We will discuss each of these anomalies separately and identify what
the scheduler has to do to address them.

5.2.2.1 Unrepeatable Reads In schedule S1, transaction T1 reads data item X before
transaction T2 writes it. The value that is returned by R1(X) is the value of X in the
database. The problem with this schedule is that it can lead to unrepeatable reads.
Assume that T1 issues a second read on X. This changes the schedule to “S1 = . . .

R1(X), . . . , W2(X), . . . , R1(X).” It is easy to see that T1 reads a different value when
it issues the second R1(X) from the value it gets when it issues the first R1(X). This
is because T2 changes the value of X before T1 reads it again.

5.2.2.2 Reading Uncommitted Data In schedule S2, transaction T2 reads the value
that transaction T1 has written. The problem with this schedule is that it allows trans-
action T2 to see the uncommitted value of X, which was modified by transaction T1.
This can lead to schedule “S2 = . . . W1(X), . . . , R2(X), . . . , W2(X), . . . , Commit
T2, . . . , Abort T1.” In the modified schedule, T2 reads the value of X written by T1,
computes a new value for X based on this value, writes it to the database, and then
commits the new value to the database. This is OK as long as T1 also commits. But, the
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schedule we are considering indicates that T1 actually aborts after T2 has committed.
T1’s abort requires the value of X to be changed back to what was in the database
before T1 started. This rollback invalidates the value that T2 wrote to the database.
As a result, it requires that T2 also be rolled back. If other transactions have used the
value written by T2, they also need to be rolled back. This leads to cascading aborts
that are time consuming and error prone.

5.2.2.3 Overwriting Uncommitted Data As an example of this, assume transaction
T2 writes the same data item that T1 has already written. The problem with allowing
overwriting of uncommitted data is that it could lead to the schedule “S3 = . . . W1(X),
. . . , W2(X), . . . , Commit T2, . . . , Abort T1.” In this schedule, what T2 has written
to the database is lost, since after T1 is aborted T2 needs to be aborted as well. Note
that these writes are not preceded by a read in the schedule. What causes the problem
is allowing transactions to write an item without first reading it. This type of write is
known as blind write. An example of a blind write is shown in the following SQL
statement:

Update Employee
Set salary = 2000
Where EmpID = 1234;

5.2.3 Equivalence

Transactions that run concurrently can cause conflicts that lead to the above-mentioned
anomalies. These anomalies can destroy the consistency of the database. Therefore, the
scheduler must control the conflicting operations of concurrent transactions. The sched-
uler has two options to preserve the consistency of the database. The first option is to
run all transactions in-series, allowing only serial schedules. This, for today’s system,
is not an acceptable approach. The second option is to run transactions concurrently. In
this case, the scheduler has to make sure that the parallel schedule preserves the con-
sistency of the database. How does the scheduler achieve this? The scheduler achieves
this goal by making sure that the allowed parallel schedule is equivalent to a serial
schedule for the same set of transactions. Two schedules are said to be equivalent if
they both produce the same state for the database and every transaction reads the same
value(s) and writes the same value(s). Figure 5.7 shows a parallel schedule and an
equivalent serial schedule for it.

It is easy to see why these schedules are equivalent. T1 reads the value of X, which
was in the database before transaction T1 started in both schedules. Therefore, the value
of X written by T1 is the same in both schedules. T2 reads the same value for X in
both schedules since the same value is written by T1 in both schedules. Since T2 sees
the same value for X, it also produces the same value for X in both schedules. With
the same reasoning, both schedules produce the same value for Y when they finish.

Figure 5.7 An example parallel schedule and its equivalent serial schedule.
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Therefore, the database state for either schedule shows the same values for X and Y. It
is obvious that schedule S2 is serial and therefore produces a consistent database. Since
schedule S1 is equivalent to S2, it also produces a consistent database. We therefore
say that schedule S1 is serializable.

5.2.4 Serializable Schedules

A schedule is said to be serializable if it is equivalent to a serial schedule. The check
for serial schedule equivalence is known as serializability. A DBE guarantees the
consistency of the database by enforcing serializability. To understand serializability,
we need to focus on how the DBE handles conflicts. As mentioned before, the scheduler
schedules operations for each transaction. When a transaction enters the system, it is
assigned to a transaction monitor (TM). Every TM works with the scheduler to
schedule the operations of the transaction it monitors. A TM submits the transaction’s
operations to the scheduler one operation at a time. The scheduler will determine if the
requested operation from a TM is in conflict with any other operations it has already
granted—the operations that are part of the schedule at this point in time. If the request
is not in conflict with any operation already scheduled, then the scheduler grants the
operation and adds that operation to the schedule. If, on the other hand, the request
is in conflict with one or more of the already granted operations, the scheduler only
grants the operation if the resulting schedule will still remain serializable. Otherwise,
the requesting transaction is rolled back.

It is neither practical nor efficient for the scheduler to only look for serial schedules
that are equivalent to the current parallel schedules. That is because serial schedules
can slow down even a high-powered database server’s CPUs. The scheduler needs to
allow those parallel schedules that are equivalent to a serial schedule to run to promote
concurrency and increase throughput. The scheduler focuses on the impact that conflicts
have on the commitment order of transactions in the schedule. To understand this better,
let’s focus on all possible conflicts between two transactions. The conflict matrix (see
Section 5.2.2) shows three types of conflicts between the operations of two transactions.
These are the read–write, the write–read, and the write–write conflicts. We use the
notation RW, WR, and WW to indicate these conflicts. The following three schedules
show possible conflicts between T1 and T2 for three separate scenarios. Note that for
clarity we are using a separate schedule to show only one of the conflicts and are not
showing other transactions’ operations in the schedules.

S1= . . . R1(X) . . . W2(X) . . .

S2= . . . W1(X) . . . R2(X) . . .

S3= . . . W1(X) . . . W2(X) . . .

Let’s assume that S1S is a serial schedule that is equivalent to S1. In S1S, R1(X) has
to appear before W2(X) appears in the schedule, because T1 reads what was written
by other transactions, but not what was written by T2. Because of this, in S1S, T1
must commit before T2. That is because S1S is a serial schedule and in any serial
schedule one transaction cannot start before the other transaction commits. As a result,
the order in which T1 and T2 commit is the order in which two conflicting operations
R1(X) and W2(X) appear in the serial schedule. We therefore conclude that “the order
of two conflicting operations by two different transactions determines the order of their
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commitment in an equivalent serial schedule.” The same holds true for serial schedules
that are equivalent to S2 and S3. In all three schedules, since transaction T1 performs
a conflicting operation on data item X before T2 performs its operation, then T1 needs
to commit before T2 commits.

Two transactions may conflict more than once, depending on the data items in each
and the operations being performed. Each pair of conflicting operations in the schedule
puts a commitment order requirement on the transactions that request the operations.
We call the commitment order that a pair of conflicting operations put on the system a
partial commitment order (PCO). We know that there are multiple transactions in the
system and there can be many conflicts among them. Considering all possible PCOs
for a schedule, we conclude that the schedule is serializable if and only if none of the
PCOs are contradictory. We can validate that there is no contradiction among PCOs
by forming a graph that contains all PCOs and checking the graph for nonexistence of
cycle(s). We call this graph the total commitment order (TCO) graph. To summarize
the above discussion, we say a schedule is serializable if and only if its TCO is
acyclic.

Example 5.3 Let’s consider the schedule “S1 = R1(X), R2(X), W2(X), W1(X).”
There are three conflicts in this schedule between transactions T1 and T2. The first
conflict is between R1(X) and W2(X). Because of this conflict, T1 must commit before
T2 commits. We show this by the order “T1 → T2.” The conflict between R2(X) and
W1(X) requires that “T2 → T1.” The conflict between W2(X) and W1(X) requires
that “T2 → T1.” As a result, the total commitment order graph has a cycle in it. That
is because, on the one hand, we have the requirement that transaction T1 needs to
commit before T2 and, at the same time, we also have the requirement that transaction
T2 needs to commit before transaction T1 commits. Since this is not possible, the
schedule is not serializable.

Example 5.4 As another example, consider the schedule “S2 = R2(X), R1(X),
W2(X), W3(X).” For this schedule, the four PCOs are “T2 →T3,” “T1 → T2,” “T1 →
T3,” and “T2 → T3.” We can satisfy all these requirements if we commit T1 before
T2 and commit T2 before T3, which means that we need to have the total order “T1 →
T2 → T3.” Since this total ordering does not have any cycles in it, schedule S2 is
serializable. This also means that S2 is equivalent to the serial schedule “R1(X), R2(X),
W2(X), W3(X).”

5.2.4.1 Serializability in a Centralized System In a centralized DBMS, a schedule
is serializable if and only if it is equivalent to a serial schedule. The scheduler checks
for conflicts between each pair of transactions’ operations. For each conflict found, it
imposes a partial commitment order (PCO). Putting all such partial commitment orders
together, the system generates a total commitment order graph. Existence of a cycle
in this graph indicates that the schedule is not serializable. Otherwise, the schedule is
serializable to one or possibly more serial executions of the transactions in the schedule.
The scheduler checks for serializability every time a TM requests to schedule a new
operation. If granting the operation does not result in a cycle in the total commitment
order of all transactions whose operations have already been scheduled, the operation
is granted and the new operation is scheduled. Otherwise, the requesting transaction is
rolled back.
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5.2.4.2 Serializability in a Distributed System In a distributed system, transactions
run on one or more sites. Therefore, the global schedule consists of a collection of local
schedules—each site involved has a local schedule that may or may not be serializable.
It should be obvious that in a distributed system, if there is a local schedule that is not
serializable, then the global schedule that contains it is not serializable. The question
we need to address now is whether or not the global schedule is serializable when all
local schedules are. The answer depends on whether or not the database is replicated.
It should be rather obvious that if the database is not replicated there is no mutual
consistency requirement. The mutual consistency requirement states that copies of data
items of a database must have the same value. In a nonreplicated database, there is no
mutual consistency requirement. As a result, as long as local schedules are serializable,
the global schedule is serializable as well.

When we replicate a database in a distributed system, we need to maintain mutual
consistency of the database. The issue with replication and mutual consistency is that
just because local schedules are serializable, it does not necessarily mean that the global
schedule is serializable. Example 5.5 demonstrates this.

Example 5.5 Suppose we have a database for a company whose headquarters is in
LA while their development department is in NY. Smith is a developer who makes
$1000 monthly. Smith’s manager (who is also located in NY) wants to adjust Smith’s
salary by issuing an equity adjustment increase of $200. In addition, the company is
giving everybody in the organization a 10% increase (it has been a good year for the
company!). The latter is issued by the human resources manager, who is in LA. The
company’s intention is to raise everybody’s adjusted salary. It should be obvious that
Smith’s salary must be $1320 after these two adjustments. This distributed database
has two copies, one in LA and one in NY. The equity adjustment transaction, T1,
enters into the system in NY while the raise transaction, T2, enters in LA. Assuming
X represents Smith’s salary, transactions T1 and T2 are written as

Begin_Tran T1: Begin_Tran T2:
R(X) R(X)
Calculate X = X + 200 Calculate X = X *1.10
W(X) W(X)
End_Tran End T1; End_Tran End T2;

Each transaction runs at the site where it has entered the system, moves to the other
site, and then runs there. Therefore, T1 runs in NY first and then in LA, while T2 runs
in LA first and then in NY. If these two transactions start at almost the same time, we
would have the following two local schedules:

Schedule at NY: S1 = R1(X), W1(X), R2(X), W2(X)
Schedule at LA: S2 = R2(X), W2(X), R1(X), W1(X)

It is obvious that both schedules are serial schedules and are consistent. As a result,
both local schedulers would allow the schedules. But, globally the database is incon-
sistent because after both schedules complete the salary for Smith in LA is $1320 but
in NY it is $1300.



196 CONTROLLING CONCURRENCY

Serializability in Replicated Databases To consider mutual consistency in a replicated
database, we need to extend the local serializability definition. In a replicated database,
schedule S is globally serializable if and only if all local schedules are serializable and
the order of commitment for two conflicting transactions is the same at every site where
the two transactions run. Applying these requirements to our example, we see that for
conflicting transactions T1 and T2, at the LA site the commitment order is “T1 →
T2” but in NY, the commitment order is “T2 → T1.” Since the two transactions do
not commit in the same order across both sites, they leave the database copies in an
inconsistent state.

5.2.4.3 Conflict Serializable Schedules The serializability concept we have
discussed so far is known as conflict serializability, which was first discussed
in [Eswaran76]. Although it is true that conflict serializable schedules produce a
consistent database, they are not the only schedules that do so.

5.2.4.4 View Serializable Schedules Consider schedule “S = R1(X), W2(X), W1(X),
W3(X).” This schedule is not conflict serializable since it implies the PCOs “T1 →
T2,” “T1 → T3,” “T2 → T1,” and “T2 →T3,” which cannot all be satisfied—the total
order graph is not acyclic. After a closer look, however, we notice that this schedule
produces the same result as the following two schedules:

S1 = R1(X), W1(X), W2(X), W3(X)
S2 = R1(X), W2(X), W1(X), W3(X)

Schedule S1 is a serial schedule and preserves the consistency of the database.
Schedule S2, on the other hand, is not a serial schedule. However, S2 is equivalent to
S1 and therefore preserves the consistency of the database as well. Since S is equivalent
to S1, S also preserves the consistency of the database. What is peculiar about schedules
S1 and S2 is that they allow blind writes—transactions that write a data item without
having read it first. Note that in S1 and S2, whatever transactions T1 and T2 write into
the database for X is immediately overwritten by what T3 writes and hence it does
not matter what T1 and T2 have read or written. This type of schedule is called view
serializability by Silberschatz and Korth [Silberschatz05]. According to Silberschatz
and Korth, view serializability is based on the concept of view equivalency.

Schedules S1 and S2 are view equivalent if they satisfy the following two conditions:

• Condition 1: A transaction that performs a read for a data item, reads the same
value in both schedules.

• Condition 2: The final value of X is written by the same transaction in both
schedules.

For schedules S1 and S2, the only read operation is R1(X). The value that R1(X)
returns to T1 is the value that was initially in the database—what was written by T0
before T1, T2, and T3 started. This satisfies Condition 1. Condition 2 also holds true
for these two schedules since the final value of X is written by T3. As a result, S, S1,
and S2 are view equivalent.

As we argued before, these three schedules are conflict serializable. It is not too
difficult to observe that every conflict serializable schedule is also view serializable.
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However, not every view serializable schedule is conflict serializable. Schedule “S2 =
R1(X), W2(X), W1(X), W3(X)” is not conflict serializable but it is view serializable
as discussed above. Silberschatz and Korth also show that the problem of checking if a
schedule is view serializable is a NP-complete problem. Therefore, finding an efficient
or even feasible algorithm to check for view serializability is extremely unlikely.

5.2.4.5 Recoverable Schedules Recoverable schedules are those schedules that allow
recovery of the database to a consistent state after the failure of one or more trans-
actions. As an example, assume schedule “S = R1(X), W1(X), R2(X), W2(X), C2,
R1(Y).” This schedule is conflict serializable to “T1 → T2.” But, this is only true if
T1 eventually commits. On the other hand, if T1 aborts in addition to rolling back
T1, what T2 has written to the database needs to also be undone by rolling back T2.
Furthermore, every transaction that used what T2 wrote to the database must also be
rolled back. The steps necessary to recover the consistent state of the database prior to
when schedule S started are very difficult, if not impossible, to determine. As a result,
this schedule is not recoverable. To recover the consistent state of the database, as it
was before S began, we can restore the database from a backup prior to S and roll
all the committed transactions forward. This process is known as point-in-time (PIT)
recovery, which we will explain in Chapter 8.

The only way to avoid the need for PIT recovery is to reject all unrecoverable
schedules. If we allow unrecoverable schedules, then we must use PIT recovery. In our
example, by forcing T2 to delay its commit until after T1 commits, we make the sched-
ule recoverable as “S = R1(X), W1(X), R2(X), W2(X), R1(Y), C1, C2.” The issue with
unrecoverable schedules is the potential for cascading rollback—when the rollback of
one transaction requires rollback of some other transactions.

5.2.4.6 Cascadeless Schedules Assume in schedule “S = R1(X), W1(X), W1(Y),
R2(X), W2(X), R3(X), W3(X)” that none of the transactions have committed. At this
point in time, the schedule is recoverable according to the above definition. However,
if transaction T1 rolls back, it necessitates rolling back T2 and T3 as well. The reason
for this is that T2 and T3 have used what T1 has written to the database. This type of
rollback is called a cascading rollback, which requires a significant amount of work.
To eliminate cascading rollbacks, we can restrict the scheduler to allow only cascade-
less schedules. A schedule is cascadeless if whenever we have a pair of conflicting
transactions (Ti and Tj) and one transaction (Tj) reads a data item that was written by
the other transaction (Ti), the reading transaction commits after the writing transac-
tion (i.e., Tj commits after Ti). It should be obvious that a cascadeless schedule is a
recoverable schedule as well. By applying this rule, expanding schedule S to “R1(X),
W1(X), W1(Y), R2(X), W2(X), R3(X), W3(X), C1, C2, C3” makes it a cascadeless
schedule.

5.2.5 Advanced Transaction Types

The transaction model we have discussed so far is used to enforce the ACID properties.
This transaction model is intended to support transactions that take a short amount of
time (usually measured in seconds) to finish. These types of transactions are called
short-lived transactions (SLTs). SLTs form most of the transactions in today’s com-
puter systems. For SLTs, the decision to commit or abort a transaction is made in a
relatively short amount of time. But, there are long-lived transactions (LLTs) that
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take a long time (compared to SLTs) to finish. LLTs may take minutes, hours, or even
days to finish. An example can be a transaction that consists of a series of tests that
must be done on a given patient in a hospital. This transaction can obviously take a
day, or more than a day, to finish. Another property of this transaction is that, although
considered one transaction, the transaction itself consists of multiple transactions (each
test is also a transaction). LLT can hold on to the database resources (data items,
locks, etc.) for long periods of time. Therefore, they can negatively impact the overall
performance of the system by denying SLTs access to the same set of resources.
The longer duration is caused by factors such as waiting for user input or for the
collaboration of multiple parties before committing the transaction.

5.2.5.1 Sagas Garcia-Molina introduced the concept of sagas [Garcia-Molina87] to
allow for management of long transactions. A saga is an LLT that is written as a series
of transactions that can be interleaved with other transactions. Transactions within a
saga must be carried out in the order specified. But, a transaction within the saga can be
committed in an interleaved fashion with respect to the other transactions outside the
saga. This means that the subresults of a transaction are released to other transactions
or sagas. Both the concept of a saga and its implementation are relatively simple,
but they have the potential to improve performance significantly for certain classes of
applications.

It should be obvious that as long as a saga completely commits, releasing the
results of one or more transactions within a saga to other transactions has no potential
performance issues. The problem is when a saga cannot commit completely. In that
case, one or more compensating transactions must be run, usually in the reverse
order of the transactions in the saga, undoing the effects of what has been committed
to the database. Since sagas release partial results to other sagas and transactions,
compensating one or more transactions within one saga may necessitate compensating
other transactions within other sagas as well. Sometimes a compensating transaction
for a transaction within a saga may not be possible or may not make sense. For
example, consider a saga that consists of a test, a treatment, a second test, and second
treatment for a patient. Suppose the second test indicates a situation that necessitates
undoing the effect of the first treatment. Undoing the first treatment may or may not
be possible. As another example, consider trying to compensate a transaction with a
saga that bought 1000 shares of a company. Although compensating this transaction is
possible technically, the results (financially, legally, ethically, etc.) may be disastrous.

The kind of recovery we just discussed for a failed transaction within a saga is
called backward recovery. Backward recovery obviously leads to the potential for
cascading compensation, which may take a long time to carry out and in some cases
may not be possible. Such cases would require restoring the database from a consistent
backup and rolling forward good transactions (see Chapter 8 on failure and recovery
for more details). This second type of recovery is called forward recovery. The third
alternative for recovery of a failed transaction within a saga uses a mixed approach. In
this alternative, instead of using a backup as the starting point for the forward recovery,
a save point is used. The database is first rolled back to the save point and then is
rolled forward by running all the good transactions.

Sagas can also cause database consistency loss. This can happen since transactions
within sagas are interleaved. When running sagas, we must make sure that the effect of
running transactions within sagas creates a serializable schedule. Sagas are a form of
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nested transactions. As discussed later in this chapter, a nested transaction model nicely
supports distributed database systems. Being a nested transaction, a saga can act as a
global transaction and transactions within it as local transactions. Sagas support two
types of nesting called closed nesting and open nesting. In a closed nested transaction,
the intermediate results of a subtransaction are not seen by other transactions. In an
open nested transaction, the intermediate results are exposed to other transactions.
Therefore, a saga is an open nested transaction.

Various implementation issues related to sagas exist—for example, how can sagas
be run on an existing system that does not directly support them? Another issue has to
do with the creation of compensating transactions for those transactions that have used
the results of one or more transactions contained within a saga. To address this issue,
Garcia-Molina and his colleagues introduced the concept of nested sagas [Garcia-
Molina91]. In a nested saga, a transaction within a saga can be a saga itself, and
therefore contain steps that can also be compensated.

5.2.5.2 ConTracts Reuter introduced the concept of ConTract [Reuter89] as an
extension of sagas, in order to deal with some of the issues found in long running
transactions. In a ConTract, embedded transactions are defined as a set of nested steps
that can be compensated independently. In addition, the control flow among these steps
is not sequential the way that the transactions within a saga flowed. The steps within
a ConTract are capable of defining the control flow for themselves. In a ConTract, the
failure of a step can be compensated and the ConTract can continue from the point
of failure. This requires saving of state information for steps (subtractions), which the
underlying DBE may support.

There are many other transaction models that have been discussed and proposed in
the literature to deal with long running transactions, addressing their ACID property
and performance issues. Some of these models have been used to deal with transaction
management issues in the federated and multidatabase systems (see Chapter 12).
Barker [Barker99] provides a good summary of these models including a summary for
ACTA [Chrysanthis90], sagas, ConTracts, split transactions [Kaiser92], flex transac-
tions [Emagarmid90] [Leu91], S-transactions [Veijalainen92], multilevel transactions
[Weikum91], polytransactions [Sheth92], and epsilon transactions [Pu93].

5.2.6 Transactions in Distributed System

In a distributed system, a transaction can either be a local transaction or a global
transaction. A local transaction is a transaction that performs all its work at the site
where it originates. In other words, a local transaction does not leave its originating
site. A global transaction, on the other hand, is a transaction that has to perform work
at one or more sites different from its originating site. The originating site is the site
where the transaction first enters the system. That is where the transaction is assigned
to a transaction monitor, TM, as mentioned before. A global transaction is carried out
as a set of local transactions each running as an agent of the global transaction at
a given site. Each local transaction is a subtransaction of a global transaction. This
introduces a new degree of difficulty in committing a global transaction. Using this
model, we can write the equity adjustment transaction we discussed in Example 5.5 as
global transaction T1 consisting of two local transactions T1LA and T1NY:
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Begin_Tran T1
Begin_Tran T1LA

R(X)
Calculate X = X + 200
W(X)
Commit T1LA

End_Tran T1LA

Begin_Tran T1NY
R(X)
Calculate X = X * 1.10
W(X)
Commit T1NY

End_Tran T1NY

Commit T1
End_Tran T1;

Note that we commit T1 only when both its subtransactions have been committed.
Rollback of T1 necessitates the rollback of its subtransactions. But, commitment of
one of the subtransactions does not necessarily mean the commitment of the other
subtransaction and/or the global transaction. In reality, the global transaction has one
or more nested transactions, where each nested transaction is a local transaction that is
to run at a particular site. The global transaction is also called the parent transaction
and each subtransaction is called a child transaction. Each child transaction can have
its own children transactions. For any nested transaction, the order of commitment is
important. A parent transaction can only commit after all its child transactions have
committed. In Chapter 8, we will discuss the impact of nested transactions in distributed
commit protocols to maintain durability in a distributed database management system.
As discussed in Chapter 8, distributed commit reduces the site autonomy of the local
DBEs by requiring them to defer the commitment of a local transaction until the
global transaction wants to commit. This deferred commit potentially causes problems
for the local DBEs; in addition to reducing their autonomy, it is not always possible to
implement a distributed commit since a local site may not support the idea of deferring
a transaction’s commit. This is especially true for nonrelational legacy DBMS systems.

5.3 CENTRALIZED DBE CONCURRENCY CONTROL

Concurrency control algorithms for a centralized database have been studied in detail
by many researchers. Therefore, we will summarize these approaches for completeness
but will not provide any further details. We will, however, discuss the implication of
distribution on these algorithms in detail. We will use the transaction model that was
discussed in Chapter 1 for this concurrency control discussion. Recall that in our model,
a transaction was initiated at a site and assigned to a transaction monitor (TM), which
was responsible for running the transaction. The TM is part of the application pro-
cessor (AP), as we discussed. The TM uses the scheduler to schedule its transaction’s
operations. The scheduler generates a serializable schedule for all running transactions.
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The scheduler is a part of the concurrency control module of the DBE. There are two
basic approaches to enforcing isolation in a centralized system. They are based on
the concepts of locking and timestamping. Locking-based concurrency control algo-
rithms use locking to isolate the data items that one transaction is using from other
transactions. Although we focus our discussion on locking data items, in reality, lock
granularity may be different. For example, one can lock a table row, a database page,
a tablespace, or the entire database. We will discuss the impact of locking granularity
on performance later in this chapter. Timestamping does not use locking to isolate
data items. Instead, timestamps are used to order transactions and their operations in
the schedule. Sometimes timestamps are used in conjunction with locking to improve
performance.

We can also classify the concurrency control algorithms based on when serializabil-
ity is enforced. A system can have a high rate of conflicts or a low rate of conflicts.
Concurrency control algorithms that work in systems with a high rate of conflict are
called pessimistic concurrency control algorithms. Concurrency control algorithms
that work in systems with a low rate of conflicts are called optimistic concurrency
control algorithms. For pessimistic concurrency control (where the conflict rate is
high), we try to identify conflicts and synchronize transactions as soon as possible.
Transactions executing in a system with a high conflict rate are more likely to need
a restart than those executing in a system with a lower conflict rate. When a transac-
tion needs to restart, we must undo all of the operations it has performed up to that
point. Therefore, in systems where restarts are very likely (high conflict rates), we
try to identify conflicts and synchronize transactions as soon as possible, reducing the
chance of restarts. On the other hand, if the rate of conflict in a system is low, it might
be better to delay the synchronization of transactions. That is because conflict identi-
fication and transaction synchronization are nontrivial tasks (requiring time and other
resources): we try to delay these actions as much as possible for systems where restarts
are rare (low conflict rates). In the next four subsections, we study the approaches to
concurrency control in a centralized DBE.

5.3.1 Locking-Based Concurrency Control Algorithms

In this section, we summarize concurrency control algorithms for a centralized DBMS
that uses locking. Locking-based concurrency control algorithms use a lock compati-
bility matrix to determine if a data item can be locked by more than one transaction at
the same time. The lock matrix is a matrix that indicates compatibility of locks on a
data item by two transactions. The lock matrix shown in Figure 5.8 mirrors the conflict
matrix discussed in Section 5.2.2. A data item must be locked exclusively when it is
being written, but an item can be locked in a shared mode when it is being read.

Locking-based concurrency control systems can utilize either one-phase or two-
phase locking.

Figure 5.8 Lock compatibility matrix.



202 CONTROLLING CONCURRENCY

Figure 5.9 Example of two concurrent transactions.

5.3.1.1 One-Phase Locking One-phase locking(1PL) is a method of locking that
requires each transaction to lock an item before it uses it and release the lock as soon
as it has finished using it. Obviously, this method of locking provides for the highest
concurrency level but does not always enforce serializability. Figure 5.9 depicts an
example to two concurrent transactions T1 and T2.

Applying one-phase locking principles to scheduling the requests from these two
transactions result in the schedule “S = WL1(X), R1(X), W1(X), LR1(X), RL2(X),
R2(X), LR2(X), WL2(Y), R2(Y), W2(Y), LR2(Y), WL1(Y), R1(Y), W1(Y), LR1(Y).”
The schedule utilizes three new notations that relate to locking and unlocking of data
items. RLj(x) indicates a read lock request on X by transaction j; WLj(x) indicates
a write lock request on data item X by transaction j; and finally LRj(x) indicates a
release of lock by transaction j. To see the actual schedule that has been formed by
using one-phase locking, we need to remove the lock and unlock requests from the
schedule. Doing so results in “S = R1(X), W1(X), R2(X), R2(Y), W2(Y), R1(Y),
W1(Y)” as the schedule. This schedule is not serializable since the PCOs “T1 → T2”
and “T2 → T1” cannot both be satisfied.

What is the problem with one-phase locking and why does it produce schedules that
are not serializable? This approach is too aggressive in releasing the locks acquired
by a transaction. The idea of releasing the locks as soon as possible to provide for
more parallelism causes the schedule to be nonserializable. In other words, transactions
using 1PL do not keep their locks long enough to ensure serializability—the locks are
released prematurely. To ensure serializability, two-phase locking must be utilized.

5.3.1.2 Two-Phase Locking Two-phase locking (2PL) [Eswaran76] is a locking
approach in which transactions do not interleave their lock acquisition and lock release.
The approach consists of two phases. In the first phase, transactions only acquire locks
and do not release any lock until all the locks they need have been granted. In the
second phase, transactions start releasing locks and do not request any more locks.
That is why the first phase of this locking approach is known as growing phase while
the second phase is known as shrinking phase. The growing and shrinking terms
reflect the number of locks a transaction is holding at any given point in time during
its execution.
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Applying the 2PL principles to the example in Figure 5.9 results in schedule “S =
WL1(X), R1(X), W1(X), WL1(Y), LR1(X), R1(Y), W1(Y), LR1(Y), RL2(X), R2(X),
WL2(Y), LR2(X), R2(Y), W2(Y), LR2(Y).” Note that, in this schedule, transaction T1
does not release the lock on X until after it has locked data item Y. Again, removing
the lock and unlock operations from the schedule, we simplify the schedule as “S =
R1(X), W1(X), R1(Y), W1(Y), R2(X), R2(Y), W2(Y).” This schedule is serializable
since the two PCOs in the schedule are “T1 → T2” and “T1 → T2,” which correspond
to the serial execution of T1 followed by T2. We should note that transaction T1 does
not have to hold the lock on X until just before it commits. As a matter of fact, the
sooner that transaction T1 releases X the sooner T2 can start. This provides for better
throughput and parallelism. The approach in which transactions hold all their locks until
just before they commit is known as strict two-phase locking. Strict 2PL provides
for the least amount of parallelism between two conflicting transactions. Figure 5.10
illustrates the two alternatives for 2PL. In 2PL, if a schedule contains a transaction
that needs to lock a data item that is already locked in a conflicting mode by another
transaction, the transaction needing the lock will wait until it has been granted the lock.
This wait is necessary to guarantee that the schedule of running conflicting transactions
is always serializable.

Figure 5.10 Two-phase locking alternatives.



204 CONTROLLING CONCURRENCY

Figure 5.11 Example of two-phase locking with deadlock.

Applying 2PL to the two transactions in Figure 5.9 results in many schedules
including the following three schedules. Schedule S1 is based on the application of
strict 2PL while schedules S2 and S3 result from the application of (nonstrict) 2PL.
All three schedules are serializable.

S1 = R1(X), W1(X), R1(Y), W1(Y), R2(X), R2(Y), W2(Y)
S2 = R1(X), W1(X), R2(X), R1(Y), W1(Y), R2(Y), W2(Y)
S3 = R1(X), W1(X), R1(Y), R2(X), W1(Y), R2(Y), W2(Y)

The formal proof that 2PL produces serializable schedules can be found in [Bern-
stein87]. Although 2PL guarantees serializability, it does not prevent deadlocks—for
example, applying the 2PL approach to transactions T1 and T2 shown in Figure 5.11
results in a deadlock.

For this example, T1 needs to lock X first. Since X is available, it will be locked
by T1. The partial schedule at this point is “S = WL1(X), W1(X).” Shortly after this,
T2 needs to lock Y and the schedule is expanded to “S = WL1(X), W1(X), RL2(Y),
R2(Y).” Now, neither T1 nor T2 can release the lock they are holding since they both
need to lock another item. But neither one of the transactions can lock the other item
that they need, since the other item required by each of them is locked by the other
transaction. This will cause an indefinite wait or a deadlock. We will discuss how to
handle deadlocks in Chapter 6.

5.3.1.3 Locking in Relational Databases Up to now, we have been talking about
locking data item X and have not specified what X actually is. In a relational database,
locks can be acquired for different parts of the database and at different levels of
database hierarchy. For example, a relational DBMS may allow database, table, page,
and row-level locking. This hierarchy indicates coarse level granules (databases) at the
top of the hierarchy and fine level granules (rows) at the bottom of the hierarchy. A
database lock covers everything in the database. A table lock covers all pages (and
rows) in the table, while a page lock covers all the rows in the page. Finally, a row-
level lock covers all columns in a particular row. Figure 5.12 depicts the granules used
by the lock hierarchy for a relational DBMS.

It should be clear that the larger the lock granule is, the lower the lock overhead
is, and at the same time, the lower the concurrent access to the database objects. To
maximize concurrency and at the same time to minimize the locking overhead, a DBMS
may utilize multiple-granularity locking in conjunction with intention locking. Many
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Figure 5.12 Lock granularities in a relational database.

relational DBMSs also allow for lock conversion, lock upgrade, lock downgrade,
and lock escalation for better utilization of system resources such as tables, pages,
and rows.

Most relational DBMSs allow the following locking principles:

• Lock Conversion. If the transaction already holds a lock on a data item, it can
convert the lock type from one lock mode to another. There are two alternatives
to lock conversion: lock upgrade and lock downgrade.

• Lock Upgrade. This happens when a transaction converts a read lock to a write
lock. When the write lock request is issued, the lock manager grants the upgrade
if the requesting transaction is the only one holding a read lock on the data item.
Otherwise, the requesting transaction must wait for readers to release the locks.

• Lock Downgrade. This happens when a transaction converts a write lock to a read
lock. There is no issue with the downgrade since the downgrading transaction is
the only transaction that is holding the lock on the data item.

• Lock Escalation. This happens when a transaction tries to avoid acquiring too
many fine grain locks by requesting to lock a larger granule. This might be
requested by the transaction or may be applied automatically by the DBMS. In
the latter case, the DBMS can set a lock escalation threshold. For example, if
more row locks than indicated in the threshold are requested, the DBMS might
automatically escalate the row locks to a table lock.

• Multiple-Granularity Locking (MGL). This approach allows transactions to lock
items at multiple levels of the hierarchy. When a transaction locks a granule
at a higher level of the hierarchy, the transaction is also given the lock to all
the granules in the subtree below it. The locks can be, as usual, read (shared),
write (exclusive), or intention locks. MGL is enforced by requiring the transaction
that wants to lock a granule to lock the ancestor(s) of it first. For instance, if a
transaction wants to lock a row of a table it must hold a lock on the table that
the row is in.

• Intention Locking. This is a method in which a transaction must tell the DBMS
its intention to lock before it actually locks the granule. The intention (what the
transaction is planning to do) is represented by an intention lock. For example, a
transaction may want to lock a table in the shared mode but intends on modifying
some (but not all) of the rows. This transaction must request a shared lock on
the table with the intention to exclusively lock some of its rows. Before locking
a granule, a transaction must set intention locks on all its ancestors.

• Intention Lock Modes. There are five intention lock modes:

S: the transaction locks the entire subtree in shared (S) mode.
X: the transaction locks the entire subtree in exclusive (X) mode.
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Figure 5.13 Intention lock compatibility matrix for Oracle 10 g.

IS: the transaction intends to lock some descendant in S mode.
IX: the transaction intends to lock some descendant in X mode.
SIX ( = S + IX): the transaction locks the entire subtree in S mode; intends

to lock some descendant in X mode.

With the introduction of intention locking, the lock compatibility matrix must be
changed to include intention lock types. Figure 5.13 depicts the lock compatibility
matrix for Oracle 10 g. As shown in Figure 5.13, an exclusive lock is not compatible
with any other type of lock. As a result, when a transaction puts an exclusive lock on
a table, no other transaction can read or modify any of the table’s rows or columns.
But, a request for an IX lock on a table that is already locked in IS, a request for an
IS lock on rows of a table that is already locked in IX, and a request for an IX lock
on a table that is already locked in IX mode are all allowed. This flexibility allows
for better concurrency and parallelism in the system. The belief is that although two
transactions are intending on changing some rows of the table, the actual rows that are
going to be changed by them are different. Therefore, Oracle, for example, locks the
rows exclusively when it has to and not ahead of time, allowing for more concurrency.

Oracle 10 g uses two simple rules: one rule to lock, and one rule to unlock a granule
in MGL. To lock a granule, Oracle requires a transaction to acquire intention locks on
all the granule’s ancestors. To get a shared lock (S), the transaction must hold an IS
on the parent; to get an X or IX lock, the transaction must hold an IX or SIX on the
parent. To unlock a granule, Oracle requires a transaction to release the locks from the
bottom of the hierarchy up. For instance, if transaction T1 wants to read all rows of
table R, T1 is required to get a shared lock (S) on table R. If T2 wants to read all rows
of R and may want to update a few rows, then T2 must get an SIX lock on table R,
and then, occasionally, get an X lock for the rows it wants to change. If T3 wants to
use an index to read only part of R, then T3 gets an IS lock on R, and repeatedly gets
an S lock on each row it needs to access.

5.3.1.4 Phantom Issue The term “phantom” refers to an issue that is specific to
the way relational DBMSs use row-level locking. Phantoms occur when one transac-
tion’s updates or inserts change the scope of rows that another transaction has locked.
Figure 5.14 illustrates how the phantom issue occurs between two transactions working
on the rows of the same table.

In this example, transaction T1 locks and reads the total of Saeed’s account balances
first. The first select statement in T1 finishes before the insert statement of T2 starts.
Although T1 has a shared lock on the rows of the table, it does not prevent T2 from
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Figure 5.14 An example of phantom issue.

inserting a new row into the table. This new row for Saeed’s new account is exclusively
locked by T2 until it commits. At this time, T2 releases the lock, and when T1 audits
the table again, it gets a different value ($100 more than before) for Saeed’s accounts.
This phenomenon is known as the phantom issue in relational databases. Phantoms
occur when row locking is used and one transaction issues a SELECT, UPDATE, or
DELETE using a predicate P, and another transaction creates a row (using INSERT
or UPDATE) that satisfies P. In other words, the DBMS does not prevent creation of
new rows satisfying the predicate of rows locked by another transaction.

The phantom issue may or may not be an issue for a given application. In general,
the impact of conflict in relational systems is dictated by the level of exposure of items
between two transactions. ANSI (the American National Standards Institute) suggests
four isolation levels for its SQL92 standard and indicates the ramification of each level
of exposure as shown in the Table 5.1.

DBMSs can employ different approaches to overcome the phantom issue. The two
most commonly used approaches are index page locking and predicate locking. As
an example of index page locking, assume transaction T1 is printing the name of
all employees whose salaries (hopefully, weekly salaries) are in the range “$5K<

salary <= $10K.” Suppose there are three employees who satisfy this condition. These
employees make $6K, $9K, and $10K. Then, during the execution of T1, transaction
T2 inserts a new employee with the salary of $7K. Obviously, the new row that
transaction T2 is inserting satisfies the predicate for the select issued by T1. Therefore,
it is a phantom row. The phantom issue in this case is remedied by index page locking.
To show how this approach works, assume there is a B+Tree index on the salary column

TABLE 5.1 ANSI Isolation Levels

Level Isolation Name Dirty Reads Unrepeatable Reads Phantom

Level 1 Read Uncommitted Maybe Maybe Maybe
Level 2 Read Committed No Maybe Maybe
Level 3 Repeatable Reads No No Maybe
Level 4 Serializable No No No
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Figure 5.15 Example of index page locking.

of the employee table as shown in Figure 5.15. In this case, transaction T1 must get
an IS lock on the employee table, shared locks on the data pages that contain rows 1,
2, and 3, and shared locks on the index pages 1, 2, and 5. The index entry for the new
employee’s salary is also in page 5 of the index. Therefore, in order for T2 to insert the
new employee row, T2 must acquire an exclusive IX lock on the employee table, X
locks on index page 5, and X locks on the data block that contains row 4. There is no
issue with T2 getting an IX lock on the employee table since this IX lock is compatible
with the IS lock that T1 holds on the table. There is also no issue with T2 getting the
exclusive (X) lock on the block that row 4 is going into since this block is compatible
with the IS lock T1 holds on the table. But, the X lock on page 5 of the index cannot be
granted to T2 since it is not compatible with the S lock that T1 is holding on this index
block. Therefore, T2 cannot insert the new row until after T1 finishes, which prevents
the phantom issue. If there were no such index on the column that the predicate is based
on, transaction T1 would need to lock all the employee table pages to prevent phantoms.

In predicate locking the DBMS deals with the phantom issue by not only locking
all the rows that satisfy the predicate of the SQL statements, but also by denying any
insertions of new rows and/or updates of existing rows that would change the scope of
a conflicting transaction. Index page locking is a special case of predicate locking for
which an index provides an efficient implementation of the predicate lock. Because of
the overhead associated with the implementation of predicate locking, many DBMSs
(such as Microsoft SQL Server and Sybase) use index page locking to deal with the
phantom issue.
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5.3.2 Timestamp Concurrency Control Algorithms

As discussed in Section 5.3.1, locking-based concurrency control algorithms use
locks to isolate the data items that one transaction is working with from other
transactions—the other transactions are denied access to those locked data items. A
transaction’s timestamp (age) can also be used to coordinate concurrent access to
the database’s data items in such a way that the schedule is conflict serializable. This
approach is known as timestamp ordering (TO) [Bernstein80b]. In TO concurrency
control, each transaction is given a timestamp when it enters the system. The
timestamp is set to the computer’s clock reading at the time that the transaction enters
the system. Since a single processor can only handle one transaction entry at a time,
timestamps generated by the system are unique for a single computer. Handling only
one transaction at a time is a necessary requirement since each transaction must be
given a unique timestamp. The timestamp acts as the “birthdate” of the transaction.
We use the notation ts(Ti) to indicate the timestamp of transaction Ti. If ts(Ti)< ts(Tj)
then Ti is older than Tj.

Instead of using the actual physical clock reading as the timestamp, we can use a
logical clock reading. The logical clock is a counter that is initially set to one (1) and
incremented as each transaction enters the system. The transaction that first enters the
system gets a logical clock reading of one (1), the second transaction gets a reading of
two (2), and so on. If we refer to the first transaction as T1 and the second transaction
as T2, then ts(T1) = 1 and ts(T2) = 2. Obviously, since ts(T1)< ts(T2), T1 is older
than T2. The use of transaction subscripts, instead of an actual physical clock reading
for timestamps, will simplify our discussion.

The main philosophy behind the TO approach is to coordinate the access to a
data item based on the age of the transactions involved. TO concurrency control based
algorithms force transactions to commit in the order dictated by their ages. It is expected
that an older transaction must commit before a younger transaction, since the older
transaction enters the system before the younger one does. For example, if transactions
T1, T2, . . . , T10 are all running in the system, then TO concurrency control expects that
T1 must commit before T2, T2 must commits before T3, and so on. This does not mean
that all 10 transactions will commit, but it does mean that those that do commit must
be committed in the proper order (using their ages). In other words, TO concurrency
control algorithms generate schedules that are serializable and the transactions in the
equivalent serial schedule are arranged in order, from oldest to youngest based on each
transaction’s age.

5.3.2.1 Basic TO Concurrency Control Algorithm There are three rules that enforce
serializability based on the age of a transaction. In what follows we outline these rules
for two conflicting transactions. It should be noted that in a concurrent transaction
processing system, there are many transactions running at the same time. For these
systems, the serializability rules are applied to each pair of conflicting transactions.

These three rules are:

• Access Rule. When two transactions try to access data item X at the same time,
with conflicting operations, priority is given to the older transaction. This priority
forces the younger transaction to wait for an older transaction to commit first.

• Late Transaction Rule. An older transaction is not allowed to read or write a data
item that has already been written by a younger transaction. This rule prevents the
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older transaction from needing to commit after the younger transaction has already
been committed, which would be a violation of the age order if we allowed it to
happen.

• Younger Transaction Wait Rule. A younger transaction is allowed to read or write
a data item that has already been written by an older transaction.

In this approach, a transaction’s writes are divided into two phases—the pre-write
phase and the commit phase. When transaction Ti wants to write data item X, it calls
the algorithm shown in Figure 5.16a, passing parameter Ti to it as the transaction ID
and X as the data item name and value. Once Ti is ready to commit the new value
for X, it calls the algorithm in Figure 5.16b to commit the new value for X to the
database. If transaction Ti needs to read a data item such as X, then it needs to call
the algorithm shown in Figure 5.16c, passing it Ti as the transaction ID and X as the
data item name. If the algorithm actually performs the read, we can use X as an output
value or return the new value as a return value—the mechanism is not important to
the algorithm, and therefore not shown here.

In the algorithms shown in Figure 5.16, ts(Ti) represents the timestamp for trans-
action Ti. The TO algorithms also need to maintain two other timestamps—these
timestamps are maintained for each data item stored in the database. We use rts(X)
to represent the read timestamp of data item X—rts(X) holds the timestamp of the
youngest transaction that has ever read data item X. Similarly, we use wts(X) to rep-
resent the write timestamp of data item X—wts(X) holds the timestamp of the last
(most recent) transaction that wrote to data item X. The notation “/* . . . */” indicates
a comment to help understand the algorithm.

During the pre-write phase, the changes for the transaction are kept in memory—not
stored in the database. During the commit, the changes are transferred from memory
to the database. When changes from more than one transaction are buffered, the order
of committing these transactions is dictated by the ages of the transactions as well. If
two conflicting transactions are ready to commit, the system allows the younger one
to commit only after the older one has been committed or restarted. Each transaction’s
reads are always processed from the information stored on the disk. Based on this, if
transaction T1 reads X, writes X, and then reads X again, the value it reads for the
second time is the same value that it read the first time. If the intention of T1 is to
use the new value it generated for X, then T1 should not issue a new read and should
continue using what is stored in memory for X.

The implementation of the TO concurrency control algorithm shown in Figure 5.16
suffers from many unnecessary restarts. Assume there are 15 transactions currently
running in the system. Let’s consider the case where the system receives a write request
from transaction T14 for item X. Also, assume that X has not been requested by any
other transaction so far. In this case, the system is going to allow T14 to pre-write and
then commit a new value to the database. This commitment of T14 invalidates any
read or write request from transactions T1 through T13. This results in many restarts
for transactions that are older than T14. That is why this algorithm is also known as
the aggressive TO algorithm.

5.3.2.2 Conservative TO Algorithm A variation of the basic TO concurrency control
algorithm that can eliminate some of the unnecessary restarts is known as conservative
TO ordering. In the conservative TO algorithm, the concurrency control does not
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Figure 5.16 Basic timestamp ordering algorithm.

act on a request from a much younger transaction until the system has processed
requests from a large enough number of the older transactions. Therefore, any potential
conflict of a younger transaction with older transactions will be detected before the
system commits a much younger transaction. For instance, in the above example, the
concurrency control algorithm will delay responding to the write request from T14
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until such time as the other 13 older transactions have had a chance to make a request
to access X. This is done by maintaining a queue in which requests from transactions
are put in order of their age—requests from older transactions are in the front of the
queue. The concurrency control algorithm processes the requests in the queue from
the front. However, in practice it is not possible to eliminate all restarts. In order to
implement this goal, the concurrency control algorithm must wait until it has received
requests from all currently running transactions. This in effect will force the execution
of transactions to a serial schedule based on the age of transactions, which is not
desirable.

5.3.2.3 Multiversion Concurrency Control Algorithm The multiversion (MV)
algorithms for concurrency control [Papadimitriou82] are mostly used in engineering
databases, where the system needs to maintain the history of how a data item has
changed over time. In other words, instead of saving only one value for data item
X, the system maintains multiple values for X known as versions. Every time a
transaction is allowed to write to data item X, it creates a new version of X. If X
has been written N times, then there are N versions of X in the database. One of the
benefits of having multiple versions for every data item is that the MV algorithm
does not have to block any read requests. That is because for any read request, say,
from Ti, it can find a version of X that has been written by, say, Tj, such that the
ts(Tj) < ts(Ti) and Tj is the youngest transaction among all transactions that have
written X. Figure 5.17 illustrates this example. For this example, data item X has
N versions. Transaction Ti must read the most recent version of X that precedes it
chronologically. This is the version of X that was written by the youngest transaction
older than Ti, that is, version Xk in the diagram.

In order to maintain consistency, the MV algorithm must reject Ti’s request to
write X if any younger transaction has read X before Ti makes the request to write
it. In this case, Ti is too late—meaning that Ti should have made its write request
before the read requests from the younger transactions. Since age is used to enforce
serializability, Ti should have written X before a younger transaction had read it.
In Figure 5.18, we have outlined the MV algorithm. In this figure, data item X has
N versions indicated as x1, x2, . . . , xN. This MV algorithm handles timestamping
similar to the basic TO algorithm, with one exception. Since the MV algorithm must
consider multiple versions of an item, we must also consider multiple timestamps for
each data item—there is a read timestamp and a write timestamp associated with each
version. In the MV algorithm, each version has a value, a read timestamp (rts), and a
write timestamp (wts). In this algorithm, “value(xk)” represents the value of version

Figure 5.17 Version creation in multiversion concurrency control.
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Figure 5.18 Multiversion concurrency control algorithm.

xk; “wts(xk)” represents the timestamp of the transaction that has written version xk;
and “rts(xk)” represents the read timestamp of the youngest transaction that has read
version xk.

5.3.3 Optimistic Concurrency Control Algorithm

Kung and Robinson proposed an alternative to concurrency control [Kung81] that
is based on the assumption that, in some systems, the conflict rate is very low and
therefore validating every request from every transaction when the request is made is
not necessary. If the check for serializability is postponed until just before a transaction
commits, they believe it will provide better performance in a low conflict system. It is
true that some transactions may have to be aborted, since committing them generates
a schedule that is not serializable. But, since we are optimistic, the probability of
this happening is very low. There are two approaches to implementing optimistic
concurrency control; both locking and timestamping can be utilized by the proposed
algorithm. Since the first proposal by Kung and Robinson used timestamping and it
was this proposal that is extended for distributed database, we will only discuss the
timestamp-based approach. Interested readers are referred to [Kung81] for the details
of the locking-based optimistic concurrency control algorithm.

In optimistic concurrency control, a transaction’s life cycle is divided into three
phases, execution phase (EP), validation phase (VP), and commit phase (CP) as
outlined below:

• Execution Phase (EP). In this phase, transaction performs its actions and buffers
the new values for data items in memory.

• Validation Phase (VP). In this phase, transaction validates itself to assure that
committing its changes to the database does not destroy the consistency of the
database (i.e., generates serializable schedule).

• Commit Phase (CP). In this phase, transaction writes its changes from memory
to the database on disk.
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To ensure serializability, this approach, like other concurrency control algorithms,
must check for read–write, write–read, and write–write conflicts between transactions.
To explain how this approach achieves serializability, let rs(Tj) be the set of data items
that transaction Tj reads (the read-set) while ws(Tj) represents the set of data items that
Tj writes (the write set). During the execution phase, transaction only reads data items
from the database and does not write anything to the database. During the validation
phase, serializability is checked and transaction does not read from or write to the
database. During the commit phase, transaction only writes to the database.

There are three rules that this algorithm uses to enforce serializability during vali-
dation:

• Rule 1. For two transactions Ti and Tj, where Ti is reading what Tj is writing,
Ti’s EP phase cannot overlap with Tj’s CP phase. Tj has to start its CP after Ti
has finished its EP.

• Rule 2. For two transactions Ti and Tj, where Ti is writing what Tj is reading,
Ti’s CP phase cannot overlap with Tj’s EP phase. Tj has to start its EC after Ti
has finished its CP.

• Rule 3. For two transactions Ti and Tj, where Ti is writing what Tj is writing,
Ti’s CP phase cannot overlap with Tj’s CP phase. Tj has to start its CP after Ti
has finished its CP.

Unlike the previous algorithms, this algorithm uses a timestamp that is assigned
to a transaction when the transaction is ready to validate. Delaying the assignment
of the timestamp until validation time reduces the number of unnecessary rejections.
Suppose transaction Tj has completed its EP. Tj can only be committed after it has
been validated against all the other transactions currently running in the system. There
are three cases that cover all possible conflicts between Tj and other transactions. We
use Ti as a representative of other transactions.

These three cases are as follows:

• Case I. Tj starts its read phase after Ti has finished its commit phase as seen in
Figure 5.19a. It is obvious that, in this case, Ti and Tj are running in series and
there are no issues with committing Tj.

• Case II. Tj starts its commit phase after Ti completes its commit phase. In this
case, as seen in Figure 5.19b, the only potential overlap is between the CP of Ti
and the EP of Tj. Therefore, we must make sure that “ws(Ti) intersect rs(Tj) =
empty.”

• Case III. Tj completes its execute phase after Ti completes its execute phase. In
this case, as shown in Figure 5.19c, there may be an overlap between the execute
and commit phase of Tj with the commit phase of Ti. Therefore, we must make
sure that “ws(Ti) intersect (rs(Tj) union ws(Tj)) = empty.”

5.3.4 Concurrency Control in a Real DBMS (Oracle)

To discuss how a real DBMS implements concurrency control, we will use Oracle
10 g as an example. The reason for choosing Oracle as opposed to other database
management systems is that Oracle is one of the databases that we are mostly using
in our university. Oracle uses the multiversion concurrency control approach. Oracle
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Figure 5.19 Optimistic concurrency control algorithm overlap cases.

achieves this by maintaining multiple values for each data item in the database. Oracle
maintains a consistent version of each data item for readers. A reader does not see
what another transaction writes, until after the transaction commits. This allows Oracle
to provide for read consistency—it guarantees that a user reading the database always
sees a consistent view. Oracle returns the value of the data item from the database,
if there are no current writers writing the item. Oracle returns the “before value” of
a data item to a reader if there is a concurrent writer writing the item. The “before
value” is obtained from the database’s rollback segment (the log that Oracle maintains
to roll transactions back).

As an example, assume User 1 is querying the table at the same time that User 2 is
making changes to some of the rows in the table. As User 2’s transaction makes changes
to the rows, Oracle maintains a “before image” in its rollback segment (the value that
was stored in the database before User 2’s transaction changed them) for every row
being changed. This view provides a consistent view of the database that User 1’s query
can see regardless of the outcome of User 2’s transaction. In Oracle, each transaction
is given a system change number (SCN). This is a logical timestamp that records
the order in which transactions enter the system. Oracle stores the SCN in its log to
enable it to undo the work of a transaction if necessary. By using the SCN, Oracle can
determine what the consistent view of the database for the readers should look like.

Oracle’s approach to concurrency control uses implied locking—users never explic-
itly need to lock resources (but they can if they want to). The default locking mechanism
is row-level locking. Because Oracle maintains multiple versions of rows, read opera-
tions are always allowed. In addition to this benefit, read operations do not block write
(update) operations. Write operations block other write operations to the same row.
Oracle automatically detects and rolls back deadlocks. Oracle’s concurrency control
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implements levels two and four of the four ANSI isolation levels. These are the read
committed level and the serializable level. Oracle also supports read-only transac-
tions. A read-only transaction reads only those changes that were committed before
the transaction began. Read-only transactions cannot contain any INSERT, UPDATE,
or DELETE statements.

5.3.4.1 Oracle Lock Duration In Oracle, all locks acquired by statements within a
transaction are held for the duration of the transaction, that is, it implements strict 2PL.
The locks are released when the transaction holding the locks commits or rolls back.
In addition, Oracle implements the concept of a savepoint. A savepoint is a point in
the transaction to which the changes can be rolled back. Oracle releases locks acquired
after a savepoint when rolling back to the savepoint, but continues to hold those locks
obtained before the savepoint.

5.3.4.2 Oracle Lock Modes In general, Oracle employs exclusive and shared lock
modes. Locks with exclusive lock mode (ELM) are obtained to modify data. The first
transaction to lock a resource exclusively is the only transaction that can alter that
resource, until the exclusive lock is released. Locks with share lock mode (SLM) are
used to allow several transactions to acquire share locks on the same resource, at the
same time, so they can read the resource. Holding share locks on a resource prevents
concurrent access by transactions trying to modify the resource.

5.3.4.3 Oracle Lock Types From a different viewpoint, Oracle supports three types
of locks: DML locks, DDL locks, and system locks.

The following summarizes these three lock types:

• A DML lock (data lock) is used by any SQL statement that modifies data—such as
INSERT, DELETE, UPDATE, and SELECT . . . FOR UPDATE. These statements
can acquire row-level locks or table-level locks. A row-level lock acquired for the
rows of a table is automatically upgraded to a table-level lock when the number
of rows updated by a transaction exceeds a threshold value.

• A DDL lock (also known as a dictionary lock) prevents changes to the underlying
tables and views, when the data in these tables and views is being accessed by
multiple transactions. Oracle can place exclusive DDL locks or shared DDL locks
on its dictionary objects.

• A system lock can be placed on memory contents, buffers, and sort area. Inter-
ested readers are referred to the Oracle manuals for more details. System locks
include internal locks/latches, parallel cache management locks, and distributed
transaction locks.

5.3.4.4 Enforcing Serializability in Oracle Oracle also utilizes intention locking (see
Section 5.3.1.3) combined with row- and table-level DML lock types to enforce seri-
alizability as outlined below.

Oracle Row-Level Locks Row-level locking is the default locking granule for Oracle.
There are two flavors of row-level locks:

1. Shared Row-Level Lock. This type of lock is acquired by a read-only transaction.
A read lock like this never blocks writers (as discussed earlier).
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2. Exclusive Row-Level Lock. This type of lock is acquired by transactions that
execute the INSERT, DELETE, UPDATE, and SELECT . . . FOR UPDATE state-
ments. To obtain a row-level lock, a transaction also acquires a table lock for
the corresponding table to prevent conflicting DDL operations.

Table-Level Locks There are five types of table locks in Oracle. These are row Share
(RS), row exclusive (RX), share (S), share row exclusive (SRX), and exclusive (X)
table locks as explained below:

• Row Share (RS) Table Lock . This indicates that a transaction is holding shared
row locks on rows of the table and intends to update them. A row share table lock
is automatically acquired for a table when one of the following SQL statements
is executed:

SELECT ... FROM table_name ... FOR UPDATE OF ... ;
LOCK TABLE table_name IN ROW SHARE MODE;

A shared row lock allows for most concurrency in an Oracle system. Even
when a table is locked in RS mode, other transactions are allowed to query, insert,
update, delete, or lock rows concurrently in the table that has the RS lock on it.
The only operation that is blocked by a RS lock is “LOCK TABLE table−name
IN EXCLUSIVE MODE,” which gives the transaction executing the statement
exclusive write access to the table named “table−name.”

• Row Exclusive (RX) Table Lock . This indicates that the transaction holding the
lock has made one or more updates to rows in the table. A row exclusive table
lock is acquired automatically for a table modified by the following types of
statements:

INSERT INTO table_name ... ;
UPDATE table_name ... ;
DELETE FROM table_name ... ;
LOCK TABLE table_name IN ROW EXCLUSIVE MODE;

A row exclusive table lock is slightly more restrictive than a row share table
lock. Even when a table is locked in RX mode, other transactions are allowed
to query, insert, update, delete, or lock rows concurrently in the same table. The
belief is that the specific rows being worked on by these different transactions do
not usually overlap. If two transactions try to update the same row, for example,
one of them has to wait. This type of uncontrolled wait can lead to deadlocks.
Oracle employs deadlock detection to deal with deadlocks. When a deadlock
is detected, a victim transaction is chosen, rolled back, and restarted by Ora-
cle. A row exclusive table lock held by a transaction prevents other transactions
from manually locking the table for exclusive reading or writing. Therefore, other
transactions cannot concurrently execute:

LOCK TABLE table_name IN SHARE MODE;
LOCK TABLE table_name IN SHARE EXCLUSIVE MODE;
LOCK TABLE table_name IN EXCLUSIVE MODE;
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• Share (S ) Table Lock. This is acquired automatically for the table specified in the
following statement:

LOCK TABLE table_name IN SHARE MODE;

A share table lock held by a transaction allows other transactions to execute:

SELECT ... FROM table_name ... FOR UPDATE;
LOCK TABLE table_name ... IN SHARE MODE;

Multiple transactions can hold share table locks for the same table concurrently,
but none of the transactions can update the table. A transaction that has a share
table lock can update the table only if no other transactions have a share table
lock on the same table.

The following are not allowed on a table that is locked in a shared mode:

LOCK TABLE table_name IN SHARE ROW EXCLUSIVE MODE;
LOCK TABLE table_name IN EXCLUSIVE MODE;
LOCK TABLE table_name IN ROW EXCLUSIVE MODE;

• Share Row Exclusive (SRX) Table Lock. This is more restrictive than a share table
lock. A share row exclusive table lock is acquired for a table when a transaction
executes:

LOCK TABLE table_name IN SHARE ROW EXCLUSIVE MODE;

Only one transaction at a time can acquire a share row exclusive table lock on
a given table. Other transactions can query or lock specific rows using “SELECT”
with the “FOR UPDATE” clause but cannot update the table. A SRX lock on a
table prevents other transactions from obtaining row exclusive table locks and
modifying the same table. This type of lock prohibits execution of the following
statements by other transactions:

LOCK TABLE table_name IN SHARE MODE;
LOCK TABLE table_name IN SHARE ROW EXCLUSIVE MODE;
LOCK TABLE table_name IN ROW EXCLUSIVE MODE;
LOCK TABLE table_name IN EXCLUSIVE MODE;

• Exclusive (X) Table Lock . This is the most restrictive mode of table lock, allowing
the transaction that holds the lock to have exclusive write access to the table. An
exclusive table lock is acquired for a table as follows:

LOCK TABLE table_name IN EXCLUSIVE MODE;

Only one transaction can obtain an exclusive table lock for a table. An exclusive
table lock permits other transactions only to query the table. An exclusive table lock
held by a transaction prohibits other transactions from performing any type of DML
statement against the table and also prevents them from placing any type of lock on
the table. Figure 5.20 outlines the lock types that Oracle uses for different types of
SQL statements.
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Figure 5.21 Oracle lock compatibility matrix.

Oracle Lock Escalation Oracle automatically converts a table lock of lower restric-
tiveness to one of higher restrictiveness as appropriate. As an example, assume a
transaction issues a “SELECT . . . FOR UPDATE” statement. In this case, the trans-
action acquires an exclusive row lock and a row share table lock on the table. If this
transaction later updates one or more of the locked rows, the row share table lock is
automatically converted to a row exclusive table lock by Oracle. As another example, if
a transaction holds many row locks on a table, the database will automatically escalate
the row locks to a single table lock for the transaction.

Oracle Lock Compatibility Matrix Figure 5.21 summarizes the lock types and com-
patibilities that are supported by Oracle 10 g.

Example 5.6 The following cases illustrate some of the row- and table-level lock
compatibilities as indicated in Figure 5.21. These cases are run against Oracle’s sample
database schema called “Scott” (traditionally accessed with the password “tiger”). The
Scott schema has two tables—DEPT and EMP—created as follows:

create table DEPT (
DEPTNO NUMBER(2) NOT NULL ,
DNAME VARCHAR2(14),
LOC VARCHAR2(13),

PRIMARY KEY (DEPTNO));

create table EMP (
EMPNO NUMBER(4) NOT NULL,
ENAME VARCHAR2(10),
JOB VARCHAR2(9),
MGR NUMBER(4),
HIREDATE DATE,
SAL NUMBER(7,2),
COMM NUMBER(7,2),
DEPTNO NUMBER(2),

PRIMARY KEY (EMPNO),
FOREIGN KEY (DEPTNO) REFERENCES DEPT(DEPTNO));

To run these cases, we used Oracle’s SQL * PLUS tool (a command-based inter-
active user interface) to set up two concurrent sessions with the server. Each session
simulates one transaction. The session on the left represents transaction T1, which is
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Figure 5.22 Oracle transactions see only committed data.

running on behalf of User 1, and the session on the right is for transaction T2 running
on behalf of User 2. At the end of each case, the transactions are rolled back to restore
the database.

Case 1. Figure 5.22 shows how Oracle locking prevents one transaction from reading
uncommitted changes of another transaction. In this example, User 1 does not see the
changes that User 2 is making to the data item it is reading, until after User 2 commits
or aborts.

Case 2. As shown in Figure 5.23, one transaction blocks the other transaction since
they both try to update the same row in the EMP table. The waiting transaction (User 2)
continues once User 1 aborts/commits.

Case 3. The example shown in Figure 5.24 illustrates how explicit table-level locking
works. The example demonstrates that a row share table-level lock is compatible with
other row share, row exclusive, and share table locks, but it is not compatible with an
exclusive table lock.

Case 4. The example in Figure 5.25 shows that a row exclusive table lock is compatible
with another row exclusive or row share table lock, but it is not compatible with share,
share row exclusive, or exclusive table locks.
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Figure 5.23 Writers using “Update” block other writers in Oracle.

Case 5. As depicted in Figure 5.26, this experiment uses share table lock mode and
creates a deadlock between T1 and T2. Both transactions lock the table in shared
mode. Then, they both try to update the same row. This causes a deadlock since both
transactions wait for the lock on the row to be released by the other.

Case 6. This example uses a share row table lock. This scenario (Figure 5.27) is the
same as above except that transaction T2 locks the table in shared row mode. This
experiment also shows that share table lock and row share table locks are compatible.

5.4 CONCURRENCY CONTROL IN DISTRIBUTED DATABASE SYSTEMS

In this section, we extend the centralized concurrency control algorithms we discussed
in Section 5.3 for a distributed database system. Distributed locking, timestamping, and
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Figure 5.24 Writers using explicit locking block other writers in Oracle.

optimistic concurrency control algorithms are discussed. As discussed before, when
extending an algorithm that is designed to work on a centralized system, we have
to consider the issue of control. In a centralized system, there is only one site and
that site is the center of control. This is the site where transactions enter the system
and where the concurrency control module of the DBMS resides. In a distributed
system, on the other hand, the control may reside at a site different from the site
where a transaction enters the system. The control may be centralized, residing at
only one site, or distributed—where multiple sites cooperate to control execution of
transactions.
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Figure 5.25 Writers using RX locks block other writers in Oracle.

Before discussing the extensions made to the algorithms we introduced in
Section 5.3, we need to generalize the serializability requirements for a distributed
DBE. Serializability in a centralized DBE stated that all partial commitment orders
(PCOs) imposed by the conflicts between operations in concurrent transactions
have to be compatible. As such, if we have the precedence “Ti → Tj” for the
commitment order of Ti and Tj, as a result of one conflict, we need to have the
same order requirement for all the conflicts between these two transactions. In a
distributed system, each transaction may run on multiple sites. As a result, we have
to address local serializability as well as global serializability issues. We showed in
Section 5.3 that local schedules for concurrent transactions running at any site must
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Figure 5.26 Deadlocks in Oracle.

Figure 5.27 Row share table lock with the intent to exclusive access.

be serializable. But, what does it mean to have global serializability? We will use
Example 5.7 to explain the issues with global serializability.

Example 5.7 Let’s look at the issues from a different angle. Suppose, in a two-site
system, data item X is stored at Site 1 and data item Y is stored at Site 2. Assume
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that transaction T1 enters Site 1 at the same time that T2 enters Site 2, and these
transactions are defined as follows:

T1: R1(X), W1(Y)
T2: R2(Y), W2(X)

Obviously, these are two global transactions—each of them must perform work
at both Site 1 and Site 2. T1 must first read X at Site 1 and then write Y at Site
2. Meanwhile, T2 must read Y at Site 2 and then write X at Site 1. There are two
local schedules that will be formed as a result of running these global transactions.
Schedule “R1(X), W2(X)” is formed at Site 1, while schedule “R2(Y), W1(Y)” is
formed at Site 2 if these two transactions enter the system at roughly the same time.
It should be obvious that both local schedules are serializable. At Site 1, we have a
serializable schedule indicating “T1 → T2,” while at Site 2, we have a serializable
schedule indicating “T2 → T1.” Now, we must determine whether or not the schedule
is globally serializable.

Before addressing the global serializability issue across these two transactions, let’s
assume the same two transactions run in a centralized system consisting of data items
X and Y stored at one server. In the centralized system, the following six schedules
are possible:

LS1 = R1(X), W1(Y), R2(Y), W2(X), schedule serializable to
T1 → T2
LS2 = R2(Y), W2(X), R1(X), W1(Y), schedule serializable to
T2 → T1
LS3 = R1(X), R2(Y), W1(Y), W2(X), schedule is not serializable
LS4 = R1(X), R2(Y), W2(X), W1(Y), schedule is not serializable
LS5 = R2(Y), R1(X), W1(Y), W2(X), schedule is not serializable
LS6 = R2(Y), R1(X), W2(X), W1(Y), schedule is not serializable

Among these schedules, only S1 and S2 are serializable and the other four are not.
That is because the following holds for these schedules:

• In LS1, “R1(X), W2(X)” requires “T1 → T2” and “W1(Y), R2(Y)” requires
“T1 → T2,” resulting in the total serialization order of “T1 → T2.”

• In LS2, “R2(Y), W1(Y)” requires “T2 → T1” and “W2(X), R1(X)” requires
“T2 → T1,” resulting in the total serialization order of “T1 → T2.”

• In LS3, “R1(X), W2(X)” requires “T1 → T2” and “R2(Y), W1(Y)” requires
“T2 → T1,” which cannot be satisfied together.

• In LS4, “R1(X), W2(X)” requires “T1 → T2” and “R2(Y), W1(Y)” requires
“T2 → T1,” which cannot be satisfied together.

• In LS5, “R2(Y), W1(Y)” requires “T2 → T1” and “R1(X), W2(X)” requires
“T1 → T2,” which cannot be satisfied together.

• In LS6, “R2(Y), W1(Y)” requires “T2 → T1” and “R1(X), W2(X)” requires
“T1 → T2,” which cannot be satisfied together.

In the distributed system discussed above, the order in which the operations of these
two transactions are performed globally is not clear. That is because there is no global
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clock in the system and the local clocks might not be synchronized. So, we do not know
the real execution order for these operations. As an example, assume there are two
copies of data item X, with each site storing one copy. Let’s suppose that T1 issues the
“W1(X)” operation at Site 1 when the clock at Site 1 shows “10:00.” Suppose T2 issues
the “W2(X)” operation at Site 2 when the local clock at Site 2 indicates “10:02.” The
question is: Do we really know that “W1(X)” happened before “W2(X)”? If the two
clocks are synchronized, then obviously “W1(X)” starts before “W2(X)” in real time.
If the two clocks are not synchronized with a global clock, there is no way to know
the order of these operations. A commitment order of “T1 → T2” or “T2 → T1” may
be the case. As a direct result of this, we cannot rely on global ordering of operations
across sites for global serializability. We have to devise a mechanism by which we
can definitely determine if a global schedule is serializable. Fortunately, the solution
to the problem is not as difficult as it sounds. The point that we must keep in mind is
that, from a global perspective, it is not that important to know the absolute order of
scheduling for conflicting operations from different transactions across sites. Instead,
it is more important to know the relative order of scheduling conflicting operations
across transactions within each site.

In order to arrive at the solution, we need to introduce a new notation that allows us
to incorporate site information with the data items our transactions are using. We use
the notation “Oi(X@j)” to indicate that Ti performs operation “O” on data item “X” at
Site “j.” For example, “R1(X@1), W2(X@1)” indicates a part of the schedule where
transaction T1 performs a read of X at Site 1 and then T2 performs a write on X at the
same site. Obviously, these two operations are conflicting and both are happening at
Site 1. The local concurrency control at Site 1 will detect this conflict and will require
“T1 → T2” at this site. In this notation, data item “X@1” is not considered the same
data item as “X@2.” In fact, X@1 and X@2 are two different copies of X and are
stored at two different sites. Applying this concept to distributed systems, the global
schedule “W2(X@1), W3(X@1), W3(X@2), W2(X@2)” contains two local conflicts.
The first conflict is “W2(X@1), W3(X@1),” indicating that T2 must commit before
T3 at Site 1 and the second conflict is “W3(X@2), W2(X@2),” which requires T3 to
commit before T2 at Site 2. Note that the two operations “W2(X@1), W3(X@2)” and
“W3(X@1), W2(X@2)” are not considered conflicts since the items are different (they
are stored at different sites.)

Now let’s revisit the distributed situation we considered in Example 5.7. In this

example, X is stored at Site 1 and Y is stored at Site 2. We apply the site information

to the schedules that we formed earlier. Again, it is not clear which of the six possible

schedules is formed globally but, as we will explain later, that is not important. We

have called these schedules GS1, GS2, . . . , GS6 as shown below:

GS1 = R1(X@1), W1(Y@2), R2(Y@2), W2(X@1)

GS2 = R2(Y@2), W2(X@1), R1(X@1), W1(Y@2)

GS3 = R1(X@1), R2(Y@2), W1(Y@2), W2(X@1)

GS4 = R1(X@1), R2(Y@2), W2(X@1), W1(Y@2)

GS5 = R2(Y@2), R1(X@1), W1(Y@2), W2(X@1)

GS6 = R2(Y@2), R1(X@1), W2(X@1), W1(Y@2)
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Globally, if these schedules are serializable they must be equivalent to some serial
schedule. The check for serializability for these global schedules is the same as the
check for serializability in a centralized system. We have to identify all conflicts in the
schedule and make sure that the total commitment order graph is acyclic. Applying this
check to the above schedules, we conclude that, among these six schedules, only GS1
and GS2 are serializable. That is because, in GS1, we have the PCO requirement that
“T1 → T2” (for conflict on X@1) and “T1 → T2” (for conflict on Y@2). In GS2, we
have the requirement that “T2 →T1.” What is different between GS1, GS2, and the
other four schedules that are not serializable is that, in GS1 and GS2, the commitment
order of T1 and T2 at Site 1 and Site 2 are compatible, but that is not the case for the
other four schedules.

From the above observation, we conclude that in order for a set of transactions in a
distributed DBE to be serializable, the following two requirements must be satisfied:

1. All local schedules must be serializable.
2. If two transactions conflict at more than one site, their PCO requirements at all

sites where they meet must be compatible for all their conflicts.

In this example, we assumed schedules “S1 = R1(X), W2(X)” and “S2 = R2(Y),
W1(Y).” Using our rules for global serializability, we conclude that, since at Site 1
we have the requirement “T1 → T2” and at Site 2 the requirement “T2 → T1,” the
global schedule is not serializable.

The above-mentioned requirements work for distributed systems with or without
replication. Example 5.7 provided the case in which the data items were not replicated.
In Example 5.8, we will use a replicated database. Before discussing this example, we
need to briefly discuss what replication is. In replicated databases, we have multiple
copies of each replicated data item and store different copies of the same data item at
different sites. Having more than one copy of the data allows us to have more avail-
ability and more resiliency. We will discuss more details of replication in Chapter 7.
As we will see, in order for replication to work, a replicated data item must have the
same value for all its copies. This requirement allows us to read from any copy. To
satisfy this requirement, any update of replicated data item X must be propagated to all
replicas. In other words, if transaction Ti wants to update X, it must do so by updating
all copies of X. This is achieved by modifying transaction Ti to explicitly include the
updates for all copies of X as if they were different data items. In general, data item X
may have N copies. We use X1, X2, . . . , XN to refer to these copies. Suppose trans-
action Ti wants to write a value to data item X. To make sure all copies of X show the
same value after the change, we rewrite transaction Ti to include operations updating all
the copies: in other words, we substitute “Wi(X1), Wi(X2), . . . , Wi(XN)” for “Wi(X).”

Example 5.8 In this example, we use the same two transactions we did in Example 1,
but for a three-site system. For this example, data item X is replicated and stored at
Sites 1 and 2. Data item Y, on the other hand, is not replicated, but it is stored at
Site 3. As assumed in Example 5.7, transaction T1 enters Site 1 at the same time that
T2 enters Site 2. Since X is replicated at Site 1 and Site 2, transaction T2 has to be
changed to include the operations that write to both copies. Using the site inclusion
notation we introduced in Example 5.7, we can rewrite transactions T1 and T2 as
follows:
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T1: R1(X@1), W1(Y@3)
T2: R2(Y@3), W2(X@1), W2(X@2)

Since Y is stored at Site 3 and X is stored at Site 1 and Site 2, we have schedules
“S1 = R1(X@1), W2(X@1),” “S2 = W2(X@2),” and “S3 = R2(Y@3), W1(Y@3).”
Using our rules for global serializability, we conclude that, since at Site 1 we have the
requirement “T1 → T2” and at Site 3 the requirement “T2 → T1,” the global schedule
is not serializable.

Distributed 2PL, timestamping, and optimistic concurrency control algorithms can
be used to make sure that the above two rules are enforced. The difference between
these algorithms is in the way they enforce these two requirements.

5.4.1 Two-Phase Locking in Distributed Systems

Implementing 2PL for a centralized system is straightforward. Because a centralized
system contains only one site, the lock manager sees all transactions and can control
lock acquisition requests from all transaction monitors (TMs). In a distributed system,
that is not the case. A transaction may enter the system at Site 1, but request a lock
from Site 5. At the same time, a conflicting transaction may enter the system at Site
2 and request a lock from Site 4. If there isn’t any coordination between the lock
managers at Sites 4 and 5, the conflict will not be detected, which may result in an
inconsistent database.

To deal with distribution issues, a common requirement for all alternatives for
implementing 2PL in a distributed system is that the lock conflicts must be seen by at
least one site. In the centralized implementation, the central lock manager sees all lock
requests from all sites and enforces 2PL principles. In the distributed implementation,
the conflict must be detected by at least one site but may be detected by more than
one site. In a distributed system, when the control of 2PL is given to one site, the
algorithm is called centralized 2PL. Alsberg and Day first proposed the centralized
2PL in 1976 [Alsberg76]. When the control is shared by multiple sites, the algorithm
is called primary copy 2PL and, finally, when the lock responsibility is given to all
sites, the algorithm is called distributed 2PL.

5.4.1.1 Centralized 2PL Centralized 2PL is an implementation of the two-phase
locking approach in a distributed system where one site is designated as the central
lock manager (CLM). All the sites in the environment know where the CLM is. Each
site is directed to obtain locks, according to 2PL rules, from the CLM. To request a
lock, a TM sends a lock request to the CLM instead of its local lock manager. If the data
item to be locked is available, the CLM locks the item on behalf of the transaction and
sends a “lock granted” message to the requesting TM, thereby granting the lock. If the
data item cannot be locked, because it is locked by one or more conflicting transactions,
the lock is not granted and the transaction is added to the list of transactions that are
waiting for this item.

Upon receiving a “lock granted” message, the requesting TM can continue to run.
Note that the data item that is locked on behalf of the transaction may be local to the
site where the transaction is or it may be located elsewhere. It is the responsibility of
the TM to access the data item wherever it is. If the data item is replicated, then the
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requesting TM will decide which copy to read. In this case, the requesting TM also
makes sure that a write operation is applied to all copies. Once a transaction is done,
a TM notifies the CLM that a data item lock is no longer needed by sending a “lock
release” message to the CLM. Upon receipt of a “lock release” message, the CLM
releases the data item and grants the lock to the transaction in front of the wait queue
for the item. If this “lock release” is the first one from a particular TM, the CLM also
makes a note that the corresponding TM has entered the second phase of 2PL. This is
done to ensure that the TM does not misbehave—that it does not ask for more locks
after this point.

Example 5.9 Figure 5.28 depicts an example of a centralized 2PL implementation
for a four-site system. In this example, transaction “T1 = R(X), R(Y), W(Y)” enters
the system at Site 1. Data item X is stored at Site 2 and data item Y is stored at Site
4. The central lock manager (CLM) runs at Site 3. As seen from this figure, all lock
requests are sent to Site 3 by Site 1’s TM. The transaction accesses X and Y at Sites
2 and 4 only after the lock manager has granted it the necessary locks. Once T1 is
done, the TM releases its locks by informing the CLM at Site 3. The main issue with
centralized 2PL is reliability of the CLM. The site where the CLM runs may become
overloaded by all the lock request/release messages. Furthermore, if the CLM fails, it
will cause an overall system failure. To overcome these issues, we can use either the
primary copy 2PL or the distributed 2PL approaches.

5.4.1.2 Primary Copy 2PL This alternative for implementing 2PL was first proposed
by Stonebreaker [Stonebreaker77]. In this alternative, a number of sites are designated
as control centers. Each one of these sites has the responsibility of managing a number
of locks. For example, one site may have the responsibility of locking rows in the EMP
table, while another site manages the locks for rows in the DEPT table. Obviously, how
EMP and DEPT are distributed and/or replicated is known by all sites—each site knows
which site controls EMP and which site controls DEPT. As such, when a TM needs to
lock EMP, it directs its lock requests to the primary site responsible for locking EMP
and does the same for DEPT when it needs to lock it. Beyond this difference in the
distribution of control, the primary copy 2PL is basically the same as centralized 2PL
implementation. Similar to the centralized 2PL implementation, if there are multiple
copies of the EMP and DEPT tables, the requesting TM decides which copy to read
and makes sure that all copies are written to in the case of any write operations.

5.4.1.3 Distributed 2PL Variations of this approach have been implemented
in IBM’s system R* by Mohan [Mohan86] and Tandem’s Nonstop SQL engine
[Tandem87] [Tandem88]. Distributed 2PL requires each lock manager (LM) to
manage the data items stored at its local site. Where the lock manager resides depends
on the data distribution and/or replication.

There are three alternatives:

• At one end of the spectrum, the distributed database maintains no replicated data
items. In this case the site where the only copy of the data item resides acts as
the lock manager for the item.
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Figure 5.28 Example of centralized 2PL implementation.

• At the other end of the spectrum, all data items are replicated. In this case, one
of the sites is chosen as the lock manager for each data item. If the responsibility
of managing the locks for all items is given to one site, the approach reduces to
the centralized 2PL implementation.

• Finally, some of the data items in the system may be replicated while the others
are not. For the data items that are not replicated, the site where the data item
resides acts as the lock manager for that item. For the replicated data items, one
site is chosen as the lock manager for each item. It is the responsibility of the
TM to acquire the lock from each data item’s lock manager. The TM is also
responsible for ensuring any updates to a data item are reflected in all the sites
where that data item resides.

Once the LM for each item is chosen, the approach for enforcing the distributed
concurrency control is the same for all three of the distribution alternatives mentioned
above.
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Example 5.10 This example uses a distributed 2PL for nonreplicated distributed
database. Assume Site K’s lock manager locks data item X for Ti before Tj requests
to lock X. In this case, Tj must wait for Ti to release X at Site K. Because of this
wait, if both Ti and Tj commit, Ti commits before Tj commits at Site K. If Ti and
Tj conflict on another item, say, Y at Site L, then two scenarios are possible. In the
first scenario, Ti locks Y before Tj at Site L, causing Ti to commit before Tj at Site L
as well. These two local PCOs are consistent across Sites K and L. There is no issue
with global serializability between Ti and Tj as long as Ti locks data items it needs
before Tj locks them at any site. The global serialization order for Ti and Tj is “Ti→
Tj.” In the second scenario, Tj locks a data item before Ti gets to it, thereby forcing Ti
to wait for Tj. Because of this wait, the system will be in a distributed deadlock (see
distributed deadlock detection in Chapter 6). The direct result of this second scenario
is a nonserializable schedule across the two sites. Example 5.10 also points out that,
similar to the case in centralized systems, a 2PL implementation in a distributed system
results in serializable schedules, but can cause deadlocks.

Figure 5.29 shows an example implementing distributed 2PL in a four-site system.
In this case, transactions T1 and T2 will create a distributed deadlock. A distributed
deadlock is a deadlock that involves more than one site. For this example, each local
site controlling a given item is responsible for handling the lock requests for that item.
Site 2 is the lock manager for X while Site 3 manages the lock requests for data item
Y. Note that at Sites 2 and 3, the local schedules are serializable. However, at Site 2
the serialization order is “T1 → T2,” while at Site 3 the order is “T2 → T1.” These
two serializable orders are not compatible globally and create the deadlock.

5.4.2 Distributed Timestamp Concurrency Control

The basic concept of timestamp concurrency control algorithms in centralized systems
can easily be extended to a distributed database. Since both the basic and conserva-
tive TO algorithms (discussed earlier in this chapter) rely on timestamps for resolving
conflicts, it is important that timestamps be a good representative of the relative age
of each transaction. In a centralized system, the physical clock reading is used as
the timestamp. The physical clock obviously produces a true indication of each trans-
action’s age—the smaller the timestamp the older the transaction is. As mentioned
earlier, we do not actually have to use the physical clock reading of the local system
as the timestamp. We can use a logical clock (LC) that is incremented for each event in
the system as the transaction timestamp, since it provides for the same relative ordering
for a transaction’s age.

In a distributed system, on the other hand, we cannot use any local physical clock
readings or any site’s logical clock readings as our global timestamps, since they are
not globally unique. An indication of the site ID (which is globally unique) needs to
be included in the timestamp of a transaction. The issue with using a site’s physical
clocks is called “drifting”—when two or more clocks show numbers that are different
from each other. To see the impact of clock drifting on the TO algorithms, consider
two sites, S1 and S2, that generate the same number of transactions during a period of
time. If the clocks at these two sites are relatively close, then the ages of transactions
at these sites are also relatively close. But, if the clock at S1 is much faster than the
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Figure 5.29 Example of primary 2PL implementation with a deadlock.

clock at S2, after a period of time, transactions generated at S1 are going to be much
younger than the transactions generated at S2. This will cause S1’s transactions to be
given a lower priority when they conflict with S2’s transactions. To solve this problem,
we can either use a system clock with which all sites synchronize their local clocks
or we can periodically synchronize all the sites’ clocks with each other. Using either
approach will require a large number of messages. Because of this problem, we can
use the logical clock readings at each site as part of the global timestamps.

When using logical clock (LC) readings drifting can still occur. In this case, sites
that generate more transactions have larger LC readings. This again will negatively
impact the site’s transactions when conflicts occur. Let’s assume site S1 generates
a lot more transactions than site S2 does within a given period of time. If at time
t1 the LCs at sites S1 and S2 are both set to 5, it is possible that, at time t2, S1’s
clock might be 50 while S2’s clock might only be 20. From this point on, transactions
at S1 will get lower priority than the ones at S2. To resolve this issue, we need to
synchronize the logical clocks at S1 and S2. Note that it is only important to achieve
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clock synchronization if transactions at S1 and S2 conflict. If they do, the TMs at
these sites will have to communicate with each other. We can use the messages that
are sent from one site to the other for synchronization. When one site communicates
with another site, it can piggyback its LC reading on the message. The receiving site
then examines the LC reading received and compares it to its own. If its clock is slower
than the clock at the other site, then it will advance its clock accordingly. Sites do not
decrement their LCs since this would cause duplicate clock readings. This idea can be
implemented with a simple comparison:

LC at local site = Max(Local LC, LC received with the message)

In the above example, when S2 sends a message to S1, no adjustment is made. On
the other hand, when S1 sends a message to S2, site S2’s clock will be advanced to
50. Implementing the basic TO algorithm in a distributed database is not cost effective
due to the substantial number of messages required to enforce the read, pre-write, and
commit phases of the algorithm.

Implementation of the conservative TO algorithm proposed by Herman and Verjus
[Herman79] in a distributed system is straightforward. The basic idea is to maintain
a queue for each TM in the system at each site. For example, for a system with five
sites and five TMs, each site’s scheduler will maintain five queues, one for each TM.
Each TM sends the lock request to each site’s scheduler. The receiving scheduler puts
the requests in that site’s queue, in increasing timestamp order (oldest first). It should
be obvious that the queues for a given TM have the operations in the same order at
all sites. Requests are then processed from the front of the queues in the order of their
age—the oldest first. Although this approach reduces the number of restarts, it does
not completely eliminate them. Suppose when processing operations from the front of
queues at Site 5, the scheduler finds the queue for Site 3 empty. This indicates a lack
of requests from Site 3. It is possible that Site 3 has transactions that are older than the
ones in the other queues—processing the requests from younger transactions in the
queues for Sites 1, 2, and 4 invalidates all such older transactions initiated at Site 3,
resulting in restarts for those transactions.

One way to get around this problem is to force the schedulers to process the queues
only when there is at least one request in every queue. There are two issues with
this approach. First, this very conservative TO approach forces the system to execute
transactions sequentially. Second, the queues for sites that do not have any transaction
waiting to be processed will be empty. A site with an empty queue cannot process
transactions in the other queues until a request from the corresponding site arrives. To
circumvent this problem, we can require each site that does not have any transaction
waiting to be processed to send a dummy request periodically in order ensure that it
does not delay the processing of transactions from other sites.

Note that using timestamps to order the commitment of transactions according to
their age has an advantage over locking—in TO algorithms, local sites will only allow
schedules that are age-sensitive (older transactions commit before younger transac-
tions). For example, assume transaction T4 commits before T6 at Site 5. If T4 and T6
also run at Site 7, the local scheduler at Site 7 only allows T4 to commit if it commits
before T6, and not the other way around. Consequently, the second requirement we
explained in Section 5.4 is automatically enforced by the local schedulers.
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5.4.2.1 Conflict Graphs and Transaction Classes SDD-1, a system for distributed
databases that was developed at the Computer Corporation of America, uses the con-
servative distributed timestamp algorithm with some modifications [Bernstein80a]. The
following provides an overview of SDD-1’s concurrency control implementation. SDD-
1 recognizes different classes of transactions and levels of conflict. Each class contains
one set of data items as its read set (RS) and another set of data items as its write set
(WS). As we discussed before, two transactions are in conflict if one writes a data item
that the other reads or writes. This concept is extended to the definition of conflicts
between two transaction classes, TCi and TCj. Two transaction classes are in conflict
if one of the following is true:

WS(TCi) ∩ (WS(TCj) U RS(TCj)) �= Ø
WS(TCj) ∩ (WS(TCi) U RS(TCi)) �= Ø

A given transaction belongs to a particular class if all of the data items in the
transaction’s read set are contained within the class’ read set and all of the data items
in the transaction’s write set are contained within the class’ write set. In other words,
Ti belongs to transaction class TCj if and only if

RS(Ti) is a subset of RS(TCj), and
WS(Ti) is a subset of WS(TCj)

Each transaction issues its read requests for the data items contained within its
read set during its read phase. Each transaction issues its write requests during the
second phase, which is called the write phase. Based on the data items currently
being read and written, we create a conflict graph for the classes to which the active
transactions belong. A conflict graph is a nondirected graph that has a set of vertical,
horizontal, and diagonal edges. A vertical edge connects two nodes within a class
and indicates a conflict between two transactions within the class. A horizontal edge
connects two nodes across two classes and indicates a write–write conflict across
different classes. A diagonal edge connects two nodes within two different classes and
indicates a write–read or a read–write conflict across two classes. The following is an
example that shows how a conflict graph is created. Assume the following read sets
and write sets for transactions T1, T2, and T3:

T1: (RS1) = {a} and (WS1) = {b}
T2: (RS2) = {c} and (WS2) = {d}
T3: (RS3) = {e} and (WS3) = {a, b}

Also, assume that transactions T1, T2, and T3 belong to transaction classes TC1,
TC2, and TC3, respectively, and that Figure 5.30 shows the conflict graph for these
transactions.

Analysis of the conflict graph determines if two transactions within the same class
or across two different classes can be run parallel to each other. In the above example,
transactions T1 and T3 cannot run in parallel since their classes are connected (both
diagonally and horizontally) in the conflict graph. This means that they have both a
write–write conflict and a read–write conflict. On the other hand, transaction T2 can
run in parallel to T1 and T3 since there are no edges between TC2 and TC1 and no
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Figure 5.30 A conflict graph example for SDD-1.

edges between TC3 and TC2. By knowing to which class a transaction belongs, the
scheduler at a given site knows whether the transaction can be safely processed or
not. Within a class, conflicting transactions are processed in order, according to their
timestamps. Across classes, transactions only conflict with each other if the classes
they belong to conflict. This allows SDD-1 to statically define classes that can run
in parallel and to statically define classes whose transaction-execution needs to be
controlled.

In SDD-1, if a transaction needs to read or write data items at a remote site, it
does not start a child process there—instead it issues a remote read or remote write
request. The implementation assumes that remote requests arrive at their destination in
the order of their timestamp as well. To guarantee this, a younger transaction at a given
site (Site K) that wants to issue a remote read or write request to some other site (Site
L) must wait until all older transactions at Site K have issued their reads and writes to
Site L. This requirement further restricts concurrency among distributed transactions.

Each site maintains two queues (a read queue and a write queue) for each site in
the system. Assuming that there are N sites in the system, each site will have 2 *
N queues, out of which, two queues are set aside for the local operations from the
local transactions. In order to handle read–write conflicts, special processing must
be performed when the next read request is taken from the front of a read queue
at a given site. In particular, we must examine all the write requests that are at the
front of all write queues at this site. If any of these write operations are for an older
transaction than the read request we are processing, we must delay the read. If all these
write operations are for younger transactions, we may proceed with the read operation.
Otherwise, the read is delayed. To take care of write–write conflicts, a write request
at front of a write queue at a given site is processed only when all write requests at
the front of all write queues at this site are from younger transactions. Otherwise, the
write is delayed. To deal with a read–write conflict, similar checks are necessary when
a read request in the front of a queue at a site is processed. A careful reader observes
that this distributed implementation serializes the transactions based on their age and
therefore reduces the amount of parallelism across transactions from different sites.

5.4.3 Distributed Optimistic Concurrency Control

In Section 5.3.3, we discussed the optimistic concurrency control for a centralized
system. This section discusses the extensions that need to be made to the centralized
optimistic concurrency control in order to use it in a distributed system.
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To extend the optimistic concurrency control algorithm to a distributed implemen-
tation, two rules must be applied:

• The first rule applies to validating transactions locally. Transaction Ti must be
locally validated at all the sites where it runs. The local optimistic concurrency
control algorithm outlined in Section 5.3.3 is used to apply this rule. If Ti is
invalid at one or more sites, then it is aborted. Local validation guarantees that
Ti is part of a serializable schedule at the sites where it has been run. After Ti
has been validated at all the sites where it has run, then it needs to be globally
validated.

• The second rule applies to validating transactions globally. When two conflicting
transactions run together at more than one site, the global validation requires that
these two transactions commit in the same relative order at all the sites they run
together. Suppose transactions Ti and Tj run at two sites (Site 1 and Site 2). Ti
can globally validate if and only if the relative commit order of Ti and Tj is the
same at both Site 1 and Site 2. Otherwise, Ti cannot validate. To apply this rule,
Ti’s commitment at a site is delayed until all conflicting transactions that precede
Ti in the serialization order are committed or aborted. Note that this requirement
makes the algorithm pessimistic since Ti cannot commit as soon as it is validated
at a site.

One way to implement optimistic concurrency control is to require that all local
schedulers maintain a total commitment order for all local transactions. These sched-
ulers are required to send their total commitment order graphs to the responsible global
TM when they validate a transaction locally. The global TM receiving all such graphs
will only commit the transaction globally if the order of committing the transaction in
all local graphs is compatible. Otherwise, the global TM aborts the transaction.

5.4.4 Federated/Multidatabase Concurrency Control

The concurrency control methods we have discussed in this chapter apply only to
centralized databases or homogeneous distributed databases. There are other kinds
of distributed database systems, however. In particular, a different class of distributed
database systems known as federated or multidatabase (see Chapter 12) also exists—its
databases are heterogeneous. For this class of distributed database systems, imple-
menting the concurrency control algorithms that we discussed in this chapter is not
practical for various reasons. The first and foremost issue is that federated and mul-
tidatabase systems integrate both relational and nonrelational (e.g., flat file based)
systems, and these systems do not always expose their transaction management func-
tions (Transaction−Begin, Transaction−End, Commit, Abort, Lock, Unlock, etc.). As
a result, implementation of the concurrency control algorithms mentioned above is not
possible. Even for newer relational systems, where the distributed database software has
access to the transaction management functions, implementing 2PL negatively affects
the sites’ autonomy and performance. We will look at some of these issues in more
detail in Chapter 12, and discuss the changes that are necessary to address concurrency
control algorithms for federated and multidatabase systems.
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5.5 SUMMARY

In this chapter, we discussed approaches to concurrency control in centralized and
distributed DBEs. The main focus of our discussion was maintaining the atomicity
property of transactions. We pointed out that atomicity was maintained by providing
the illusion that transactions were running alone in the system. We argued that in order
for the concurrency control to provide such an illusion, every transaction’s changes
needed to be isolated from the other transactions, until such a time as the transaction
decided to commit or abort.

Since the focus of our discussion was OLTP systems, we introduced transaction
concepts first. The ACID properties for transactions were defined and studied. We
categorized two main approaches to concurrency control: pessimistic and optimistic
concurrency control. Serializability was identified as the basis for preserving the consis-
tency of a database in a centralized or distributed DBE. Issues regarding the conflicting
operations from different transactions and their impact on the schedule that a DBE
generates were discussed. We also discussed how locking and/or timestamping can be
used to handle concurrent access to the database and to generate a serializable sched-
ule. We identified deadlocks as a potential problem for locking-based approaches, but
the discussion of deadlocks was delayed until Chapter 6. We discussed how locking
and timestamping differ in the way they schedule transactions. We pointed out that
the locking approach resulted in a nondeterministic commitment order for concurrent
transactions, while timestamping provided for a deterministic order based on the age
of each transaction.

The centralized concurrency control concepts then were extended to cover the
issues in distributed DBEs. We explained the difference between a local schedule
and a global schedule and outlined the rules for global serializability. Global seri-
alizability had two requirements—that local schedules be serializable and that all
conflicting transactions commit in the same order at all the sites where they create
a conflict.

We did not address the issue of atomicity when failures happen, because Chapter 8
discusses how atomicity is provided when there are failures in the system.

5.6 GLOSSARY

ACID Properties The properties that a transaction maintains in a traditional DBMS.
Aggressive TO Algorithm A version of the TO algorithm that tries to resolve con-

flicts as soon as possible.
ANSI American National Standards Institute.
ANSI Isolation Levels The set of concurrency control isolation levels that are part

of the ANSI standard (four levels).
Atomicity A property of a transaction that requires all change or none of the changes

of a transaction must be applied.
Backward Recovery The act of recovering a database to a consistent state in the

past.
Blind Write The type of database write operation that does not require reading the

value being changed.
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Cascadeless Schedules A category of schedules that do not require cascade rollback
when problems arise.

Cascading Rollback A transaction rollback operation that requires other transactions’
rollback.

Centralized 2PL A version of 2PL algorithm that controls transactions from a cen-
tralized site.

Child Transaction A transaction that is activated as part of another transaction (usu-
ally a parent transaction).

Compensating Transaction A transaction that is run to compensate for the effect of
a committed transaction.

Concurrency Control A database subsystem that is responsible for providing con-
sistency of the database when there are multiple transactions running concurrently
in the system.

Conflict A situation where two or more operations from different transactions are
not allowed to be processed concurrently (typically a read and write or two writes).

Conflict Graph A graph that includes all conflicts across running transactions.
Conflict Matrix A matrix that shows compatible and incompatible transactions’ oper-

ations.
Conflict Serializability A type of serializability that serializes conflicting operations

from different transactions.
Conflict Serializable Schedules A schedule that is conflict serializable.
Conservative TO Algorithm A version of the TO algorithm that does not act on

resolving conflicts immediately.
Consistency A requirement that every transaction must satisfy.
ConTracts A long transaction that consists of other long transactions.
Database A collection of data items where each item has a name and a value.
Database Consistency A requirement that guarantees database data items are con-

sistent/correct.
DDL Lock A type of lock that is placed on database dictionary items.
Decision Support System A system that supports management of an organization in

making business decisions.
Dirty Read A read operation where the changed value of a data item is read before

the transaction that is changing it has been committed.
Distributed 2PL A version of 2PL that shares the control across all sites.
DML Lock A type of lock that is placed on behalf of a transaction’s DML statements.
Durability A property of a transaction that requires writing its changed values to a

persistent medium.
Exclusive Lock Mode A type of data item lock that cannot be shared.
Federated Databases An integration strategy for existing databases and database

systems.
Forward Recovery An approach of recovering a database from an image in the past

and reapplying each transaction’s changes.
Global Transaction A transaction that works with data at more than one site in a

distributed system.
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Growing Phase The initial phase of 2PL when a transaction acquires locks.
History A total ordering of concurrent transactions’ operations.
Index Page Locking An approach to dealing with the phantom issue, which utilizes

locks on an index of a table.
Intention Locking A specific approach to locking, which requires a transaction to

identify its intent on making changes to a lockable database granule.
Isolation A property of a transaction that forces the concurrency control to hide the

changes of one transaction from the other transactions until it terminates.
Local Transaction A transaction that does not run at any site but the local site.
Lock Conversion The act of changing a lock from a finer granule to a coarser granule

or vice versa.
Lock Downgrade The situation when a lock on a coarser granule is changed to a

finer granule.
Lock Escalation The situation when a shared lock mode is changed to an exclusive

lock mode.
Lock Matrix A matrix that outlines compatible and incompatible lock modes for a

DBE system.
Lock Upgrade The situation when a lock on a finer granule is changed to a coarser

granule.
Locking The act of isolating data items that are being accessed by transactions.
Logical Clock A counter that resembles the physical clock at a site.
Long-Lived Transaction A transaction that runs for a long time, usually minutes,

hours, or even days.
Multidatabase An approach to integrating multiple existing databases and/or

database systems.
Multiple-Granularity Locking A locking approach, which is usually used in con-

junction with intention locking, that requires a transaction to lock not only the
desired database granule but also the ancestors of it.

Multiversion Concurrency Control An approach to concurrency control that main-
tains multiple copies of each data item of the database.

One-Phase Locking A locking approach to concurrency control that allows transac-
tions to lock and release items as they wish.

On-Line Analytical Processing A database environment in which reporting in sup-
port of management decisions is a prominent factor.

On-Line Transaction Processing A database environment in which many transac-
tions run concurrently.

Optimistic Concurrency Control An approach to concurrency control that is
designed to work well with low conflict environments.

Overwriting Uncommitted Data A type of isolation that allows one transaction to
write what is being changed by another transaction.

Parallel Schedule An ordering of transactions in which one transaction starts before
others finish.

Partial Commitment Order The commit order requirement that a conflicting oper-
ation from two different transactions puts on the system.



GLOSSARY 241

Pessimistic Concurrency Control An approach to concurrency control that is
designed for high conflict environments.

Phantom Issue An issue that exists in relational database systems when the scope of
rows that one transaction is working with is changed by other transactions’ inserts
or updates.

Point-in-Time Recovery A type of database recovery that restores a consistent
database as of a point in time.

Predicate Locking An approach to dealing with the phantom issue in relational
databases.

Pre-write The act of buffering the changes of one transaction in memory until the
transaction is ready to commit/abort.

Primary Copy 2PL An approach to 2PL that uses a primary site for every data item
of the database that is replicated.

Read Committed An isolation requirement that forces transactions to read only com-
mitted values.

Read Uncommitted Data An isolation requirement that allows transactions to read
committed or uncommitted values.

Read-Only Transaction A transaction that does not make any changes to the
database (a query).

Recoverable Schedules A schedule that can be recovered after a system or database
failure of the system.

Saga A long transaction that contains other transactions nested in it.

Savepoint A consistent point in the life of Oracle transactions to which the database
can be rolled back.

Schedule The total order of operations of concurrent transactions.

Sequential Schedule A schedule that only allows transactions to run serially (also
known as serial schedule).

Serial Schedule A schedule that only allows transactions to run serially.

Serializability The requirement that forces the concurrency control of a database
system to guarantee that any parallel schedule is equivalent to a serial schedule.

Serializable Schedule A parallel schedule that is equivalent to a serial schedule.

Shared Lock Mode A mode of database granule locking that can be used simulta-
neously by multiple transactions.

Short-Lived Transaction A transaction that runs for a very short period of time,
usually subseconds.

Shrinking Phase The phase in 2PL when the transaction only releases the locks it
has acquired.

SQL92 The Structured Query Language as per ANSI Standard 1992.

Strict Two-Phase Locking A specific type of 2PL where transactions have to hold
the locked items until just before the commit.

System Lock A kind of lock that Oracle puts on objects in memory.

Timestamp Ordering An approach to concurrency control that uses the age of trans-
actions as a way of enforcing serializability.
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Total Commitment Order The commitment order of all concurrent transactions in
the system.

Transaction A collection of reads, calculations, and writes of data items in a database.
Transaction Monitor A component or subsystem of a DBE that is responsible for

managing the execution of a transaction.
Two-Phase Locking An approach to locking that disallows a transaction to request

a lock after it has released a lock.
Unrepeatable Read An isolation level that does not guarantee the same value for

what is read, if the same data item is accessed by the same transaction more than
once.

View Serializability A serializability requirement that guarantees consistency of the
database even though it does not produce a conflict serializable schedule.

View Serializable Schedule A schedule that is equivalent to a serial schedule.
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EXERCISES

Provide short (but complete) answers to the following questions.

5.1 Check the serializability of each one of the following schedules:

S1 = R1(X), R2(X), R3(X), W1(X), W3(X)
S2 = R2(X), R1(Y), W3(X), W2(X)
S3 = W1(X), R2(X), W3(X), W2(X)
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Figure 5.31 Concurrent transactions for Exercise 5.2.

S4 = R1(X), R3(X), R2(X), W2(Y), W3(X)
S5 = R3(X), W1(X), R1(X), W2(X)

Indicate all RW, WR, and WW conflicts and show all partial commitment
orders forced by these conflicts. Indicate if the schedule is serializable. If it is,
what is the total commitment order? If it is not, indicate the first operation that
causes the problem.

5.2 Assume the following three transactions in Figure 5.31 and the order in which they
work with data items X and Y. Show three schedules that are created by applying
(A) no-locking, (B) 1PL, and (C) 2PL to these transactions. For each schedule in
(A), (B), and (C), you should show all partial commitment orders (PCOs) caused
by all RW, WR, and WW conflicts. Are these schedules serializable? If yes, what
is the serialization order? If not, why?

5.3 Assume the three transactions in Figure 5.32 and the order in which they work
with items X and Y. Answer the following for these three transactions, if we
use (A) no-locking, (B) 1PL, and (C) 2PL for concurrency control. Show the
schedules for (A), (B), and (C). Find out all partial commitment orders for RW,
WR, and WW conflicts. If the schedule is serializable, what is the serialization
order? If not, why? Are there any deadlocks?

5.4 Assume transactions T1, T2, T3, T4, and T5 generate schedules SA and SB as
shown below. (A) Are the local SA and SB schedules serializable? If so, what are
the equivalent local serial schedules? If not, why? (Show all partial commitment

Figure 5.32 Concurrent transactions for Exercise 5.3.
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orders.) (B) Are they globally serializable? If so, what is the equivalent global
serial schedule? If not, why?

SA = R1(x1), W1(x1), R2(x2), R4(x1), W2(x2), W3(x2), R4(x2)
SB = R5(x3), R1(x3), R3(x4), W2(x4), R5(x4), R3(x3)

5.5 What is the condition for the optimistic concurrency control for transactions
overlapping as (A) Ti completes its write phase before Tj starts its read phase,
(B) Ti and Tj complete their validation phase at the same time, (C) Ti completes its
validation phase before Tj completes its validation phase, (D) Ti completes its
read phase after Tj completes its validation, and (E) both Ti and Tj complete
their read phase exactly at the same time?





6
DEADLOCK HANDLING

As we discussed in Chapter 5, both centralized and distributed database environments
(DBEs) can utilize locks to enforce concurrency control. To access a data item, a
transaction must put the right type of lock on it—a read lock to read the item or
a write lock to modify the item. Suppose we have a transaction called T1. If T1
wants to lock some particular data item, but that item is already locked by some
other transaction such as T2, then T1 must wait for T2 to release the lock before it
can proceed. When any transaction waits for another transaction, there is always a
potential for a deadlock. In this chapter, we will first introduce what a deadlock is and
then discuss alternatives for dealing with deadlocks. Deadlock handling alternatives are
outlined for centralized systems first. Then we will continue our discussion to include
deadlock handling alternatives in a distributed system.

6.1 DEADLOCK DEFINITION

Deadlock, or deadly embrace, is a state of the system in which two or more transac-
tions wait forever. This is indicated by a cycle in the wait-for-graph (WFG). A WFG
is a directed graph in which the circles indicate transactions and the arcs indicate waits.
Sometimes, we put the name of the data item in contention (the item we are waiting
for) on the arc, but often, for simplicity, the item name may not be shown. Figure 6.1
depicts the classical example of a two-transaction deadlock. As seen from this WFG,
transaction T1 has locked item Y and needs to lock item X, while T2 has locked
item X and needs to lock item Y. In this case, since both transactions are waiting, no
transaction can continue and a deadlock is formed.

There are three classical approaches to deadlock handling. These approaches can
be used in either a centralized or a distributed database system. These are deadlock
prevention, deadlock avoidance, and deadlock detection and removal.
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Figure 6.1 Classical example of a deadlock between two transactions.

6.2 DEADLOCKS IN CENTRALIZED SYSTEMS

All three approaches mentioned earlier can be used in a centralized system. Most
current DBMS vendors, such as Oracle, Microsoft, IBM, and Sybase, utilize deadlock
detection and removal in their products. We will outline each alternative and discuss
their advantages and disadvantages in this section.

6.2.1 Deadlock Prevention

Deadlock prevention is an approach that prevents the system from committing to an
allocation of locks that will eventually lead to a deadlock. In other words, it is impos-
sible (both theoretically and practically) for a deadlock to occur in a system using
a deadlock prevention approach. There are several possible implementations of this
approach, but all of them follow the rule that “when two or more transactions require
conflicting locks for the same data item, only one of them will be given the lock.” One
example of such implementation is the preacquisition of all locks algorithm that we
describe in Section 6.2.1.1.

6.2.1.1 The Preacquisition of All Locks Algorithm The preacquisition of all locks
is an implementation example of deadlock prevention. In this scheme, transactions are
required to lock all the data items they need before they are allowed to start their work
and are also required to hold onto these locks for the entire duration of the transaction.
For example, suppose a transaction needs three data items. This transaction will ask the
lock manager to lock all three items before it starts executing any commands inside the
transaction. If any data item this transaction needs is locked by another transaction, then
this transaction will have to wait. As soon as all the locks needed by the transaction are
obtained, this transaction proceeds. Although this transaction may have to wait before
it starts executing, the system will never be deadlocked since waiting transactions are
not running, and therefore not holding any locks yet. Another way of thinking about
this approach is to say that deadlock prevention deals with deadlocks “ahead of time.”

Observation 1: It should be obvious that in order for this approach to work, each and
every transaction in the system must know all the data items they need to lock before
they start executing. If any of this information is missing, the deadlock prevention
approach is not going to work. Therefore, this approach is suitable for transactions
that know all the data items they need a priori. This is, of course, somewhat limiting
with respect to the types of transactions that can be processed. Data driven transactions
cannot use this approach since, for them, what the transaction needs to lock is only
known at runtime.
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Observation 2: It should also be obvious that this system has no overhead for lock-
ing. At the same time, this approach may cause some transactions to wait indefinitely.
This phenomenon is known as transaction starvation. Transaction starvation usually
happens to large/long transactions that need to lock many data items. Because a long
transaction needs to lock many data items, it is possible (and likely) that while it is
waiting, some other smaller/shorter transactions (requiring fewer data item locks) will
succeed in locking the items that it needs. If these other transactions keep locking
items required by our long transaction, the long transaction might be forced to wait
for a long time.

6.2.2 Deadlock Avoidance

Deadlock avoidance is a deadlock handling approach in which deadlocks are dealt with
before they occur. The deadlock avoidance approach uses knowledge about the system
in determining whether or not a wait can lead to a deadlock. If deadlock prevention
deals with deadlocks ahead of time, deadlock avoidance deals with deadlocks “just in
time.”

In this scheme, transactions can start executing and can request data items to be
locked as needed. If a data item to be locked is available, then the lock manager
will allocate that item to the requesting transaction. On the other hand, if the data
item is locked by another transaction, then the requesting transaction has to wait. If
transactions are made to wait without any control, deadlocks will undoubtedly occur.
Therefore, to avoid deadlocks, we must also define a deadlock avoidance approach.
When one transaction requests a lock on a data item that has already been locked by
another transaction in an incompatible mode, the algorithm decides if the requesting
transaction can wait or if one of the transactions needs to abort. Sometimes it is easy
to determine when one transaction can safely wait for another transaction. However,
it is not easy to see if allowing a transaction to wait will cause a deadlock in future.

The database deadlock avoidance approach proposed by Garcia-Molina uses a vari-
ation of the deadlock avoidance approach employed in operating systems [Garcia-
Molina79]. In this approach, data items are ordered in the system and transactions
are required to access data items following this predefined order. Implementing this
approach in a centralized system is straightforward. Implementing the approach in a
distributed database system requires numbering the sites and then numbering the data
items within each site as well. For distributed systems, the combination of site number
and data item number is unique, and the ordering is defined based on this combina-
tion. In a distributed system, transactions are required to request locks on data items
determined by the combined site and item number. This is achieved by transactions
visiting sites in order identified by their site number, and within the site, transactions
access the required data items in order. Garcia-Molina shows that such requirements
guarantee that deadlocks never occur.

Two algorithms proposed by Rosenkrantz can be used to address the uncertainty
about deadlock creation caused by allowing transactions to wait for each other
[Rosenkrantz78]. These algorithms are known as the wait–die and the wound–wait
algorithms, which we explain next.

6.2.2.1 The Wait–Die Algorithm Consider two transactions, called “Ta” and “Tb.”
Let’s assume that Ta issues a lock request on data item “X” and that Tb holds an
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exclusive lock on “X.” In this case, we do not want to allow Ta to wait for Tb if
this wait will eventually cause a deadlock. To make sure that deadlocks are avoided
at all costs, we will utilize each transaction’s age as a way of deciding whether we
should allow or disallow the wait. Obviously, in order to be able to do this, we need
to know the age of each transaction in the system. As a result, we need to keep track
of when each transaction entered the system; in other words, we need to maintain a
timestamp for every transaction in the system. A timestamp is a unique ID that carries
site information as well as the local clock reading at the site where the transaction
enters the system. Think of a timestamp as a sort of “birth date” for each transaction.
Because the timestamp contains a site component and a time component, we can
guarantee uniqueness quite easily, by merely restricting timestamp generation to “one
transaction at a time” on each site. Since a transaction can only be “born” at one site
and each site can only create one transaction at a given “local time,” we can be sure
that the timestamp is unique across all sites in the system.

If we timestamp each transaction when it enters the system, we can use the algorithm
depicted in Figure 6.2 as our wait–die algorithm. Recall that a timestamp is like a
birth date. This means that the smaller a timestamp is, the older the transaction is. For
example, a person born in 1908 is older than a person born in 2007, and, of course,
1908 is less than 2007. Therefore, if the timestamp of Ta, which is written as “ts(Ta),”
is less than the timestamp of Tb, we know that Ta is older than Tb.

This algorithm simply states that when an older transaction (the transaction with the
smaller timestamp) needs to lock an item that has already been locked by a younger
transaction (the transaction with a larger timestamp), the older transaction waits. If,
on the other hand, a younger transaction requests a lock that is held by an older
transaction, then the younger transaction will be killed. Because timestamps are unique,
it is impossible for two transactions to have the same age. Therefore, because we only
allow the older transactions to wait, there is no way that the wait-for-graph can contain a
cycle (i.e., a deadlock). The reason the algorithm kills younger transactions, as opposed
to killing older transactions, is a simple priority mechanism. The belief is that because
older transactions have been in the system for a longer period of time and have done
more work, killing them is not advisable. If the younger transaction is killed, it will be
“reborn” later, but when this “rebirth” happens, the transaction will retain its current
timestamp instead of obtaining a new timestamp.

Figure 6.2 The wait–die algorithm.
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6.2.2.2 The Wound–Wait Algorithm Because the wait–die algorithm is very
straightforward, it does not recognize some special cases. For example, there is no
special handling in it to address the scenario where a younger transaction that is a
candidate to be killed is very close to being done. Obviously, killing such transactions
can add to the overall system overhead and can delay the average response time.
Because of this shortcoming, a modified approach to the wait–die algorithm, known
as the wound–wait algorithm, can be used instead. This new algorithm has the same
assumptions as those we stated for the wait–die algorithm in Section 6.2.2.1. Let’s
consider two transactions, Ta and Tb, and suppose that Ta needs a data item that
is locked by Tb. Using the wound–wait algorithm, if Ta is older than Tb, then Ta
“wounds” Tb. Notice that we did not “kill” the transaction, we “wounded” it. If
instead, Ta were younger than Tb, then Ta would wait for Tb instead of wounding it.
Figure 6.3 depicts the wound–wait algorithm.

Observation 1: As before, priority is given to older transactions by allowing them
to wound younger transactions and thereby access the data items that were locked
by the younger transactions. The wound process deserves some explanation. Once the
transaction is wounded, the transaction has a small amount of time to finish processing.
If the wounded transaction does not finish within the specified period of time, then
the transaction is killed. It is worth noticing that, during the wound period, the system
may actually “sort of” be in a deadlock. This deadlock, however, is not an indefinite
deadlock, and therefore it is not really a deadlock—it is merely an apparent one. As
soon as the wounded transaction is finished or killed, the apparent deadlock is broken.

Observation 2: The wound period will give the younger transaction that is holding
the data item required by the older transaction a chance to finish. If the younger
transaction does finish within this “grace period,” it will not be killed. This obviously
eliminates some of the drawbacks of the wait–die algorithm.

Observation 3: Both algorithms are run from the “second” transaction’s point of
view. In other words, we are always looking from the transaction (Ta) toward the other
transaction (Tb)—from the transaction requesting the lock (Ta) toward the transaction
that “got there first” and already obtained the lock (Tb) on the data item in conflict.
Both names reflect the same processing order (and this “second” transaction’s point of
view): “wait–die” means “if Ta is older-then-wait-else-die.” “Wound–wait” means “if
Ta is older-then-wound-else-wait.” Both algorithms avoid deadlocks by ensuring the
“death” of the younger transaction.

Figure 6.3 The wound–wait algorithm.
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6.2.3 Deadlock Detection and Removal

In this approach, the lock manager component of the concurrency control subsystem
does not check for deadlocks when a transaction requests a lock. The approach is
designed for fast response to lock requests. If the data item in question is not locked,
the lock manager grants the requested lock to the requesting transaction. If the data
item in question is already locked by some other transaction and the lock type is
not compatible with the new lock request, the lock manager makes the requesting
transaction wait. It is obvious that, without precautions, some of these transactions
may end up in a deadlock after awhile. To handle this, the lock manager checks the
WFG for cycles (deadlocks) at regular time intervals based on the system load.

Typically, a timer is used to initiate the deadlock detection process. Checking for
deadlocks is initiated when the timer goes off. At that time, the lock manager looks for
cycles in the WFG. It is possible that there are no cycles and therefore no deadlocks at
that time, in which case there is nothing more that needs to be done. If there are any
cycles in the graph, the lock manager will have to select a transaction, a victim, that
needs to be rolled back to break the deadlock. Sometimes, there might be more than one
cycle, meaning that there can be more than one independent (nonoverlapping) deadlock.
In this case, one victim from each cycle will have to be rolled back. Sometimes, two
deadlocks may overlap (have one or more transactions in common). In this case, an
efficient lock manager will choose a victim that is present in both cycles to reduce
the overhead of rollback and restart. Once deadlocks are dealt with, the lock manager
resets the timer and continues. Victim selection can be based on many parameters.

Possible approaches to choosing the victim include the following:

• Choosing the youngest transaction as the victim
• Choosing the shortest transaction (transaction with fewest required data items) as

the victim
• Choosing the transaction with the lowest restart overhead as the victim

6.3 DEADLOCKS IN DISTRIBUTED SYSTEMS

Use of timestamps in dealing with deadlocks is basically the same for both centralized
and distributed DBMSs. We discussed how global timestamps are generated in dis-
tributed systems briefly in Section 6.2.2 (for further details, see the timestamp-based
concurrency control section in Chapter 5). We also discussed how age could be used
as a tiebreaker for conflicting transactions for a centralized system in Section 6.2.2. In
a distributed system, we will rely on the global timestamps and use a relative order
based on age among all transactions in the system. As discussed, this can be achieved
using a combination of site ID and local logical clock readings to guarantee global
uniqueness as well as age fairness. Therefore, with respect to relative age of transac-
tions, the global timestamps are good indicators and can be used in the wait–die and
the wound–wait algorithms.

Because data is distributed in a DDBMS, the transaction processing is also dis-
tributed. This means that the same transaction might require processing at multiple
sites within the DDBE. Because of this, there are two main issues that we have to deal
with when implementing deadlock handling algorithms in a distributed database system.
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The first issue deals with where and when a transaction is active at any given point
in time. Transactions must be processed at each site that contains one or more of the
data items used by the transaction. The amount of processing required at each site is
not necessarily divided equally across all the sites. The start and stop times at each
site are dependent on the global transaction processing model, as well as site-specific
details, such as the amount of work required and the other work being done at that
site. This means that processing within a single distributed transaction does not occur
at exactly the same time at all the sites. In other words, we can consider the distributed
transaction to be active at a given site when work is being done there and inactive
when work at the site is either completed, not yet started, or placed on hold for some
time. Depending on our implementation, a given transaction might be active at one or
more sites at any given time, but we cannot guarantee that it is active at any particular
site or at any particular time. As a result, the first issue we have to deal with for a
distributed implementation is directly related to the active/inactive status at a given
site for a given transaction. When a conflict happens between two transactions at a
given site, it is possible that one of the transactions might not be active at that site.
This is not an issue in a centralized system since there is only one DBE that contains
all active transactions. We call this issue the transaction location issue.

The second issue is related to where the algorithms are actually implemented—in
other words, which sites are responsible for carrying out the steps in the deadlock-
handling scheme. This is not an issue in a centralized system since there is only one
DBE that handles all algorithms. In a distributed system, since there are multiple local
DBE servers, we have several alternatives to choose from when deciding where to
implement our algorithms. We could designate one server as the center of control, we
could have a floating control center that travels from server to server as needed, or we
could have a number of servers share the control responsibility. We call this issue the
transaction control issue.

6.3.1 The Transaction Location Issue

In order to better understand why there is an issue with the location of the transaction
that is in conflict with another transaction, we have to understand the processing model
we use in distributed systems. In our processing model, transactions initiate at a single
site and get a transaction ID at that site. This ID is unique throughout the entire
distributed database management system. Once a transaction has been given an ID, it
can start processing. If all the data required by the transaction is locally available, this
transaction does not leave its originating site and is therefore called a local transaction.
If the transaction needs to access data items on other databases at other sites, then the
transaction is called a global transaction or a distributed transaction.

There are two approaches for processing global transactions. In the first approach,
the transaction is broadcast to all sites that contain any data items needed by the
transaction and these sites can then perform the transaction’s work concurrently. In the
second approach, the transaction is not broadcast to all sites but moves from site to
site. The difference is that, in the first case, the transaction might be active at multiple
sites at any given point in time, while in the second case, the transaction is only active
at one site at any given point in time. For simplicity of our discussion, we will only
consider the second approach.

In our chosen model—which is also called the daisy-chain model
[Obermarck82]—a transaction carries some needed information with it when
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it moves from one site to another. As the transaction moves from site to site, it
includes details such as the list of databases (and sites) that the transaction has already
visited and the number of sites yet to be visited, items the transaction has already
locked, and lock types for items locked. When the transaction terminates, either by
committing (successful termination) or aborting (unsuccessful termination), it sends a
message to all the sites it previously visited informing them of the decision to commit
or abort. Figure 6.4 shows an example of two transactions in a three-site system. In this
figure, T1 initiates at Site 1, does some processing at Site 1, moves to Site 2 where it
performs more work, and finally moves to Site 3 where it needs to complete its process-
ing. At the same time, T2 initiates at Site 2, performs some work there, and then moves
to Site 3 where it is supposed to finish its processing as well. It is plausible that the two
transactions running at Site 3 cause a conflict. We will discuss in detail how to handle
situations like this, once we explain the details of the distributed wait–die algorithm.

6.3.2 The Transaction Control Issue

By definition, a distributed system consists of more than one server. This raises an
issue that does not exist in a centralized system where there is only one server that
controls everything. In a distributed system, we have to decide whether the control
is given to one site or more than one site. If the control is given to only one site,
we call the control approach “centralized.” If multiple sites share the control, we call
the control approach “distributed.” Variations of these approaches are also possible.
For example, in the centralized control approach, we can have one fixed site that is
always the center of control or the control can be given to a site for awhile and then
transferred to another site. Although different sites may be the center of control, at
any given point in time there is only one controlling site in the system. In distributed
control, we can have all sites be involved in controlling deadlocks or only a subset of
the sites. We will discuss the ramification of each of these alternatives in conjunction
with each algorithm.

6.3.3 Distributed Deadlock Prevention

Deadlock prevention in a distributed system is implemented in exactly the same way
that it is implemented in a centralized system. All resources needed by the transaction,

Figure 6.4 An example of two conflicting transactions.
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in this case a global transaction, must be locked before the transaction starts its process-
ing. For this alternative to distributed deadlock handling, the site where the transaction
enters the system becomes the controlling site. Since the transaction does not actually
start processing until all required locks are secured, deadlocks are prevented. All per-
formance issues mentioned for centralized deadlock prevention are still present in a
distributed system. In addition, since the resources that a transaction needs are poten-
tially stored at different sites on different database servers, preacquisition will take a
longer amount of time to complete due to communication delays. One side effect of a
long wait time is an increased susceptibility to starvation for large/long transactions.

Aside from this issue, the implementation of distributed deadlock prevention is fairly
straightforward. The controlling site informs the servers where the items the transaction
needs are located, to lock the desired items. The controlling site waits until it receives
confirmation that all items have been locked before it starts processing the transaction.
If there are any site failures or communication failures, it is possible that one or more
of the required sites might not be available. In this case, the transaction cannot start
until all failed sites and/or communication lines have been repaired.

Obviously, the controlling site can also fail while waiting and this can be a complex
problem for this approach to handle. Consider the case where the controlling site
fails after lock acquisition has begun. In this case, all sites that have already locked
items must unlock those items but they will not be able to do that since they cannot
communicate with the controlling site. These sites will need to wait. This is an example
of a larger issue known as blocking. With respect to this issue, if a site failure or
communication failure happens, then either the controlling site blocks other sites or
other sites block the controlling site. We will discuss how to deal with the blocking
nature of this and other deadlock algorithms in Chapter 8.

6.3.4 Distributed Deadlock Avoidance

Distributed deadlock avoidance can have one of the two alternatives that we dis-
cussed for centralized deadlock avoidance. The distributed wait–die and the distributed
wound–wait algorithms essentially work the same as the centralized versions of the
algorithms. The major difference, as mentioned earlier, is that we need to address the
transaction location issue and the transaction control issue. Because each transaction
may perform its work on multiple sites, a given transaction may cause a conflict with
some transaction at one site and also cause another conflict with a different transaction
at a different site. It is also possible for one or more of the conflicting transactions to
be inactive at the site where the conflict happens.

6.3.4.1 The Distributed Wait–Die Algorithm As mentioned earlier, the basic wait–
die algorithm in a distributed system is essentially the same as it is in the centralized
system. When a conflict happens between two transactions, age (based on the global
timestamp) is used as a way of deciding which transaction is to be killed. The algorithm
states that if a younger transaction requests a lock that is already held by an older
transaction, then the younger transaction will die and be reborn later with the same
timestamp it has now if the user still wants to run the transaction. On the other hand,
if an older transaction needs to lock an item that a younger transaction has already
locked, the older transaction will wait for the younger transaction. There are two
issues with respect to implementing this algorithm in a distributed system. Example
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6.1 explains the transaction location issue. We will explain the transaction control issue
of the distributed wait–die algorithm in conjunction with the distributed wound–wait
algorithm in Example 6.3.

Example 6.1 Let’s assume that transaction “Ta” arrives at Site K, where it needs to
lock data item “X.” By the time Ta gets to Site K, suppose transaction “Tb” has already
locked X exclusively at that site. When the conflict happens, Ta’s age is compared to
Tb’s age. The action to be taken depends on which transaction is older and which one
is younger. Keep in mind that even though Ta and Tb have a conflict at Site K, Tb
might be active at some other site and therefore not be active at Site K.

There are two possible cases:

• Case 1: Ta Is Older than Tb. In this case, Ta has to wait for Tb. Since Ta is
only active at Site K, this wait will completely block Ta’s processing. Ta will
continue only when Tb has successfully committed, aborted, or decided to die.
How does Ta know how long to wait? Ta will wait at Site K until the site receives
a message that indicates the termination of Tb—either successful termination or
unsuccessful termination. Remember, Site K is in the list of sites that Tb has
visited and, therefore, the broadcast from the concurrency control at the site at
which Tb terminates will include Site K.

• Case 2: Ta Is Younger than Tb. In this case, Ta will have to die. Again, since Ta
is only active at Site K, the concurrency control at Site K kills Ta and sends a
message to all of the sites that Ta has already visited, telling them to also kill Ta.
Once Ta has successfully died at all sites, the user is notified.

6.3.4.2 The Distributed Wound–Wait Algorithm Similar to the centralized wound–
wait algorithm, when a conflict happens between two transactions in the distributed
wound–wait algorithm, age is used to decide which transaction waits or is wounded.
The algorithm states that if a younger transaction requests a lock on an item that is
already locked by an older transaction, then the younger transaction will wait for the
older transaction. On the other hand, if an older transaction needs to lock an item
that a younger transaction already holds, then the older transaction has the right to
wound the younger transaction to access the resource. Again, there are two issues with
respect to implementing this algorithm in a distributed system. Example 6.2 explains
the transaction location issue, while Example 6.3 discusses the transaction control issue.

Example 6.2 Continuing with the scenario of Example 6.1, Ta arrives at Site K,
where it needs to lock X. Suppose that by the time Ta gets to Site K, Tb has already
locked X exclusively. When the conflict happens, Ta’s age is compared to Tb’s age.
The action to be taken depends on which transaction is older and which one is younger.
Once again, keep in mind that even though Ta and Tb have a conflict at Site K, Tb
might be active at some other site and, therefore, not be active at Site K.

Case 1 and Case 2 outline the steps required for implementation of this
algorithm.

• Case 1: Ta Is Younger than Tb. According to the rule, Ta has to wait for Tb. Since
Ta is only active at Site K, this wait will completely block Ta’s processing. Ta
will continue only when Tb has successfully committed or aborted.
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• Case 2: Ta Is Older than Tb. According to the rule, Ta wounds Tb. In this case,
what happens next depends on where Tb is active. There are three possible sce-
narios: (1) Tb is also active at Site K, (2) Tb has left Site K and is active at
some other site, say, Site L, or (3) Tb has left Site K but is waiting (blocked) at
some other site, say, Site N, because the resource it needs is locked by another
transaction that is older than Tb.

Scenario 1: Tb is active at Site K. The concurrency control at Site K will enforce
the wound rule. In this case, Tb is given the wound period of time to finish. If Tb
does not finish within the specified period of time, Site K will roll back Tb locally
and broadcast the wound-rollback message to all the sites that Tb has already visited.
Each of these sites will roll back Tb locally, once they receive this message from
Site K.

Scenario 2: Tb has left Site K, so it is not active there, but Tb is active at Site L.
In this case, the concurrency control at Site K broadcasts the fact that Tb has been
wounded to all sites. When Site L receives the wound message, that site carries out the
wound rule. Again, if Tb does not finish within the time period specified by the wound
process, then Site L kills Tb locally and broadcasts the wound-rollback message to all
sites where Tb had previously done work. If Tb does finish within the wound period,
then Site L broadcasts the committed message to all sites where Tb had previously
done work.

Scenario 3: Tb has left Site K but Tb is waiting (blocked) at Site N. This scenario
is the same as Scenario 2 with one minor difference. Since Tb is blocked at Site N,
Site N will carry out the wound rule rather than Site L, and there is very little chance
of Tb committing during the wound period.

In general, when a wound message is broadcast for a given transaction, the site
at which Tb is active or is blocked has the responsibility of carrying out the wound
process. According to our processing model, Tb cannot be both active at one site and
blocked at another site. Thus, there is only one site that carries out the wound process
and there is no need for further synchronization. Note also that there is a case when
Tb might not be active at any site: this transaction is not blocked (not waiting for a
locked resource), and this transaction is not active. This transaction is in transit from
one site to another. As soon as the transaction arrives at its destination, it becomes
active there. This can be handled simply by caching the message that was broadcast
from Site K and applying it when the transaction arrives at the site with the newly
activated transaction.

6.3.4.3 Distributed Wound–Wait Control Alternatives From the control point of
view, there are two approaches to implementing deadlock avoidance algorithms in a
distributed system. These are, as mentioned earlier, centralized control and distributed
control. In the centralized implementation, one site has total control, while in the dis-
tributed implementation, two or more sites share the control. Generally, centralized
control is simple to implement since all decisions are made by one site. At the same
time, centralized control suffers from reliability issues, since the center of control is a
weak point in the system. To overcome this issue, distributed control is used to allow
the system to operate even when one or more sites fail. The main issue with distributed
control is how sites agree on applying the same decision. Distributed control requires
additional synchronization steps that sites have to take. In Example 6.3, we discuss the
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centralized approach to the distributed wound–wait algorithm, while in Example 6.4,
we outline implementation of a distributed control.

Example 6.3 In this example, we describe the centralized control implementation
for the distributed deadlock avoidance algorithm. Let’s assume there are four sites in
the system and they are numbered “S0,” “S1,” “S2,” and “S3.” Furthermore, data item
“X” is stored at S1, Y is at S3, Z is at S2, and there are no data items at S0. Let
transactions “T1” and “T2” enter the system at roughly the same time and let T1 be
older than T2. T1 is issued at S1 while T2 is issued at S3. S0 is the center of control
running the wound–wait algorithm. Transaction T1 needs to perform operations “R(X),
W(X), R(Z), W(Z),” while T2 wants to perform operations “R(Y), W(Y), R(Z), W(Z).”
Obviously, T1 must perform R(X) and W(X) locally and then move to S2 to perform
R(Z) and W(Z). Similarly, T2 must perform R(Y) and W(Y) locally and move to S2
to perform R(Z) and W(Z). Figure 6.5 displays data distribution as well as what each
transaction does locally and remotely for this example.

To run their operations locally, T1 and T2 send their lock requests to S0. Since X
and Y are available, S0 will grant the lock requests to allow T1 and T2 to perform
their local reads and writes. Since T1 and T2 enter the system at roughly the same
time, the local operations happen in parallel. After T1 and T2 have finished their local
operations, they have to move to S2 to work on Z. Now, the questions we have to
answer are related to the order in which these transactions arrive at S2 and how the
conflict is handled by S0. There are two possible scenarios for T1 and T2 running
at S2.

In the first scenario, we assume that T1 arrives at S2 first and write locks Z by
sending a request to S0. Since at this point in time Z is not locked, T1’s request will
be granted and T1 will lock the item. Later on, when T2 arrives at S2, the item is
already locked by T1. In this case, T2’s request to lock the item will not be granted.
The controlling site (S0) will apply the wound–wait rule. Since T2 is younger than
T1, T2 will have to wait for T1 to finish or to roll back. In the second scenario, T2

Figure 6.5 Data distribution and transaction steps for Example 6.3.
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gets to site S2 first and locks item Z. In this case, when T1 requests to lock Z, the
controlling site cannot grant the lock to T1 immediately and will have to wound T2.

It is easy to see that the outcome of applying the wound–wait algorithm depends on
when transactions request the lock. What happens strongly depends on the timing of
transactions and what operations they perform as part of their processing at any given
site. This version of the algorithm is straightforward and has the lowest overhead for
implementing the wound–wait rules. That is because all of the information necessary
to decide whether or not a transaction could wait or be wounded is stored at one site
(site S0 in this case). Although centralization helps with simplicity of implementing
the algorithm, centralization has a major drawback, namely, having the control site
as a potential bottleneck. That is why most distributed database management systems
implement a distributed wound–wait deadlock avoidance approach as explained in
Example 6.4.

Example 6.4 In this example, we outline the details of the distributed wound–wait
deadlock avoidance algorithm.

We need to recall two familiar terms and introduce two new terms:

• Local Transaction. A local transaction is a transaction that does not leave the
initiation site (as discussed in Section 6.3.1).

• Global Transaction. A global transaction is a transaction that moves from the
initiation site to other sites (as discussed in Section 6.3.1).

• Awaits. We say that “transaction S awaits transaction T” at a particular site if
both S and T are local and S is waiting for T at that site, or if both S and T are
global and have already visited this site.

• Can-Wait-for. We say that “transaction Q can-wait-for transaction P” at a par-
ticular site if there is no chain of transactions from P to Q in which each process
awaits the next at that site.

With these new definitions, we can expand the wound–wait algorithm to incorporate
distributed control. The algorithm is shown in Figure 6.6.

In this algorithm, Ta and Tb are both global transactions. As a result, we have
to consider not only the local waits but also the global waits (which are denoted
as “awaits” in this discussion). Local deadlock detectors can detect deadlocks among
local transactions but cannot detect global deadlocks. To make sure that we do not have

Figure 6.6 Distributed wound–wait algorithm.
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a global deadlock—a deadlock spanning the sites in the global wait-for-graph—we
include the condition “If (Ta can-wait-for Tb).” To demonstrate how this new algorithm
works, we apply the distributed wound–wait deadlock avoidance to a three-site system
as shown in Figure 6.7.

How a distributed wound–wait algorithm works for this setup depends on the age
of these three transactions and the order in which they work on the data items they
need at different sites. Let Q be the oldest transaction, P the next oldest, and N the
youngest. Figure 6.8 depicts one possible scenario where these three transactions enter
the system at almost the same time, do some work locally, and then move to another
site to perform the rest of their actions. Note that transaction actions are ordered
from the top of the page to the bottom, that is, “WLQ(b)” happens before “WQ(b),”
“WQ(b)” happens before “WLN(c),” and so on. Based on the ordering shown, schedule
“WLQ(b),WQ(b),WLN(c),WN(c),WLP(a),WP(a),WLQ(d),WQ(d),RLN(d),WLP(c)”
will be formed at time 13. At this point in time, Q needs to lock item “a” at Site
1 but the item has already been locked by P. The question that the distributed
wound–wait algorithm has to answer is: “If Q can-wait-for P,” can transaction Q wait
for transaction P without the probability of a deadlock?

The answer to the question in this instance is, “No, we cannot allow Q to wait for
P.” Since P is already waiting for N, and N is already waiting for Q, making Q wait
for P would cause a distributed deadlock. Since the answer is no, we have to figure
out what to do with Q. That is when we apply the distributed wound–wait rule that
says “if (ts(Q) < ts(P)) then Q wounds P.” Because Q is older than P, Q will wound
P. Since P is waiting for N at Site 2, it does not finish within the wound period, and it
will be killed. In this case, Q is then free to finish its execution, which will then allow
N to complete. At this point, P would be free to run if it were executed again.

6.3.5 Distributed Deadlock Detection

In this deadlock-handling approach, deadlocks are allowed to happen and the system
periodically checks for them. Deadlock detection in a distributed system works exactly
the same as deadlock detection in a centralized system, but it requires the creation of
global wait-for-graphs (WFGs). In this approach, when a transaction requests a lock
for a data item, it is not checked by the system at the time the lock request is made.

Figure 6.7 Distributed wound–wait algorithm example.
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Figure 6.8 Example of distributed wound–wait algorithm application.

Sometimes, this will result in one or more deadlocks. To make sure that the deadlocks
are eventually detected, the system maintains what is known as a global WFG that
indicates which transactions are waiting for which other transactions. The existence of
a directed cycle in this global WFG indicates a deadlock. It is not too complicated to
detect deadlocks that are local to a site. This has been done by all centralized database
management systems for many years. In a distributed database management system,
however, the problem arises from having transactions wait for resources across the
network. In this section, we describe how to extend the approach to local deadlock
detection in a centralized system to detect deadlocks in a distributed system.

Deadlock detection algorithms use the concept of a timer. The timer is set to the
prespecified amount of time in which a transaction is expected to finish. If the trans-
action does not finish within a predetermined amount of time and the timer goes
off, we suspect that the transaction is in a deadlock and needs our intervention. The
other mechanism required for deadlock handling is the concept of a deadlock detec-
tor. In a centralized system, there is one deadlock detector that is located with the
local database management system. In a distributed system, we can have one or more
deadlock detectors. Each deadlock detector is responsible for detecting deadlocks for
the site or sites that are under its control. There are three alternatives for deadlock
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detection in a distributed system. They are centralized, hierarchical, and distributed
deadlock detectors.

6.3.5.1 Centralized Deadlock Detectors We can designate one site in a distributed
system as the centralized deadlock detector. Periodically, each site sends its local WFG
(LWFG) to this controlling site. The control site then assembles a global wait-for-
graph (GWFG) to determine if there are any local or distributed deadlocks. If the
controlling site detects any deadlock, it must choose a victim transaction, which will
be aborted to break the deadlock. Once the victim transaction is chosen, the controlling
site will send information to the site where the transaction was initiated to roll back
the transaction.

Although centralized deadlock detectors are easy to implement, they are not very
reliable. Often, the controlling site will create a bottleneck, which means that the
communication lines to the site are overwhelmed and the site may be overloaded if
there are too many transactions in the system and the LWFGs contain long chains. To
overcome the bottleneck issues with centralized deadlock detectors, we can implement
a hierarchical or a distributed deadlock detection mechanism.

6.3.5.2 Hierarchical Deadlock Detectors In this approach to deadlock detection,
there can be more than one deadlock detector in the system, organized into a hierarchy.
Each deadlock detector in the hierarchy is responsible for collecting the wait-for-graph
information from all sites that are under its control. In turn, each detector can then send
the collected wait-for-graph information to a deadlock detector that is at a higher level
in the hierarchy. The site at the top of the hierarchy tree (the root) is responsible for
detecting deadlocks across all sites. This approach works well for a system that consists
of multiple regions. Each region’s deadlock detection responsibilities are assigned to
a particular site in that region. Since most deadlocks occur among transactions that
only run within a region, regional deadlock detectors work well. If deadlocks occur
across regions, then the site that is designated as the root of the hierarchy can detect
them by merging the WFGs from each regional deadlock detector involved. It should
be obvious that this approach is more reliable than the centralized deadlock detection
approach because there is more than one detector in the system at any given point in
time.

6.3.5.3 Distributed Deadlock Detectors In this approach to deadlock detection, all
the sites participate in detecting and resolving potential deadlocks. Ron Obermarck first
introduced an approach to distributed deadlock detection that shares the responsibility
of detecting distributed deadlocks among all sites in the system [Obermarck82]. This
approach has the highest level of reliability since the system can continue working even
when one or more sites have failed. Before we talk about how distributed deadlock
detection works, we should describe what makes up a distributed deadlock. In order to
understand how transactions can create a distributed deadlock, we have to understand
the transaction-processing model we introduced earlier in this chapter. We discussed the
fact that in our model a transaction carries out its work by moving from site to site. We
now extend that concept to include the concept of subtransaction. In Section 6.3.4.3,
we defined a global transaction as one that leaves its initiation site after performing
some work locally. To perform work at another site, a global transaction spawns a
subtransaction at that site. All spawned subtransactions are called children of the global
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transaction. Because of the processing model we described earlier in this chapter, a
global transaction can be active at only one site at any given point in time, which
means that only one subtransaction can be active for a given transaction at any time.

For example, assume that T1 is a transaction initiated at Site 1 and it needs to
perform some database access operations at both Site 1 and Site 2. T1 performs its
intended work at Site 1 by spawning a subtransaction at Site 1. Once T1 has finished
working with the local database at Site 1, it spawns another subtransaction at Site 2 to
access the database at that site. At this point in time, the child of T1 at Site 2 is the
only child of T1 that is active. In some respects, we can consider T1’s child at Site 1
to be waiting for T1’s child at Site 2. Figure 6.9 depicts the WFG for two transactions
(Ti and Tj) in a distributed deadlock for a two-site system.

Observation 1: As Figure 6.9 shows, the only time we allow “waiting” to span sites
is when the subtransactions are children of the same global transaction. In other words,
a distributed (cross-site) wait must be between two children of the same transaction at
two different sites. In Figure 6.9, this is denoted by the two dashed lines.

Observation 2: In Figure 6.9, we can also see that the only time we allow local
“waiting” is when the subtransactions are children of different global transactions.
In other words, a local (within-site) wait must be between children of two different
transactions at the same site. In Figure 6.9, this is denoted by the two solid lines.

Observation 3: In order for a global deadlock to happen, we must have at least
two cross-site waits in the global WFG.

Observation 4: Although there are no local deadlocks, Figure 6.9 clearly indicates
that transactions Ti and Tj are in a distributed/global deadlock, because there is a cycle
where all the arrows flow in the same direction.

Figure 6.10 depicts an example of a three-site system in which T7, T8, and T9 are
globally deadlocked.

We should recognize that just because there are cross-site waits, it does not mean
that there is always a global deadlock. For example, in a two-site system shown in
Figure 6.11, there is no distributed deadlock even though we have cross-site waits.

If the existence of cross-site waits does not always indicate the presence of a dead-
lock, how do we determine if the system is, in fact, in a distributed deadlock state?
To examine the issue, we consider the example WFG depicted in Figure 6.12. It is
clear that locally (at Site 1) there are no local deadlocks. How do we know if the
transactions on this site participate in a global deadlock?

Site 1 knows that Ti’s child at Site 1 is waiting for another child of Ti outside Site
1. Site 1 also knows that Tj’s child at Site 1 has been spawned from outside Site 1.
The rest of transactions on Site 1 are all local transactions and, therefore, Site 1 knows

Figure 6.9 Example of two-site distributed deadlock.
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Figure 6.10 Example of three-site distributed deadlock.

Figure 6.11 Example of three-site system with no distributed deadlock.

Figure 6.12 Potential for global deadlock.

their status completely. Based on the information that Site 1 has, it determines that
there is a “potential” for a global deadlock. As far as Site 1 is concerned, if there
is a chain of global waits outside Site 1 that transitively makes Ti wait for Tj, then
there is a distributed deadlock. The issue here is that Site 1 does not know what is
going on with transactions Ti and Tj outside of its control. The approach that realizes
the potential for a global deadlock and detects such deadlocks requires the definition
of two new terms and two new rules. In what follows, we explain these two terms
and rules and then provide the algorithm for distributed deadlock detection. Note that
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this is a summary of the approach that Obermarck proposed [Obermarck82]. For more
details, readers are encouraged to review the cited paper.

Definition 1: Input and Output Ports. Let’s focus on one site. If a transaction at
this site spawns a child at some other site (outside this site), we create an output
port at this site. If some transaction at some other site (outside this site) spawns
a subtransaction on this site, we create an input port at this site. In Figure 6.13,
transaction Ti has created an output port at Site 1, while transaction Tj has created
an input port at Site 1. To distinguish these ports from subtransactions we use a
square instead of a circle as depicted in Figure 6.13

As far as Site 1 is concerned, if the two ports are connected by a chain of
other transactions, such that the output port is forced to wait for the input port,
then there is a global deadlock as depicted in Figure 6.14.

To simplify the process of identifying potential global deadlocks, we can
collapse the output ports and input ports into one port called an “external” port,
abbreviated as “Ex.”

Definition 2: External Port. An external port is a port that represents the world
outside a site. Figure 6.15 shows the external port (Ex) for Site 1.

With this definition of an external port, each site can identify the potential for
a global deadlock locally if Rule 6.1 as discussed below applies.

Figure 6.13 Example of input and output ports for a site.

Figure 6.14 Potential for a global deadlock using input ports and output ports.
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Rule 6.1: Potential for a Global Deadlock There is a potential for a global deadlock
at a site if and only if there exists a directed chain of waits that start with Ex and end
with Ex at that site. In other words, there is a potential for global deadlock if a site
has a directed cycle of waits including Ex. For example, in Figure 6.15, the cycle
“Ex→Tj→Tk→Tl→Ti→Ex” indicates a potential for a global deadlock including Tj,
Tk, Tl, and Ti.

Now, we can formally define the algorithm for distributed deadlock detection.

Algorithm 6.1

• All input and output ports at a site are collected into one port called external (Ex).
• A potential global deadlock is detected by the local deadlock detector when there

is a cycle in the LWFG that includes Ex.
• When such a LWFG is detected, the site sends the LWFG information (including

the Ex) to the other site(s).
• A site combines its local graph with LWFGs received from other sites and checks

for cycles in the combined graph.
• Any cycle in the combined graph indicates a global deadlock.
• Upon detecting a global deadlock, the site selects a victim transaction to be rolled

back.
• The site rolls back the selected transaction locally and broadcasts a kill message

to other sites.
• Every site receiving the kill message also kills the transaction and releases the

resources it is holding.

Example 6.5 Figure 6.16 shows the use of Ex in a two-site system running trans-
actions T1 and T2. As mentioned in Chapter 5, Section 5.3.2, let’s assume that the
transaction subscript is a reflection of the timestamp/age for each transaction. In other
words, T1 is older than T2 because one is less than two.

The following should be obvious from Figure 6.16:

• Both Sites 1 and 2 detect a potential global deadlock.

Figure 6.15 External port for Site 1.
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Figure 6.16 Deadlock detection process.

Figure 6.17 A three-site system with no deadlocks.

• Site 1 sends the LWFG “Ex→T2 →T1 →Ex” to Site 2.
• Site 2 sends the LWFG “Ex→T1 →T2 →Ex” to Site 1.
• Site 1 detects a global deadlock.
• Site 2 detects the same global deadlock.
• Either T1, T2, or both will be selected as a victim and will be rolled back.

As indicated above, the direct application of the algorithm without additional infor-
mation detects the deadlock but has the potential of killing both transactions instead
of killing only one. That is because the same deadlock will be detected by both sites.
Not knowing what the other site decides, each site may decide on aborting a different
transaction and therefore causing unnecessary slowdown of the system. Also, sending
both LWFGs puts an additional and unnecessary communication cost on the system. To
eliminate these issues, every site will use Rule 6.2, as discussed below, before sending
their local WFG information.

Rule 6.2: Graph Sending Rule When a site detects a potential for global deadlock,
the site sends its graph information if and only if “the Ex is waiting for a transaction
that is younger than the transaction that is waiting for Ex.”

Applying Rule 6.2 to the above example results in the following sequence of events:

• Both sites detect a potential global deadlock.
• Site 1 detects “Ex→T2 →T1 →Ex” as a potential for distributed deadlock.
• Site 2 detects “Ex→T1 →T2 →Ex” as a potential for distributed deadlock.
• Site 1 sends “Ex→T2 →T1 →Ex” to Site 2.
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• Site 2 does not send its LWFG since in its graph T1 is older then T2.
• Site 2 receives information from Site 1, combines the two graphs, and detects the

deadlock.
• Site 2 selects either T1 or T2 to be killed (but not both).
• Site 2 informs Site 1 of the decision.

Example 6.6 This example shows how we apply the deadlock detection algorithm
to a system that is not in deadlock.

Transactions are the ones used in Figure 6.11.

• Site 1 detects “Ex→T1 →T2 →Ex” as a potential global deadlock.
• Site 1 does not need to send information since T1 is older then T2.
• Site 2 detects two local graphs: “Ex→T2 →T3” and “T1 →Ex.” Neither one of

these graphs is a potential for global deadlock since they do not have a cycle
including Ex.

• Site 2 does not send its graph information either.
• In the next iteration of the deadlock detection process, both Site 1 and Site 2 will

examine their own graphs and apply the algorithm again. Suppose that, by then,
T3 at Site 2 has finished, which allows T2 to continue at Site 2. Once T2 finishes
at Site 2, T2 at Site 1 will commit and allows T1 to continue.

Example 6.7 This example uses a three-site system depicted in Figure 6.17.
The application of the deadlock detection algorithm results in the following steps:

• Site 1 detects “Ex→T2 →T1 →Ex” as a potential global deadlock.
• Site 1 will send information to Site 2.
• Site 2 detects “Ex→T1” and “T3 →T2 →Ex.”
• Neither graph indicates a potential for global deadlock.
• Site 2 does not send any information to Site 1.
• Site 2 combines the graph “Ex→T2 →T1 →Ex” that it has received from Site 1

with its local graphs.
• After combining the graph, Site 2’s graphs are “Ex→T1” and “T3 →T2 →

T1 →Ex.”
• Rightly, neither graph shows any cycle and therefore no deadlocks.

Example 6.8 Up to this point, we have used examples of two-site systems. For these
examples, it is easy to know where each site sends its LWFG information—which is
always the other site. In a system that has more than two sites, the question of where to
send the LWFG information must be answered. Assume we have the three-site systems
shown in Figure 6.18.

Application of the deadlock detection algorithm results in the following:

• At Site 1, “Ex→T9 →T8 →Ex” is a potential for global deadlock.
• At Site 2, “Ex→T8 →T7 →Ex” is a potential for global deadlock.
• At Site 3, “Ex→T7 →T9 →Ex” is a potential for global deadlock.
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Figure 6.18 A three-site deadlock.

• Site 1 must send its LWFG information.
• Site 2 must send its LWFG information.

Question: Where do Sites 1 and 2 send their LWFG information?
For each site, there are three alternatives that answer this question. In the first

alternative, we broadcast the LWFG to all sites. This alternative is too costly and
wasteful. The broadcast might include sites that are not part of the deadlock and do
not need to receive the information. The second alternative suggests sending the graph
information along the input port. Applying this alternative, Site 2 will need to send its
LWFG to Site 1. This is not possible since Site 2 may not know which site has spawned
T8 at its site. The third alternative suggests sending the LWFG information along the
output port. Obviously, Site 2 knows that it has spawned T7’s child transaction at
Site 3 as an output port. Applying this rule, Site 2 will have to send its graph to Site
3. Therefore, the rest of the steps involved in this example are for Site 1 to send its
LWFG to Site 2, and Site 2 to send its LWFG to Site 3.

In the next iteration of the distributed deadlock detection algorithm, sites that receive
graphs from other sites combine these graphs with their local information and apply the
algorithm again. We have outlined all steps for detecting the deadlock in this example
in Table 6.1.

We have used the following notation in Table 6.1:

• For simplicity, we have used only numbers to refer to transactions. For example,
we have used “7” to represent “T7” and so on.

• The “Iteration” column indicates when the deadlock detection process starts. This
corresponds to the deadlock timer going off.

• The “Site” column indicates a site number, using roman numerals. All the subse-
quent rows are for that site, until a new value is seen in this column.

• The “Receive” column indicates the graph information that the corresponding site
receives.

• The “From” column indicates the site number from which the information was
received.

• The “Graph” column contains either the LWFG or the combined WFG for each
site.
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TABLE 6.1 Steps in Detecting a Three-Site Distributed Deadlock

• The “Send” column indicates the graph information that a site will be sending in
this iteration.

• The “To” column indicates the number of the site that will be receiving the graph
we “Send.”

• The “Potential” column indicates if a graph is a potential for global deadlock.

Several variations of this algorithm have been proposed [Hass82] [Chandy82]
[Chandy83]. All of these deadlock detection algorithm variations propose that when
a transaction is blocked because of a conflict with another transaction, the blocked
transaction can start the deadlock detection process. Details of these approaches are
left as an exercise for the reader.

6.4 SUMMARY

Locking is one of the approaches that both centralized and distributed systems use to
provide isolation for the data items in a database that are being accessed by concur-
rent transactions. When one transaction locks a data item exclusively, it forces other
transactions to wait. If not controlled, this waiting can create a deadlock. Deadlock is
a directed cycle in the wait-for-graph (WFG) of the system, either local or distributed.
Once a deadlock happens, all transactions involved in the deadlock are blocked and
cannot be processed anymore. An intervention from the system (or the user) is required
to break the deadlock cycle so that transactions can continue.

In this chapter, we presented three approaches for handling deadlocks in cen-
tralized and distributed database systems. Deadlock prevention, deadlock avoidance,
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and deadlock detection and removal algorithms were discussed. Although all three
approaches are used in the industry, these approaches have their own strengths and
weaknesses. Deadlock prevention has the least amount of overhead and is the most
restrictive approach. Deadlock avoidance offers more flexibility than deadlock preven-
tion but has more overhead. Deadlock detection offers the most flexibility but also has
the highest overhead. Deadlock detection is the standard in centralized and distributed
database systems.

6.5 GLOSSARY

Awaits A wait between two transactions that spans sites.
Can-Wait-For A condition that when satisfied allows one transaction to wait for

another local or global transaction.
Deadlock A state of the DBE in which two or more transactions block each other’s

process because of locked items.
Deadlock Avoidance A deadlock handling scheme that uses time as a priority scheme

to avoid deadlocks.
Deadlock Detection A deadlock-handling scheme in which deadlocks are allowed

to happen and then are dealt with.
Deadlock Prevention The most restrictive deadlock handling scheme in which trans-

actions have to secure all the data item locks they need before they are allowed to
start.

Deadly Embrace Another term used for deadlock.
Distributed Transaction A transaction that leaves its originating site to work on

data items that are remote.
Distributed Wait–Die A distributed deadlock-handling scheme that uses the

wait–die algorithm.
Distributed Wait-for-Graph A wait-for-graph that includes waits across sites.
Distributed Wound–Wait A distributed deadlock-handling scheme that uses the

wound–wait algorithm.
External Port A perception of all transactions outside any site.
Global Timestamp A timestamp that includes local time reading and a site ID for

global unique identification of all transactions.
Global Transaction A transaction that works with data at more than one site in a

distributed system.
Global-Wait-For-Graph (GWFG) A wait-for-graph that includes waits for transac-

tions across sites.
Input Port A port that is used by processes outside a site to invoke a child transaction

at the site.
Local Timestamp A timestamp that is generated locally for a local transaction.
Local Transaction A transaction that does not run at any site but the local site.
Local Wait-For-Graph (LWFG) A wait-for-graph that includes only local transac-

tions’ waits.
Output Port A port that is used by a local process to invoke a child transaction at

a remote site.
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Potential for a Global Deadlock The probability that local transactions might be
involved in a global deadlock.

Preacquisition of All Locks A deadlock-handling scheme that requires all transac-
tions to secure all the data item locks they need before they run.

Timestamp An identification of a transaction based on the time.
Transaction Starvation A phenomenon that prevents a transaction from ever secur-

ing all the data item locks it needs.
Wait–Die An approach to deadlock avoidance that uses age to allow a transaction

to wait or to die.
Wait-For-Graph (WFG) A direct graph that shows how transactions are waiting for

items locked by other transactions.
Wound–Wait An approach to deadlock avoidance that uses age to allow a transaction

to try to preempt the lock another transaction is holding or to wait for it.
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EXERCISES

Provide short (but complete) answers to the following questions.

6.1 In Figure 6.19, there are two concurrent global transactions “T1” and “T2,” local
transactions “T3” (at Site A) and “T4” (at Site B), and local schedules “SA”
and “SB” at Sites A and B, respectively. These two schedules are serializable
to “T2 → T3 → T4 → T1” or “T2 → T4 → T3 → T1.” Data items “x1” and
“x2” are stored at Site A, while “x3” and “x4” are stored at Site B. We use a
distributed wound–wait algorithm for deadlock control. Write all awaits that exist
in the above two schedules. Assume all transactions have entered the system at
Site C. Suppose T2 makes a new request at Site B to do R2(x3) after the current
request R4(x4). Can “T2-wait-for-T1”?
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Figure 6.19 A three-site deadlock.

Figure 6.20 WFG for Exercise 6.2.

6.2 Briefly explain how the WFG given in Figure 6.20 can be formed.

6.3 Consider Figure 6.21 with three sites and the local WFGs for them. How many
cycles of the distributed deadlock detection are required to detect all existing
deadlocks? Show all steps required in a table similar to Table 6.1.

6.4 Assume a three-site distributed system that uses a distributed wound–wait for
concurrency control. Assume T1 enters Site 1, T2 enters Site 2, and T3 enters
Site 3. T1 is the oldest transaction while T3 is the youngest. These transactions
enter the system at exactly the same time. Assume x is stored at Site 1, y is at
Site 2, and z is at Site 3. The three schedules shown in Figure 6.22 have been
formed. Also assume that T1 gets to Site 2 before T2 gets to Site 3. T3 gets to
Site 1 last. Answer the following questions:

(A) What are all the partial commitment orders for S1, S2, and S3?
(B) Is S1 serializable? If yes, show serialization order.
(C) Is S2 serializable? If yes, show serialization order.
(D) Is S3 serializable? If yes, show serialization order.
(E) What are all the waits and/or awaits in the system?
(F) How do you apply the distributed wound–wait algorithm and what are the

results?

6.5 Suppose schedules “SA” and “SB” are produced by the local schedulers at Site A
and Site B, respectively, as shown. Assume that all transactions enter the system
at Site C (making all transactions global). Transaction ID shows the timestamp
(the smaller the ID, the older the transaction).

SA = r1(x1), w1(x1), r2(x2), r4(x1), w2(x2), w3(x2), r4(x2)
SB = r5(x3), r1(x3), r5(x4), w2(x4), r3(x4), r3(x3)
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Figure 6.21 WFG for Exercise 6.3.

Figure 6.22 Schedules formed at Sites 1, 2, and 3.

(A) Are the local SA and SB schedules serializable? If so, what are the equivalent
local serial schedules? If not, why? Show all partial orders.

(B) Are these schedules globally serializable? If so, what is the equivalent global
serial schedule? If not, why?

(C) Write all awaits that exist at Sites A and B (separate them by site).
(D) Are there any deadlocks in the local schedules and the global schedule?
(E) Suppose transaction T3 makes a new request to write x4 at Site B, resulting

in the following schedule at Site B: “SB = r5(x3), r1(x3), r5(x4), w2(x4),
r3(x4), r3(x3), w3(x4).” How is this new request handled in a distribution
wound–wait algorithm? Briefly explain.
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REPLICATION CONTROL

Replication is a technique that only applies to distributed systems. A database is said to
be replicated if the entire database or a portion of it (a table, some tables, one or more
fragments, etc.) is copied and the copies are stored at different sites. The issue with
having more than one copy of a database is maintaining the mutual consistency of
the copies—ensuring that all copies have identical schema and data content. Assuming
replicas are mutually consistent, replication improves availability since a transaction
can read any of the copies. In addition, replication provides for more reliability, mini-
mizes the chance of total data loss, and greatly improves disaster recovery. Although
replication gives the system better read performance, it does affect the system neg-
atively when database copies are modified. That is because an update operation, for
example, must be applied to all of the copies to maintain the mutual consistency of
the replicated items.

Example 7.1 This example shows how the mutual consistency of two copies of a
database can be lost when the copies are subjected to schedules that are not identical.
In this example, the value of data item “X” is 50 at both the LA and NY sites before
transactions “T1” and “T2,” as shown below, start.

Begin_Tran T1; Begin_Tran T2;
R(X); (R(X);
X = X - 20; X = X * 1.1;
W(X); W(X);

End_Tran T1; End_Tran T2;

Distributed Database Management Systems by Saeed K. Rahimi and Frank S. Haug
Copyright © 2010 the IEEE Computer Society
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T1 runs in LA before it moves to NY to run there. T2, on the other hand, runs in
NY first and them moves to LA to run there. Based on this ordering of the transactions’
operations, the following two schedules are formed at LA and NY:

SLA = R1(X), W1(X), R2(X), W2(X)
SNY = R2(X), W2(X), R1(X), W1(X)

When we apply these schedules to the copies of X in LA and NY, we end up with
“X = 33” in LA and “X = 35” in NY as shown below:

At Los Angeles
Initial Value X = 50
T1 Subtracts 20 X = 30
T2 Increases 10% X = 33

At New York

Initial Value X = 50
T2 Increases 10% X = 55
T1 Subtracts 20 X = 35

Recall from Chapter 5 that SLA is a serial schedule as “T1 → T2” and SNY is also
a serial schedule as “T2 → T1.” Although both local schedules are serial schedules
and maintain the consistency of the local copies, the system has a cycle in its global
schedule, which leads to the inconsistency between the copies. To maintain the mutual
consistency of the data items in the replicated database, we must enforce the rule that
“two conflicting transactions commit in the same order at every site where they both
run.” See Section 5.2.4.2 in Chapter 5. Guaranteeing this requirement is the topic of
replication control, which we will discuss in this chapter.

7.1 REPLICATION CONTROL SCENARIOS

It should be clear by now that replication control algorithms must maintain the mutual
consistency of the copies of the database. One way to categorize the approaches is
based on whether or not the copies are identical at all times. From this perspective,
there are two approaches to replication control: synchronous replication control and
asynchronous replication control.

In synchronous replication, replicas are kept in sync at all times. In this approach, a
transaction can access any copy of the data item with the assurance that the data item
it is accessing has the same value as all its other copies. Obviously, it is physically
impossible to change the values of all copies of a data item at exactly the same time.
Therefore, to provide a consistent view across all copies, while a data item copy is
being changed, the replication control algorithm has to hide the values of the other
copies that are out of sync with it (e.g., by locking them). In other words, no transaction
will ever be able to see different values for different copies of the same data item. In
asynchronous replication, as opposed to synchronous replication, the replicas are not
kept in sync at all times. Two or more replicas of the same data item can have different
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values sometimes, and any transaction can see these different values. This happens to
be acceptable in some applications, such as the warehouse and point-of-sales database
copies.

7.1.1 Synchronous Replication Control Approach

In this approach, all copies of the same data item must show the same value when
a transaction accesses them. To ensure this, any transaction that makes one or more
changes to any copy is expanded to make the same change(s) to all copies. The two-
phase commit protocol (see Chapter 8) is used to ensure the atomicity of the modified
transaction across the sites that host the replicas. For example, assume we have copied
the “EMP(Eno, Ename, Sal)” table in all the sites in a three-site system. Also, assume
transaction “T1” has the following operations in it:

Begin T1:
Update EMP
Set Sal = Sal *1.05
Where Eno = 100;

End T1;

This transaction gives a 5% salary increase to employee 100. To make sure that all
copies of the EMP table are updated, we would change T1 to the following:

Begin T1:
Begin T11:

Update EMP
Set Sal = Sal *1.05
Where Eno = 100;

End T11;

Begin T12:
Update EMP
Set Sal = Sal *1.05
Where Eno = 100;

End T12;

Begin T13:
Update EMP
Set Sal = Sal *1.05
Where Eno = 100;

End T13;
End T1;

where T11 is a child of T1 that runs at Site 1, T12 is a child of T1 that runs at Site
2, and T13 is a child of T1 that runs at Site 3. Because of this modification, when
T1 commits all three copies will have been updated accordingly. It is important to
note that, during the execution of T1, employee 100’s salary is locked and therefore
no other transaction can see a mutually inconsistent value for this employee’s salary.
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The lock is removed when T1 commits, at which time T1 reveals the new salary for
employee 100 in all copies of the EMP table.

It should be obvious that enforcing synchronous replication control has major per-
formance drawbacks. Another major issue is dealing with site failures. If one of the
sites storing a replica of a data item modified by T1 goes down during the execution
of T1, T1 is blocked until the failed site is repaired. We will discuss the impact of site
failure on transaction execution in Chapter 8. For these reasons, synchronous replica-
tion is only used when one computer is a backup of the other. In this scenario, two
computers act as a hot standby for each other. Suppose we have two servers, “A” as
the primary and “B” as the backup, that need to be identical at all times. In this setup,
when A fails, transaction processing continues on B without interruption. Meanwhile,
transactions that run on B are kept in a pending queue for application to A when it is
repaired. When the A server restarts, it is not put back in service until it is synchronized
with the B server. During synchronization, new transactions that arrive at either site
are held in the job queue and are not run. Synchronizing A means that the pending
transactions from B are applied to A in the same order that they ran on B. After all of
the transactions in the pending queue have been processed against A, both servers are
put back in service. At this time, transactions are processed from the front of the job
queue and run against both copies.

7.1.2 Asynchronous Replication Control

In this approach, copies do not have to be kept in sync at all times. One or more copies
may lag behind the others (be out of date) with respect to the transactions that have
run against the copies. These copies need to eventually catch up to the others. In the
industry, this process is known as synchronization. How and when the out-of-date
copies are synchronized with the others depends on the application. There are multiple
approaches to implementing the required synchronization. Most commercial DBMSs
support what is known as the primary copy approach. This approach is also known as
the store and forward approach. The site that is updated first is called the primary
site, while others are known as the secondary sites. Some DBMS vendors call the
primary site the publisher and the secondary sites the subscribers. All transactions
are run against the primary site first. This site determines a serialization order for the
transactions it receives and applies them in that order to preserve the consistency of the
primary copy. The transactions are then queued for application to the secondary sites.
Secondary sites are updated with the queued transactions using a batch-mode process.
This process is known as the rollout. The database designer or the DBA decides on
the frequency of rolling out transactions to the secondary sites.

The secondary copies can be kept in sync with the primary copy by either rolling
out the transactions that are queued or rolling out a snapshot of the primary copy. To
roll out queued transactions, the transactions are run from the front of queue against all
secondary sites. In the snapshot rollout, the image of the primary copy is copied to all
secondary sites. The advantage of rolling out a snapshot of the primary is speed. Most
databases support unloading a database to a file and reloading the database from a file.
Snapshot replication can be implemented using these database capabilities to speed up
the synchronization of the secondary sites with the primary. Snapshot replication can
be done on demand, can be scheduled, or can simply run periodically.
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In asynchronous replication, the failure of the primary is troublesome, since the pri-
mary is the only copy that is updated in real time. To deal with the failure of the
primary, the system may use a hot standby as a backup for the primary. When the pri-
mary fails, the standby will continue to act as the primary until the primary is repaired
and is synchronized as explained in Section 7.1.1. Instead of having a fixed site as
the primary, an approach that allows for a floating primary can also be utilized. In
this approach, the responsibility to be the hot standby for the primary is passed from
one site to another in a round-robin fashion. As another alternative, sites may also be
allowed to compete to be the primary’s hot standby, if the designers choose.

Other alternatives to asynchronous replication control can also be implemented.
In one approach, instead of having one primary and many secondary sites, a system
can have multiple primaries and a single secondary. In this case, transactions are
applied to each primary when they arrive at a secondary. Since there is no immediate
synchronization between the primaries, the primary copies may diverge. To synchronize
all the copies, transactions that are queued at each primary are sent to the single
secondary for application. This copy will then generate a serialization order that is
applied to the secondary and is then rolled out to all the primaries. In another approach,
as opposed to having sites designated as primary and secondary, we can have all sites
act as peers. In this approach to replication, we utilize symmetric replication in
which all copies are treated the same. Transactions are applied to the local copy of the
database as they arrive at a site. This approach potentially causes the divergence of the
replicas. Example 7.1 in Section 7.1.1 discusses this approach to replication control.
Since the copies of the database in this approach may diverge, occasionally the system
has to synchronize all the copies. Most DBMS vendors ship the necessary software
to compare the contents of the copies and also provide tools for synchronization and
identification of differences in the copies. When synchronization is required, tools from
the DBMS allow the database designer or a DBA to synchronize the replicas before
they are put back in service again.

7.2 REPLICATION CONTROL ALGORITHMS

Many replication control algorithms have been studied and proposed in the literature
[Ellis77] [Gifford79] [Rahimi79] [Thomas79] [Rahimi80]. All these approaches focus
on providing synchronous replication control. The algorithms can be categorized in two
general categories of centralized and distributed control. In the centralized approach,
the control is given to one site while in the distributed approach the control is shared
among the sites. Before discussing replication control algorithms, we need to define
the architectural aspects of a replicated database environment (DBE).

7.2.1 Architectural Considerations

As mentioned in Chapter 2, a database can be fully or partially replicated. A fully
replicated database stores one complete copy of the database at each database server.
A partially replicated database, on the other hand, does not store a copy of every
table of the database at every site. Instead, some of the tables (or some of the table
fragments) are copied and stored at two or more sites. To simplify the discussion of the
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Figure 7.1 Master–salve replication control algorithm placement.

replication control algorithms, we assume the database is fully replicated. Extension
of the algorithms to cover partially replicated databases is left as an exercise.

We also make the following assumptions with regard to the communication
subsystem:

• Message delays are viable, meaning that there is a time delay between when a
message is sent and when it is received.

• Messages are received in the same order in which they are sent. To guarantee
this, the communication subsystem must use some form of queuing mechanism
to order the delivery of the messages.

• Finally, we assume that all messages that are sent will be received (no messages
are lost).

The last two points are referred to as “reliable messaging,” which is discussed in
Section 15.1.2.5. General messaging issues are also discussed in Section 14.3.1.2.

7.2.2 Master–Slave Replication Control Algorithm

The master–slave replication control algorithm was first proposed by C. Ellis [Ellis77].
In this implementation, as shown in Figure 7.1, there is one master algorithm and N
slave algorithms for an N-site system. The master algorithm runs at only one site and is
responsible for conflict detection. A copy of the slave algorithm runs at every site where
there is a copy of the database. The implementation of this approach consists of two
phases: the transaction acceptance/rejection phase and the transaction application phase.

Ellis uses a modified Petri net [Petri62] diagram notation known as an evaluation
net [Nutt72]. In this notation, squares represent events, circles represent states, large
arrows represent tasks, and small arrows represent transitions. A dot next to the large
arrow indicates a single message being sent as one of the actions in the task, while
three dots (an ellipsis) indicate a broadcast. We have used a Petri net to discuss the
master algorithm in Figure 7.2. We will not show the slave algorithm diagrammatically
here—this is left as an exercise for the reader. We will explain how the two algorithms
work to ensure consistency of the copies of the database in the next section.
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Figure 7.2 Petri net for the master algorithm in a master–slave replication algorithm.

7.2.2.1 Centralized Transaction Acceptance/Rejection Phase When a transaction
enters a site, the local transaction monitor (TM) sends a request to the slave at that
site asking it to run the transaction. Upon receiving this request, the slave sends a
request to the master asking if it is okay to run this transaction. The box labeled “Ext
REQ” in Figure 7.2 indicates this request. To be able to detect conflicts between
running transactions, the master maintains a pending queue of such transactions.
The master’s pending queue holds all the currently running transactions that have
been approved by the master (the master voted OK to each of them) but have not
been committed yet. When the master receives a request from a slave, it checks for
conflicts between this transaction request and all the transactions that are already in
its queue. If the new request is not in conflict with any transaction in its pending
queue, the master enters the transaction in its pending queue and sends an “ACK+”
(positive acknowledgment) message to the requesting slave indicating that it is OK to
run the transaction. If, on the other hand, the new request is in conflict with one or
more of the transactions in the pending queue, the master responds with an “ACK−”
(negative acknowledgment) message to the slave indicating that it is not OK to run
this transaction. When the requesting slave receives a favorable response from the
master, it starts the transaction application phase. On the other hand, if the response
from the master is not favorable, then the slave rejects the transaction.

7.2.2.2 Centralized Transaction Application Phase When a slave receives the OK
for its transaction from the master, it broadcasts a request to update by sending a “UPD”
message to all other slaves. Slaves that receive this request must run the transaction
and acknowledge it by sending an “ACK” message back to the requesting slave. The
requesting slave waits until it receives acknowledgments from all its peers. This is an
indication that the transaction has been applied successfully to all database copies at
all sites. Only then does this slave send a “DONE” message to the master and the TM,
letting them know that the transaction has been applied successfully. Upon receiving
the “DONE” message from the slave, the master removes the transaction from its
pending queue.
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Like any other centralized control algorithm, the centralized voting algorithm has
the drawback of overloading the center of control, which is the weakest point of the
architecture. The failure of the center causes the overall system to collapse. To over-
come issues of load balancing and improve resiliency, Ellis also proposed a distributed
voting algorithm, which we discuss next.

7.2.3 Distributed Voting Algorithm

This implementation of the distributed voting algorithm is similar to the centralized
version, in that a transaction has to be “accepted” before it is actually applied to all
copies. The difference lies in how the transaction acceptance is carried out. In this
approach, since there is no master algorithm, all the sites act as peers. In this scenario,
they all have to “OK a transaction” before it runs. Any objection from any site will
cause the rejection of the transaction. In other words, this implementation requires
consensus on applying a transaction, that is, the decision to approve the transaction
must be unanimous. Once consensus is reached, the transaction is applied by all the
slaves (peers) at all the sites.

7.2.3.1 Distributed Transaction Acceptance Phase As in the centralized case, when
a transaction enters a given site, the local TM sends a local request to the slave at that
site asking it to run the transaction. Upon receiving this request, the slave broadcasts a
request to all other slaves asking them if it is OK to run this transaction. The requesting
slave then waits until it receives responses from all other slaves. If they all OK the
transaction, the requesting slave proceeds to the transaction application phase. If, on the
other hand, one or more slaves are NOT OK to run the transaction, the requesting slave
rejects the transaction. Each and every site uses a set of priority-based voting rules to
resolve conflicts. There are three basic conflict cases that a slave needs to handle.

Assuming sites are voting on transaction Ti, the following rules are applied:

• Case 1: The voting slave is not currently working on a transaction that has been
initiated at its site. In this case, the slave votes OK to applying Ti.

• Case 2: The voting slave is currently working on transaction Tj that has been
initiated at its site and Tj is NOT in conflict with Ti. In this case, the slave votes
OK to Ti since both Ti and Tj can run concurrently.

• Case 3: The voting slave is currently working on transaction Tj that has been
initiated at its site and Tj is in conflict with Ti. Since Ti and Tj cannot run
concurrently, one of them has to be rejected (aborted). To sort out the conflict,
age is used as a priority. If Tj has a higher priority than Ti, because it is older, the
slave votes NOT OK to Ti, causing Ti to die. If, on the other hand, Tj has lower
priority than Ti, because it is younger, then the slave votes OK to Ti, causing its
own transaction Tj to die.

7.2.3.2 Distributed Transaction Application Phase The slave that has started the
transaction acceptance phase for its transaction can start the transaction application
phase when it receives an OK from all other slaves. In this phase, the slave applies the
transaction to all copies by sending a new broadcast. The broadcast requests all other
slaves to run the transaction. Slaves that receive this request simply run the transaction
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and acknowledge it by sending an “ACK” message back to the requesting slave. The
requesting slave waits until it receives acknowledgments from all its peers. This is an
indication that the transaction has been applied successfully to all database copies at
all sites. At this time, the slave will let the TM know that the transaction has been
applied successfully.

Note: During the transaction application phase, a slave defers voting on a new
transaction until it has completed applying its own transaction. This is to make sure
that newer transactions are serialized after older transactions at all sites.

7.2.4 Majority Consensus Algorithm

The two variations of the algorithms proposed by Ellis are examples of centralized
and distributed replication control. In the centralized case, the algorithm is susceptible
to the failure of the center of control. In the distributed case, the algorithm requires
consensus to detect conflicts. The consensus requirement may result in more than one
slave detecting the same conflict, which is not necessary. To overcome this drawback,
the consensus requirement could be lessened to a majority requirement. In other words,
when a transaction enters the system it must collect OKs from more than half of the
slaves before it is applied. When two conflicting transactions run concurrently in a sys-
tem that is using this approach, it is obvious that there is at least one site that sees both
conflicting transactions. In this case, that site detects and resolves the conflict. Thomas
first introduced the majority voting algorithm to overcome the drawback of the consen-
sus approach [Thomas79]. We briefly discuss Thomas’ algorithm in the next section.

In Thomas’ proposal, the transaction life cycle is divided into two phases similar
to what we discussed before. These are the transaction acceptance/rejection phase and
the transaction application phase. In order to make this concept work, Thomas makes
use of timestamps for the transaction and data items in his proposal. When transaction
“Ti” enters the system, it is tagged with the local site ID and the local clock reading
as its timestamp, which is shown as “ts(Ti).” In addition, each data item is given a
timestamp, which is the timestamp of the last transaction that has written the item.
When a transaction enters a site, it collects the values of all data items it needs to read
and write. The data items a transaction needs to read are called the read set (RS), while
the data items it needs to write are called the write set (WS). In addition to the RS
and the WS, the transaction also collects the timestamps of these items. Once all this
information has been collected into a structure called the update list (UL), the voting
starts. The UL carries the number of OK votes that a transaction has collected so far.

There are two alternatives to achieve voting—the slave broadcasts the UL to all
slaves to vote on, or the slave forwards the UL to another site for voting. The difference
between the two approaches is that in the first approach all slaves vote in parallel on
a transaction while in the second approach only one site votes on a transaction at any
given point in time. The first approach is known as the broadcast approach while the
second approach is known as daisy chaining. We will discuss only the daisy chaining
approach, leaving the broadcast approach as an exercise.

Thomas’ algorithm requires a majority of sites to OK a transaction before a transac-
tion is applied to all copies. If one site rejects a transaction before a majority decision
is reached, then the transaction will be aborted. The following outlines the voting,
transaction acceptance, transaction application, and transaction rejection steps of the
algorithm.
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7.2.4.1 The Voting Rule Suppose a site receives a UL for transaction Ti to vote on.
Once the site receives the UL, it compares the timestamps of all items in the UL with
the timestamps of the items in its local copy.

After the comparison, the slave applies the following rules:

• If the timestamp of any data item in the UL is not the same as the timestamp
from the local copy, then the site votes REJECT. That is because the local copy
has been written by a different transaction since the voting began for the new
transaction. In this case, the new transaction cannot continue, which is what the
REJECT vote achieves.

• If timestamps are equal but there is a conflicting transaction with a higher priority
(such as Tj) pending at this site (i.e., ts(Tj)< ts(Ti)), then the site votes REJECT.
This is to prevent the lower priority transaction, Ti, from running while the higher
priority transaction, Tj, is running.

• If the timestamps are equal but there is a conflicting transaction with lower priority
(such as Tj) pending at this site (i.e., ts(Tj)> ts(Ti)), then the site votes DEFER
and puts the transaction in its deferred list. The site then forwards the transaction
and its UL to another site.

• Otherwise, the site votes OK for Ti, increments the number of OK votes in the
UL, and appends the transaction to its pending list.

7.2.4.2 The Resolution Rule If a site votes OK on a transaction and a majority is
reached, then the site accepts the transaction and broadcasts acceptance to all sites.
If a site votes REJECT, then the site broadcasts a “REJECT” message to all sites.
Otherwise, the site forwards the transaction.

7.2.4.3 The Transaction Application Rule Once a decision has been made to accept
or reject a transaction, that decision is broadcast to all sites.

A site that receives the resolution message has to act on the message as follows:

• If the transaction is accepted, then the site removes the transaction from its pending
list (if it is in there), applies the transaction, and rejects all conflicting transactions
that were deferred because of the accepted transaction.

• If the transaction is rejected, then the site removes the transaction from its pending
list (if it is in there) and reconsiders all conflicting transactions that were deferred
because of the rejected transaction.

7.2.5 Circulating Token Algorithm

This approach to replication control is different from the other approaches that we have
discussed so far. In previous alternatives, some transactions may, in fact, be rejected
to protect the database against mutual inconsistency. In this approach, all transactions
are accepted and none are rejected. This approach uses a circulating token to serialize
all transactions in the system. Once the serialization order has been determined for a
transaction, the transaction runs in that order against every copy of the database. We
call this approach the circulating token approach.
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Similar to the other approaches, the circulating token algorithm has transaction
acceptance and transaction application phases. During the transaction acceptance phase,
all transactions in the system are sequenced to run—their serialization order is deter-
mined. This is achieved by assigning every transaction at every site a unique ticket
from a sequential series, which indicates the order of that transaction in the serializa-
tion schedule. Once a transaction has been ticketed, it is broadcasted to all sites. The
sites then run their transactions in the order of their tickets.

7.2.5.1 Circulating Token Implementation To implement the algorithm, a token is
utilized to allow the sites to ticket their transactions. A site can only ticket its trans-
actions when it is holding the token. The token circulates in a virtual ring and carries
the available ticket number from site to site. This allows all sites the opportunity to
ticket their transactions. To be fair, the system utilizes either a maximum amount of
time that a site can hold the token or a maximum number of transactions that a site can
ticket while holding the token. When a site pulls a ticket out of the token, it assigns
it to a transaction and increments the ticket on the token. Once the site has reached
the maximum number of tickets allowed or the maximum time to hold the token is
reached, the site forwards the token with the available ticket to the next site in the ring.
To be able to do this, every site must know the address of its successor in the ring. To
deal with failures, as we will discuss later, each site must also know its predecessor.

The ticketing of transactions constitutes the transaction acceptance phase of this
algorithm. Once a transaction is ticketed, the algorithm starts the transaction’s applica-
tion phase. During this phase, a transaction and its ticket are broadcast to all sites. In
the transaction application phase, all transactions must be applied in the order of their
tickets at all sites. In order to achieve this, every site maintains the ticket number of the
last applied transaction (LAP). When a new transaction and its ticket arrive at a site, the
ticket number of this transaction is compared to the LAP. If the incoming transaction’s
ticket number is equal to “LAP + 1,” then this transaction is ready to be applied at the
site. Otherwise, the transaction is queued until such time as all transactions with smaller
ticket numbers have been applied at the site. Example 7.2 shows how token passing
can be used in a four-site system. Example 7.3 extends the concept of token passing
to handle loss of the token during transmission and/or as a result of a site failure.

Example 7.2 Suppose we have the following four-site system using the token passing
replication control on a virtual ring as shown in Figure 7.3. Site 1 sends the token to
Site 2, Site 2 sends the token to Site 4, Site 4 sends the token to Site 3, and Site 3
sends the token back to Site 1, completing the ring. Also, for fairness, assume that
when a site receives the token it can ticket a maximum of three transactions.

When the system starts, the token is at Site 1 and has ticket 1 on it. Before Site 1
sends the token forward, it tickets its two transactions. Transactions T11 and T12 are
given tickets 1 and 2. The ticket number for a transaction is indicated in bold next to
the transaction number in Figure 7.3. When the token leaves Site 1, it carries ticket
3. Site 2 pulls ticket 3 and assigns it to transaction T21; Site 4 tickets T41, T42, and
T43 with tickets 4, 5, and 6. Finally, Site 3 tickets T31, T32, and T33 with tickets 7,
8, and 9. Therefore, when the token arrives at Site 1 again, it is carrying ticket 10.
In the first circulation of the token, transactions T11, T12, T21, T41, T42, T43, T31,
T32, and T33 are ticketed with ticket numbers 1 through 9. If the state of the system
does not change when token rotation number 2 starts, transactions T44 and T34 are
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Figure 7.3 A token passing replication control example.

given tickets 10 and 11, respectively. As a result, after the token arrives at Site 1
again it carries ticket 12. This results in a serial schedule as “T11 → T12 → T21 →
T41 → T42 → T43 → T31 → T32 → T33 → T44 → T34.”

The replication control algorithm is able to deal with the loss of the token as well.
The token may be lost in transition (from one site to another) or disappear when it is
at a site and the site fails. In either case, a replacement token is generated by the site
that recognizes the loss of the token and the process continues. The issue with token
recovery is to make sure that the tickets on the new token do not duplicate the tickets
that were on the old token, to avoid confusion in the serialization order of transactions.
We explain how to deal with the loss of the token in Example 7.3.

Example 7.3 Suppose we have the following four-site system using the token
passing replication control on a virtual ring as shown. Site 1 sends the token to Site
2, Site 2 sends it to Site 3, Site 3 sends it to Site 4, and Site 4 sends the token back
to Site 1, completing the ring. Also, for fairness, assume that when a site receives the
token it can ticket a maximum of two transactions as shown in Figure 7.4.

When the system starts, the token is at Site 1 and has ticket 1 on it. Before Site 1
sends the token forward, it tickets its only transaction, T11, with ticket 1 and forwards
the token. When the token leaves Site 1, it carries ticket number 2. Site 2 pulls ticket
2 and assigns it to transaction T21; Site 3 tickets T31 and T32 with tickets 3 and 4.
Finally, Site 4 tickets T41 and T42 with tickets 5 and 6. Therefore, when the token
arrives at Site 1 again it is carrying ticket 7. In the first circulation of the token, transac-
tions T11, T21, T31, T32, T41, and T42 are ticketed with ticket numbers 1 through 6.

Figure 7.4 Token passing replication control example with failures.
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Figure 7.5 Site failure in token passing replication control.

Now assume that when the second circulation of the token starts, the system
has changed as depicted in Figure 7.5. During this token rotation, Site 2 tickets
transaction T22 with ticket number 7 and passes the token to Site 3. Site 3 pulls
tickets 8 and 9 from the token and passes the token to Site 4. After the token arrives
at Site 4 and the site tickets transaction T43 with ticket 10, the site goes down. Site
4, therefore, cannot forward the token to Site 1. Site 1, waiting to receive the token
from Site 4, times out while waiting for its predecessor site and starts investigating
the status of the token. The first step in this process for Site 1 is to check with its
predecessor, that is, Site 4. Site 1 sends a message to Site 4 asking about the token.
Since Site 4 is down, it cannot respond. Once Site 1 does not hear back from Site
4 in a predetermined amount of time, it assumes Site 4 has failed and bypasses the
site and communicates with Site 4’s predecessor (Site 3). Site 1 sends a request to
Site 3, asking if it had sent the token to Site 4 and, if yes, what the ticket number on
the token was. Site 3 responds with ticket 10 to Site 1. At this time, Site 1 declares
Site 4 dead and regenerates a new token (with a new token ID) and puts ticket 10
on it. Up to this point, transactions T11, T21, T31, T32, T41, T42, T22, T33, T34,
and T43 have been ticketed with tickets 1 through 10, respectively, from the previous
token. Since the previous token was invalidated by Site 1, ticket 10 from this token
(assigned to T43 by Site 4) would also be invalid. Site 4’s transaction T43 must be
given a valid ticket from the new token. The process then continues.

Now suppose Site 4 is repaired when iteration 3 of the token starts. When Site
4 comes back on line, the ring is repatched but Site 4 is told that the previous token
at its possession is invalid and transaction T43 must get a new ticket. Suppose when
the third circulation of the token starts, the transactions that are in the system are as
shown in Figure 7.6. By the time the token arrives at Site 1 again—at the completion
of the third circulation of the token—transactions T11, T21, T31, T32, T41, T42,
T22, T33, T34, T23, T35, T43, and T44 are given tickets 1 through 13. As seen in
Figure 7.6, transaction T43 at Site 4 has been given 12 as its new ticket number.

As mentioned earlier, this algorithm can also deal similarly with the loss of the
token in transition from a site to a site. We leave the details of this case as an exercise.

7.2.6 Generalized Voting Algorithm for Replication Control

Recall that in order for copies of a database to show the same consistent state, they
all have to run the same serializable schedule. To guarantee that a local schedule is
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Figure 7.6 Token circulation after a site failure repair.

serializable, two conflicting operations must be seen by at least one site’s concurrency
control. Although many algorithms such as centralized control, decentralized control,
and voting for replication control have been proposed with different names, they are
all specific implementation of the generalized voting algorithm proposal by Gifford
[Gifford79]. In this approach to replication control, each database server in the system
is given a number of votes. The decision on how many votes a server should have
depends on the importance of the server in the system. For example, a mainframe
should have more votes than a departmental server, which might have more votes than
a group database sever. Generally, there are N copies of a data item denoted as {X1,
X2, . . . , XN}. Each database server that hosts a copy of X is assigned a number of
votes shown as “V(Xi) for i = 1, 2, . . . , N.” There are also two quorums defined for
reading a data item or writing a data item. Vr(X) is the number of votes required to
read X (we call this the read quorum). Vw(X) is the number of votes required to
write X (we call this the write quorum).

Voting starts when a transaction enters the system. If a transaction needs to read X,
it needs to collect Vr(X) votes from the copies of the database first. Once this quorum
is reached, the transaction can read the data item. If a transaction needs to write X, it
needs to collect Vw(X) votes from the copies of the database first. Again, once the write
quorum is reached, the transaction can write the data item. When a site casts its vote
for a transaction to read or write an item, it cannot vote again until that transaction is
completed. The key to the success of this algorithm is the fact that it makes sure that two
conflicting transactions that run concurrently cannot reach conflicting quorums—only
one quorum can be reached by one of the two transactions requiring the other one to
abort and restart. The success lies in defining the read and write quorums in such a
way that all read–write, write–write, and write–read conflicts are detected.

To make sure that only one of the two concurrent transactions with a read–write
conflict on X can run, the algorithm requires that “Vr(X) + Vw(X)> sum(V(Xi)) for
i = 1 to N”—meaning that “read quorum + write quorum” requires more votes than
the system has. This guarantees that two transactions trying to read and write the
same data item cannot both succeed. Similarly, to make sure that only one of the two
concurrent transactions with a write–write conflict on X can run, the algorithm requires
that “Vw(X)> sum(V(Xi))/2”—meaning that the quorum to write is more than half
the votes. This guarantees that two transactions conflicting to write an item cannot both
succeed. To show why this algorithm is known as the generalized voting approach for
replication, we explain how deciding on the number of votes, how deciding on the
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number of votes allocated to different sites, and how deciding on the read and write
quorums can implement other approaches by a series of examples.

Example 7.4 This example shows how “Write all sites–Read all sites” works.
Assume we have five copies of the database and each copy has one vote. There-
fore, the total number of votes in the system is five. Let’s decide on “Vr(X) = 5” and
“Vw(X) = 5.” This means that any transaction that wants to read or write X must
collect five votes. Since each site has one vote, all sites must OK every read and
every write from every transaction. Suppose transactions Ti and Tj are conflicting and
running concurrently in this system. Also, assume that Ti enters the system at Site 1
while T2 enters the system at Site 2. Site 1 votes OK to run T1 while Site 2 votes OK
to T2. At this point, these two sites do not have any more votes left. As a result, at
most T1 can have four votes, which would mean that T2 would have only one vote.
It is also possible that T2 might end up with four votes, but then T1 could only have
one vote. In both cases, neither one of the two transactions can collect the required
number of votes to succeed.

The above implementation of the voting approach requires consensus for writing
or reading a data item—all sites have to OK a transaction’s read or write. If there
is any site that has already cast its vote to allow a conflicting transaction to read or
write the data item, consensus for a new transaction is not possible. This guarantees
the consistency of the copies of the database.

Example 7.5 This example shows how “Write all sites—Read any sites” works.
Assume we have five copies of the database and each copy has one vote. Therefore,
the total number of votes in the system is five. Now let’s decide on “Vr(X) = 1”
(instead of 5 in Example 7.4) and “Vw(X) = 5.” In this case, a transaction can read
any of the five copies as long as the slave at that site votes OK to read the data item
X. Allowing every transaction to be able to read any copy, we must make sure that
we do not allow a conflicting transaction to write the same data item. Since Vw(X) is
set to 5, another transaction, like Tj, that wants to write X must get the OK from all
five sites. This requires that Tj to collect OK votes from the site that has already said
OK to Ti to read X. The site that has voted OK to Ti will say NOT OK to Tj, causing
Tj to collect only four OK votes, which is not enough to write X—Tj restarts.

Example 7.6 This example shows how “Write any 3 sites–Read any 3 sites” works.
Assume the same five site system as before with every site having one vote. Now
assume that “Vr(X) = 3” and “Vw(X) = 3.” In this case, a transaction that wants to
read or write an item must collect three OK votes from any three sites before it can
perform its operation. Since there are five sites in the system, one site will see any
read–write conflict or any write–write conflict between two transactions. That site will
have to decide how to cast its vote. If the site votes OK for a transaction that reads,
then all conflicting writers will be aborted. If the site votes OK to write X, then all
conflicting writers or conflicting readers will be aborted.

The above implementation of the algorithm results in a majority algorithm for repli-
cation control. Since majority is required for a transaction to read or write only one of
the conflicting transactions can succeed.
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Example 7.7 This example shows how “All reads and writes to one site” works.
Assume the same five- site system as before but four sites have zero votes and one
site has one vote. A transaction that wants to read has to reach a read quorum of one,
that is, “Vr(X) = 1.” A transaction that wants to write has to reach a write quorum
of one, that is, “Vw(X) = 1.” Since the only vote in the system is given to one
site, all transactions have to compete for that site’s vote. The site, therefore, will see
all requests from all transactions. By casting its vote for only one of the conflicting
transactions, the database consistency is preserved. That is because, when the site casts
its vote for one transaction, other concurrently running conflicting transactions will not
be able to get the necessary vote to run and are restarted. Although straightforward,
this implementation of the replication control mechanism is centralized and has all the
drawbacks associated with such an implementation.

7.2.7 Posted Update Approach

The posted update approach (PUA) was proposed by Rahimi [Rahimi80]. The main
advantage of this algorithm over distributed and majority voting algorithms is that it
can deal with partially replicated databases. The PUA preserves the consistency of a
database by producing serializable schedules. The approach also maintains consistency
across copies by applying the same serializable schedule to all copies of the database
and/or database partitions.

The PUA uses one queue for each partition to order how conflicting transactions
run against the partition and its copies. Once in a partition’s queue, transactions run
on the partition from the front of the queue one at a time. The PUA only processes
one transaction at a time from the front of the queue, hence eliminating concurrent
application of conflicting transactions to the partition and its copies. Therefore, the
PUA creates a serial schedule for the conflicting transactions against each partition
and its copies. To make sure that all copies of a partition are mutually consistent, the
PUA guarantees conflicting transactions are queued in the same order in all queues for
a given partition. The decision whether or not to queue a transaction for a partition is
made between the slaves and the master similar to the master–slave control approach
discussed before (see the centralized voting approach in Section 7.2.2).

In the PUA, there are three algorithms called “Master,” “Slave,” and “LDM,” which
stands for local data manager. The master algorithm runs at the site where the transac-
tion enters the system. If there are N copies of a partition of the database, then there
are N slaves, each running at one of these sites. Each slave is responsible for con-
trolling the entrance of the transactions in its associated partition queue. Transactions
waiting for services in each queue are called “Posted Updates.” The LDM algorithm is
responsible for processing transactions from the front of its queue against the partition.
While slaves enter transactions at the back of the queue, the LDM services these trans-
actions from the front of the queue. By doing so, the concurrent transaction threat is
eliminated at each site. To ensure mutual consistency among the copies, it is required
that all transactions are applied in the same order to all the partition copies. In the
PUA, this is made possible by making sure that while a transaction is being queued,
no other conflicting transaction is placed in partition queues.

Both the master and slave algorithms have three states: “Idle,” “Active,” and “Queu-
ing.” In the Idle state, the algorithm is not working on any transaction. In the Active
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state, the algorithm is working on establishing a serializable order for a transaction.
In the Queuing state, the algorithm has determined the order for a transaction and has
entered the transaction in the queue. The protocols for achieving the goals of the PUA
are similar to the two-phase commit (see Chapter 8). During the first phase of process-
ing transaction “Ti,” which is also called the “Voting” phase, the master of Ti asks all
involved slaves to ready their queues for its transaction. Once all slaves have replied
favorably, the master enters the second phase—the “Queuing” phase. To allow priority
and fairness, the master can abort a transaction during the voting phase. However, once
the queuing phase has started, the transaction will be queued and applied.

In response to the request to ready the queue, slaves act according to the state they
are in:

• If a slave is in the idle state (i.e., not currently working on a transaction), then it
votes “Ready.”

• If a slave is in the active state (i.e., it has readied its queue for a conflicting
transaction of higher priority), then it votes “Not Ready.”

• If a slave has readied its queue for a conflicting transaction of lower priority,
such as Tj, it will defer voting and tries to find out if it can change its vote
for Ti. To do this, the slave sends a message to the master of Tj asking if its
previous “Ready” vote can be changed to “Not Ready.” If the master of Tj has
not started its queuing phase, it will allow the vote change and aborts transaction
Tj. Otherwise, the master of Tj will deny the vote change. The slave that deferred
voting on Ti can then proceed accordingly.

It should be obvious that at any point in time the slave algorithm maintains two
lists. The first list tracks all nonconflicting transactions that are pending to be queued.
The second list tracks transactions that are deferred. Transactions are only vulnerable
when they are in one of these lists. Once a transaction is queued, it is removed from
the list it is in and it is guaranteed to be completed. To deal with failures, the two-phase
commit is utilized between the master and corresponding LDMs. Before applying a
transaction from the front of a queue, the LDM informs the master that it is ready
to run the transaction. The master can then decide to continue with the transaction or
abort it. If the decision is to abort, then this decision is communicated to all LDMs
working on the corresponding transaction.

7.3 SUMMARY

In this chapter, we extended the concurrency control algorithms we discussed in
Chapter 5 to include replication control. The issue with replication, as discussed in this
chapter, is maintaining the mutual consistency of copies. Approaches were grouped
into two categories. The first group, known as synchronous replication control, main-
tains identical database copies at all times. The second group, known as asynchronous
replication control, allows the copies to show different values sometimes. We pointed
out that, to detect a conflict, two conflicting transactions must be seen by at least one
site. We exploited this concept for different algorithms that are proposed for replica-
tion control. We also discussed how voting was used to achieve the goal of replication
control and concluded that different algorithms proposed for replication control, such
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as consensus, majority, master–slave, posted updates, and token passing, were special
cases of the generalized voting approach.

7.4 GLOSSARY

Asynchronous Replication An approach to replication control that allows copies of
the database data items to show different values.

Broadcast The act of sending the same message to all sites in a network.
Circulating Token An approach to replication control that uses a token with a ticket

to serialize transactions in a distributed database.
Consensus An approach to replication control that requires all sites to OK a trans-

action before it is run.
Daisy Chaining A distributed transaction execution application that requires a trans-

action to move from a site to a site that only allows it to be active at one site at
any given point in time.

Fully Replicated Database A replication design that requires copying all tables of
the database at all sites in the system.

Generalized Voting A comprehensive voting approach to replication control.
Majority Voting A voting approach to replication control that only requires a major-

ity of sites to agree on applying a transaction.
Master–Slave A replication control strategy that assigns one site as the master and

the others as the slaves.
Mutual Consistency The consistency requirement across copies of the same table

and/or partition.
Partially Replicated Database A replication design that does not require copying

all tables of the database at all sites in the system.
Posted Updates An approach to replication control that uses queues to order trans-

actions for application to the copies of database tables.
Primary Copy The copy of a database that is designated at the primary—transactions

are applied to this copy first.
Publisher The copy of a database that is designated at the publisher—transactions

are applied to this copy first.
Read Quorum The number of votes required to read a data item in a replicated

database.
Secondary Copy The copy of a database that is designated at the secondary—

transactions are applied to this copy after they are applied to the primary.
Store and Forward Another terminology for primary–secondary replication control.
Subscriber The copy of a database that is designated at the subscriber—transactions

are applied to this copy after they are applied to the publisher.
Symmetric Replication A replication control approach in which transactions are

applied to the database copy at the site where they arrive.
Synchronous Replication An approach to replication control that does not allow

copies of the database data items to show different values.
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Transaction Acceptance Phase The phase in a replication control algorithm that
decides whether or not to accept a transaction and orders its execution with other
transactions.

Transaction Application Phase The phase in a replication control algorithm that
applies a transaction that has already been serialized.

Weighted Voting A voting approach to replication control in which sites are given
different numbers of votes to use during the transaction acceptance phase.

Write Quorum The number of votes required to write a data item in a replicated
database.
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EXERCISES

Provide short (but complete) answers to the following questions.

7.1 Assume weighted voting is used for replication control of a five-site system,
shown in Figure 7.7. Also assume that X as a data item is copied at all sites.
How do you decide on the total number of votes, the number of votes assigned
to each site, the read quorum (Vr(x)), and the write quorum (Vw(x)) that satisfies
the following conditions:

(A) The number of votes assigned to each site is the absolute minimum? (Note:
Zero is NOT accepted as the number of votes assigned to a site.)

(B) Site 1 can read if it decides to read X?
(C) X could be written if and only if Site 1 and at least two other sites vote to

write?
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Figure 7.7 Network topology for Exercise 7.1.

7.2 There are two parts to the token passing replication control algorithm as men-
tioned in this chapter. The first part consists of ticketing transactions and the
second part includes applying transactions. Draw the Petri net for each part of
the algorithm. Do NOT worry about dealing with failures.

7.3 Assume the four-site system given in Figure 7.8 for the token passing replication
control. Suppose, for fairness, when a site receives the token it can ticket a
maximum of three transactions. A token is generated at Site 1 to start with.
Answer the following questions for this setup for cycle 1 of the algorithm.

(A) What is the ticket number when the token leaves Site 1?
(B) What is the ticket number when the token comes back to Site 1?
(C) How many transactions and in what order are they serialized for the first

cycle of the token (cycle starts at Site 1 and ends when the token arrives at
Site 1 again)?

7.4 As depicted in Figure 7.9, during the second cycle, the communication line
between Sites 3 and 4, when the token is on it, goes down. For this cycle,
answer the following questions:

Figure 7.8 Network topology for Exercise 7.3.
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Figure 7.9 Network topology for Exercise 7.4.

(A) What is the ticket number when the token leaves Site 1?
(B) What is the ticket number when the token comes back to Site 1?
(C) How many transactions, and in what order, are serialized at the completion

of cycle 1 and cycle 2?

7.5 At the beginning of cycle 3, the network looks like the one shown in Figure 7.10.
Show the serialization order of all transactions at the completion of cycle 3.

Figure 7.10 Network topology for Exercise 7.5.





8
FAILURE AND COMMIT PROTOCOLS

Any database management system needs to be able to deal with failures. There are
many types of failures that a DBMS must handle. Before discussing failure types and
commit protocols, we need to lay the foundation by defining the terms we will use in
the rest of this chapter.

8.1 TERMINOLOGY

We define the terms we need here to make sure that the reader’s understanding of these
terms is the same as what we have in mind.

8.1.1 Soft Failure

A soft failure, which is also called a system crash, is a type of failure that only
causes the loss of data in nonpersistent storage. A soft failure does not cause loss of
data in persistent storage or disks. Soft failures can range from the operating system
misbehaving, to the DBMS bugs, transaction issues, or any other supporting software
issues. We categorize these under the soft failure, since we assume that the medium
(the disk) stays intact for these types of failure. A soft failure can also be caused by
the loss of power to the computer. In this case, whatever information is stored in the
volatile storage of the computer, such as main memory, buffers, or registers, is lost.
Again, the assumption we make is that power loss does not cause disk or database loss.
This assumption does not mean that we do not deal with disk failure issues but that we
treat the disk loss under the hard failure that we discuss next. Note that soft failures
can leave the data stored in persistent storage in a state that needs to be addressed; for
example, if the software was in the middle of writing information to the disk, and only
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some data items were written before the failure, then, obviously, the data content might
be inconsistent, incomplete, or possibly corrupted. However, the persistent storage did
not lose any data. This is true in the sense that the persistent storage still contains
everything we wrote to it—it just does not contain all the things we intended to write
to it.

8.1.2 Hard Failure

A hard failure is a failure that causes the loss of data on nonvolatile storage or the
disk. A disk failure caused by a hard failure destroys the information stored on the disk
(i.e., the database). A hard failure can be caused by power loss, media faults, IO errors,
or corruption of information on the disk. In addition to these two types of failures, in
a distributed system network failures can cause serious issues for a distributed DBMS.
Network failures can be caused by communication link failure, network congestion,
information corruption during transfer, site failures, and network partitioning. There
have been many studies on the percentage, frequency, and causes of soft and hard
failures in a computer system over the years [Mourad85] [Gray81] [Gray87]. We will
not repeat these finding here.

As a rule of thumb, the following can be used as the frequency of different types
of failures:

• Transaction failures happen frequently—maybe as many as a few times a minute.
This is usually for high-volume transaction processing environments like banking
and airline reservation systems. The recovery is usually fast and is measured in a
fraction of a second.

• System failures (power failure) can happen multiple times a week. The time it
takes to recover is usually minutes.

• Disk failures can happen once to maybe twice a year. Recovery is usually short
(a few hours), if there is a new, formatted, and ready-to-use disk on reserve.
Otherwise, duration includes the time it takes to get a purchase order, buy the
disk, and prepare it, which is much longer (could be a number of days to a week
or two).

• Communication link failures are usually intermittent and can happen frequently.
This includes the communication link going down or the link being congested.
Recovery depends on the nature of the failure. For congestion, typically the system
state changes over time. For link failure, the link will be bypassed by the routing
protocols until after the link is repaired. Sometimes the link failure is caused by
the failure of a hub or a router. In this case, the links that are serviced by the hub
or the router are disconnected from the rest of the network for the duration of the
time the device is being repaired or replaced.

8.1.3 Commit Protocols

A DBMS, whether it is centralized or distributed, needs to be able to provide for
atomicity and durability of transactions even when failures are present. A DBMS
uses commit protocols to deal with issues that failures raise during the execution of
transactions. The main issue that the commit protocols have to deal with is the ability
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to guarantee the “all or nothing” property of transactions. If a failure happens during
the execution of a transaction, chances are that not all of the changes of the transaction
have been committed to the database. This leaves the database in an inconsistent
state as discussed in Chapter 5. Commit protocols prevent this from happening either
by continuing the transaction to its completion (roll forward or redo) or by removing
whatever changes it has made to the database (rollback or undo). The commit protocols
guarantee that after a transaction successfully commits, all of its modifications are
written to the database and made available to other transactions. Commit protocols
also guarantee that all the incomplete changes made by the incomplete transactions are
removed from the database by rollback when a failure happens.

8.1.3.1 Commit Point A commit point is a point in time when a decision is made
to either commit all the changes of a transaction or abort the transaction. The commit
point of a transaction is a consistent point for the database. At this point, all other
transactions can see a consistent state for the database. The commit point is also a
restart point for the transaction. This means that the transaction can be safely undone.
Finally, the commit point is a release point for the resources that the transaction has
locked.

8.1.3.2 Transaction Rollback (Undo) Transaction rollback or undo is the process of
undoing the changes that a transaction has made to the database. Rollback is applied
mostly as the result of a soft failure (see Section 8.1.1). Rollback is also used as a
necessary part of transaction semantics. For example, in the fund transfer transaction
in a banking system, there are three places from which a transaction should abort.
It is necessary to abort this transaction if the first account number is wrong (it does
not exist), if there is not enough money in the first account for the transfer, and
finally, if the second account number is wrong (it does not exist). The following shows
the fund transfer transaction that is written as a nested transaction consisting of two
subtransactions—a debit and a credit transaction. This nesting of the two transactions
allows the program to run on a distributed DBMS, where accounts are stored on two
different servers.

Begin Transaction Fund_Transfer(from, to, amount);
Begin Transaction Debit

Read bal(from);
If account not found then
Begin

Print "account not found";
Abort Debit;
Exit;

End if;
bal(from) = bal(from) – amount;
if bal(from) < 0 then
Begin

Print "insufficient funds";
Abort Debit;
Exit;

End if;
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write bal(from);
Commit Debit;

End Debit;
Begin Transaction Credit

Read bal(to);
If account not found then
Begin

Print "account not found";
Abort Credit;
Exit;

End if;
bal(to) = bal(to) + amount;
write bal(to);
Commit Credit;

End Credit;
Commit Fund_Transfer;

End Fund_Transfer;

This transaction transfers the “amount” from the “from” account to the “to” account.
The debit subtransaction checks the validity of the account from which funds are to
be taken. If that account does not exist, then the transaction is aborted. If the account
exists but there is not enough money to transfer—the resulting balance after the debit
is less than zero—the transaction has to abort again. The credit subtransaction does
not need to worry about the amount of money in the “to” account since money will
be added but needs to make sure that the “to” account exists. If the “to” account does
not exist, then the transaction aborts again.

If all three abort conditions are false, then the transaction is at the commit point.
At this point, as mentioned before, the user needs to make a decision to commit the
transaction or roll it back. For an ATM transaction, this point in time is when the
ATM machine gives the customer the option to complete the transaction or cancel
it. At this point, each account’s balance has been updated and everything is ready
to be committed. The two database servers—local systems where the accounts are
stored—have the accounts’ balances still locked. Once the user decides to commit
the transaction, the locks are released and the new accounts’ balances are available to
other transactions.

8.1.3.3 Transaction Roll Forward (Redo) Transaction roll forward or redo is the
process of reapplying the changes of a transaction to the database. Since the changes
are reapplied to the database, typically a transaction redo is applied to a copy of the
database created before the transaction started. As we will discuss in Section 8.2, redo
is mostly necessary for recovery from a hard failure.

8.1.4 Transaction States

A transaction goes through the following set of steps during execution:

1. Start_Transaction
2. Repeat
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2.1 Read a data item’s value
2.2 Compute new values for the data item
2.3 If abort condition exists then abort and exit
2.4 Write the new value for the data item
2.5 If abort condition exists then abort and exit

3. Until no more data items to process
4. Commit
5. End_Transaction

Statement 1 indicates a transaction’s activation by a user or the system. Similarly,
statement 5 indicates the successful termination of the transaction. The transaction can
also terminate unsuccessfully, as shown in statements 2.3 and 2.5, if abort conditions
exist. Some DBMSs require explicit “Start Transaction” and “End Transaction” while
others use implicit start and end statements. For example, in Oracle a begin transaction
is assumed when changes are made to the database. In this context, an implicit “End
Transaction” is assumed when a commit is issued. On the other hand, in SQL Server
the “Start Transaction” and “End Transaction” are explicit. As seen in the code snippet
above, once a transaction starts, it repeatedly reads the data items from the database,
calculates new values for them, and writes new values for the data items to the database.
Obviously, in this algorithm we assume the operation being performed inside the
transaction is an update operation. In case of an insert into the database, no data items
need to be read. Conversely, when a delete command is executed, no new values are
written to the database.

One formal specification of a transaction uses a finite state automaton (FSA) that
consists of a collection of states and transitions. This is typically shown as a state
transition diagram (STD). In a STD, states are shown as circles and transitions as
arrows, where the tail is connected to the state the program leaves and the tip is
connected to the state the program enters. The state of the STD that a transaction is
in at the time of a failure, tells the local recovery manager (LRM) what needs to be
done for a transaction. Figure 8.1 depicts the STD for a transaction.

In this diagram, the double-lined circles are terminal states and the single-lined states
are transitional. The “Idle” state corresponds to when the transaction is not running.

Figure 8.1 State transition diagram for a transaction.
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Once started, a transaction changes state to the “Active” state. In the “Active” state, the
transaction performs its work. In this state, the transaction reads, performs calculations,
and writes data items. If any of the abort conditions hold, the transaction issues an abort
and changes state to the “Failed” state. Entry into the “Failed” state causes the local
recovery manager to undo the transaction. The transaction enters its commit point by
transitioning to the “Before Commit” state. As mentioned before, at the commit point
a transaction holds a consistent state for the database. It can back out of the transaction
by canceling the transaction or it can complete the work by committing. Cancellation
is performed by a transition from the “Before Commit” state to the “Failed” state,
which causes the LRM to undo the transaction. The successful termination is initiated
by transitioning from the “Before Commit” state to the “Committed” state.

It is important to remember the following:

• In the “Active” state, the transaction has not completed all the work
necessary—not all changes have been made.

• In the “Before Commit” state, the transaction has completed all the work
necessary—all transaction changes have been made.

• In the “Failed” state, the transaction has decided to abort or it has been forced by
the DBMS to abort due to concurrency control and/or deadlock issues.

• In the “Committed” state, the transaction has terminated successfully.
• In the “Aborted” state, the transaction has terminated unsuccessfully.

A careful reader notices that actions of a transaction when it commits or aborts
depend on whether or not the transaction changes have been written to the database.
In other words, the update mode of the DBMS is important in what needs to be done
to commit or rollback a transaction.

8.1.5 Database Update Modes

A DBMS can use two update modes:

• Immediate update mode—a DBMS is using immediate updates, if it writes the
new values to the database as soon as they are produced by a transaction.

• Deferred update mode—a DBMS is using deferred update, if it writes the new
values to the database when a transaction is ready to commit.

In the case of the immediate update, the old value of a data item being changed is
overwritten in the database by the transaction. As a direct result of this, it is not possible
to rollback the transaction if the old value of the data item is not stored anywhere else.
Keep in mind that maintaining the old value of the data item in memory is not sufficient
since the contents of memory will be lost in the case of power loss or system failure.
Therefore, we need a safe place where the old values of data items can be stored. A
transaction log is used for this purpose.

8.1.6 Transaction Log

A transaction log is a sequential file that stores the values of the data items being
worked by transactions. Like the blocks written on a magnetic tape, a transaction log is
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a sequential device. To reach a certain record within the log, the log must be processed
sequentially, either from the beginning or from the end. Typically, log records for a
given transaction are linked together for ease of processing.

The transaction log is used for two purposes. The first use of the log is to support
commit protocols to commit or abort running transactions. The second use of the log
is to allow recovery of the database in case of a failure. In the first case, we use the
log information to redo—repeat the changes of a transaction—or undo—remove the
changes of a transaction from a database. Redo and undo are sometimes called trans-
action roll forward and rollback, respectively. When a transaction is rolled forward its
changes are redone—rewritten to the database. When a transaction is rolled back, its
changes are undone—removed from the database. In the second case, the log infor-
mation is used to recover a database after a power failure or a disk crash. As we will
discuss later, if power fails, incomplete transactions have to be undone. The log infor-
mation is used to achieve this. Also, as we will discuss later, if the disk crashes, com-
pleted transactions need to be redone. Again, the log information is used to achieve this.

Information that is written to the log is used for recovering the contents of the
database to a consistent state after a transaction rollback or after a failure. Without this
information, recovery may not be possible. Technologically, today the safest place a
log can be stored is on the disk. However, if the disk fails and the log is on it, the log
is lost. That is, of course, not too troubling if the database is still intact. Losing the
log and the database at the same time, obviously, is disastrous.

To make sure this is not the case, one of the following alternatives can be utilized:

1. Use tapes for the log. Although this separates the database storage (disk) and log
storage (tape), this is not typically the choice of DBAs because writing to and
reading from the tape is very slow. Some of the DBMSs, such as Oracle, archive
the inactive portion of the log—the log portion that pertains to transactions that
have been competed—on tape.

2. In smaller systems where the log and the database share the same disk, one can
use different disk partitions for the database and the log files. Doing so reduces
the probability of loss of the database and the log at the same time when a
portion of the disk is damaged. In this case, if the disk completely fails or the
disk controller goes bad, both the log and the database will be lost.

To guard against the issue with the second alternative, we can store the log and
the database on separate disks. This is typically the case for larger systems where the
database may require more than one disk for its storage. In this case, we can use a
separate disk for the log files. In very large systems, a RAID (redundant array of
independent disks) system may be used to provide for recovery of the disk contents by
rebuilding the contents of a failed disk from other disks. Regardless of the alternative
used for maintaining the log, the goal is to keep the log safe from power loss and/or
disk failure. The storage type that is used for the log is known as the “stable storage”
as categorized below.

8.1.7 DBMS Storage Types

There are three types of storage in the storage hierarchy of a DBMS:

1. Volatile Storage (Memory). Memory is a fast magnetic device that can store
information for the computer to use. It is called volatile storage since loss of
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electrical power causes it to lose its contents. That is why memory is used
for temporary storage of information to serve the need of the CPU. During
normal operations of the system, memory-based log files can be used for database
rollback, since during the rollback, the transactions are still running and the
memory contents are still intact. On the other hand, the memory cannot serve
as a storage medium for logs required for database recovery after a failure since
the memory contents of a failed system are lost.

2. Nonvolatile Storage (Disk, Tape). Disk and tape are magnetic devices that can
store information in a way that withstands shutdowns and power losses. The
information written to a disk or a tape stays intact even when the power is
disconnected. Although disks and tapes are nonvolatile with respect to power
loss, they are still volatile to medium failure—a disk crash causes the loss of
information on the disk. As a result, a log that is stored on the disk is lost when
the disk crashes.

3. Stable Storage. Stable storage is a storage type that can withstand power loss
and medium failure. The log is written to stable storage so that the information
in the log is not lost when the system is subjected to power failure or disk
failure. DBMSs usually maintain duplicate or triplicate copies of the log files
for resiliency. Lampson and Sturgis assume that replicating the log on the disk
(persistent storage) is stable [Lampson76]. For the rest of our discussion in this
chapter, we also assume a replicated log on the disk and we refer to the disk as
stable storage.

8.1.8 Log Contents

As mentioned earlier in this chapter, the log is a sequential device consisting of a
set of records. A log record stores information about a change from a single trans-
action. In addition to the time of the change, specific information about the transac-
tion ID, the DML operation, the data item involved, and the type of operation are
recorded. Specific record contents depend on the mode of update. To represent a log
record, we use the notation “<record_type>.” A typical transaction log has records of
the type <transaction start>, <transaction commit>, <transaction abort>, <insert>,
<delete>, <update>, and <checkpoint>. Obviously, since read operations do not
change data item values, they are not tracked in the log. There are many types of
log records that support different strategies for updating the database—immediate ver-
sus deferred—and recovery alternatives for power and disk failures. We will start by
investigating the transaction update modes and their impact on what the log should
contain.

8.1.8.1 Deferred Update Mode Log Records In this mode of update, the DBMS does
not write the changes of a transaction to the database until a transaction decides to
commit (the commit point). There are two basic approaches used for deferred updates.
Özsu and Valduriez [Özsu99] outline the details of these approaches in what they call
“out-of-place” update. We briefly mention the two approaches here.

The first approach uses the concept of differential files, which has been used in the
operating system for file maintenance for many years. Severance and Lohman proposed
to extend the concept to database updates [Severance76]. In this approach, changes are
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not made to the database directly, but instead, they are accumulated in a separate
file as the difference. A file could accumulate changes from a single transaction or
from multiple transactions. There are two approaches to merging the changes from the
differential files with the database. A transaction’s changes can be merged into the
database when the transaction commits. Alternatively, changes can be left in the file
and be used as the new values for the changed data items. In this case, the DBMS has
to keep track of the new values for data items that have been worked on in the files.
Once these files become too large and the overhead becomes too high, the files are
merged into the database and the differential files are discarded.

The second approach uses the concept of “shadow paging” [Astrahan76]. In this
approach, the database page containing the data item being changed is not modified.
Instead, the change is made to a copy of the page called the “shadow page.” The
actual database page holds the old data item value (used for undo) and the shadow
page contains the new data item value (used for redo). If the transaction decides to
commit, the shadow page becomes part of the database and the old page is discarded.
Logging in conjunction with shadow paging has been used to enable database recovery
after a failure in IBM’s System R [Gray81].

As a direct result of deferred updates, for each data item being changed, the old value
(also known as the “before-image”) is in the database until just before the transaction
commits. Therefore, the log only needs to tack the new value (also known as the
“after-image”) for the data item being changed in the log. Therefore, in the deferred
update mode, the old values of the data items being changed by a transaction do not
need to be written to the log. To see what is stored in the log for a database that uses
the deferred update mode, let T5 be a fund transfer transaction that transfers $200 from
account A1 with the balance of $1000 to account A2 with the balance of $500. For
this example, the records written to the log for T5 are

<T5, t1, Start>
<T5, t2, update, Account.A1.bal, after-image = $800>
<T5, t3, update, Account.A2.bal, after-image = $700>
<T5, t4, Before Commit>
<T5, t5, Commit>

Notice that every record has a time marker indicating the time of the event. The first
record indicates that transaction T5 has started. The second and third records track the
writes that T5 makes, the time of these events, and the after-images for the data items
being changed. The fourth record indicates that there will be no more changes made
by this transaction; that is, the transaction has entered its commit point at time t4. This
log shows a successful completion of T5, which is indicated by the existence of the
commit record at time t5. During normal operations, transferring the new values for
the two data items from the memory buffers is followed by writing a commit record to
the log. If, on the other hand, T5 had decided to abort the transaction, the log would
have contained the following records:

<T5, t1, Start>
<T5, t2, update, Account.A1.bal, after-image = $800>
<T5, t3, update, Account.A2.bal, after-image = $700>
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<T5, t4, Before Commit>
<T5, t5, Abort>

For deferred updates, when T5 aborts there is no need to undo anything. That is
because T5 does not write anything to the database until it decides to commit. If a
failure happens, depending on the time and type of failure, T5 needs to be undone or
redone (see Section 8.4). If T5 needs to be redone, the after-images from the log are
used. Again, there is nothing to do to undo T5.

8.1.8.2 Immediate Update Mode Log Records In this mode of update, the DBMS
writes the changes of a transaction to the database as soon as the values are prepared by
the transaction. As a direct result of this, the old values of the data items are overwritten
in the database. Therefore, the log not only needs to track the after-images but also the
before-images of the data items changed by the transaction. If T5, as discussed above,
runs a system with immediate update, the log records will look like the following:

<T5, t1, Start>
<T5, t2, update, Account.A1.bal, before-image = $1000,

Account.A1.bal, after-image = $800>
<T5, t3, update, Account.A2.bal, before-image = $500,

Account.A2.bal, after-image = $700>
<T5, t4, Before Commit>
<T5, t5, Commit>

When T5 decides to commit, the new values for the two data items are already in the
database. Therefore, the only action required is indicating the successful completion of
the transaction by writing a “Commit” record to the log. In immediate update mode,
the DBMS has access to the before-and after-images of data items being changed
in the log. The DBMS can undo T5 by transferring the before-images from the log
to the database and can redo T5 by transferring the after-images of the data items to
the database when needed. It should be obvious that in a multitransaction system the
records that different transactions write to the log are interleaved.

The log record contents discussed above are generic and do not indicate implemen-
tation by any specific DBMS. Most DBMS vendors use two or three additional fields
in each record to help traverse the records for a given transaction. A linked list is used
to connect together all records that belong to the same transaction. Table 8.1 depicts
an example of log records for four transactions “T1,” “T2,” “T3,” and “T4,” including
the link fields (Record ID and Link Info in the table). This information is helpful in
locating records for a given transaction quickly during recovery from a failure. Another
point worth mentioning is that commercial DBMSs do not include “before commit”
and “failed” records in the log and therefore eliminate these states. These states are
recorded as part of the commit and the abort states. In other words, the state transition
diagram for transactions is reduced to what is shown in Figure 8.2.

This approach speeds up the log management for committed and/or aborted trans-
actions. The assumption is that most of the time transactions succeed and they are not
subjected to failures. As a result, it seems unnecessary to do a lot of recordkeeping for
dealing with failures. The drawback to this approach, therefore, is the payback when
failures do happen.
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TABLE 8.1 Example of Log Records

Record ID Tid Time Operation Data Item Before-Image After-Image Link Info

1 T1 t1 Start 3
2 T2 t2 Start 2
3 T1 t3 Update Account.A1.bal 1000 800 8
4 T2 t4 Insert Account.A3.No 1111 5
5 T2 t5 Insert Account.A3.bal 750 6
6 T2 t6 Update Account.A4.bal 600 550 9
7 T3 t7 Start 17
8 T1 t8 Before Commit 11
9 T2 t9 Before Commit 10

10 T2 t10 Commit 2
11 T1 t11 Commit 1
12 T4 t12 Start 13
13 T4 t13 Delete Account.A5.No 2222 14
14 T4 t14 Delete Account.A5.bal 650 15
15 T4 t15 Failed 16
16 T4 t16 Abort 12
17 T3 t17 Update Account.A1.bal 800 1200 18
18 T3 t18 Before Commit 19
19 T3 t19 Commit 7

As an example, assume a system that does not write the “Before Commit” to the
log to indicate that the transaction has finished preparing the new values for the data
items. When a failure during the commitment of the transaction happens, since there is
no “Before Commit” record in the log, the LRM has to assume that the transaction was
active when the failure happened and will have to rollback the transaction. It should be
easy to see that the existence of the “Before Commit” record in the log tells the LRM
to commit the transaction using the new values of the changed data items from the
log. We encourage readers to map the structure discussed above with specific DBMS

Figure 8.2 Reduced state transition diagram for a transaction.
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implementation. For example, the following displays an update statement that changes
the balance of account 1111 and the log records that are extracted by Oracle Log Miner
from the log running the select statement shown against the “v$logmnr−contents”
dictionary view.

Update account
Set bal = 800
Where No = 1111;
Commit;

SELECT sql_redo, sql_undo, ph1_name, ph1_redo, ph1_undo
FROM v$logmnr_contents;

update ACCOUNT set BAL = 800 where ROWID = ’AAABGpAABAAABdQAAA’;
update ACCOUNT set BAL = 700 where ROWID = ’AAABGpAABAAABdQAAA’;
BAL 800 700

As can be seen from the results of the select statement, Oracle records the actual
SQL statement in the log record to be able to undo or redo a column change. In addition,
Oracle tracks the operation type, before-image, and after-image for the column being
changed. Note that there are many other columns used in this dictionary view in
Oracle that we did not print. These columns record transaction ID, transaction name,
timestamp, table, tablespace, and so on.

8.2 UNDO/REDO AND DATABASE RECOVERY

Now that we have discussed what the log for immediate and deferred update modes
contains, we can discuss what actions are required to recover a database when a failure
happens. There are only two actions the DBMS recovery manager performs to recover
a database. These actions are the redoing or undoing of transactions. The question that
needs to be answered is, “What action is required for each type of recovery?” The
answer depends not only on the mode that the system uses for updating the database
but also on the type of failure and on the state that each transaction is in when the
failure happens.

8.2.1 Local Recovery Management

A DBMS tracks changes that transactions make to the database in the log for transaction
abort and recovery purposes. To be able to do this, the DBMS utilizes the local recovery
manager (LRM) to collect the necessary logging information. As the local transaction
monitor (LTM) runs through the transaction steps, it passes the necessary information
to the local scheduler (LS) for processing (see Chapter 5 on transaction processing).
Each LS subsequently passes the request to the LRM. Most DBMSs today do not read
or write information using only a single table row. Instead, the unit of transfer between
the memory and the database is a larger unit of storage. A DBMS uses the concept
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of a block or a page as the smallest unit of storage for the database. The page size
in some databases, like SQL Server, is fixed at 8 Kbytes where each Kbyte is 1024
bytes. In some other systems such as Oracle, the page size can be decided by the DBA
and can be 4, 8, 16, or 32 Kbytes. To read a row in a table, a DBMS needs to transfer
the page that contains the desired row into memory. Most DBMSs also do not simply
bring a single page into memory. Instead, they transfer the extent that contains the
page. An extent is typically eight contiguous pages, which is the smallest allocation
unit in Oracle and SQL Server today. For simplicity, for the rest of the discussion in
this chapter, we assume that a single page is the unit of transfer.

Storage of information in the main memory has to match the storage of information
on the disk. A DBMS assumes the memory is divided into a set of equal size blocks
called frames. A frame can hold exactly one page. Any page can go into any frame
available. To speed up the reading and writing of information, a DBMS sets aside
a number of main memory frames known as the cache or the buffer. The cache
or buffer size is decided by the DBA and is measured in the number of frames or
pages. The program that manages the transfer of information between the buffer and
the stable storage (the disk) is known as the local buffer manager (LBM). A read is
complete when the page that contains the desired information is transferred from the
disk into a frame in memory. If the page containing the desired information is already
in the buffer, the read does not necessitate a disk access. Similarly, it is assumed that
a write is complete when the changes are made to the target buffer in memory. It
is the responsibility of the local recovery manager to write the page (or the extent
where the page is) to the stable storage successfully. This obviously requires proper
log management by the LRM that we will discuss next. Figure 8.3 shows the local
recovery manager and its interfaces to the LTM, LS, and LBM.

8.2.1.1 Database Buffers and Log Buffers A DBMS maintains two types of
buffers—the database buffers and the log buffers. The database buffers host
database pages that have been read or written by transactions. The pages that have
been written are sometimes called dirty pages as well. When a required page is not in
the cache, it is read or fetched. When a page needs to be written to the stable storage
it is flushed or forced. We would like to cache as much information as possible to
speed up reading and writing.

Write-ahead-logging(WAL) [Lindsay79] was proposed to protect against loss of
information being written to the database. Any change to the database is recorded
in two places—in a database page in the database buffers, and in a log page in the
log buffers. As long as these pages are maintained in memory, there should be no
problem. If the contents of memory are lost—due to a failure—transactions whose
changes were not recorded in the database must run again. According to WAL, once
we decide to flush the dirty pages to the database, the log pages must be written to
the stable storage before the dirty pages are written to the database on disk. That is
because once we have successfully written the log in the stable storage, the database
changes are guaranteed.

To see how this is possible, consider the fund transfer transaction we discussed
earlier in this chapter. There are two data items that this transaction changes. Let us
assume these two data items are on two separate pages in two separate extents, and that
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the changes are recorded in one log page. To commit this transaction, the LRM issues
a force command to the LBM for the log page. The LBM may fail to complete this
command or may succeed. In case of a failure, the contents of the memory buffers are
lost. When the system restarts, the fund transfer transaction must be run again. In the
absence of failures, the page is successfully written to the log in the stable storage.
After the log page force command is completed, the LRM sends a force database page
command to the LBM to write the two dirty pages for the transaction to the database.
Again, there are two possible scenarios. In the first scenario, there are no failures,
which allows the LBM to successfully write. In the second, during the writing of the
dirty pages, there is a failure. In this case, after the failure is repaired, the changes
can be made to the database pages by transferring the after-images from the log in the
stable storage to the database pages.

8.2.1.2 Log Archival and Database Backups Log records are associated with two
types of transactions—transactions that are still running (active transactions) and
transactions that have either committed and/or aborted (completed transactions). It
should be obvious that the log records pertaining to the running transactions need to be
readily available and therefore should be cached in the memory buffers. This speeds up
the rollback of currently running transactions. Once a transaction commits (or aborts),
its log records are not going to be needed unless there is a failure. As a result, the
log records that correspond to terminated transactions can be transferred to the disk to
make memory available for active transactions.

Note that if the amount of memory we allocate to the log buffers is not large enough,
there may not be enough memory for all active transactions in the cache. This can be
the case for a high-volume, concurrent transaction processing environment. In these
environments, the log tends to grow very rapidly. The log size could easily reach and
exceed the amount of memory allocated to the cache. Therefore, it is not possible to
maintain the entire log in memory due to lack of space. In this case, even some of the
active transactions’ log records have to be forced to the disk.

On the disk, the log typically consists of two or more log files. For example, an
Oracle 10 g log consists of three log files by default. The space on these files is
considered sequential from File 1 to File 2, and File 2 to File 3. As the space on File 1
is used up, File 2 becomes the active file. Once the space on File 2 is completely used,
File 3 becomes the active file. Once the space on all of the log files has been used, the
DBA has to either archive inactive (committed/aborted) transaction records to the tape
or add more files to the log to provide space for more logging. Otherwise, the DBMS
cannot continue. Note: Although in Figure 8.3 we refer to archiving as writing the log
or the database pages to magnetic tapes, some DBAs prefer archiving of information
on disks instead of tapes.

Despite the fact that the database and the log are maintained on the stable storage,
recovery from a failed database is not possible without a database backup. We can back
up a database on a disk during the normal operation of the system. The backup on the
disk is periodically archived onto a set of tapes for recovery from a major disk failure
when the database is lost. We will discuss the alternatives for the database backup in
the next section.

8.2.1.3 Backup Types DBMSs use two alternatives to back up the database—a
complete backup or an incremental backup. A complete backup is a backup of the
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entire database contents. This is also known as a full-image backup. This backup
can be done when the database is quiescent—there are no transactions running in the
system. This type of backup is also known as cold backup. Alternatively, the backup
can also be done when transactions are running in the system. This type of backup is
known as a hot backup. When the backup is a cold backup, the log can be cleared
since all transactions prior to the backup time have terminated. If, on the other hand,
the backup is a hot backup, the log from previous cold backup is required for the
recovery process. Figure 8.4 depicts examples of a cold and a hot backup.

In Figure 8.4a, the backup is a cold backup since no transactions were running at
the time of the backup. In this case, since every transaction prior to the backup has
terminated, there is no need to keep the log from prior to the backup. In Figure 8.4b, a
hot backup was performed when transactions T2 and T3 were running. As a result, the
log from prior to the last backup is needed. This also indicates the fact that as long as
the backups are hot the log needs to be kept. Therefore, the log is probably going to
grow very large. To prevent this from happening, a DBA must perform a cold backup
periodically to be able to discard the log from the previous hot backups. Note also
that a cold backup always corresponds to a consistent point of time for the database
since all active transactions have been completed. Some DBMS vendors provide the
capability to force the database to be quiescent. If the DBMS provides for the quiescent

Figure 8.4 Examples of (a) cold and (b) hot backups.
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option, then the DBA can force it, perform a cold backup, and discard the old log.
Without an automatic quiescent option, the DBA needs to establish the point manually.

The following options can be used to force a quiescent point for a database:

• Put the database in read-only mode until after the backup.
• Bring the database off-line.
• Halt application processes.

An incremental backup is a backup that contains only the changes to the database
from the previous complete backup or incremental backup. Since performing a com-
plete database backup is time consuming, a DBA performs multiple incremental back-
ups in between two consecutive complete backups. When needed, a complete image
of the database is formed by merging the previous complete backup with individual
incremental backups in order, up to the point of failure. Incremental backups are done
when transactions are running—they are hot backups.

8.2.1.4 Rolling a Database Forward A compete backup is a consistent snapshot of
the database used for recovery. A complete backup is required for recovery from a
failed disk when the database is lost. However, this is not the only use of the backup.
The backup is also used for other types of recovery, as we will discuss later (see
Section 8.5.2). A backup is used to restore the database to a consistent point in the
past (as compared to the current time). To recover a failed database, we need to reapply
those transactions that have committed between the backup time and the present to the
restored image of the database. The LRM achieves this by using the log to redo commit-
ted transactions after the failure. This action is known as rolling the database forward.

8.2.1.5 Rolling a Database Back The LRM rolls back a database by undoing the
effects of one or more transactions. It starts with the current image of the database and
rolls back transactions. This action is required when the current image of the database
is inconsistent and we need to restore the database to a consistent point in the past.

8.3 TRANSACTION STATES REVISITED

Recall transaction states outlined in Section 8.1.4. We can extend the steps for a
running transaction to include logging to support the transaction abort and database
recovery. Note that what is logged depends on the mode of update—deferred versus
immediate—as shown below (Sections 8.3.1 and 8.3.2).

8.3.1 Deferred Update Transaction Steps

The following depicts the transaction steps extended to include logging for a system
that implements deferred updates.

1. Start_transaction
2. Log "Start"
3. Repeat

3.1 Read a data item’s "before-image"
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3.2 Compute the "after-image" for the data item
3.3 If must abort then log "Abort" and exit
3.4 Log the "after-image" of the data item
3.5 Write the "after-image" of the data item

4. Until no more rows to process
5. Log "Commit"
6. Commit_transaction
7. End_transaction

8.3.2 Immediate Update Transaction Steps

The following depicts the transaction steps extended to include logging for a system
that implements immediate updates.

1. Start_transaction
2. Log "Start"
3. Repeat

3.1 Read a data item’s "before-image"
3.2 Log the "before-image" for the data item
3.3 Compute the "after-image" for the data item
3.4 If must abort then log "Abort" and exit
3.5 Log the "after-image" of the data item
3.6 Write the "after-image" of the data item

4. Until no more rows to process
5. Log "Commit"
6. Commit_transaction
7. End_transaction

A careful reader notices that the difference between the two sets of steps is the
logging of the before-image of the data item for the immediate update approach. This
step is not necessary for the deferred updates, since the old values of the items are in
the stable storage and do not need to be logged.

8.4 DATABASE RECOVERY

In order to properly recover a database from failures and enable the transaction
abort/restart, the LRM has to log the necessary information as part of the logging
process. When a failure happens, the log information is used in the recovery process.
In the following two sections, we discuss what the LRM logs in response to requests
from the TM and then outline the steps that the LRM takes in the recovery process.

8.4.1 Logging Process

The LRM responses to the requests made by the transaction monitor are as follows:

• Transaction Start. The TM issues a transaction start request to the LRM with the
transaction ID. The LRM then writes a transaction start record to the log for this
transaction. As mentioned before, in addition to the transaction ID, timestamp
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and other system information are also stored as part of the record. What the LRM
does in response to the transaction start is the same for immediate and deferred
updates.

• Transaction Read. The TM issues a read request to the LRM for the data item.
The LRM then tries to read the data item from the cached pages that belong to the
transaction. If the data item is in the cache, its value is given to the transaction. If
the data item is not cached, then the LRM issues a fetch command to the LBM,
which then loads the page into the cache. In addition, the LRM has to record the
value of the data item in the log for the immediate update case.

• Transaction Write. The TM issues a write request to the LRM by specifying
a value for the data item. The LRM then tries to locate the data item in the
transaction’s cache. In this case, the data item is changed in the cache and the
new value is written to the log. Note that, in this case, the old value has already
been written to the log by the transaction before. If the data item is not cached, the
LRM issues a fetch command to the LBM to cache the page containing the data
item. The LRM also records the before value of the data item in the log for the
immediate update case. The data item is then changed in the cache, and the new
value is also recorded in the log. Note that when the data item is changed in the
cache we assume that it is written to the database. When immediate update is used,
the LBM transfers the page containing the data item to the database immediately.
In the case of deferred update, the page is forced to the stable database when the
transaction commits. In either case, WAL rules apply when writing dirty pages to
the database.

• Transaction Abort. An abort request indicates an unsuccessful termination of the
transaction. In response to an abort request, the LRM’s actions depend on the
mode of update. In the case of immediate updates, since the database has been
changed for the data items that the transaction has written, the LRM has to undo
the changes. To do this, the LRM restores the before-images of the data items
that the transaction has written from the log into the database. Then the LRM
records the termination of the transaction with a transaction abort record in the
log. When deferred update is used, since database pages have not been written
yet, the abort does not necessitate any database page changes. In this case, the
buffer database pages that belong to the aborting transaction are simply discarded.
Similar to the immediate case, the LRM records the termination of the transaction
with a transaction abort record in the log.

• Transaction Commit. The TM issues either a commit transaction or end trans-
action to the LRM to indicate a successful termination. The LRM’s actions in
response to the commit request depend on the mode of update. If the update
mode is deferred, then the LRM sends a flush/force command to the LBM to
write the log pages and dirty pages for this transaction to the stable storage.
Obviously, the WAL rules, which require log pages be written before database
dirty pages are written, are enforced. Once the LBM has flushed the pages, the
LRM writes a commit record for the transaction to the log. In the case of imme-
diate update, changed pages for the transaction have already been flushed to the
database and therefore the only action for the LRM to do is to write a transaction
commit record to the log.
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Note: In the above discussion, we indicated the completion of transaction commit
and abort by writing a corresponding record to the log. In practice, the system may add
the transaction that has committed/aborted to the list of committed/aborted transactions,
and carry the actual commit and abort action later. This is an attempt to reduce the num-
ber of disk I/Os by attempting to write as many pages as possible together to the disk.

8.4.2 Recovery Process

The recovery process is initiated after a failure. The failure, as mentioned before, can
be a soft failure, power loss, hard failure, or disk crash. Once the computer fails, it
needs to be restarted. If the cause of the failure is a software failure, normally a reboot
of the system is all that is needed. If the failure is due to power loss, power has to be
restored to the system and then the system is restarted. Our assumption is that a power
failure does not cause any disk damage or database information loss. This does not
mean that we do not deal with disk damage caused by a power loss; it simply means
that we categorize such failure as a hard failure or disk crash.

Typically, a failed disk requires replacement. If the disk failure is not catastrophic,
some information on the disk will be recoverable. That would be the case when a
portion of the disk, such as a logical partition, is damaged but the rest of the disk and
the electronics controlling the disk head movement are still intact. In either case, we
assume total database loss and outline the process for its recovery. After total loss of
the database, recovery is not possible by only utilizing the information on the log. Such
failure requires not only the information on the log but also a backup of the database
on either another disk or a magnetic tape.

8.4.2.1 Log Information Analysis The LRM processes the information in the log
to determine the state of each transaction at the time of the failure. To help with this
process, as explained before, log records are linked together for each transaction. In
addition, DBMSs maintain a transaction table that holds the transaction IDs and a
pointer to the transaction start record for each transaction in the log. Like the log, this
table is also maintained in the stable storage. The LRM determines what to do for each
transaction by following the transaction’s link in the transaction table and then finding
the log records for each transaction.

As such, the LRM categorizes transactions in the log in the following manner:

• If a transaction has a transaction start record and a transaction commit record,
then this transaction belongs to the list of committed transactions.

• If a transaction has a transaction start record and a transaction failed but not a
transaction abort record, then this transaction belongs to the list of failed transac-
tions.

• If a transaction has a transaction start record and a transaction abort record, then
this transaction belongs to the list of aborted transactions.

• If a transaction has a transaction start record and a transaction before-commit
record but not a transaction commit or abort record, then this transaction belongs
to the list of before-commit transactions.

• If a transaction has a transaction start record and a no before-commit, commit,
abort or failed record, then this transaction belongs to the list of active transactions.
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8.4.2.2 Recovery from a Power Failure Remember we assumed that power failure
does not cause loss of database information. It only causes the loss of information in
the volatile storage (memory). After power is restored to the system, the OS and DBMS
software restart. The OS issues a new type of command (i.e., recover command) to
the LRM. The LRM’s recovery from a power failure depends on the mode of update.
The LRM processes the log information and categorizes transactions according to the
above categories. The LRM then performs the following to recover a consistent state
of the database as close as possible to the time of failure.

In the case of immediate update, the LRM will take the following steps:

• It will undo transactions that are in the active list. For each such transaction, the
LRM also writes a transaction abort record to the log indicating the transaction’s
abort.

• It will redo transactions that are in the before-commit list. For each such transac-
tion, the LRM also writes a transaction commit record to the log indicating the
transaction’s abort.

• It will undo transactions that are in the failed list. For each such transaction, the
LRM also writes a transaction abort record to the log indicating the transaction’s
abort.

• The LRM does not have to do anything for transactions that are in committed
and/or aborted lists since they had completed before the failure.

In the case of deferred update, the LRM will take the following steps:

• It will write a transaction abort record to the log for each active transaction.
This is to indicate these transactions have been aborted. Note that LRM does not
actually have to undo such transactions, since they have not written anything to
the stable database yet.

• It will redo transactions that are in the before-commit list. For each such transac-
tion, the LRM also writes a transaction commit record to the log indicating the
transaction’s abort.

• It will write a transaction abort record for each transaction in the failed list. This
will indicate these transactions have been aborted. Again, the LRM does not
actually have to undo such transactions since they have not written anything to
the stable database yet.

• The LRM does not have to do anything for transactions that are in committed
and/or aborted lists since they had completed before the failure.

8.4.2.3 Recovery from Disk Failure We assume a “hard crash” will cause a total
database loss. This is a catastrophic failure that requires a new disk, a complete database
backup, and a log that is in sync with the backup. The computer operator will prepare
the new disk for restoration. Similar to the case of a power failure, once the OS is
restored, it sends a recover command to the LRM to recover the database. In this case,
the mode of the update does not matter since the newly restored disk does not contain
any of the running transactions’ changes at the time of failure. Therefore, recovery
from a disk crash is the same for the immediate and the deferred update modes. The
LRM processes the log information and categorizes the transactions according to the
above categories.
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The LRM performs the following to recover the database as close as possible to the
time of failure:

• It will redo all transactions that are in the committed transactions list.
• It will also redo all transactions that are in the before-commit list. For each one

of these transactions, the LRM also writes a commit record to the log indicating
that these transactions have been committed.

• For each transaction in the list of failed transactions, the LRM writes an abort
record to the log indicating their termination.

• For each transaction in the list of active transactions, the LRM writes an abort
record to the log indicating their termination.

Note: It is a good idea for a DBA to perform a complete backup of the database
immediately after recovery and before the database is put online for general use.
As a result, it seems unnecessary to log the cleanup actions that the LRM takes.
After all, after the complete backup, the old log has to be discarded and a new one
started. Although that is the case for a successful recovery, chances are that, during
the recovery, a new failure might happen. The recovery from this new failure needs
a log that represents the state of the database as of the time of the second failure and
not the first one. The cleaned up log correctly portrays the new state and will be used
for the new recovery process. Once the database is successfully recovered, the DBA
should perform a full backup and discard the updated log.

8.4.2.4 Checkpointing Checkpointing is used by different DBMSs to shorten the
recovery process. There are different alternatives for checkpointing. We will cover two
types of checkpointing—fuzzy checkpointing and consistent checkpointing.

Fuzzy checkpointing writes the list of active transactions at the time of the check-
point to the log. Fuzzy checkpointing is very inexpensive and can be done while
transactions are running in the system. The usefulness of this type of checkpointing
is seen in recovery from a power failure. Recall that the LRM will have to undo all
transactions that are active at the time of a power failure. Without a checkpoint in
the log, the LRM has to process the entire log to determine which transactions were
active when the power failure happened. This, obviously, is very time consuming and
prolongs the recovery. With checkpointing, the LRM only has to process those trans-
actions that are active at the time of the checkpoint and later. It should be obvious that
all transactions prior to the last checkpoint have terminated and, therefore, cannot be
active. Since fuzzy checkpointing is cheap to do, frequent use of it improves the power
failure recovery. However, this type of checkpointing does not help with recovery from
disk failure.

Consistent checkpointing is done for a consistent snapshot of the database. As a
result, consistent checkpointing is very expensive and has to be done when the database
is quiescent. Lindsey calls this type of a checkpoint a transaction-consistent-checkpoint
[Lindsey79].

Consistent checkpointing is carried out as follows:

• A checkpoint start record is written to the log.
• Information about the running transactions is recorded in the log.
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• Processing of new transactions that enter the system after the time of the start
checkpoint record is halted until the checkpoint is complete.

• Once all running transactions have completed, all dirty pages of the database are
flushed to the disk.

• An end checkpoint record is written to the log.

This type of checkpointing establishes a consistent image of the database at the
time of the checkpoint. Therefore, it can help in power failure recovery. When recov-
ering from a power failure, the only transactions that are on the right side of the last
consistent checkpoint are processed. Only these transactions have to be undone or
redone. All transactions to the left side of the last consistent checkpoint are ignored
since they have completed. Just like fuzzy checkpointing, this type of checkpointing
does not help with disk failure recovery unless we back up the database at the time
of the consistent checkpoint. In the absence of a backup at the time of consistent
checkpoint, the database has to be restored to the consistent image as of the time of
the last backup. Therefore, all completed transactions from before the checkpoint and
afterwards have to be redone. It is a good idea to back up the database when a consis-
tent checkpoint is performed since the database has already been forced to a quiescent
state.

Microsoft’s SQL Server DBMS performs a semiconsistent checkpoint when the log
file is 75% full. By default, SQL Server flushes all the dirty database pages to the
stable storage when this threshold is reached. SQL Server also truncates the log at this
time by removing all records for completed transactions from it. This is an attempt to
make room available for currently running and future transactions. The issue with this
idea is that if a quiescent point is not established soon after and/or if the database is
not backed up, recovery from a disk failure is not possible. That is because information
about all completed transactions prior to the checkpoint have been removed from the
log. That is also why SQL Server DBAs must make a point of disabling “truncate log
on checkpoint” and/or make a habit of performing a complete backup of the database
immediately following a checkpoint.

8.5 OTHER TYPES OF DATABASE RECOVERY

Database recovery can be based on transactions or time. Recovery based on time is
either recovering the database to current (now or the time of failure) or recovery to a
point-in-time in the past.

8.5.1 Recovery to Current

This type of recovery is usually for disk and power failures. We have already explained
the steps necessary to perform this type of recovery in Section 8.4.2.3.

8.5.2 Recovery to a Point-in-Time in the Past

This type of recovery (also known as PIT recovery) is usually performed to reestablish
the database to a consistent point in the past. Typically, PIT is a quiescent point when
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there are no active transactions running. This type of recovery is not done because of
a failure.

PIT recovery is done either by transaction rollback or transaction roll forward.

• PIT Using Rollback. For this approach, the LRM will put the database offline;
will undo all active and completed transactions from the current time to a PIT;
and then will put the database back online.

• PIT Using Roll Forward. For this approach, the LRM will put the database
offline; will restore the database from the most recent complete cold backup;
will roll all completed transactions prior to the PIT forward; and will put the
database back online.

The question that comes to mind is: “Which type of PIT recovery is better?” The
answer depends on the amount of work that the LRM has to perform for each case. If the
number of transactions that need to be undone is smaller than the number of transactions
that have to be redone, then rollback is used. Otherwise, roll forward is used.

8.5.3 Transaction Recovery

This type of recovery is usually performed to remove the effect of some bad transactions
from the database. This does not necessarily indicate a failure, but perhaps we must
address the fact that some transactions that ran previously need to be compensated for.
Similar to the PIT recovery, the transaction recovery can be done by UNDO scripts or
REDO scripts. UNDO scripts are generated first and then applied to remove the work
that the “bad” transactions have performed. REDO scripts are generated first for the
“good” transactions—that is, all transactions except the bad ones. The REDO scripts
are then applied to an image of the database in the past. The REDO and UNDO scripts
are generated from the log contents.

8.5.3.1 Transaction Recovery Using UNDO Scripts For this type of transaction
recovery, the LRM forces a quiescent point, puts the database in the “DBA use only”
mode, analyzes the log, and generates the UNDO scripts for bad transactions. Once
the scripts are generated, they are run against the database. The scripts can be run with
the database online.

The following are steps to generate the UNDO scripts:

• If the transaction has performed an insert, the LRM compensates that by gener-
ating a delete from the after-images in the log.

• If the transaction has performed a delete, the LRM compensates that by generating
an insert from the before-images in the log.

• If the transaction has performed an update, the LRM compensates that by gener-
ating an update from the after-images and before-images in the log.

Note: Bad transactions in this case include the target transactions as well as all
transactions that have used what the bad transactions have written to the database.
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8.5.3.2 Transaction Recovery Using REDO Scripts For this type of transaction
recovery, the LRM forces a quiescent point, analyzes the log, and generates the
REDO scripts for the transactions since the last backup, but not including the bad
transactions. The scripts can run with the database online.

The following are steps to generate the REDO scripts:

• If the transaction has performed an insert, the LRM generates an insert from the
after-images in the log.

• If the transaction has performed a delete, the LRM generates a delete from the
before-images in the log.

• If the transaction has performed an update, the LRM generates an update from
the after-images and before-images in the log.

The LRM then restores the last cold backup, applies the REDO scripts to the
database, and then opens the database for public use.

Example 8.1 In this example, we perform recovery with incremental logs for
deferred updates. Assume the five transactions depicted in Figure 8.5, the time of
failure, the checkpoint, and the database backup.

What are the recovery steps if the system utilizes deferred updates?

• Recovery from Power Failure. If transactions T3 or T5 have written before-
commit records to the log, then redo them and write commit records for them to
the log. If T3 or T5 have NOT written before-commit records to the log, then
write abort records for T3 or T5 to the log.

• Recovery from Disk Failure. Restore the database from the last backup. Redo T1,
T2, and T4. If T3 or T5 have logged before-commit, then redo T3 or T5 and log
that have been committed; otherwise, log that they have been aborted.

Example 8.2 In this example, we perform recovery with incremental logs for imme-
diate (instead of deferred) updates. Assume the same five transactions in Example 8.1,
the time of failure, the checkpoint, and the database backup.

What are the recovery steps if the system utilizes immediate updates?

• Recovery from Power Failure. If T3 or T5 have written before-commit records
to the log, then write two commit records to the log indicating that they have
committed; otherwise, undo T3 or T5 and log that they have been aborted.

Figure 8.5 Failure recovery example.
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Figure 8.6 Transactions involved in Example 8.3.

• Recovery from Disk Failure. Restore the database from the backup. Redo T1, T2,
and T4. If T3 or T5 have logged before-commit, then redo T3 or T5 and log that
have been committed; otherwise, log that they have been aborted.

Example 8.3 Assume the transactions, the backup time, and failure time indicated
in Figure 8.6. Assume the system uses an immediate update strategy and that neither
T6 nor T8 has entered its commit process when the failure happens at 7:00 A.M.

The following statements are true for this system:

• We do not need to maintain the logs for the backup taken last week since that
backup was taken at a quiescent time—a cold backup.

• We do need to maintain the logs for the backup taken this week since there are
transactions running at the time of the backup—a hot backup.

• After a power failure, we must undo T6 and T8 and write an abort record for
each transaction to the log.

• After a disk failure, we must restore from this week’s full backup image. Roll for-
ward (redo) T3, T4, T5, T7, and T9. Write abort records to the log for T6 and T8.

• At 7:00 A.M. and without any failure, we can use two approaches to recover to
6:00 A.M. as a PIT recovery. Approach 1: Do not restore; undo T6, T7, and T8.
Approach 2: Restore from this week’s backup; redo T3, T4, T5, and T9. The first
approach is better since there are fewer transactions to recover.

• To recover from running transactions T1, T2, and T5, we restore to last week’s
cold backup; generate the redo scripts for T3, T4, T7, and T9; run the redo scripts;
and rerun T6 and T8 if necessary.

8.6 RECOVERY BASED ON REDO/UNDO PROCESSES

We have discussed four recovery classes, which were based on the failure types and
mode of updates:

• Recovery from power failure with immediate updates
• Recovery from power failure with deferred updates
• Recovery from disk failure with immediate updates
• Recovery from disk failure with deferred updates
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Researchers have classified these approaches from another angle based on whether
or not redo and undo is used [Bernstein87]. If the recovery process uses redo, it is
known as “redo recovery,” and if it uses undo, then it is known as “undo recovery.”
The recovery process could also choose not to use redo—known as “no-redo,” or
could choose not to use undo—known as “no-undo” recovery.

This provides for four alternatives for the recovery process as classified below:

• Class 1 Recovery: Redo/Undo. The redo in this approach applies to those trans-
actions that are at the commit point. Analyzing the log, the LRM will redo
transactions in the “Before Commit” state as well as committed transactions
reflecting their effects on the stable database. Afterwards, a commit record is
written to the log for each transaction in the “Before Commit” state. The undo
in this approach applies to those transactions that are incomplete at the time of
the failure. The LRM will undo transactions that are in the “Active” state. After-
wards, an abort record is written to the log for each one of these transactions.
Comparing this approach to what we discussed in Section 8.4.2.3, we realize that
the redo/undo recovery is the same as the recovery from a disk failure in the
immediate update strategy.

• Class 2 Recovery: Redo/No-Undo. The redo in this approach is the same as Class
1. This approach does not require undo since the transactions are only written
to the database after the transactions enter the “Before Commit” state. That is,
changes of a transaction are deferred until a decision is made to commit the
transaction. Comparing this approach to what we discussed in Section 8.4.2.3,
we realize that the redo/no-undo recovery is the same as recovery from a disk
failure in the deferred update strategy.

• Class 3 Recovery: No-Redo/Undo. The no-redo in this approach indicates that
transactions are never redone. That is because changes of a transaction have been
written to the database immediately. At the commit point, there is no work to
be done except writing a commit record to the log. Since transactions’ changes
are reflected in the database immediately, if a transaction decides to abort, its
changes have to be undone and the action has to be recorded by the LRM in the
log. Obviously, this class corresponds to what we called recovery from a power
failure for the immediate update strategy in Section 8.4.2.2.

• Class 4 Recovery: No-Redo/No-Undo. This approach writes changes for a trans-
action to the database at the commit point and therefore requires no-redo when a
transaction actually commits. The approach does not require undo since changes
are not written to the database if the transaction aborts. Again, comparing this
to what we discussed in Section 8.4.2.2, we realize that the approach corre-
sponds to what we called recovery from a power failure for the deferred update
strategy.

8.7 THE COMPLETE RECOVERY ALGORITHM

The following code snippet outlines the complete recovery process for power and disk
failures. Both immediate and deferred updates are included in the code. Note in this
code that the notation “<Ti, Action>” indicates a log record for transaction “Ti” and
the action it logs. The notation “/*. . .*/” indicates a comment.



324 FAILURE AND COMMIT PROTOCOLS

Begin recovery
Analyze the log
Create list 1 containing those transactions that have
a <T, Begin> record but not a <T, Before commit> record

these are incomplete transactions.
Create list 2 containing those transactions that have
a <T, Begin> record and a <T, Before commit> record

these are before committed transactions.
Create list 3 containing those transactions that have
a <T, Begin> record and a <T, Commit> record

these are committed transactions.

Case (a):
Power Failure without database loss
If deferred updates
Then

Redo transactions in list 2;
Write Commit to the log for transactions in list 2;
For transactions in list 1 write abort to the log;

Else /*Immediate updates*/
Undo transactions in list 1;
Write abort for transactions in list 1;
Write commit for transactions in list 2;

End if;

Case (b):
Disk crash with database loss

Restore database from tape;
For transactions in 1 write abort to the log;
Redo transactions in list 2;
Write commit to the log for them;
Redo transactions in list 3;

Case (c):
Database, backup and log loss

Look for another job;
End Case;

End recovery;

8.8 DISTRIBUTED COMMIT PROTOCOLS

In the previous section, we described the centralized fault tolerance and commit proto-
col. We discussed how the commit protocol guarantees the atomicity of a transaction
in a centralized system even when failures happen. In this section, we will discuss
extensions to the centralized fault tolerance concepts to support transaction atomicity
in a distributed database.
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In a centralized system, the issues with atomicity were related to the transaction’s
abort, concurrency control issues such as deadlocks, system failures, and disk failures.
The collection of local systems that form a distributed system use a communication
network for their interconnection. In addition to having to deal with issues that a
local server handles in committing a local transaction, in a distributed system we
must be able to deal with a local server’s system crash, disk failures, and also with
communication link failures. Network partitioning, especially, is very difficult to deal
with in supporting the distributed commit protocols.

To understand why distributed commit protocols are necessary, we should use an
example. Let us assume that a distributed system consists of two servers. Let us also
assume that the fund transfer transaction transfers money from an account on the first
server to an account on the second server. Locally, each server runs a transaction—the
first server runs the debit transaction while the second server runs the credit transac-
tion. Once each local server is done executing, it indicates that the local transaction
has entered the “Before-Commit” state in its STD—the local transaction is then
ready to commit. However, the local servers cannot commit the transaction unilat-
erally until it is guaranteed that both servers can commit. If one server is ready to
commit and the other is not, the transaction as a whole cannot commit. Distributed
atomicity requires that either all servers commit the transaction or none of them
commits.

The steps that are required to globally commit a distributed transaction are therefore
different from the steps required to commit a local transaction. In a local system, once
the transaction monitor decides to commit a transaction, it simply communicates the
decision to the local LRM to do so. In a distributed system, on the other hand, the
decision to commit or abort a transaction must not only be communicated to all the
local servers involved, but also be uniformly enforced. Problems arise when a local
server that has been involved in a distributed transaction cannot be reached or is not
available to commit or abort the global transaction. Failures that directly impact the
distributed commit protocols are loss of data during communication, data corruption,
network failure, site crash, network congestion, and network partitioning. As we will
show, some of these protocols are blocking—the failure of one server blocks the
process of other servers—while some of these protocols are nonblocking—the failure
of one server does not block other servers.

8.8.1 Architectural Requirements

Before discussing the distributed commit protocols, we would like to outline the
required architectural elements. The distributed commit protocols assume the exis-
tence of a process called the coordinator. Typically, the coordinator is the transaction
monitor (TM) that runs at the site where the transaction enters the system. All other
servers or sites involved in a transaction act as slaves or followers. The transaction
coordinator is responsible for carrying out the transaction across all slave sites involved
in the transaction. Once the transaction has been executed successfully by all slaves,
the coordinator needs to make a decision to either commit or abort the transaction.
After the decision has been made, the coordinator is responsible for making sure that
all slaves carry out the decision uniformly—meaning that either all sites commit the
transaction or all sites abort the transaction.
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To detect failures, sites use a timeout mechanism. Local timers are used for this
purpose. The timer at a site is set to a predetermined time interval. The timer at a site
starts when the site sends a message. The site expects to get a response from a remote
site before the timer goes off (expires). For example, when the coordinator sends a
command to a slave to execute a transaction, it starts the timer. If the coordinator does
not hear from the slave before the timer goes off, the coordinator suspects that this
slave has failed. To make sure, the coordinator sends a message requesting a response
from the allegedly failed slave. This message is known as a ping—similar to the
sonar signals submarines use to detect the existence of an external object. If there is
no response from the slave, the coordinator knows the slave has failed. To be able to
recover from a failure, a site must be able to determine its transactions’ states at the
time of the failure after the site is repaired. This, as mentioned before, assumes that
each site properly writes the necessary records to the site’s log for all local transactions.

Recall that in our transaction model a distributed transaction consists of a set of
subtransactions (local transactions), each one of which runs at a local site. Each
local site runs through the states of the local STD for its transaction. That includes
the local transaction running at the coordinator site as well as slave sites. Without
orchestration from the coordinator, the subtransactions of a global transaction could
end up in different terminal states of abort and commit. The coordinator has to make
sure that all its local transactions forming the global transaction terminate in either the
commit state or in the abort state but not in both states at the same time.

8.8.2 Distributed Commit Protocols

There are many distributed commit protocols (DCPs) proposed and studied over the
years [Gray78] [Gray87] [Lampson76] [Lindsey79] [Skeen81] [Skeen82] [Skeen83].
These include one-phase commit (1PC), two-phase commit (2PC), three-phase
commit (3PC), or quorum-based commit (QBC), which we will discuss next. In
discussing DCPs, researchers have used the concept of phase to differentiate alterna-
tives. What is not clear is whether or not the execution phase of the transaction is
counted as part of the protocol. For instance, Skeen and Stonebraker present a formal
model for DCPs [Skeen83]. The example they use for the two-phase commit protocol
in a two-site system is explained as follows:

Phase 1: Site 1 (the coordinator) sends the transaction to Site 2 (the only slave).
Site 2 starts the local transaction, executes the transaction, but does not commit.
If the execution is successful, Site 2 sends a “Yes” message to Site 1 to commit;
otherwise, it sends a “No” message to abort.

Phase 2: Site 1 receives the response (vote) from Site 2. If the vote is “Yes” and
Site 1 agrees, then it sends a “Commit” message to Site 2; otherwise, it sends
an “Abort” message.

As a contrast to this, Özsu and Valduriez use a STD for the two-phase commit
that starts with an initial state [Özsu99]. The initial state concept used by Özsu and
Valduriez does not correspond to the transaction start state used by Skeen. When we
examine these two definitions of the two-phase commit protocol side-by-site, it is
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clear that there is no general agreement on how to count the number of phases of the
protocol. According to Skeen and Stonebraker, the transaction’s overall life cycle is
divided into two phases—the execution phase and the commit phase. While according
to Özsu and Valduriez, the overall life cycle of the transaction is divided into three
phases—the execution phase, the preparing phase, and the commit phase. However,
all these researchers call the approach “two-phase commit.”

There is general agreement that every local transaction that acts as a subtrans-
action of a global transaction enters the “Before Commit” state after it finishes its
active state and before it enters the commit or abort state. Our discussion of different
distributed commit protocols assumes the distributed commit process starts when all
subtransactions have entered the “Before Commit” state (see Section 8.1.4).

8.8.3 One-Phase Commit

One-phase commit (1PC) is the simplest form of the distributed commit. In the 1PC,
once the coordinator makes a decision to commit or abort a distributed transaction,
it communicates that decision to the slaves in one broadcast. The slaves that receive
the message carry out the decision and acknowledge the action. Figure 8.7 depicts
execution of a distributed transaction in a three-site system using the 1PC protocol.

As shown in the picture, the 1PC protocol starts once all the slaves have executed
the transaction locally but have not committed it. Upon completion of the transaction
at a local site, each slave sends a “Done” message to the coordinator. After that, all
slaves involved in the transaction are waiting to hear the coordinator’s decision to either
commit the transaction or abort it. This period of time is known as the window of
vulnerability (WoV). During this window, slaves will be waiting to hear the decision
from the coordinator and cannot unilaterally commit or abort the transaction. The failure
of the coordinator during this window will block the continuation of the transaction by
the slaves. When the coordinator receives the “Done” messages from all slaves, it will
make a decision to commit or abort the transaction. This point in time corresponds
to the commit point of the distributed transaction. The decision to commit or abort
is communicated to the slaves by the coordinator broadcasting the “Commit” or the
“Abort” message. Once the message is received by a slave, it executes the decision
and acknowledges the action.

The 1PC is straightforward to implement, but at the same time it is a blocking
protocol and lacks resiliency. One major issue with the 1PC is that a slave cannot back
out of the transaction after it has sent the “Done” message to the coordinator. In a
sense, slaves who execute a transaction are bound to whatever the coordinator decides.
This is not necessarily bad, if the coordinator communicates the final decision to the
slaves in a short period of time. However, since the coordinator must wait to receive
the “Done” messages from all slaves before it decides what to do with the transaction,
the slaves that have finished working on the transaction early may be waiting for a
long time. The state of the sites that are waiting may change if the elapsed time is too
long. Keep in mind that, during the wait period, the slave has to keep the resources it
has used for the transaction locked. Obviously, locked resources are not available to
other local transactions (even the read-only transactions). This negatively impacts the
performance of the local system. Nevertheless, the slaves cannot release the resources
until the coordinator communicates the final decision to them. Slaves that are waiting
for the coordinator are blocked.
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The more problematic issue with the 1PC is the failure of the coordinator during
the WoV. In this case, the slaves will be blocked for a much longer period of time.
Without the failure of the coordinator, the WoV of a slave, in the worst case, is as long
as the time it takes for all other slaves to execute the transaction and the coordinator to
broadcast the “Commit” message. The failure of the coordinator extends this window
to include the time it takes to repair the coordinator as well.

Note that slaves cannot unilaterally decide to commit or abort a transaction if the
coordinator fails. It is true that once the coordinator fails, the slaves can communicate
with each other and try to determine the coordinator’s decision. The coordinator’s deci-
sion must have been to commit the transaction if one or more slaves have received the
“Commit” message. If one such slave is found, then all slaves commit the transaction.
However, if none of the slaves has received the “Commit” message, then all of the
slaves are blocked. That is because the coordinator may have carried out the decision
locally on the local copy of the database but failed before the message was sent out of
the coordinator’s site. If we allowed the slaves to make a decision here, any decision
that the slaves collectively might make, may or may not be the same as the one the
coordinator had carried out locally. The WoV and the blocking properties of the 1PC
are reduced to some degree by the two-phase commit protocol.

Example 8.4 Consider transaction “T: Z = X + Y” issued at Site 1 in a two-site
system, where data item “X” is at Site 1 and data items “Y” and “Z” are at Site 2.
Since this transaction enters the system at Site 1, it makes Site 1 the coordinator and
Site 2 the only slave. Figure 8.8 depicts the communication between the two sites to
execute the transaction, using locks as the approach for concurrency control and the
one-phase commit protocol.

8.8.4 Two-Phase Commit Protocol

Although, the 1PC is straightforward and easy to implement, due to its lack of resiliency
it is not the industry standard. Two-phase commit (2PC) extends the 1PC to reduce the
vulnerability of the servers involved in the transaction [Gray78]. Figure 8.9 illustrates
the execution of a distributed transaction in a three-site system using the 2PC protocol.

As in the 1PC, the commit point for the 2PC is reached when the coordinator has
received the “Done” messages from all slaves. At this time, like before, the coordinator
will make a decision to commit or to abort the transaction. The decision to abort is
communicated to the slaves by a “Global Abort” message, upon receipt of which the
slaves abort the transaction locally and acknowledge the action. The coordinator has
globally aborted the transaction once it receives the “Abort ACK” messages from all
slaves.

If the coordinator decides to commit the transaction, it enters the first phase of the
protocol by sending a “Prepare” message to all slaves. The slaves vote on whether they
still want to commit the transaction or not by sending a “Ready” or a “Not Ready”
message, respectively. A slave that does not want to continue with the transaction
votes “Not Ready” to force the transaction to abort. This decision can be based on
the change of state in the slave due to conflicting local concurrent transactions or
just the fact that the coordinator waited too long before starting the commit process.
Upon receipt of the first “Not Ready” message, the coordinator starts the global abort
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Figure 8.8 One-phase commit protocol example in a two-site distributed system.

process by sending a “Global Abort” message to all slaves. This signifies the start of
the second phase of the 2PC. Once the “Global Abort” message is received, slaves
abort the transaction and acknowledge the action. Again, the coordinator has globally
aborted the transaction once it receives the “Abort ACK” messages from all the slaves.
Note: Since the coordinator starts the global abort process as soon as it receives the
first “Not Ready” message, it might receive other votes on the same transaction from
other slaves after this point. The coordinator simply ignores these votes once it has
started the global abort process.

On the other hand, if all slaves are willing to commit the transaction, they will send
a “Ready” message to the coordinator. Once the “Ready” messages from all of the
slaves are received, the coordinator starts the second phase of the protocol by send-
ing the “Global Commit” message to all slaves. Slaves then apply the transaction and
acknowledge the action. Once the coordinator has received the “Commit ACK” mes-
sages from all slaves, the transaction has globally been committed. Note that sending a
“Ready” message indicates the willingness of a slave to continue with a transaction’s
commit. The slave who sends a “Ready” message cannot change its decision and it
is bound to whatever decision the coordinator makes with respect to the faith of this
transaction.

The simplified version of the 2PC does not require commit and abort acknowledg-
ments from the slaves. In this variation, the commit and abort states are terminal states
for the programs. We have chosen to require the acknowledge messages as part of the
protocol and therefore have introduced an intermediate state before commit and abort
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states for this reason. In these states, both the coordinator and the slaves will do some
cleanup work such as writing to the log the fact they are aborting or committing the
transaction. Inclusion of these states in the protocol helps explain the cleanup actions
of the local systems and helps to deal with recovery from failures, as we will explain
later.

We have also chosen to use a variation of the Petri net [Petri62] methodology to
depict the details of algorithms for the coordinator and the slaves. Others have used
the state transition diagram to discuss the algorithms [Gray87] [Özsu99]. Figures 8.10
and 8.11 show the algorithms for the coordinator and the slaves for the no failure
case. Note: In these figures, we have assumed the total number of sites involved in the
transaction is “N”, one coordinator, and “N − 1” slaves.

Note: For the coordinator, what we call the “Preparing” state is called the “Wait”
state by others [Gray87] [Özsu99] and for the slaves, what we call the “Prepared”
state is called the “Ready” state. Once all slaves are ready to commit the transaction,
the coordinator enters the “Committing” state in which it makes sure all slaves have
successfully committed the transaction before it enters the final “Committed” stated.
Similarly, to abort a transaction when the coordinator receives a “Not Ready” message,
we have chosen to use the “Aborting” state in which the coordinator makes sure all
slaves abort the transaction before it enters the final “Aborted” state. For the slave,
the “Aborting” state is entered when the slave replies with a “Not Ready” message,
aborts the transaction locally, and is then waiting to acknowledge the “Global Abort”
message from the coordinator. Figure 8.12 shows the state transition diagrams for the
coordinator and slave algorithms.

8.8.4.1 Resiliency of 2PC and Failure Handling The 2PC protocol is more resilient
than the 1PC since it has a much smaller WoV. The WoV in the 2PC is much smaller
than the one in 1PC, since it does not include the transaction execution time. Prior to
entering the “Prepared” state, if the coordinator fails, slaves can abort the transaction
by voting “Not Ready.” This protocol, however, is not capable of dealing with the
coordinator’s failure in the second phase of the protocol. It should be easy to see that
the only time when the slaves are blocked from making a unilateral decision to abort
a transaction is when they have entered their “Prepared” states.

To deal with failures, the 2PC must be extended to include a termination protocol
and a recovery protocol. These protocols together guide sites through a set of steps
to deal with failures. The termination protocol is intended to terminate a transaction
when one or more sites fail. This protocol is invoked by all operational sites after
a failure of a site is detected. The termination protocol tries to commit or abort the
transaction after a failure as soon as possible to release data resources locked by the
sites involved in the transaction. The recovery protocol is run by the sites that have
failed after they are repaired. A failed site is not involved in the decision that is made
about termination of the transaction and, therefore, it must terminate the transaction
exactly as others have.

We assume the inclusion of a timeout mechanism that allows the coordinator to
detect the failures of the slaves and the slaves to detect the coordinator’s failure.
All transitions in the 2PC require writing the log and sending one or more mes-
sages. We assume that a site writes the log, submits the messages to the message
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queue, and then makes the transition. Although it is reasonable to assume these three
actions are atomic (the site cannot fail in the middle of performing these three oper-
ations), it is not reasonable to assume that the actual transmission of the messages in
the queue and the state transition can be done as one atomic action. That is because
physical removal and transmission of messages from the queue is performed by the
communication sublayer independent of what the transaction monitor and the local
recovery manager are doing. This means that transitioning to a new state and physi-
cally sending the required message are two separate operations. As a result, a site may
actually change its state but may fail to send the required message(s). For example,
the coordinator may make a transition from the “Preparing” state to the “Abort” state
but fail before sending the “Global Abort” message. This failure might occur before
it has sent any messages, or after it has sent only some of the required messages. We
have included the termination protocol in the coordinator’s and slaves’ algorithm as a
set of new steps, as shown in Figure 8.13.

8.8.4.2 Termination Protocols in 2PC There are two termination protocols that are
activated when failures occur. The first protocol is activated by the coordinator when
one or more slaves fail. The second protocol is activated by the slaves when the
coordinator fails.

2PC Coordinator Termination Protocol The termination steps that the coordinator
takes after the failure of a slave has been detected depend on the state that the coor-
dinator is in at the time of the failure detection.

The coordinator handles the failure of a slave as follows:

• Case 1: The slave’s failure is detected when the coordinator is in the “Before
Commit” state. In this case, the slave must have failed during transaction execu-
tion. To terminate the transaction, the coordinator will log “Aborting” and send a
“Global Abort” message to all slaves.

• Case 2: The slave’s failure is detected when the coordinator is in the “Preparing”
state. In this case, the slave could have been in any of the “Before Commit,”
“Aborting,” or “Prepared” states. If the slave failed in the “Before Commit” state,
it never received the “Prepare” message. If the slave failed in the “Abort” state,
it must have received the “Prepare to Commit” message and voted “Not Ready.”
Finally, the slave must have failed in the “Prepared” state, if it voted “Ready” but
failed before it sent out the message. In any case, the decision by the coordinator is
to assume that the slave did not want to commit the transaction, which necessitates
the global abort process.

• Case 3: The slave’s failure is detected when the coordinator is in the “Committing”
state. This signifies the fact that the coordinator did not receive the “Commit
ACK” message from the slave. In this case, the slave must have failed in either the
“Prepared” state—it failed before it received the “Global Commit” message—or
in the “Committed” state—it failed after committing and before it sent out the
“Commit ACK” message. In either case, the coordinator has to continue polling
the slave for acknowledgment of the action before it ends the transaction globally.

• Case 4: The slave’s failure is detected when the coordinator is in the
“Aborting” state. This signifies the fact that the coordinator did not receive
the “Abort ACK” from the slave. In this case, the slave could have been
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in any of the “Before Commit,” “Prepared,” “Aborting,” or “Aborted” states.
Regardless of the state in which the slave failed, the coordinator must poll the
slave for acknowledgment of the abort before it ends the transaction globally.

2PC Slave Termination Protocol Each slave detecting the coordinator’s failure acti-
vates this protocol to terminate the current transaction. Figure 8.14 explains how the
slaves deal with the failure of the coordinator.

Each slave that detects the failure of the coordinator takes the following steps:

• Case 1: The coordinator’s failure is detected when the slave is in the “Before
Commit” state. In this case, the coordinator must have failed when it was in any
of the “Before Commit,” “Aborting,” or “Preparing” states. In this case, the slaves
elect a new coordinator (see Section 8.8.4.6), which will abort the transaction
globally.

• Case 2: The coordinator’s failure is detected when the slave is in the “Abort-
ing” state. In this case, the coordinator could have been in the “Preparing” or
“Before Commit” state. In either case, the transaction needs to be aborted, which
is achieved by slaves deciding to elect a new coordinator.

• Case 3: The coordinator’s failure is detected when the slave is in the “Prepared”
state. In this case, the coordinator could have failed in any of the “Preparing,”
“Aborting,” or “Committing” states. The slaves deal with the “Committing” and
“Aborting” states of the coordinator similarly, and, therefore, we will consider
only two cases. Let’s discuss these cases in more detail. In the first case, the
coordinator dies in the “Preparing” state before it sends out the “Global Abort” or
the “Global Commit” message. The coordinator that dies in the “Preparing” state
and does not get a chance to send out the “Global Abort” or “Global Commit”
message leaves the slaves in the dark about the final decision on the transaction.
This is possible when the coordinator makes the decision to commit (or abort) the
transaction and makes the transition to the “Committing” (or “Aborting”) state,
but before the message leaves the site’s message queue, the site fails. Keeping in
mind that the coordinator’s decision could have been applied to the local copy
of the database at the coordinator’s site, the slaves cannot do anything about this
transaction—therefore, they are blocked. In the second case, the coordinator dies
in the “Committing” (or “Aborting”) state. For this case, it is possible that the
message to globally commit the transaction did not make it out of the coordinator’s
site or that it did make it to one or more slaves. If the message did not make
it out of the coordinator’s site, none of the slaves will know about the decision.
On the other hand, if the message made it out of the coordinator’s site before the
site failed, one or more of the slaves may know the decision. For the latter case,
after the failure is detected, the slaves elect a new coordinator and try to discover
the coordinator’s state at the time of the failure. To do so, the new coordinator
sends a message to all other slaves asking them to reply with the last message
they received from the failed coordinator.
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Possible scenarios are the following:

1. No slave has received the “Global Abort” or “Global Commit” message. This
corresponds to Case 1 above. All slaves are blocked until the coordinator site is
repaired and the coordinator starts the recovery process.

2. Some slaves have received the “Global Abort” message. In this case, the rest of
the slaves are in the “Prepared” state. This indicates the decision to abort the
transaction was made by the coordinator before it failed. The transaction is then
aborted by the new coordinator.

3. Some slaves have received the “Global Commit” message. In this case, the rest
of the slaves are in the “Prepared” state. This indicates the decision to commit
the transaction was made by the coordinator before it failed. Transaction is then
committed by the new coordinator.

4. All slaves have received the “Global Abort” message. This case is handled similar
to Case 2.

5. All slaves have received the “Global Commit” message. This case is handled
similar to Case 3.

Note: It is not possible for some slaves to have received “Global Abort” while
others have received “Global Commit” since the coordinator would not have decided
on contrary terminations of the transaction for different slaves.

8.8.4.3 Recovery Protocols in 2PC These protocols specify the steps that a failed
site must take to terminate the transaction it was running at the time of the failure
after it is repaired. The recovery protocols must make sure that a failed site terminates
its transaction in exactly the same way the working sites terminated it. There are two
possible ways of doing this.

Recovery by Discovery The first approach requires the repaired site to ask around
about the fate of the transaction. The site then terminates the transaction accordingly.
If the failed site is a slave, it can ask the coordinator about the transaction. If the failed
site is the coordinator, it can broadcast the question to all slaves. Either all the other
slaves or the newly elected coordinator will send the answer to the requesting site. In
order for this protocol to work, the information about the termination of a transaction
must be held by each site until all failures are repaired.

Independent Recovery The second approach relies on the site and the state of the site
at the time of the failure to terminate the transaction properly. A site can determine the
state it was in when the failure happened by examining its local log. In the following, we
discuss the recovery process for the coordinator and the slaves based on this approach.

Recovering from a Failure Using State Information It should be rather obvious that the
recovery steps taken after a failure is repaired depend on the state the site is in when
the failure happens. It should also be obvious that the recovery steps a failed site takes
must correspond to the termination steps the working site took when they detected the
site’s failure. Recall that the coordinator is able to terminate its transaction even when
a slave fails, regardless of the failed slave’s state. Therefore, it should be possible for
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a failed slave to recover without asking the coordinator. On the other hand, the failure
of the coordinator does block the slaves when the coordinator is in specific states. As
a result, when a failed coordinator is repaired, in some cases, it has to continue the
transaction to unblock the slaves.

8.8.4.4 2PC Coordinator Recovery Process After a coordinator is repaired, it will
read the local log, determine the state it was in at the time of the failure, and take the
necessary steps for recovery.

Here are the possible cases:

• The coordinator was in the “Before Commit” state when it failed. In this case, the
coordinator did not send the decision to commit or abort the transaction to slaves.
The termination protocol for this case forces the slaves to abort the transaction.
Therefore, the coordinator must also abort the transaction. As part of this process,
the coordinator will send an “Abort ACK” to the newly elected coordinator.

• The coordinator was in the “Preparing” state when it failed. In this case, according
to the termination protocol the slaves are blocked. The coordinator restarts the
voting process to terminate the transaction. This is necessary since some of the
slaves’ responses may have been lost in the coordinator’s message queue when
the site failed.

• The coordinator was in the “Aborting” state when it failed. In this case, the
decision was to abort the transaction because either one or more slaves voted
to abort, or the coordinator decided to abort. The recovery process in this case
requires the coordinator to communicate with the new coordinator, which was
elected as part of the termination protocol. Two subcases are possible. If all
the slaves were ready to commit, but the coordinator had decided to abort, and
none of the slaves had received the “Global Abort” message, then the slaves are
blocked. For this subcase, the coordinator will have to inform all slaves that the
transaction is being aborted by sending a “Global Abort” message to terminate the
transaction. In the second subcase, one or more slaves had received the “Global
Abort” message. Here, the new coordinator has aborted the transaction according
to the termination protocol. Therefore, the repaired coordinator will simply abort
the transaction and acknowledge the action to the new coordinator.

• The coordinator was in the “Committing” state when it failed. In this case, the
decision was to commit the transaction, and all slaves were ready to do so. The
recovery process in this case requires the coordinator to communicate with the new
coordinator, which was elected as part of the termination protocol. Two cases are
possible. If the “Global Commit” message was received by one or more slaves,
then the new coordinator has committed the transaction. If the “Global Commit”
message was not received by any transaction, then the slaves are blocked. If the
slaves are blocked, the old coordinator will commit the transaction globally. If
slaves have already committed the transaction, then the old coordinator commits
the transaction as well.

• The coordinator was in the “Aborting” state when it failed. In this case, the
decision was to abort the transaction. Again, either the slaves are blocked or
they have aborted the transaction. The recovery process in this case requires the
coordinator to communicate with the new coordinator, which was elected as part
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of the termination protocol. If the “Global Abort” message was received by one
or more slaves, then the new coordinator has aborted the transaction. In this case,
the old coordinator will abort the transaction as well. If slaves are blocked, the
old coordinator will abort the transaction globally.

• Recovery in the states “Committed” and “Aborted” does not require any action
from the coordinator.

8.8.4.5 2PC Slave Recovery Process After a slave is repaired, it will read the local
log, determine the state it was in at the time of the failure, and take the necessary steps
for recovery.

Here are the possible cases:

• The slave was in the execute phase of the transaction when it failed. In this case,
the coordinator aborted the transaction according to the termination protocol and,
therefore, the slave can safely abort the transaction. As part of the abort, it will
send an “Abort ACK” message to the coordinator.

• The slave was in any of the “Before Commit,” “Aborting,” or “Prepared” states
when it failed. In this case, the coordinator aborted the transaction according to
the termination protocol, and, therefore, the slave can safely abort the transaction.
As part of the abort, it will send an “Abort ACK” message to the coordinator.

• The slave was in the “Committed” or “Aborted” state when it failed. In this case,
the coordinator must have committed or aborted the transaction according to the
termination protocol. As a result, the slave will send “Commit ACK” if it is
in the “Committed” state or “Abort ACK” if it is in the “Aborted” state to the
coordinator. Note: In the above, we assume the acknowledge message got lost due
to a failure and therefore requires resending. If the message was in fact received
by the coordinator, the coordinator will simply ignore the new response.

8.8.4.6 New Coordinator Election in 2PC Sometimes, when the coordinator fails,
the slaves in the 2PC are forced to elect a new coordinator from among the slaves
to continue a stalled transaction. This can be done by the slaves voting, based on
the priority of the sites or based on a predetermined order. Once elected, the new
coordinator will have the responsibility to try to commit or to try to abort the transaction
globally. This responsibility includes informing the original coordinator after it has been
repaired. It should be easy to see that the election process is time consuming and may
necessitate a large number of messages to be exchanged.

8.8.4.7 Multiple Site Failures in 2PC Skeen and Stonebraker show that when two
or more sites fail at the same time, the 2PC is not capable of performing independent
recovery [Skeen83]. It should be obvious that failure of a single slave or multiple
slaves does not block the coordinator. However, as we have discussed, the coordinator’s
failure may be blocking, depending on the coordinator’s state. As a result, the 2PC
cannot guarantee a consistent state for the database when two or more sites fail and
the coordinator is one of the failed sites. Skeen and Stonebraker further argue that no
protocols can deal with multiple site failures when the coordinator is one of the failed
sites. This includes the 2PC, as we have discussed, and also includes the 3PC that we
will discuss in Section 8.8.5.
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8.8.4.8 Two-Phase Commit Performance The two-phase commit protocol is an
expensive protocol since it requires three broadcasts and acknowledgments. The cost
of the protocol depends on the number of messages that are sent over different phases
and the number of log records that the coordinator and the slaves write to the stable
storage. The protocol requires additional messages to be sent, and log records to be
written when failures happen. Mohan and Lindsay propose variations of this protocol
that try to reduce the number of messages and the number of log records [Mohan85].
We will briefly discuss two specific alternatives known as “presumed commit” and
“presumed abort” next.

Presumed Commit and Presumed Abort The 2PC presumed abort (PA) and presumed
commit (PC) rely on the existence as well as the absence of certain log records to
decide the fate of the transaction after a failure. The PA is a protocol that works best
for systems with many aborts. This pessimistic view assumes that most of the time
transactions are going to abort and therefore it forgets about the transaction as soon
as it logs abort. Similarly, the PC is a protocol that works best for systems with many
commits. This is an optimistic view that assumes most transactions are going to commit
and therefore it forgets about the transaction as soon as it logs commit. The reasoning
in either case is very simple. For the PA, sites are told “When in doubt, abort,” and
for the PC, sites are told “When in doubt, commit.” A site that does not find an abort
or a commit record in its log after recovery is in doubt. In other words, since the log
does not contain either a commit record or an abort record, the recovery manager must
make a presumption for committing or aborting the transaction.

In the absence of failures, the coordinator guides the slaves to terminate the transac-
tion properly. When a failure happens, the log contents that are not forced (written) to
the stable storage are lost. After recovery, the site cannot find the abort/commit record
in the stable storage and will be in doubt. The sites will make the right decision about
the transaction depending on what presumed protocol they are using. The protocols
also use the concept of “forgetting about a transaction,” which means removing the log
records for a given transaction from the memory even when there are no failures. The
protocols allow sites to ignore writing all the log records that we discussed in the 2PC
protocol. Both the coordinator and the slaves apply these rules uniformly. The decision
to follow the rule for the PA or the PC is made ahead of time for the entire system. A
system that implements the PA cannot also implement the PC and vice versa.

In applying the PA, if the coordinator decides to abort a transaction after the votes
are in, it writes an abort log record but does not force the log to the stable storage,
forgets about the transaction, and does not send the “Global Abort” message to the
slaves. Slaves that are waiting to hear from the coordinator will time out the coordinator
and abort the transaction. The slaves do not force their logs to the stable storage and
they forget about the transaction as well. This includes not only the slaves that voted
to abort the transaction, but also the slaves that voted to commit the transaction. If
there are failures, after repair, a failed slave or a failed coordinator will be in doubt
about the transaction since the log on the stable storage does not contain a commit or
an abort record for the transaction.

The lack of the abort record for a transaction in the log on the stable storage works
well for a site that is recovering to abort the transaction. On the other hand, it is not
acceptable for a failed site to abort a transaction that the working sites have committed.
As an example, let us assume that “Site 1” (a slave site) fails and the coordinator guides
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other slaves to abort transaction “Ti.” When Site 1 comes up, it must determine what
to do with Ti. The site looks in its log on the stable storage and searches for a commit
or an abort record for Ti. It does not find either. The absence of a commit or an
abort record for Ti is a directive to Site 1 to abort the transaction. All sites now have
terminated the transaction the same way. In this case, the database stays consistent.
However, if the working sites decide to commit the transaction, their decisions will
be different from the decision that Site 1 makes for Ti. In this case, the database will
be inconsistent. To prevent the above scenario from happening, the protocol requires
writing the commit record to the log and forcing the log to the stable storage before
a transaction enters the commit phase. Doing so guarantees that Site 1 finds a commit
record in its log for Ti if the working sites commit the transaction. In this case, the
failed site also commits the transaction and the database stays consistent.

In applying the PC, the coordinator explicitly logs which transactions have aborted
but does not force the commit records to the log for those transactions that are being
committed. After a failure and during recovery, a site that does not find a commit or an
abort record for a transaction in its log presumes commit and commits a transaction.
That is where the similarity between the PC and the PA protocols ends. In the PA,
once the decision to abort is made, the coordinator can forget about the transaction
since the transaction will be aborted by all slaves due to lack of further information.
In the PA, this philosophy works even if the coordinator or slaves fail. However,
in the PC, the coordinator cannot forget about the transaction as soon as it decides
to commit the transaction. Further communications from the coordinator are required
to successfully commit the transaction at all slaves. To do this and to protect against
failures, the coordinator writes the name of all slaves as a “collecting” log record to the
stable storage before the coordinator sends out the “Prepare” message. The coordinator
then starts preparing the slaves. Suppose the coordinator fails in the preparing state.
Once restarted, the coordinator finds the collecting record in the log but does not find
a commit or abort record. This tells the independent recovery mechanism that the
transaction must be aborted. From the collecting record, the coordinator knows exactly
which slaves need to be told to abort the transaction. If we did not use the collecting
record, upon recovery from the preparing state, the coordinator would have committed
the transaction, which would not be correct.

Slaves vote on the transaction, log abort if the decision is to abort, log ready to
commit if the decision is to commit, and send their votes back to the coordinator. Once
all slaves have voted to commit, the coordinator writes the commit record to its log,
sends the “Global Commit” message to the slaves, and forgets about the transaction.
The coordinator does not need to force the log to the stable storage and does not need
to wait for the acknowledge message from the slaves. In this case, slaves are waiting
in the prepared state. When they receive the “Global Commit” message, they commit
the transaction and forget about it as well. Again, since this protocol presumes commit
when in doubt, aborting a transaction requires all sites to log the abort record and
force the log to the stable storage for the transaction. This prevents a failed site from
committing a transaction that the working sites abort. Therefore, if the decision is to
abort the transaction, coordinator writes and forces its log, sends the “Global Abort”
message to all slaves, waits until the abort is acknowledged by all slaves, and writes
the end of the transaction record to the log.



DISTRIBUTED COMMIT PROTOCOLS 345

Other variations of the presumed abort and presumed commit have been proposed.
The emphasis is sometimes on minimizing the number of messages sent and sometimes
on the total amount of information communicated [Lampson93] [Attaluri02].

8.8.5 Three-Phase Commit Protocol

As explained in Section 8.8.4, the 2PC is a blocking protocol. To overcome the
blocking property of the 2PC, Skeen proposed the three-phase commit (3PC) protocol
[Skeen81]. In the 2PC, the coordinator and the slaves can only be one state apart in
their transitions—the coordinator decides to change its state, informs that slaves to
do the same, and changes its state. The coordinator and the slaves are therefore syn-
chronous within one state. The problem is that the state transition diagram (the STD)
of the 2PC does not contain the same state adjacent to the commit and abort states for
the coordinator and the slaves. The STD for the slaves contains the “Prepared” state
for the slave and the “Preparing” state for the coordinator. As a result, when failures
happen, it is possible that when the coordinator changes its state to “Committed” (or
“Aborted”), the slave changes its state to “Aborted” (or “Committed”), which are
contradictory states for the two parties. The 3PC protocol overcomes this problem by
introducing a new state that both the coordinator and the slaves enter as a buffer until
such time as both parties are sure they can commit the transaction. With this “buffer”
state, there is no way the two parties act differently on a given transaction—since
at no time are the coordinator and the slave more than one state apart during
execution.

In the 3PC, as shown in Figure 8.15, the second phase of the protocol calls for
the coordinator to initiate another broadcast informing the slaves of the final deci-
sion. The coordinator broadcasts an “Enter Prepared State” message. In response, the
slaves vote “OK.” Then the final phase of the 3PC, the commit phase, resumes as
in the 2PC. In the 3PC, the “Commit ACK” response from slaves is not required.
The intension of Phase 2 in the 3PC is to inform all slaves that Phase 1 (the voting
phase) was completed in favor of committing the transaction. Having sent the voting
result to all slaves enables the protocol to recover from the failure of the coordina-
tor as long as there is at least one slave that has received the “Enter Prepared State”
message.

As mentioned earlier, the introduction of this new phase adds a “buffer” state before
the terminal commit state. The introduction of this “buffer” state changes the state tran-
sition diagrams of the 3PC (as compared to the 2PC) for the slaves and the coordinator
as shown in Figure 8.16.

8.8.5.1 Resiliency of 3PC Like the 2PC, the 3PC has two protocols that are used
for termination and recovery purposes. The termination protocol is used to properly
terminate a transaction when a failure happens. The recovery protocol is used to make
sure that after recovery a failed site’s state is consistent with the state of active sites.

Termination Protocols in 3PC The coordinator activates its termination protocol when
it realizes that a slave has failed. Similarly, the slaves activate the termination protocol
when they detect the coordinator’s failure.
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3PC Coordinator Termination Protocol The termination protocol in the 3PC is
similar to the one we discussed in the 2PC. The difference between the 2PC and the
3PC is the “Precommit” state. Therefore, the steps that the coordinator takes to handle
the slave’s failure are the same for both protocols in all states except the “Precommit”
state. Hence, if the coordinator detects the slave’s failure when the coordinator is in the
“Before Commit,” “Preparing,” “Aborted,” or “Committed” states, it handles it exactly
the same as in the 2PC. Otherwise, the coordinator detects the slave’s failure when the
coordinator is in the “Precommit” state. In this case, it knows the slave had already
voted to commit the transaction and can safely commit the transaction.

3PC Slave Termination Protocol In the 3PC, the failure of the coordinator calls
for the election of a new coordinator. This can be done by allowing the slaves to vote
on who should be the new coordinator, allowing them to compete for the role, or simply
pre determining who the next coordinator should be (sort of like a chain of command).
In order to protect against the failure of this new coordinator, the termination protocol
requires the newly elected coordinator to synchronize the states for all slaves to match
its own. This is done by a broadcast, from the new coordinator to the slaves, forcing
them to transition to the new coordinator’s state. Once all slaves have transitioned to
the same state, the new coordinator commits the transaction if the new coordinator’s
state is one of the “Precommit” or “Committed” state. Otherwise, the coordinator aborts
the transaction.

Recovery Protocols in 3PC As in 2PC, the log information is used to determine the
transaction’s state at the time of the failure in the 3PC. It should be obvious that since
the 3PC is a nonblocking protocol, no slaves are blocked as a result of the coordinator’s
failure and vice versa.

3PC Coordinator Recovery Process After a coordinator has been repaired, it will
read the local log and determine the state it was in at the time of the failure.

There are three possible cases:

• The coordinator was in the “Before Commit” state when it failed. In this case,
it has not sent out the “Prepare to Commit” message. As a result, the slaves can
only be in the “Before Commit” state. As a result, slaves unilaterally aborted the
transaction. The coordinator will abort the transaction locally.

• The coordinator was in the “Preparing” state when it failed. In the 2PC, this was
a blocking state for the slaves. In the 3PC, the slaves have recovered from the
coordinator’s failure by electing a new coordinator and have terminated the trans-
action at this point in time. The repaired coordinator will ask the new coordinator
about the state in which the transaction was terminated.

• The coordinator was in the “Precommit” state when it failed. In this case, it
is possible that the “Enter Prepared State” message did not make it out of the
coordinator’s site before the site failed. As a result, the slaves may have committed
or aborted the transaction. Therefore, the repaired coordinator needs to ask the
newly elected coordinator how to terminate the transaction locally.
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3PC Slave Recovery Process After a slave is repaired, it will read the local log
and determine the state it was in at the time of the failure. All the slaves’ states in the
3PC are the same as they were in the 2PC except the “Precommit” state. Recovery
in the 3PC is the same as it was in the 2PC, from all states except the “Precommit.”
When the slave recovers from the “Precommit” state, it has already received the “Enter
Prepared State” message. The slave must have failed before committing the transaction
and entering the terminal state committed. Therefore, the slave commits the transaction
and writes an end of transaction record to its log.

8.8.5.2 Multiple Site Failures in 3PC This protocol blocks slaves when multiple
sites fail at the same time. Consider the case when the coordinator receives ready
messages from all slaves, decides to commit, makes a transition to its “Precommit”
state, starts sending out “Enter Prepared State” messages, and fails after sending the
message to the first slave. This failure is recoverable as long as the only slave that
received the message does not fail. On the other hand, if this slave also fails, all other
slaves will be blocked.

8.8.6 Network Partitioning and Quorum-Based Commit Protocol

As discussed in Section 8.8.5, the 3PC is a nonblocking protocol with respect to the
failure of the coordinator or the failure of only one slave. However, as Skeen explains
in [Skeen81] and [Skeen83] the protocol is blocking if multiple sites fail. In addition to
this problem, the 3PC is not able to deal with communication link failures when such
failures partition the network. A network is said to be partitioned if communication link
failures divide the network into multiple sets. Each set is called a partition. A partition
consists of a set of interconnected operational computers that cannot communicate with
any computers in another partition. Figure 8.17 shows an example network and how
it can be partitioned.

In this example, if the communication link between computers C4 and C5 fails, the
network will be partitioned into two partitions. The left partition will have C1, C2, C3,
and C4 computers, and the right partition will have C5 through C10 computers in it.
If, on the other hand, C5 fails (a site crash), the network will be partitioned into three
partitions. In this case, C1 through C4 will be in partition P1, C6 and C7 will be in
partition P2, and C8, C9, and C10 will be in partition P3.

When a network partitioning happens, the coordinator of a transaction will be in
one partition isolated from the slaves in the other partitions. Both the coordinator and

Figure 8.17 A network example.
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the slaves in the other partitions will activate their termination protocols to deal with
the failure. Note that the coordinator cannot reach the slaves that are not in its partition
and assumes they have failed, and, similarly, the slaves that are in a partition without a
coordinator assume the coordinator has failed and activate their termination protocol.
It is possible that the computers in one partition decide to abort a transaction while
the computers in another partition decide to commit the transaction. As a result, a
partitioned network can create an inconsistent database. To see how this is possible,
assume the network depicted in Figure 8.18 with C3 being the coordinator. Also assume
that C3 is preparing the slaves to vote on its transaction. Furthermore, let’s assume
that when the link between C2 and C3 fails, C4 and C5 have voted to commit the
transaction but C1 and C2 have not voted yet.

When the network becomes partitioned, C3 assumes that C1 and C2 have failed and
starts its termination protocol. Since C4 and C5 are ready to commit, C3 will commit
the transaction on the computers in its partition. On the other hand, C1 and C2 realize
that they have lost communication with the coordinator and elect a new coordinator,
say, C1. If both C1 and C2 are also ready to commit the transaction, there should
be no problem and the database will remain consistent. But, if C1 or C2 vote abort,
they will abort the transaction, which results in an inconsistent database across the two
partitions.

To deal with this problem, Skeen proposes an extension to the 3PC, called the
quorum-based commit (QBC) protocol [Skeen82]. We discussed the idea of using
votes to deal with concurrency control and replication control issues in Chapters 5
and 7. Recall that voting-based replication algorithms use a number of votes, V, and
allocate them to different sites in the system based on some kind of priority. In order
for a transaction to read a data item, it must collect the required number of votes called
the read quorum, Vr, from the sites that have a copy of the data item. Also, in order for
a transaction to write a data item, it must collect the required number of votes called
the write quorum, Vw. The first requirement is that the total number of votes must
be less than “Vr + Vw,” which makes it impossible for two conflicting transactions to
both read and write the copies at the same time. The second requirement is that the
total number of votes must be less than “2 * Vw,” which makes it impossible for two
conflicting transactions to both write the copies at the same time.

In the QBC, the same idea is utilized by the termination protocol to make sure that
the same transaction is not committed and aborted by different partitions in the system.
The 3PC protocol is extended to require the sites to reach a commit quorum, Vc, in
order to commit a transaction; and to reach an abort quorum, Va, to abort a transaction.
There are V total votes in the system that has been allocated to the N sites as V1, V2,
. . ., VN. When a site votes, it casts all its votes for commit or abort but cannot split
its votes across both alternatives. If there are V total votes in the system, Va and Vc
are allocated such that “Va + Vc> V.” In addition, when deciding on Vc and Va, we

Figure 8.18 A partitioned network with inconsistent databases.
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must also have “0 < = Vc < = V” and “0 < = Va < = V.” This simple idea makes
it impossible for a partitioned network to commit and abort the same transaction at
different partitions.

To make this work, the third phase of the 3PC is changed to count votes for abort
or commit and to check to see which quorum, if any, is reached. This means that the
sites are now required to attach their votes to the response they send to the coordinator
when they receive the “Enter Prepared State” message. Under normal operations, the
coordinator will collect the votes, which should be a quorum for commit, and then
it will commit the transaction. Now suppose a failure partitions the network into two
partitions when the system is the “Precommit” state. The coordinator will check the
number of votes from the sites in its partition and it will decide if it can commit or
abort the transaction. The slaves in the other partition elect a new coordinator and
count their votes as well. With correct allocation of V, Vc, and Va, there is no way
the two partitions can reach different quorums.

Let us apply this idea to the example discussed in Figure 8.18. Assume that each
site is given one vote, making the total number of votes “V = 5.” Let’s also assume
that “Va = 3” and “Vc = 3.” This satisfies the requirement that “Va + Vc> V.” In
the partitioned network, if all computers in the right partition vote for commit, they
have three votes to commit and have reached the commit quorum and will commit
the transaction. Computers in the left partition, however, do not have enough votes to
commit or abort and will be blocked from terminating the transaction. Although this
is an undesirable situation, it is better than having the database become inconsistent.
Obviously, the QBC protocol is blocking when a partition does not have a quorum to
commit or abort the transaction.

8.9 SUMMARY

In this chapter, we analyzed the fault tolerance and recovery concepts for centralized
and distributed databases. To guard against loss of database consistency, databases use
a persistent medium, called a log, to store state information for transactions. After a
failure, a system is brought back up; the log(s) are analyzed and depending on the state
each transaction was in at the time of the failure, certain steps are taken. The overall
approach for centralized and distributed systems is the same. What is different is that
in a distributed system all sites must be recovered to the same consistent state. To
achieve this, different distributed commit protocols are used. We analyzed one-phase,
two-phase, three-phase, and quorum-based commit protocols for distributed database
systems.

8.10 GLOSSARY

Active Transaction A transaction that is running at the time of the failure.
Before Commit State The state that a transaction enters just before it commits.
Checkpoint The process of writing the logged completed transactions to the stable

storage.
Cold Backup A backup that is performed when there are no transactions running.
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Commit Point A point in the life of a transaction when a decision has to be made
to either commit or abort the transaction.

Commit Protocols A set of protocols that guarantee the consistency of the database
even if failures happen.

Compete Backup A backup of the database that includes a complete snapshot of the
database at the time of the backup.

Consistent Checkpointing The process that halts accepting new transactions, com-
pletes all active transactions, writes the proper log records to the log, and writes
completed transactions to the stable storage.

Database Recovery The process of recreating a consistent snapshot of the database
at a given point in time (usually as close as possible to the time of the failure).

Database Rollback The process of undoing the effects of some transactions to rein-
stantiate a consistent state of the database in the past.

Database Roll Forward The process of starting with a consistent snapshot of the
database in the past and recreating a consistent state after that point by reapplying
transactions.

Deferred Update An approach to database update that does not write the changes
of a transaction to the database until the transaction is ready to commit.

Fuzzy Checkpointing The act of writing the list of active transactions to the log. It
is usually used for recovery from power failure.

Global Transaction A transaction that works with data at more than one site in a
distributed system.

Hard Failure A failure that causes loss of data in the database (the disk).
Hot Backup A backup that is performed while transactions are running in the system.
Immediate Update An approach to database update that writes the changes of a

transaction to the database as soon as the transaction comes up with them.
Inactive Transactions A transaction that is not currently running because it is com-

mitted and/or aborted.
Incremental Backup A backup approach that only tracks changes since the last

complete and/or incremental backup.
Local Transaction A transaction that does not run at any site but the local site.
Log Archival The process of writing the inactive portion of the log files to a sec-

ondary medium such as tape.
Log Buffers A prespecified amount of memory designated to the log records.
Nonvolatile Storage A storage medium that can withstand power failures.
One-Phase Commit (1PC) A distributed commit approach in which the decision to

commit and/or abort is communicated in one broadcast.
Point-In-Time (PIT) Recovery The process of recovering a consistent snapshot of

the database to a point in time.
Quiescent Point A point in time when no transactions are running in the system.
Quorum-Based Commit (QBC) A modified version of the 3PC that uses voting to

deal with network failures during the third phase.
Recovery Protocol The protocol that a failed system must follow after it has been

repaired.
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Recovery to Current The process of recovering the database to the present time
(usually the time of the failure or as close to it as possible).

Redo The process of reapplying the changes of a transaction.
Redo Scripts A set of redo operations for some transactions.
Soft Failure A failure that does not cause loss of data on disk—usually caused

by some form of “unclean” shutdown, such as a power failure, operating system
misbehavior, or DBMS bug.

Stable Storage A storage medium that does not lose its contents even when disk
failures happen.

System Crash A failure caused by loss of power to the system; a failure that does
not cause loss of data on disk.

Termination Protocol The process that a site must follow when the site notices that
its counterpart has failed.

Three-Phase Commit (3PC) A distributed commit approach in which the decision
to commit and/or abort is communicated in three broadcasts.

Transaction Log A record of all changes that transactions have made to the database.
Transaction Recovery The process of reapplying the changes of a transaction.
Two-Phase Commit (2PC) A distributed commit approach in which the decision to

commit and/or abort is communicated in two broadcasts.
Undo The process of getting rid of the changes of a transaction from the database.
Undo Scripts A set of undo operations for a set of transactions.
Volatile Storage A storage medium that loses its contents when power to it is lost.

REFERENCES

[Astrahan76] Astrahan, M., Blasgen, M., Chamberlin, D., Eswaran, K., Gray J., Griffiths, P.,
King, W., Lorie, R., McJones, P., Mehl, J., Putzolu, G., Traiger, I., Wade, B., and Watson
V., “System R: A Relational Approach to Database Management,” ACM Transactions on
Database Systems , Vol. 1, No. 2, pp. 97–137, June 1976.

[Attaluri02] Attaluri, G., and Salem, K., “The Presumed-Either Two-Phase Commit Protocol,”
IEEE Transactions on Knowledge and Data Engineering , Vol. 14, No. 5, pp. 1190–1196,
September 2002.

[Bernstein87] Bernstein, P., Hadzilacos, V., and Goodman N., Concurrency Control and Recov-
ery in Database Systems , Addison-Wesley Longman Publishing Company, Boston, MA,
1987.

[Gray78] Gray, J., Bayer, R., Graham, R., and Seegmuller, G., “Notes on Data Base Operating
Systems,” in Operating Systems: An Advanced Course, Notes in Computer Science, Vol. 60,
Springer-Verlag, New York, 1978, pp. 393–481.

[Gray81] Gray, J., McJones, P., Blasgen, M., Lindsay, B., Lorie, R., Price, T., Putzolu, F., and
Traiger, I., “The Recovery Manager of the System R Database Manager,” ACM Computing
Survey , Vol. 13, No. 2, pp. 223–242, June 1981.

[Gray87] Gray, J., “Why Do Computers Stop and What Can Be Done About It?” Technical
Report 85-7, Tandem Corporation, 1985. Also in “Tutorial Notes, Canadian Information
Processing Society,” Edmonton ’87 Conference, Edmonton, Canada, November 1987.

[Lampson76] Lampson, B., and Sturgis, H., “Crash Recovery in Distributed Data Storage
System,” Tech Report, Xerox Palo Alto Research Center, Palo Alto, CA, 1976.



354 FAILURE AND COMMIT PROTOCOLS

[Lampson93] Lampson, B., and Lomet, D., “A New Presumed Commit Optimization for Two
Phase Commit,” in Proceedings of the 10th VLDB Conference, Dublin, Ireland, pp. 630–640,
1993.

[Lindsay79] Lindsay, B., “Notes on Distributed Databases,” IBM Technical Report RJ2517,
San Jose, CA, July 1979—also Tandem Technical Report 81.3, June 1981.

[Mohan85] Mohan, C., and Lindsay, B., “Efficient Commit Protocols for the Tree of Processes
Model of Distributed Transactions,” ACM SIGOPS Operating Systems Review , Vol. 19, No.
2, pp. 76–88, April 1985.

[Mourad85] Mourad, S., and Andres, D., “The Reliability of the IBM/XA Operating System,”
in Proceedings of the 15th Annual International Symposium on Fault-Tolerant Computing
Systems , pp. 93–98, 1985.
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EXERCISES

Provide short (but complete) answers to the following questions.

8.1 A quorum-based commit protocol is implemented to deal with network partition-
ing of a four-site system. Sites 1 and 3 have the same importance. Sites 2 and 4
are more important than Sites 1 and 3. Site 2 is more important than Site 4. How
do you decide on the smallest number of votes for V (total votes), V1, V2, V3,
V4, Vc, and Va if we want the partitioned system to abort if and only if Sites 2
and 4 are in the same partition (but cannot abort if Sites 2 and 4 are in different
partitions)?

8.2 Assume the transactions shown in Figure 8.19, the time of checkpoints, and the
time of failure. Suppose the log contains the “Before Commit” records for T5
and T6 but does not contain the “Before Commit” record for T7.

(A) Assume that we utilize a deferred update approach. Explain the recovery
steps from a soft crash (power failure). Explain the recovery steps from a
disk failure (hard crash).

(B) Now assume that the update approach is immediate updates. Explain the
recovery steps from a soft crash (power failure). Explain the recovery steps
from a disk failure (hard crash).

(C) Assume that during the recovery from a power failure in the deferred update
case, a disk crash happens. Explain the recovery steps from this failure.
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Figure 8.19 Transactions for Exercise 8.2.

Figure 8.20 Topology for computers in Exercise 8.3.

8.3 Assume every site in Figure 8.20 has the same weight for voting in a quorum-
based commit protocol. What are “Vi (for i = 1 to 5),” V, Vc, and Va for the
following cases?

(A) We do NOT want the system to commit or abort any transaction when the
link between 2 and 4 goes down.

(B) We want each partition to commit but no partition is able to abort when the
link between 2 and 4 goes down.

(C) We want each partition to abort but no partition is able to commit when the
link between 2 and 4 goes down.

(D) If Site 4 goes down, can the partitions in the partitioned system achieve a
different quorum if each site is given one vote? Explain your answer.
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Security is a key facet of any database deployment. It is essential that we authenticate
database users (ensuring that they are who they claim to be), allow only authorized
users access to information, and maintain overall system data integrity. There are also
many subtle security issues, specific to databases, such as SQL injection and inference
attacks. Distributed database environments (DDBEs) require communication, so we
must ensure not only that the data in databases is secure but that the communication
links between users and their data and among the communicating DDBE components
are also secure.

This chapter provides an overview of database and communications security. We
begin by covering the basics of cryptography and outline the key building blocks and
some common algorithms and best practices using those building blocks. Next, we will
examine several higher-level security protocols composed of these building blocks. We
then look at some security issues specific to communications and data. After examining
some high-level architectural issues, we conclude this chapter with an example of how
pieces in this chapter integrate.

For a comprehensive overview of security engineering, see [Anderson08]. For
a more detailed look at cryptographic building blocks and specific algorithms, see
[Stallings05] and [Ferguson03]. For an expanded database-specific security discussion,
see [Natan05].

9.1 CRYPTOGRAPHY

Cryptography is the science of creating secrets. Cryptanalysis is the science of break-
ing secrets. The related science of hiding secrets is called steganography. To create a
secret, we can use either codes, which map whole words to other words, or ciphers,
which map individual characters (bytes) to other characters (bytes). The use of codes
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declined after World War II and today ciphers are most commonly used with digital
data. The original (unencrypted) words or characters are referred to as the original
message, the unencrypted message, or more specifically as the plaintext, while the
characters we map to are referred to as the encrypted message or, more specifically,
as the ciphertext.

Specific cryptographic functions include the following:

• Confidentiality keeps messages private between parties even in the face of eaves-
droppers attempting to snoop while data is transported over communication net-
works or while it resides in the database.

• Authentication allows message receivers to validate the message source and to
ensure the integrity of the message.

• Nonrepudiation validates the message source so strongly that the message sender
cannot deny being the message sender (this is a stronger form of authentication).

There are a number of cryptographic building blocks that provide these functions:

• Conventional cryptography provides confidentiality with previously distributed
keys.

• Message digests (MDs) and message authentication codes (MACs) provide
authentication.

• Public key cryptography provides confidentiality without prior key distribution.
• Digital signatures provide nonrepudiation.
• Digital certificates and certificate authorities authenticate public keys.

We will now examine each of these cryptographic building blocks in more detail.

9.1.1 Conventional Cryptography

Conventional cryptography is a simple concept. Suppose we have two parties who
want to communicate securely with each other; let’s call them Alice and Bob. Further
suppose that Alice and Bob each have their own copy of the same secret key, which
is a random string of bits. When Bob wants to send a message to Alice and wants to
ensure that no eavesdroppers can read it, he encrypts his message with an encryption
algorithm that uses his copy of the secret key before he sends it. After receiving the
encrypted message from Bob, Alice uses a corresponding decryption algorithm that
uses her copy of the same secret key to decrypt the message so she can read it. If
Alice wants to send a message to Bob, she can use exactly the same process (sending an
encrypted message to Bob by encrypting her message using her copy of the secret key
and then sending the encrypted message to Bob so that he can decrypt the message
using his copy of the key). This is shown in Figure 9.1, with M representing the
message, E representing the encrypt operation, D representing the decrypt operation,
and “secret” representing the secret key.

There are a variety of algorithms that can provide the encrypt and decrypt operations,
but we always assume that the algorithm is known (or at least knowable). The security
of these algorithms does not depend on the obscurity of the algorithms themselves; it
depends solely on the strength and obscurity of the secret key. Because a key is just a
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Figure 9.1 Alice and Bob use conventional cryptography.

string of bits (typically 128 or 256 bits long) that determines the mapping from plaintext
to ciphertext for encryption and from ciphertext to plaintext for decryption, an attacker
can always try to break the encryption by trying all of the possible keys. This is called a
brute force attack. In order to defend against this attack, we try to use a key space large
enough such that the attacker can never, even with large networks of fast computers,
try all of the possible keys in any realistic amount of time. Today, a typical key size
for conventional cryptography is 128 bits, which yields 2128 or 3.4 × 1038 keys. On
average, we need to try half of all the possible keys before we will find the correct one
using a brute force attack. If we deployed a million computers, each trying a million
keys per second, it would take on average 5.4 × 1018 years to find the key needed to
decrypt the message. This is about a billion times the estimated age of the universe!

All of the security in conventional cryptography depends on only two things: a
sound algorithm (assumed to be known to all) and a long, randomly generated key
kept secret between communicating parties. Of course, it is possible that the brute
force attack could find the key in a shorter than average time (or take longer than the
average time). Since we can never prevent these attacks against the key space, we must
use an algorithm that has no weakness that would allow an attacker to find the key or
the plaintext more efficiently than brute force.

Let us now consider how we can securely transport the shared secret key from Alice
to Bob. We cannot encrypt the key—what key would we use to encrypt the key and how
would we get that encryption key to the other party? In practice, we could send the key
via some alternative communication channel that is hopefully free from eavesdropping,
such as email or the telephone or a person with a handcuffed briefcase, but these are
cumbersome alternatives. This form of cryptography (and its cumbersome key transfer
methods) is known as conventional cryptography because it was the only type of cryp-
tography known before the mid-1970s (and the invention of public key cryptography).

There are two families of conventional cryptographic algorithms: block ciphers and
stream ciphers. Block ciphers encrypt a block of bits, typically 128 bits long, at a
time and do not maintain state. This means that each resulting ciphertext block does
not depend on the encryption of previous blocks (although we will soon see how to
add dependency with a concept called modes). Stream ciphers encrypt a bit or a byte
at a time while maintaining state from previous encryptions. This means that the same
plaintext byte or bit will result in a different ciphertext byte or bit depending on the
previous encryption result. These state-dependent mappings help thwart cryptanalysis.
Over the years, many conventional cryptographic algorithms have emerged.

With block ciphers (and also, as we will see, with public key cryptography), we
need to consider the problem of encrypting data when it does not match the block size
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of the cipher. The data we have can be smaller or larger than the cipher block size. We
use padding to handle the smaller case and modes to handle the larger case. If the data
we have is smaller than the cipher block size, we must pad the data, which means that
we add bits to the data until it matches the block size. Unfortunately, just adding 0s
or 1s is not cryptographically secure, so special padding algorithms, usually matched
to specific cipher algorithms, perform this function securely. If the data we have is
larger than the cipher block size, we must split it up into chunks that match the block
size. The options for doing this are called modes. The obvious way to do this is to just
take each block size worth of plaintext and encrypt it independently of any previous
encryptions. This is known as electronic code book (ECB) mode. Unfortunately, this
approach creates several problems. Since each block of plaintext is encrypted to the
same value ciphertext each time, an attacker can build a dictionary of ciphertext values
knowing that they are repeats of the same plaintext values. An attacker can also carry
out a replay attack by injecting or rearranging ciphertext blocks, causing unexpected
results for the receiver.

A better solution is to chain together successive blocks of encryption so that the
encryption of one block is dependent on the previous encryptions. This yields ciphertext
for a block that is different from the ciphertext generated for the exact same plain-
text block elsewhere in the message. This causes any rearrangement of the encrypted
ciphertext blocks to result in an incorrect (and incomprehensible) decrypted version
of the plaintext because of the broken dependency chain. Many different modes can
accomplish this, with different engineering considerations, but the most common one is
cipher block chaining (CBC). When using this mode, we have to start the chain with
a value called an initialization vector (IV). The IV does not have to be encrypted,
but it should be integrity protected and never be reused.

We will now examine three of the most common conventional algorithms: two block
ciphers (DES/Triple DES, AES) and one stream cipher (RC4).

9.1.1.1 DES/Triple DES Historically, the most famous algorithm for conventional
cryptography was the Data Encryption Standard (DES). IBM submitted an inter-
nally developed cipher for a National Institute of Standards and Technology (NIST)
standardization effort and it became DES, and reigned from 1976 to 2002. DES uses a
64-bit block size and a 56-bit key length. Unfortunately, it is no longer recommended
due to the general vulnerability to brute force attacks (but it has no severe breaks).
Several factors contributed to this vulnerability, including the 56-bit key length, the
increasing pace of CPU speed improvement, and the ease of harnessing large net-
works to provide parallel computing capacity. A cipher based on DES as a building
block has extended its life. By increasing the key length (to either 112 bits or 168
bits depending on the specific implementation), and encrypting data with DES three
times in succession, we get an effective strength of about 256 that of DES alone. This
approach is known as Triple DES, 3DES, or DESede. Note that there is no “Double
DES” algorithm because an attack called the meet-in-the-middle attack is known.
This attack weakens the strength of a Double DES approach—and actually degrades
it to the same strength as the original DES. This attack also explains why the strength
of Triple DES is only 256 instead of 2112 times as strong as DES alone. While Triple
DES is an improvement, it should be viewed as a stopgap solution because of the
performance inefficiencies of using DES three times in succession.
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9.1.1.2 AES In 2002, NIST selected an algorithm called Rijndael [Daemen02] as
the successor to DES and renamed it. The new name they gave it is the Advanced
Encryption Standard (AES). AES has a block size of 128 bits and a choice of three
key lengths (128, 192, or 256 bits). The criteria for its selection as the replacement for
DES included many factors, such as resistance to all known attacks, good performance
when implemented in both hardware and software, efficient resource usage (small
memory footprint and small CPU requirements for smart card implementations), and
fast key changing times. Currently, best practice is to use the AES algorithm in new
applications, typically with a 128-bit key length.

9.1.1.3 RC4 Ron Rivest of RSA, Inc. created RC4 but never officially released it.
Ironically, it was leaked to the public, and once it was leaked, it became commonplace
in many applications, ranging from wireless network encryption to browser security via
Transport Layer Security (TLS)/Secure Sockets Layer (SSL). RC4 is a stream cipher
that encrypts and decrypts one byte at a time. It uses a shared secret key as the seed
for a pseudorandom number generator. At the sender side, each successive byte of the
random stream is Exclusive-ORed (XORed) with each successive byte of plaintext to
produce each successive byte of ciphertext. At the receiver side, each successive byte
of the regenerated random number stream (which is the same as the sender’s stream
because of the common key/seed) is XORed with each successive byte of ciphertext
to recreate the original plaintext byte.

There are several bitwise operations (meaning that the operation is conceptually
done on a single bit but logically can be extended to a byte, or any number of
contiguous bits) defined for computers, but here we are using the “Exclusive OR”
(XOR), which takes two binary operands and returns a single binary result. There
are only four possible combinations to consider: the first operand (A) is a bit that
is either a zero or a one, and the second operand (B) is also a bit that is also
either a zero or a one. The XOR operation returns a zero when the bits in the two
operands are the same and returns a one when the bits in the two operands are
different. For example, extending this to a sequence of bits, if the first operand was
the binary number 1100, and the second operand was the binary number 1010, the
result of 1100 XOR 1010 would be 0110. Notice that the operation is commutative:
in other words, 1010 XOR 1100 also results in 0110. Also, XORing A to B and then
XORing the result to B again yields A once again, which is an important property
for its use in cryptography.

XOR Operation Summary

A B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0
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This approach takes advantage of two properties of XOR. First, if we XOR the
same bits twice (in this case, the pseudorandom number stream), the result will be the
same as the original data. Second, if we XOR with random bits, then the result (in this
case, the ciphertext) will also look like random bits. RC4 can be viewed as a pragmatic
implementation of a theoretical cipher known as a one time pad (OTP). When using
an OTP, the sender XORs the plaintext with the key (a string of random bits, which
is exactly the same length as the plaintext), thereby producing the ciphertext, which is
then sent to the receiver. The receiver receives the ciphertext and then XORs it with
the same shared key (that string of random bits used by the sender), thereby producing
the plaintext. OTPs are impractical because the key lengths need to be as long as the
plaintext, the shared key must be perfectly random, and it can never be reused. RC4
makes this idea more practical by generating the key using a pseudorandom number
stream. This stream can be exactly as long as needed and uses a shared secret seed
value, which can then be viewed as the conventional shared secret key.

9.1.2 Message Digests and Message Authentication Codes

Ensuring data integrity is a fundamental requirement for any database. We must guard
against both accidental database modification and malicious attempts to modify the
data. Simple error detection and correction algorithms, such as cyclic redundancy codes
(CRCs), which were designed to detect errors due to noise and other communication
faults, cannot be used for security. If we did use one of these algorithms, an attacker
could easily modify both the data and the CRC designed to protect the data in such a
way that the receiver would be unaware of the data modification. There are two classes
of cryptographic building blocks designed to ensure data integrity, message digests
(MDs) and message authentication codes (MACs). MD algorithms take a message of
unlimited size as input and produce a fixed sized (often several hundred bits long)
output. The output is often referred to as a hash of the input. The algorithm used for
MD is designed to quickly process the large number of input bits into the fixed sized
output. It is essential that this function is one way, meaning that it is computationally
infeasible to reverse engineer the input bit stream from a given output hash value. This
means that an attacker cannot modify the data to match the MD value in an attempt to
fool the receiver into thinking that the data still has integrity. MACs operate similarly
to MDs, except that they use a shared secret key to control the mapping from input
message to output hash. Because they use a secret key, MACs can also authenticate
data origin.

9.1.2.1 MD5 and SHA MD5 was the most popular MD algorithm. It generates a
128-bit output hash. But, because of weaknesses identified with the algorithm, it is
no longer recommended. Despite these weaknesses, it does still exist in many legacy
implementations. Its replacement, an algorithm called SHA-1, has a 160-bit output.
However, weaknesses were found in SHA-1 as well, so it also is no longer recom-
mended (and it also still exists in many legacy applications). A stronger form of SHA,
called SHA-256, is currently recommended while a NIST-sponsored effort is underway
to develop a replacement standard MD algorithm. A popular framework for turning an
MD algorithm into a MAC algorithm is called HMAC (hash message authentication
code). Common versions include HMAC-MD5, HMAC-SHA1, and HMAC-SHA256,
which are based on the named MD algorithms.
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9.1.3 Public Key Cryptography

The biggest drawback of conventional cryptography is the requirement for a shared
secret key (and the awkward or insecure options for distributing that key). In the
mid-1970s, a number of solutions to this problem appeared. All of these solutions
extended the notion of a single key to a key pair, consisting of a private key (similar
to the secret key of conventional cryptography) and a mathematically related partner
called a public key. The public key can safely be revealed to the world. The public
key can be sent to any party that wants to send a secret message to the key’s owner
without any communication channel protection or prior prearranged secret. Consider
the example shown in Figure 9.2. Whenever Bob wants to send a secret message to
Alice using public key cryptography, he first needs to have a copy of Alice’s public
key. Because this is a public key, Alice can make her public key available to Bob
using any mechanism she wants to use (including any nonsecure mechanism). Once
Bob has Alice’s public key, he can encrypt the plaintext of the message he wants to
send using Alice’s public key, and then send the resulting ciphertext to Alice. The
ciphertext can also be sent using any mechanism, since it is encrypted. Once Alice
receives the ciphertext message from Bob, she can decrypt it using her private key.
Because Alice is the only one with her private key, she is also the only one who can
decrypt messages encrypted using her public key. If she wants to send a message to
Bob, she would do the same thing Bob did (obtain a copy of Bob’s public key, use it
to encrypt the message, and send it to him). With this technology, any two parties can
ensure the confidentiality of their communication without previously exchanging any
secret information.

Unfortunately, public key cryptography algorithms are much less efficient than
conventional cryptography algorithms, typically by several orders of magnitude. This
means that it is usually not practical to encrypt or decrypt long messages with public
key cryptography. However, we can use it to encrypt a secret key. Then, we can simply
send the encrypted secret key using a nonsecure communication channel. Now, we can
use conventional cryptography without the awkward secret key distribution issue. By
using this hybrid approach, public key cryptography is used for its strength (privately
distributing a secret key without prior secret sharing) and conventional cryptography
is used for its strength (speed).

We will now look at two algorithms for public key cryptography: the RSA algorithm
and the Diffie–Hellman algorithm. There is also a new family of algorithms called

Figure 9.2 Alice and Bob use public key cryptography.
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elliptic curve cryptography (ECC), which might emerge in the future, but we will not
cover them here. Note, as previously discussed, we must pad data that is smaller than
a block size and choose a mode for data that is larger than a block size.

9.1.3.1 RSA and Diffie–Hellman Although there are a few different algorithms that
can be used for public key encryption, we will only mention two of them. The RSA
algorithm [Rivest78] is one of the oldest yet still the most popular public key crypto-
graphic algorithm. It is based on the computational difficulty of factoring large numbers
into component prime factors. Typically, a user generates a key pair of size 1024 bits
(although the best practice is moving to 2048 bits). The RSA block size is typically
the same as the key length.

The Diffie–Hellman algorithm [Diffie76] does not directly perform encryption. It is
an algorithm run between two parties. Each party performs a calculation based on secret
information. This secret information is not preshared with the other party. Instead, the
two parties exchange some public results of those calculations with each other and
then perform another calculation. The algorithm ensures that both parties will have
calculated the same result, which can then be treated as a secret key and used with a
subsequent conventional cryptographic algorithm such as AES. Diffie–Hellman is an
example of a class of algorithms known as key agreement algorithms.

9.1.4 Digital Signatures

Digital signatures (DSs) are an authentication technique based on public key cryptogra-
phy. A DS can provide authentication, just like a MAC can, but a DS can also provide a
more advanced function, namely, nonrepudiation. There is a subtle distinction between
authentication and nonrepudiation. Suppose Alice receives a message from Bob, and
that message has an associated and appended MAC. Also, suppose that Alice and Bob
had previously obtained the secret MAC key. Alice can then take her key and run
the message through the MAC algorithm to verify that she generates the same MAC
code as the one appended to Bob’s message. Because Alice and Bob are the only
ones with the shared secret key, Alice knows that only Bob could have originated this
message and associated MAC. Therefore, Alice has authenticated Bob as the source of
the message (and authenticated the integrity of the message). But, what would happen
if Bob denied that he ever sent Alice this message? If Alice took Bob to court, could
Alice prove that Bob originated the message? Although Alice knows that Bob is the
only one who could have sent this message (because Bob is the only one who had the
other copy of the secret key), Bob could claim that since Alice also has a copy of the
secret key, she could have composed the message and sent it to herself! Alice would
not be able to prove him wrong, so although MACs provide authentication, they do
not provide nonrepudiation.

With a DS, we can use the public and private key pair and certain public key
cryptographic algorithms (RSA is the most popular choice) to perform a completely
different function than the encryption function we’ve already discussed. When Bob
wants to send a signed message to Alice, he uses his private key to “encrypt” or sign
the message. While this action uses an encryption algorithm, it isn’t true encryption
because anyone with the corresponding public key can decrypt the message, and anyone
can potentially get access to the public key. While the message is not encrypted, it is
authenticated, because the message receiver can use Bob’s public key to “decrypt” or
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verify the message. This not only authenticates the message origin to Alice as Bob,
but (since Bob is the only holder of Bob’s private key) this provides the even stronger
notion of nonrepudiation. If Alice takes Bob to court, Alice can prove that Bob is
the only one who could have originated the message since he is the only holder of
the private key that was used to sign the message. So, Bob cannot completely deny
that he originated the message. However, there is still a problem in attaining perfect
nonrepudiation from digital signature technology. Bob can claim that his private key
was stolen and the thief, not Bob, signed the message. A family of protocols called
arbitrated digital signatures can partially address this “stolen key” issue, but we will
not discuss them here.

For performance reasons, we typically do not sign an entire message. The sender
takes a message and calculates the message digest of the message, and signs
(“encrypts”) that digest with a private key and appends the signed digest along with
the plaintext message. The receiver removes the appended signed digest and verifies
(“decrypts”) the digest with the corresponding public key. The receiver then takes the
plaintext message and runs it through the same message digest algorithm. If the results
of the verified message digest match the results of the message digest calculation, then
the receiver knows that the message has integrity and authenticates the message to the
sender such that the sender cannot deny message origination. Notice that public key
cryptography can be used for two completely different purposes. If we encrypt a mes-
sage with the receiver’s public key, we get an encrypted message, but no authentication.
If we sign a message with the sender’s private key, we get authentication (and nonre-
pudiation), but no privacy. We can, however, use both of these functions in sequence.

If Bob wants to send a signed, encrypted message to Alice, the following sequence
must occur:

• Bob signs the message he wants to send with his private key.
• Bob encrypts his (already signed) message using Alice’s public key.
• Bob sends the signed, encrypted message to Alice.

If Alice wants to receive a signed, encrypted message from Bob, the following
sequence must occur:

• Alice receives the signed, encrypted message from Bob.
• Alice decrypts the message using her private key.
• Alice verifies the unencrypted message using Bob’s public key.

9.1.5 Digital Certificates and Certification Authorities

While public keys are designed to be publicly shared and distributed, they must also
be authenticated to their owners. Otherwise, anyone could generate a key pair and
then distribute it. The attacker could claim that the public key belonged to someone
else, and then use the private key to intercept and decrypt messages meant for the
legitimate receiver. The most famous scenario for this attack is called the man-in-
the-middle attack in which a malicious entity in the middle of a communication path
can make two legitimate parties think that they are securely communicating with each
other while the malicious entity can decrypt all the traffic.
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The most common solution for this problem is to employ a digital certificate. A
digital certificate for a user or machine consists of a public key, some identifying
information (name, location, etc.), and some dates indicating the certificate validity
period. All of this information is unencrypted, but it is signed with the private key of a
trusted third party known as a certificate authority (CA), such as Verisign, Inc. For a
fee, the CA will verify the identity of a party requesting a certificate and then sign the
certificate with their private key. The certificates are in a format defined in a standard
called X.509. The CA public key is distributed in browsers and operating systems.
Using this technology, users do not send their public keys directly to another party.
Instead, they send their digital certificates. Certificate receivers can then verify the CA
signature using their own copy of the CA public key (in their browser or operating
system). This authenticates the owner of the public key contained inside the certificate,
which can then be used for subsequent conventional key distribution, encryption, or
digital signature verification. If a security problem with the key or certificate is found,
then the certificate serial number is placed on the CA’s certificate revocation list
(CRL), which should always be checked prior to using any certificate. Most browsers
have a setting that automates this checking, but for performance reasons, the default
is usually set to not check the CRL.

Note that digital certificates do not need to be signed by a CA, but can be self-signed
or signed by a company for its own use. This works well for internal applications (and
there is no external CA cost). External web users, however, must be presented with a
CA-signed certificate or they will see a message box in their web browser indicating
that the certificate cannot be trusted.

9.2 SECURING COMMUNICATIONS

DDBEs require secure communications, both between users and the DDBE and among
the Sub-DBEs themselves. Secure communication typically demands privacy, authen-
tication, and integrity. This means that we must protect against both passive eaves-
droppers who can monitor messages passed over the network and active attackers who
can not only monitor messages but can also inject new or modified messages into
the network. In general, whenever we need to implement some security capability,
we should use an existing, well-hardened protocol. This protocol should, in turn, use
one or more of the existing, well-hardened cryptographic building blocks. We should
use building blocks that were written by an experienced vendor or a trusted open-
source project. Security algorithms, protocols, and implementations are extremely hard
to design, implement, and deploy, and history is littered with well-intentioned, failed
attempts. We will look at two well-known, well-hardened technologies for achieving
end-to-end secure communications: SSL/TLS and Virtual Private Networks (VPNs).

9.2.1 SSL/TLS

The most common protocol for securing communications is the Secure Sockets Layer
(SSL) protocol, which is now known as the Transport Layer Security (TLS) protocol.
This protocol, originally developed by Netscape, makes use of all of the cryptographic
building blocks we have discussed. Here is a conceptual sketch of how this protocol
works. Suppose Bob wants to communicate with his bank’s web server via a web
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browser. The TLS protocol provides two services in this scenario: it provides end-to-
end communication link privacy via encryption and it provides an authentication service
that allows Bob to authenticate the identity of his bank’s server via digital signatures
and digital certificates. Bob begins by opening a Transmission Control Protocol (TCP)
connection from his browser to his bank’s server, as shown in Figure 9.3. Usually we
want to use a Uniform Resource Locator (URL) that begins with “https://,” which
will attempt to open port 443 on the bank’s web server. Using this port indicates a
desire to use TLS communications instead of the normal, insecure communications,
which uses a URL beginning with “http://” and usually uses port 80. Note, however,
that some web servers are configured to treat “http://” requests as “https://” requests.

After the TCP connection is established, Bob’s browser and the bank’s server nego-
tiate a cipher suite, indicating the specific algorithms that they will use for subsequent
communication. For example, RC4 might be used for the conventional cryptography,
RSA for the public key cryptography, and SHA-1 for MD. After this negotiation, the
bank’s server sends its digital certificate to Bob’s browser. This digital certificate is
signed by a CA and contains the bank’s server name, public key, validity dates, and
other information. Bob’s browser then verifies this certificate using the CA’s public
key, which was preinstalled in Bob’s operating system or browser. Bob’s browser can
then verify that the machine he is communicating with matches the one named in the
certificate, which authenticates the bank’s server to Bob. Now that Bob’s browser has
an authenticated public key for the bank’s server, his browser can generate a conven-
tional cryptographic key and encrypt it using this public key. Once the conventional
key is encrypted, Bob’s browser sends it to the bank’s server. Finally, the bank’s
server decrypts the conventional key that Bob’s browser sent, and they can begin to
communicate privately (using RC4 in this example).

There is an optional TLS protocol phase that also allows the server to authenticate
the client, but it requires a client digital certificate so it is rarely found in consumer
scenarios like the one we just described. This optional phase is useful for securing
dedicated TLS links between two machines. When the TLS protocol is used without a
web browser for these purposes, it is often called TLS secure socket communication.
Note that TLS is a form of end-to-end security, meaning the entire communication
path from client to server is protected. This means that every message sent using this
protocol is protected, even when they pass through insecure links along the way, such
as an unencrypted wireless network.

Figure 9.3 Bob uses TLS/SSL to connect to his bank’s server.
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9.2.2 VPN, IPSec, and SSH

Briefly, here are three other examples of technologies (like TLS) that can be used to
provide end-to-end secure communications. One approach to securing communication
links is to use a technology called Virtual Private Networks (VPNs). This
technology was originally designed to allow the insecure Internet to be used securely
with an additional layer providing security services. This is useful for both remote
worker-to-business and site-to-site security, such as between DDBE components.
Another approach is to use a protocol called IPSec, which provides both encryption
and digital signature services to the IP layer of the Internet. This allows all of the
higher layers (TCP, UDP, and applications) to benefit from this security service.
The IPSec protocol is optional for IP Version 4, but it is mandatory for the next
generation, IP Version 6. Often, VPN services are built on top of IPSec. Secure Shell
(SSH) is a similar authentication/encryption protocol that can also be used to build
secure tunnels between two endpoints.

9.3 SECURING DATA

While secure communication between users and DDBEs, and between DDBE compo-
nents themselves, is necessary for overall system security, it is not always sufficient.
Sometimes, we must also protect the data residing in the databases from unauthorized
viewing and modification. Even when these security measures are in place, we can be
vulnerable to various other attacks. In this section, we will begin by examining some
techniques for authorizing data access. Then, we will consider techniques for encrypt-
ing data. Next, we will look at two classes of database-specific security attacks. The
first class of attacks (unvalidated input and SQL injection) depends on deployment and
implementation details, while the second (data inference) has more subtle causes. We
will close this section with an overview of data auditing.

9.3.1 Authentication and Authorization

Authentication for both DDBE users and components can be implemented using digital
certificates, as described above in the TLS protocol using client certificates, or with
user ID and password. Security tokens (in the form of a key fob or a credit card-
sized device) are increasingly popular extensions to the user ID/password approach.
They display a sequence of digits, which randomly change every 30 seconds or so.
To authenticate, the user enters his/her user ID, the displayed digit sequence, and
his/her PIN, creating a one-time password. This is known as two-factor authentication:
something you have (the token) and something you know (the PIN). Biometrics offers
a third factor to use for authentication: something you are (such as a fingerprint).

After users are authenticated to the DDBE, they can only access resources if they
are authorized to do so. If we model our DDBE security service on the traditional
Relational Structured Query Language (SQL) approach, we can offer authorization
control via the GRANT statement. If we execute the GRANT command on the left in
Figure 9.4, the Alice DDBE Account will be granted the right to insert and delete rows
in the Employee table. If we execute the GRANT command on the right in Example 9.1,
the Alice User Account will be granted the right to read rows from the Employee table
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Figure 9.4 Granting the Alice DDBE User privileges on the Employee table.

and her account will also be granted the right to extend this authorization (SELECT)
to other DDBE Accounts.

A technology called Lightweight Directory Access Protocol (LDAP) can also
support authentication and authorization. Within this context, a directory is a collec-
tion of generic information (such as white pages listing people, their phone numbers,
addresses, email addresses, etc.) Directories can also contain authentication information
such as user ID and password information. Similarly, directories can contain autho-
rization information that specifies what software an authenticated user can or cannot
access. By using either a single LDAP server or a collection of cooperating LDAP
servers, administrators can use a single facility to control distributed authentication and
authorization details. This strategy is called single sign on (SSO). Microsoft Windows
Active Directory provides a similar capability. We must secure all the communication
links to LDAP servers too, which is often done using TLS.

Firewalls, often specialized for use with databases, can control access at the net-
work level. Administrators can specify parameters such as a list of IP addresses, ports,
protocols, dates, and times for which accesses are allowed or denied. This enables the
firewall to filter unauthorized network traffic before it arrives at the DDBE components.
Intrusion detection systems (IDSs) can monitor network traffic for patterns of mali-
cious traffic (such as viruses, worms, or live attackers) that can potentially compromise
a database. The IDS can then alert an administrator to take action. Note that IDSs can
be human resource intensive because they typically generate many false positives.

9.3.2 Data Encryption

If the physical hardware systems used by our DDBE components are ever physically
compromised, the disks could be removed and scanned for sensitive data. Even if they
are never physically compromised, these systems could be attacked across a network
from remote machines, from local machines on the network, or even from processes
running directly on the host server itself. This means that sensitive data should be
encrypted inside the database storage.

Encrypted file systems (EFSs) are becoming increasingly popular for protecting
hard disk drives (especially on laptops) containing sensitive data. All the data on
the disk is encrypted with a conventional key and accessed via a user password.
However, this technology can often create performance problems when used with
database systems because database system designers have taken great care to optimize
data access assuming specific physical disk layouts that might be disrupted when data
is encrypted.

A better approach for encrypting database data is to encrypt the data being stored
rather than the underlying file system. There are two basic approaches: internal to
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the DBE, and external from the DBE. In the first approach, we use components or
applications to encrypt the data prior to sending it to the DBE for storage and then use
similar components or applications to decrypt the data after it is retrieved from the DBE.
Since the DB is storing the encrypted version of the data, the data types used inside our
DBs must be modeled to hold the encrypted ciphertext, not the plaintext. This often
requires extensive use of binary data types in the database, such as variable-length
binary (varbinary) types or binary large objects (BLOBs). In the second approach,
because the DBE directly supports encryption, the DDBE users can simply read and
write their data normally while the DBE handles the encryption “under the covers.”
This is generally the most efficient approach to data encryption for centralized DBMS.

With any type of encryption, we must be careful with key handling, because a
compromised key means compromised data. Often, the key is protected by a password.
This password must be stronger than the key it is protecting. In this context, stronger
has a very specific, technical meaning, called entropy, that refers to more than just
the literal password length. A long password consisting of words easily found in a
dictionary and using only a subset of possible characters (such as all lowercase letters)
has lower entropy than a password that is the same length but uses random, uniformly
distributed characters.

Users must never store their passwords directly on a machine unless the passwords
are also encrypted using a sufficiently strong encryption mechanism. Software provid-
ing password vaulting, a technique where a master password is used to decrypt a list
of other passwords, is a reasonably safe way to store passwords. The master password
must be at least as strong as the contained passwords. The Mac OS X keychain is an
example of a password vault.

We must also be careful when the password is supplied by a machine or process
instead of a person. Hard-coding passwords in command scripts can make them vul-
nerable to both snooping and to system utilities that list the command lines of running
processes. Hard-coding passwords in source code can make the passwords vulnerable
to string extraction utilities. The best options use operating system provided key-
protection constructs such as keychains and ACL protected registries. In the future,
secure hardware module key storage will probably become increasingly popular.

9.3.3 Unvalidated Input and SQL Injection

Unvalidated user input is one of the most common software security flaws. It is respon-
sible for exploits ranging from buffer-overruns, to command injection, to cross-site
scripting. It is also responsible for a class of exploits specific to databases known as
SQL injection. This attack takes advantage of a lack of user input validation, usually
in web-based input fields for forms and in URLs containing post data. The attack uses
cleverly crafted input values to sneak in SQL commands that can expose confidential
information, allow unauthorized data modification, or even destroy or corrupt the data
in the database.

Suppose we have a web-based application that uses web-forms for user input, which
it then uses to build SQL commands dynamically. It creates these SQL commands
at runtime by concatenating SQL command fragments and the user-supplied input
values. Although the actual DDBE authorization and authentication would never
be based on this user input, this is an easy example to explore. For each of these
scenarios, suppose our web-based application is an online storefront of some kind,
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and the web-form in the scenario is the customer login and password entry form.
Assume we have a relational table named “CustomerLogin” in the DDB that
contains a unique “CustomerId” value for each unique pair of “CustomerName” and
“CustomerPassword” values. Our web-form must have two user-supplied data fields;
let’s call them “inputName” and “inputPass.” Now let’s consider what happens when
this form is attacked using a SQL injection technique.

9.3.3.1 Bypassing the Password for Customer Login Suppose our application
dynamically builds a SQL Select statement using the hard-coded strings shown in
Figure 9.5, and the user input values. Notice that String2 and String3 have a leading
space. Both String3 and String4 have a single-quote (apostrophe) at the end, and
both String4 and String5 have a single-quote (apostrophe) at the beginning. String5
ends with a semicolon, which is the “end of command” character for SQL. When the
customer logging in provides values via the input fields in this form, our application
creates a SQL query by concatenating String1, String2, and String3 together, followed
by the value of inputName field, then String4, followed by the value of inputPass,
and then, finally, String5. This SQL query will return the CustomerId value from the
relational table where the CustomerName value and CustomerPassword value each
match the values specified in the web-form fields.

For an example of what we intended to have happen, if a customer named Alice
used this form to enter her name and password (let’s suppose she enters the value
“Alice” for inputName and “Rabbit” for inputPass), our application would create the
SQL query in Figure 9.6. If the specified values (CustomerName equal to “Alice”
and CustomerPassword equal to “Rabbit”) do not exist for any row in the table, then
the SQL query will return an empty set (zero rows returned, a “SQL-Not-Found”
error raised, etc.). If this happens, since there is no “CustomerId” value returned for
this query, the login attempt will fail. On the other hand, if the SQL query returns
a nonempty result set, then it will contain Alice’s CustomerId value, and the login
attempt will succeed.

For an example of an unintended consequence, if we have “unvalidated” input for
this web-form (if our code does not adequately check for malicious or invalid customer
input), it is possible that some attacker could cleverly construct values for these input

Figure 9.5 Hard-coded strings used to build SQL query.

Figure 9.6 SQL query built for customer “Alice” with password “Rabbit.”
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fields to circumvent both our authentication and authorization mechanisms. Suppose
our attacker provides the input values shown in Figure 9.7. The value for each field is
the same: a single-quote, followed by a space, the word “OR,” and another space, and
then two single-quotes followed by an equal-sign and another single-quote. What will
happen next?

Figure 9.8 shows the SQL query that our application would create and execute in
this scenario. Notice that the single-quotes changed the logic of the WHERE clause.
Now, we will return the CustomerId value wherever the CustomerName value is empty
OR wherever an empty string equals an empty string. This would effectively return
a random CustomerId value and allow the attacker to be logged in as this random
customer. By specifying a known customer name for the inputName field, along with
this same malicious password value, an attacker can impersonate any customer.

9.3.3.2 Bypassing the Password for Change Password This same technique can be
used to circumvent other unvalidated web-forms, even when we attempt to enforce
security. For example, suppose our attacker has logged in using CustomerName “Alice”
and obtained her CustomerId as shown in Figure 9.8. Suppose Alice’s CustomerId value
is “1234.” Now, suppose the attacker wants to change Alice’s password—effectively
preventing Alice from being able to log in to her own account. Suppose we had
another (unvalidated) web-form for changing passwords. Even if this form attempted
to provide additional security by requiring the customer to enter the old password value
along with the new, the attacker could again use the technique (and values) shown in
Figure 9.8. Here, the system would provide the CustomerId value, and our attacker
would provide the “old CustomerPassword value” (same as shown in Figure 9.7), and a
“new CustomerPassword value” (suppose the new password is “newValue”). Figure 9.9
shows how the exploited SQL Update command might look in this scenario.

9.3.3.3 Vandalizing the DDBE In the previous examples, our attacker was attempt-
ing to impersonate one of our customers. Suppose we encounter an attacker who wants

Figure 9.7 Malicious input values entered by an attacker.

Figure 9.8 SQL query built from malicious input (shown in Figure 9.7).

Figure 9.9 SQL update built from malicious input.
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to vandalize our website and DDBE. There are several scenarios where the same SQL
injection technique can allow such an attacker to do very damaging things to our sys-
tem. The issue of unvalidated input again plays a key part in this security breach, but
we also have a new class of exposures that increases the potential for harm based on
the violation of the least privilege principle, or granting more authority than necessary.

Although there are several different approaches for identifying the right level of
authority for a given application or scenario, they are beyond our scope here. Instead,
we will focus on a simple example demonstrating what can happen when we are
too generous with the authorization policy. When our web application connects to
the DDBE, the DDBE authenticates the Account information that the application is
using. Whenever the application attempts to execute a query or command, the DDBE
verifies that the account has the authority to perform the operations required for request.
For example, the account used by our application must have the ability to read the
CustomerLogin table if it is going to verify customer names and passwords, and the
ability to update the CustomerLogin table if it is going to change customer passwords.

Suppose this account is authorized to do more than simply read and update a single
table. In the previous examples, the attacker tricked our application into executing
clever variations of the intended commands. In this scenario, the attacker uses the
same security vulnerability (unvalidated input) and the same exploit (SQL injection)
but, because we have given a tremendous amount of authority to the underlying DDBE
account being used by our application, the unintended commands will be more destruc-
tive. For example, suppose our attacker uses the same web-form and the same dynamic
SQL scenario as we depicted in Figure 9.5, but now, the values entered are those in
Figure 9.10.

Notice that the inputName starts with a single-quote, and then is followed by a
semicolon. Recall that the semicolon terminates a SQL command, which means that
the remaining text is a new command. The remaining text in the name value is a
command to drop the CustomerLogin table. If the account is authorized to do this
command, it will destroy the CustomerLogin table structure and content! The second
semicolon in this field is followed by a space and two dashes (hyphens, minus signs).
The space followed by two dashes is recognized as a “begin comment” command in
most SQL parsers. Figure 9.11 shows the SQL command generated for this scenario.
Everything after the two dashes is ignored. The fact that the SQL query returns no
rows is irrelevant, because after the query executes, the entire table will be dropped.

Figure 9.10 Even more malicious input values entered by an attacker.

Figure 9.11 Command built from input values shown in Figure 9.10.
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This means that customer login information will be lost, and nobody will be able to
log into the system.

9.3.3.4 Preventing SQL Injection There are several techniques for thwarting this
attack. First, we can perform simple input validation, such as ensuring CustomerName
values can only contain alphanumeric data (no spaces, punctuation, numbers, etc.).
Similarly, verifying that the user-supplied value falls between the minimum and max-
imum lengths defined for the field can limit the amount of malicious content. Many
RDBMS platforms provide a facility known as “prepared SQL,” or “parameterized
SQL;” facilities like these can use precompiled type checking as a technique to min-
imize exposure to attacks such as SQL injections. Unfortunately, there is no such
thing as a commercial off-the-shelf (COTS) DDBE product. This means that we must
manually create the facilities used to parse and execute commands.

SQL injection is just one example of a broad class of software flaws that can
compromise security in applications. In order to guard against these attacks, there are
many preventative actions that we need to perform, such as ensuring that software
memory buffers on stacks and heaps are not overrun in our components, subsystems,
and applications, protecting against injection for operating system commands and DBE
commands, and properly handling exceptions and return codes. For a good exploration
of these application security issues see [Howard05].

9.3.4 Data Inference

Databases can also suffer from a specific security and privacy vulnerability, known as
a data inference attack. This attack is extremely difficult to address, and impossible
to completely solve as a general case. When we allow certain, individual queries
that are by themselves innocuous, we cannot prevent the aggregation of these results,
which then exposes confidential information. It is a specific example of a more general
problem: when attackers can create data mining results from disparate sources, each
of which is authorized, in order to gain confidential results through the aggregate.
Suppose we have a relational table named EmpCompensation, containing the columns
and data needed to capture employee salary (see Figure 9.12).

Suppose we have three employees named “John,” “Mary,” and “Karen” (as shown
in the figure data), and each employee has an authenticated DDBE account. Employee
accounts have the privileges necessary to look up their own salary information, but not
the information for other employees. We also allow employees to retrieve statistical
information about salaries in the organization (so that they can see where they fall on
the salary grid).

Figure 9.12 The EmpCompensation table.
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Figure 9.13 Employee John’s query.

Figure 9.14 Aggregate queries that any employee can execute.

This means that John could execute the query in Figure 9.13, but Mary (or Karen)
cannot, but all three employees can execute the query in Figure 9.14. Suppose John
uses his query (Fig. 9.13) to retrieve his salary information and Mary uses a similar
query to retrieve her salary information. Each of them can execute aggregate queries
on the Employee table, such as those shown in Figure 9.14. The first query will return
$20,000, while the second query will return three, in this example. Now, if John and
Mary collude and share their salaries, the average, and the number of salaries, they can
infer their manager Karen’s salary. There are some partial (but no complete) solutions
to this problem. See [Denning83] for more information on this type of attack.

9.3.5 Data Auditing

Data auditing is an essential component of data security. Often, we cannot detect
security breaches when they occur, but examining audit logs for evidence can be
a very useful post-attack tool. Audit logs can vary in detail, but they can contain
useful information such as the date and time for failed access attempts, successful
attempts, important modifications made to the system, and other details. We should try
to ensure that the audit log is stored separately from the database so that attackers who
compromise the database cannot attempt to hide their tracks by modifying the log as
well. One approach to accomplish this is to use a separate audit server that can only
receive data in a single direction from the database and uses write-only storage.

9.4 ARCHITECTURAL ISSUES

When designing security architecture for DDBEs, we should consider several issues.
We must have a clear understanding of the physical system environments, a clear def-
inition of who the valid and invalid users are, an accurate assessment of the level of
sensitivity for the data (from both an eavesdropping and a modification perspective),
and an effective plan for operational processes such as enrolling new users, back-
ing up data, and responding to attack incidents. When the requirements are known,
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we can select the technologies (like those described in the previous sections) that best
match the system requirements. In general, the security architecture must address broad
issues, including the physical environment security, source code updates, data backup
media protection, lost password policies, host operating system maintenance, firewall
and intrusion detection system configuration, and user education. Often, database ven-
dors provide technology support and documentation for securing the most common
environments and that should be the first source of information and technology. This
is usually both the simplest and most secure approach to most security architecture
tasks, leaving the more exotic security technologies for unusual requirements.

We can broadly categorize database-based client/server applications by the number
of tiers, or major function divisions. In two-tier architectures, the client function is
in the first tier and the application logic resides on the same server as the database
in the second tier. In three-tier architectures, the client function is in the first tier, an
Application server (such as the open source JBOSS or IBM Websphere) resides in the
second tier, and the database (or distributed database) resides in the third tier.

For the client tier, there are two major architectural choices: thick client or thin (web)
client. In thick client architectures, we can run a stand-alone application that requires
preinstallation. This approach can provide a rich GUI platform and potentially better
control over security because the application filters and formats user input and controls
the information passed to the second tier. However, there are attacks where rogue code
eavesdrops on and/or impersonates the first tier, so tier-to-tier communication must be
both encrypted and authenticated.

In thin or web-based client architectures, the user interacts with a web browser
and leverages scripting languages, such as JavaScript, and active code downloads,
such as Java and ActiveX, to validate user input and perform other computation. This
opens up a potential entry point for malicious code from a compromised website that
can compromise the client system. As in the thick client case, we must encrypt and
authenticate the communication between web client and server, often by using TLS.

In three-tier architectures, the application server in the second tier is often given
unrestricted access to the database in the third tier because the application server is act-
ing on behalf of all users. This, however, risks database compromise as a consequence
of application server compromise. The data security model is often implemented in the
application server on individual objects, with the database acting as a general purpose
repository for the object persistence.

9.5 A TYPICAL DEPLOYMENT

Let us see how the above concepts and technologies and approaches might be used to
secure a typical three-tier distributed database deployment.

A user using a web browser in the first tier connects to an application server in
the second tier using the HTTPS protocol, which uses the application server’s digital
certificate, signed by a certificate authority, to authenticate the server to the client and to
encrypt and authenticate the traffic between the first two tiers using the TLS protocol.
The application server can then authenticate the user with a user ID and password,
securely transmitted on this TLS tunnel, and might leverage an external LDAP server
(with its communication also secured via TLS) to provide SSO for user authentication
credential checking and application-specific authorization.
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The application server code carefully validates any user input to ensure there are no
buffer-overruns or SQL injection attacks or other types of accidental or malicious input.
Application server objects are retrieved and stored to the third tier distributed network
of databases. The communication between the application server and the databases,
and between the databases themselves, is also secured with TLS. The application
server authenticates itself to the DDBE, typically with a user ID and password that
is protected using the application server operating system host security mechanisms,
such as a protected registry or keychain.

The database tier uses its SQL security model to ensure that requests are authorized.
Each database, if the data is sensitive, might also be encrypted so that theft of hard
disks would not result in data compromise. The database backup tapes must also be
encrypted so that their storage or disposal will not result in a compromise.

The database tier and application tier execute a strict audit policy and log all sig-
nificant access attempts, successes, and failures. These audit logs are also protected
from modification by leveraging operating system facilities or special purpose, exter-
nal, one-way, write-only logging servers. Firewalls and intrusion detection systems can
be strategically placed across the network to block unwanted traffic and to detect attack
attempts.

The security deployment must be validated, usually via a security audit, and all soft-
ware must be kept up-to-date with patches at all levels. A penetration (PEN) test would
further assure the implementation by having an experienced security tester (known as
a white hat) try to compromise the system before an attacker (known as a black hat)
will. Finally, an organization must have a written set of security processes that imple-
ment security policies for system maintenance, testing, incident response, and user and
administrator authentication and authorization.

9.6 SUMMARY

Securing computing systems is a very broad topic. The issues we must consider come
from several different areas: physical security, host and operating system security,
network security, and application security. In order to address the issues in these areas,
we must perform many tasks, such as ensuring good coding practices, enforcing good
policies and procedures for auditing, and assuring, detecting, and reacting to attacks.
Most of the technologies for securing distributed databases focus on the data itself and
the communication paths. These protocols are in turn based on cryptographic building
blocks and specific implementation algorithms for these blocks. In this chapter, we
explored the basic building blocks and associated algorithms. We then looked at some
basic protocols for securing communications and data, examined several database-
specific security vulnerabilities, examined some broader architectural issues, and looked
at a typical deployment. As the amount of online data and the number of people granted
access to it (worldwide) continue to increase at a staggering rate, security issues and
technologies will only continue to grow in importance.

9.7 GLOSSARY

Advanced Encryption Standard (AES) A conventional symmetric block cipher
standard, selected by NIST to replace DES in 2002, based on the Rijndael cipher
submission that uses a 128-bit block size with 128-, 192-, or 256-bit key lengths.
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Arbitrated Digital Signatures A family of digital signature protocols that leverage
a trusting third party and can help limit the risk of stolen private keys.

Authentication Any technique used to validate the identity of a source or destination
of messages or data.

Authorization Any technique used to determine whether a particular user,
component, or subsystem has sufficient access permissions to perform a desired
operation—this is usually checked after the identity has been authenticated.

Block Cipher A cipher that encrypts and decrypts a group of bits at a time and that
does not save state.

Brute Force Attack An attempt to break encryption by trying all the keys.
Certificate Authority A company that verifies the identities associated with public

keys and then, usually for a fee, signs those keys when they are embedded in digital
certificates, to be subsequently verified by the corresponding certificate authority
public keys present in browsers and operating systems.

Certificate Revocation List (CRL) A list of invalid certificate serial numbers main-
tained by each certificate authority.

Cipher A form of cryptography that maps symbols (i.e., bytes) to other symbols.
Cipher Block Chaining (CBC) A cryptographic mode where a given block encryp-

tion/decryption depends not only on the current block input but also on the previous
block output, forming a dependency chain.

Ciphertext The message or data after encryption prior to decryption.
Code A form of cryptography that maps words to other words.
Confidentiality Any technique that ensures that data is kept private from eavesdrop-

pers, usually by using encryption.
Conventional Cryptography A cipher that uses a common shared key known only

to the sender and receiver.
Cryptanalysis The science of breaking secrets.
Cryptography The science of creating secrets.
Data Encryption Standard (DES) A conventional symmetric block cipher standard

selected by NIST in 1976 based on an IBM submission, which uses a 64-bit block
size and a 56-bit key.

Decryption Any technique or operation that recreates plaintext, or the message/data
to be communicated, from ciphertext.

Diffie–Hellman A public key agreement algorithm based on the difficulty of com-
puting discrete logarithms in a finite field.

Digital Certificate A public key and other identifying information, usually in X.509
format, signed with a certificate authority’s private key after the certificate authority
verifies the public key identity.

Digital Signature A cryptographic technique that uses a source private key to sign
data such that a destination can use the source public key to authenticate the source
with the strength of nonrepudiation.

Electronic Code Book (ECB) A cryptographic mode where a given block encryp-
tion/decryption depends only on the current block input.

Encrypted File System (EFS) A file system where the disk blocks are encrypted,
preventing data compromise if the disk is physically stolen.
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Encryption Any technique or operation that creates ciphertext, which is confidential
in the face of eavesdroppers, from plaintext, which is the underlying message/data.

Entropy A measure of the true information content, in bits, of a password that takes
into account the probability of occurrence of each possible password symbol.

Firewall A network security component that controls access to and from a computing
system that can screen out traffic based on network address, port, protocol, or
contents.

Hash Another term for a message digest operation.

Hashed Message Authentication Code A framework, based on a specific message
digest algorithm, for creating a message authentication code.

Initialization Vector (IV) A nonsecret, never reused, bit string (usually the same
length as a cipher block) that starts the chain of encryption and decryption for
modes such as cipher block chaining (CBC).

Integrity A property in security, anything that ensures that a message/set of data is
not modified by accident or malicious intent.

Intrusion Detection System (IDS) A network security component that detects mali-
cious network packet signatures indicating a potential virus, worm, or other attack.

Key A bit string that controls a cipher’s mapping of plaintext to ciphertext for encryp-
tion and ciphertext to plaintext for decryption.

Lightweight Directory Access Protocol An architecture for a read-mostly database,
which can contain authentication and authorization data.

Man-in-the-Middle Attack An attack where an active attacker can read encrypted
messages/data only intended for two parties in a manner such that the two parties
are unaware of the compromise.

MD5 A message digest algorithm with a 128-bit hash size.

Meet-in-the-Middle Attack An attack against two successive encryption stages with
two distinct keys and a known plaintext/ciphertext pair, where encryption of the
plaintext with one key is matched with ciphertext decryption of another key. A
match signifies that both keys are now known. This attack reduces Double DES to
Single DES strength.

Message Authentication Code A message digest that also uses a conventional key
as part of the fingerprint computation.

Message Digest A small, fixed sized, digital fingerprint (or hash) for data of arbitrary
input size using a one-way algorithm that makes the computation of the message
digest fast, but the creation of another input that matches the fingerprint computa-
tionally infeasible.

Mode An algorithm for breaking up plaintext that is larger than the cipher block
size in a cryptographically secure manner, usually by making the current block
encryption dependent on previous block encryptions.

Nonrepudiation The inability to deny being the source of a message or data.

One Time Pad (OTP) A theoretically perfectly secure cipher that uses a perfectly
random key that is as long as the plaintext, which the sender XORs to the plaintext
to produce the ciphertext. The receiver, who has the same key, XORs the key to
the ciphertext to recreate the plaintext.
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Padding The addition of bits to fill out a full block size prior to encryption in a
cryptographically secure manner.

Plaintext The message/data prior to encryption or after decryption.
Private Key The key from the public key cryptography key pair used for decryption

and signing that must be kept secret.
Public Key The key from the public key cryptography key pair used for encryption

and signature verification that can be revealed to the public.
Public Key Cryptography A cipher that uses a public/private key pair for encryption

or digital signature. For encryption, a source uses the destination public key to
encrypt data that the destination can decrypt using its private key.

RC4 A stream cipher, commonly used in TLS/SSL and wireless network encryption,
that models a one time pad using a seed as a shared key, which is the input to a
pseudorandom number generator.

Rijndael The name of the cipher (now called AES) that won the NIST competition
for DES replacement in 2002.

RSA A public key cryptosystem that can be used for encryption and digital signature
based on the difficulty of factoring large numbers into component primes.

Secure Shell (SSH) A protocol for secure remote telnet that can also be used for
building secure communication channels between two endpoints.

SHA-1, SHA-256 A message digest algorithm with a 160-bit hash size.
Single Sign On (SSO) The concept of consolidating authentication and authorization

information in a centrally managed and accessed location.
SQL Injection An attack against a database that typically leverages unvalidated web-

form input, which results in malicious SQL statements when these input values are
carefully crafted and subsequently concatenated with dynamic SQL statements.

Steganography The science of hiding secrets.
Stream Cipher A cipher that encrypts or decrypts 1–8 bits at a time dependent on

input data and previous state.
TLS/SSL A protocol for encrypting communications while providing data integrity,

which also authenticates servers to clients (and optionally clients to servers).
Triple DES A cipher composed of three sequential DES ciphers, which offers twice

the security as DES and uses a 64-bit block size and 112- or 168-bit keys. Also
known as 3DES and DESede.

Virtual Private Network (VPN) A protocol that enables a public, insecure network
to be used as if it were private with the use of encryption for confidentiality and
digital signature for authentication.

REFERENCES

[Anderson08] Anderson, R. J., Security Engineering: A Guide to Building Dependable Dis-
tributed Systems , Wiley, Hoboken, NJ, 2008.

[Daemen02] Daemen, J., and Rijmen, V., The Design of Rijndael: AES—The Advanced Encryp-
tion Standard , Springer, Berlin, 2002.

[Denning83] Denning, D. E., and Schlorer, J., “Inference Controls for Statistical Data Bases,”
IEEE Computer 16, 7 July 1983, 69–82.



EXERCISES 381

[Diffie76] Diffie, W., and Hellman, M., “Multiuser Cryptographic Techniques,” in Proceedings
of the AFIPS National Computer Conference, pp. 109–112, 1976.

[Ferguson03] Ferguson, N., and Schneier, B., Practical Cryptography , Wiley, Hoboken, NJ,
2003.

[Howard05] Howard, M., LeBlanc, D., and Viega, J., 19 Deadly Sins of Software Security ,
McGraw-Hill Osborne Media, New York, 2005.

[Natan05] Natan, R. B., Implementing Database Security and Auditing: Includes Examples for
Oracle, SQL Server, DB2 UDB, Sybase, Digital Press, Clifton, NJ, 2005.

[Rivest78] Rivest, R., Shamir, A., and Adleman, L., “A Method for Obtaining Digital Signatures
and Public Key Cryptosystems,” Communications of the ACM , Vol. 21, pp. 120–126, 1978.

[Stallings05] Stallings, W., Cryptography and Network Security , 4th edition, Prentice Hall,
Englewood Cliffs, NJ, 2005.

EXERCISES

Provide short (but complete) answers to the following questions.

9.1 Suppose Alice and Bob each have a public key pair. Alice sends a signed and
encrypted message to Bob, who processes the message. Show the order in which
the four keys are used in this scenario.

9.2 Describe at least three reasons why one time pads (OTPs) are impractical.

9.3 Suppose we wanted to go into the certificate authority (CA) business to compete
with Verisign. What would we need to do?

9.4 What two functions are performed by the public key cryptographic technology
in SSL/ TLS?

9.5 Suppose Alice wants to send a conventionally encrypted message to Bob but
they have never met before or agreed on any specifics of the message exchange.
Name five things Bob must be told before he can decrypt and interpret the
message from Alice.

9.6 Suppose we had a business with an online storefront and our private key cor-
responding to our SSL/TLS certificate has just been stolen. What actions must
we take, and what actions must our customers take?

9.7 Using the same scenario as in Figure 9.5, what would happen if an attacker
entered the following values for the web-form fields?

InputName = ‘; DELETE FROM CustomerLogin WHERE ‘‘=’

InputPass = ‘ OR ‘‘=’

9.8 What is the difference between database authentication and authorization?

9.9 What is the difference between a firewall (FW) and an intrusion detection system
(IDS)?

9.10 What role does auditing play in securing databases?





10
DATA MODELING OVERVIEW

This chapter is a brief review of data modeling languages (MLs), data models (DMs),
and the general process of data modeling (writing a DM using a ML)—three things
that are all typically covered in much greater detail as part of a traditional database
(DB) course. For more details about data modeling in general and more examples
of data modeling languages, see [Elmasri94], [Sanders95], [Lewis02], and [Kim92].
In Chapter 1, Section 1.1.1, we briefly discussed data modeling languages and data
models—and we also mentioned that a ML is the special language or facility that we
use to create each DM. But what exactly is a DM?

In some respects, data modeling is similar to construction, and DMs are similar to
the blueprints used in construction. Blueprints and DMs are both attempts to capture
the intentions of their authors (the architects and data modelers)—but the blueprints are
not the physical buildings that they describe and DMs are not the databases that they
describe. Even when the authors strive to make their “plans” (the blueprints and DMs)
as accurate as possible, these plans are rarely (if ever) 100% complete, 100% accurate,
or 100% up-to-date. Some of these discrepancies are necessary because blueprints and
DMs are merely abstractions of the things they represent. If the authors of these plans
tried to include every detail, these approximations would become too complex and
cluttered. If they tried to maintain total accuracy for every detail, it would require an
enormous amount of effort (especially if this were done for every draft and revision
of their plans).
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Blueprints and DMs are similar in many respects, and, in particular, both are
attempts to capture our intentions. Blueprints capture our intentions for buildings;
DMs capture our intentions for data. In other words, the DM is an attempt to repre-
sent the structure, shape, or plan for the data; but not the actual data content itself.
Therefore, a DM is sometimes referred to as an intentional model, an intentional
schema, or simply as a schema. Strictly speaking, English spelling and grammar
rules dictate that the plural for schema is schemata, but it is fairly common to see
the term schemas used for the plural instead. In this book, we will use the term
schemas as the plural, and we will also often use the terms schema and model (or
any variation of model, such as DM) interchangeably.

Obviously, there are some details that need to be more complete, more accurate,
and more up-to-date than other details. For example, when creating the blueprints
for a building, all the details about plumbing, electrical wiring, and gas lines should
probably be as accurate and complete as possible at all times to avoid problems with
safety, health, and building codes. Conversely, even if knowing the precise size, shape,
color, style, and location for every door knob is important to the interior designers and
decorators, these details are probably not that crucial to the electricians (who would
have to wade through a lot of unnecessary details if we included this sort of information
in their plans). One solution to this problem is to create separate plans tailored to suit
the needs of their intended audience. The same situation occurs with DMs: if we tried to
include all the semantic details, all the behavioral rules for interaction among the data,
and all the storage details for the data, the complexity would be overwhelming—even
for a simple DB. Once again, the complexity can easily be managed, merely by using
the right set of plans with the right level of detail for the intended audience. In other
words, creating separate DMs of different types (where each type focuses on a different
category of details) can be very beneficial for any DB—from the simplest, centralized
DBs to the most complex, distributed DBs, and everything in between.

In Section 10.1, we will consider three alternatives for categorizing MLs and the
DMs written in these languages. Then, in Section 10.2 and for the rest of the chapter, we
will focus on one of those alternatives, namely, the CLP taxonomy, and, in particular,
the first level in this taxonomy, which is called the conceptual level. In Section 10.2.2,
we will consider some of the issues, goals, and example MLs within the conceptual
level. Finally, we will discuss the model creation process. This discussion will begin
in Section 10.4, by first examining the steps needed to create a DM using a particular
ML from the conceptual level. Next, we will briefly consider the logical and physical
levels. We will conclude this discussion by providing a high-level overview of the
issues and activities involved when working with multiple MLs and DMs both within
and across multiple levels of this taxonomy. This will also help us to prepare for
Chapter 11, which focuses on the logical level MLs and DMs.

10.1 CATEGORIZING MLs AND DMs

As we mentioned in Chapter 1, each DM captures all of the schema details for a
particular DB, and each DM is written in a particular ML. When contemplating the
creation of a new DM (intended to fulfill a specific set of requirements for a DB), we
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can decide to write the DM using almost any language. Because each ML has its own
set of nomenclature, rules, and representations, using a particular language will affect
how the model looks. Nevertheless, we can usually create a sufficient DM in any of
the commonly used MLs, with varying degrees of difficulty and elegance. The way
that we capture the schema level details in a DM is, of course, dependent on the ML
we use, because different languages implicitly emphasize different types of details and
usually represent them in different ways.

Earlier, we mentioned that we can categorize the MLs based on the types of details
they contain or emphasize. This means that we can even create multiple renditions
of the same DM using different MLs (both within the same category and across cat-
egories). There are different ways to categorize model details, but in this book, we
will usually categorize them using a particular taxonomy that we will call the CLP
taxonomy—so named because it has three levels in it, which are called the concep-
tual level, the logical level, and the physical level. This taxonomy (and its levels) can
be extremely useful for building centralized DBs. Although the logical and physical
levels are not as useful for representing the combined schema in a distributed DB, all
three levels are especially useful for implementing distributed database environments
(DDBEs). Therefore, this section will review these three levels and focus especially
on the conceptual level. Chapter 11 will focus on the logical level and explore some
of the logical MLs commonly used in real-world database environments (DBEs).

Data modeling is somewhat similar to application development. Considering all
the schema-level details for a DM is analogous to considering all the develop-
ment details about some component or subsystem, and in both scenarios, we can
create models using several different languages to capture these details. We can
also categorize these languages based on the types of details that they emphasize
for both cases (categories such as requirements, design, and implementation can be
used when considering application development). If we are following good software
engineering practices, we will create several models to capture these details and use
a systematic process to refine the details—perhaps even creating different rendi-
tions of the same model (both across categories and within the same categories).
For example, a particular algorithm’s design could be captured in an object-oriented
model (OOM) and then implemented using two different object-oriented program-
ming languages, such as C++ and Java. In other words, this section is merely
discussing the data modeling equivalents of these common, application development
scenarios.

10.1.1 The CLP Taxonomy

Although the CLP taxonomy is not standardized, it should be fairly familiar to most
data modelers, especially if they have ever deployed the same DB schema across
several different database platforms. Within each level, there are several different MLs
available, and these levels are used to categorize the MLs (and the resulting DMs).
Each language is assigned to a level based on the types of schema details emphasized
and captured by the ML. DMs belong to the same level as the ML in which they were
written. Why do we separate the ML and DMs into levels? If we were to attempt to
capture all the schema details for a particular DB by creating only a single, initial
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model (in other words, if we were skipping over the higher-level DMs by creating our
model directly in the physical level as a first step), it would be difficult to manage the
complexity. But if we use the levels in this taxonomy appropriately, we can manage this
complexity and use a stepwise-refinement approach to create the desired physical-level
DM in a more controlled fashion.

Using the taxonomy appropriately means that the first step is using a conceptual
modeling language (CML) to create a single data model, called a conceptual data
model (CDM). We can then use the CDM as the basis for creating one or more data
models in the logical level. The DMs we create in the logical level are called logical
data models (LDMs) and each is written in a logical modeling language (LML).
Each LDM can then form the basis for one or more DMs in the physical level. These
DMs are called physical data models (PDMs). Obviously, each PDM is written in a
physical modeling language (PML).

In Figure 10.1, we consider a situation where we have six data models representing
three centralized database deployments (three separate databases on three different plat-
forms) of the same database schema. In the conceptual level, we have a CDM (named
“Employee CDM”), which is written in a conceptual modeling language. This CDM
forms the basis for two different LDMs in the logical level. The first LDM is named
“Hierarchical Employee LDM” and it is written in a logical modeling language repre-
senting the hierarchical data model (HDM). The second LDM is named “Relational
Employee LDM” and it is written in a different logical modeling language from the first
LDM—this logical modeling language represents the relational data model (RDM)
[Codd70]. The first LDM in this example acts as the basis for a single PDM named
“IDS Employee PDM,” which is written in a physical modeling language representing
a particular centralized database environment (CDBE) platform that implements the
HDM. The second LDM in this example acts as the basis for two more PDMs: one
named “ORACLE Employee PDM” and one named “DB2 Employee PDM.” Each
PDM in this example is written in a different physical modeling language. Since the
last two PDMs mentioned have a common LDM as a basis, we would expect their

Figure 10.1 Applying the CLP taxonomy to a DM deployed on three CDBEs.



CATEGORIZING MLs AND DMs 387

physical modeling languages to represent (different) specific CDBE platforms that both
implement the RDM. Obviously, the names used here are contrived, and we would not
be able to know these details based solely on the model names in the real world.

Often the data model for a new database is only intended for a single deployment.
When that is true, there is only one DM in each level (a single CDM, a single LDM, and
a single PDM). Obviously, this is not the case for the scenario shown in Figure 10.1. In
this example, we are deploying the same data model across three different centralized
database environment platforms (IDS, ORACLE, and DB2). Let’s consider how we can
follow a stepwise refinement approach to implement one of the PDMs from Figure 10.1.
First, we would create the “Employee CDM” using some specific conceptual level
modeling language. This model will focus on high-level, abstract concepts. Remember,
CDMs focus on the semantic requirements of the database, but not the design or
implementation details of the environments that will implement the persistent storage
for the database. After we have created and validated the “Employee CDM,” we can
create one of the LDMs using one of the modeling languages from the logical level.
Suppose we create the “Relational Employee LDM” at this point using the RDM as the
logical modeling language. Remember that the LDMs can be thought of as different
renditions or refinements of the CDM, and in this case, our LDM would include
relational data modeling considerations (such as normalization). In other words, the
LDM is a translation (or mapping) of the requirements originally captured by the CDM
into a particular logical modeling language representing the logical design supported
by a particular set of database environments. Although the logical data model refines
the high-level details contained in the conceptual data model, it does not create any
new high-level details and also will not contain any implementation or deployment
details about the target DBE. After we have created and validated our logical data
model in this example, we can use it to create one of the PDMs based on this LDM,
such as the “ORACLE Employee PDM.” A PDM will often reflect many of the high-
level details contained in the LDM on which it is based. Often, this is also true for
an LDM and the CDM on which it is based. In these situations, the emphasis in the
lower-level model is different from the emphasis in the higher-level model, and no
new higher-level details are introduced. For example, the “ORACLE Employee PDM”
would capture the implementation and deployment details that we excluded from its
CDM and LDM (such as the details about data types, indexes, tablespaces, segments,
extents, and data files).

There are several advantages to using the CLP taxonomy and this stepwise-
refinement based modeling approach. By creating the DMs in this manner, we can
validate and verify the details in each level before proceeding to the next. There
is a natural, evolutionary order between the categories (moving from a high level
of abstraction to a lower level of detail), which guides the data modelers and helps
to execute the data modeling tasks in a systematic and managed fashion. Another
obvious advantage is the potential for reuse—often, there are techniques (and even
tools) that can be used to take an existing DM from one level and generate a new
DM in another level. When we generate a DM in a lower level, it is called forward
engineering (FE). In most cases, the reverse technique is also possible (albeit with
some inaccuracies and omissions). Since we are using a lower-level DM to generate
a higher-level DM in this scenario (moving in the reverse direction), this is called
reverse engineering (RE). We will discuss forward and reverse engineering again in
Sections 10.3 and 10.4, and we will also revisit the topics in Chapter 11.
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10.1.2 The 3LM Taxonomy

The CLP taxonomy described in the previous section is just one possible approach we
can use to categorize MLs and DMs used to capture the schema details for DBs—there
are also other categorizations that can be used. As we mentioned in Chapter 1, the
American National Standards Institute’s Standards Planning and Requirements Com-
mittee (ANSI SPARC) defined an architectural model for databases with three dif-
ferent levels (the external, conceptual, and internal levels) [SPARC75] [SPARC76]
[SPARC77]. For the sake of brevity, we will simply refer to it as the three-level model
(3LM). In the 3LM approach, each DM in the external level is a public interface to
the data, while each DM in the conceptual level contains all the design details, and
each DM in the internal level contains the implementation and deployment details.

Although this sounds similar to the CLP taxonomy, neither the taxonomies nor their
levels are equivalent. In order to avoid confusion, we will refer to the DMs for each
level in the 3LM taxonomy as schemas in this discussion rather than DMs—but in any
other context the terms “model” and “schema” are usually considered to be equivalent.
Using the 3LM taxonomy, a single DB can have several external schemas, but only a
single conceptual schema and only a single internal schema. This is quite different
from the CLP taxonomy, where we explicitly said that one of its advantages was the
ability to generate multiple DMs for the lower levels! The 3LM taxonomy allows
us to create multiple schemas to capture the requirements for a DB, but all of the
higher-level schemas refer to the same physical DB. The 3LM taxonomy focuses on
only one particular DB and only one particular DBE. By contrast, the CLP taxonomy
focuses on the MLs used to create multiple lower-level DMs. These lower-level DMs
are used to design multiple renditions of same DB requirements and to configure the
deployment details for each DB instance and each (potentially different) DBE platform
managing that instance. Figure 10.2 shows how three different external schemas can
be defined for one conceptual schema (and its one internal schema). We could consider
the schemas in Figure 10.2 to be a different way to categorize all the schema-level
details for one deployment of one DB from Figure 10.1. Let’s suppose this figure is

Figure 10.2 Applying the 3LM to a single DM for a single CDBE.
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for the DB defined in the “ORACLE Employee PDM”—but the schemas in this figure
and the DMs in the other figure would not be identical.

There is also another difference between these two taxonomies—the levels in the
3LM taxonomy are not related to each other in quite the same way as the levels in the
CLP taxonomy. In particular, because the 3LM focuses on providing multiple external
interfaces to the same DB, the 3LM schemas have an implicit requirement that is not
necessarily present in the CLP data models—because each external schema is used as
the interface to the DB by clients (users or programs), the concepts in its ML must
be supported by the DBE. The concepts in the ML used for the internal schema must
also be supported by the DBE, since this is where the all physical implementation and
deployment details for the DB schema reside. Often (though not always) the concepts
used by the ML for the conceptual schema are also supported by the DBE. Therefore,
we will typically use the same ML to create the schemas in all three levels of the
3LM taxonomy. By contrast, because the CLP focuses on providing multiple designs
for the same concept and multiple implementations for the same design, we often use
different MLs for different models in the CLP taxonomy. Although we said that DMs
could be generated across the levels of the CLP (both forward and reverse), this activity
is usually a development process that is not part of the DBE implementation. In other
words, when using the CLP taxonomy, the data modeler must generate the LDM and
PDM as part of the DB design and implementation process, but the environment used
to implement the DB is not necessarily directly involved in the generation process. This
means that although each DBE must support the concepts from the physical modeling
language that describes it, the DBE is not required to provide direct support for any
of the logical or conceptual modeling languages used by the other DMs from which it
evolved.

Although we will not discuss the details of these levels further in this chapter, the
3LM is an especially useful point of view to consider for the end user view of both
a centralized DB and a distributed DB. The ability to isolate the external user from
any changes in the lower-level schemas is particularly useful. These ideas might sound
familiar to anyone who is acquainted with the concepts of interface, abstract class,
and concrete class from object-oriented (OO) techniques—but the ANSI SPARC
approach is not the same as OO modeling! Although these concepts are similar and
both techniques are examples of encapsulation and information hiding, the techniques
are not equivalent.

10.1.3 Other Categorization Approaches

There are many other possible approaches for categorizing the schema details for a
DB, but we will not cover them here. Instead, we will merely mention that there is one
more informal approach that is commonly used, and it is similar to the CLP taxonomy.
Like the CLP taxonomy, this approach has no official name, but it is essentially the
same as the taxonomy we presented in Section 10.1.1 with one major difference—it
eliminates one level. In this approach, many of the same conceptual-level details and
logical-level details are still present, but since there are only two levels in this approach,
the details are allocated differently. We can consider the first level in this approach
to be a blending of the conceptual and logical levels from the CLP, and the second
level in this approach to be a combination of the logical and physical levels from
the CLP. Because there is no separate logical level, this approach implicitly assumes
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that all the physical DBE alternatives are fairly similar with respect to their overall
structure, nomenclature, and rules. This means that the nomenclature and notations
used in the first level can be closer to the language and notations used in the second
level (and the actual implementation systems), and therefore this approach is potentially
less ambiguous than the CLP taxonomy. Because there is still a separation between the
physical details and the higher-level details, this approach also has some of the same
stepwise-refinement aspects and benefits. Obviously, this approach is not appropriate
when the DBEs are not based on the same logical design—this approach would not
work well for the scenario shown in Figure 10.1 because the DBEs in that example
required more than one logical modeling language and more than one LDM. For
the remainder of this chapter we will use the CLP taxonomy that we discussed in
Section 10.1.1.

10.2 THE CONCEPTUAL LEVEL OF THE CLP

Some issues are common to all MLs and DMs in this level. These issues always need
to be handled either by the ML, by the data modeler, or a combination of the two.
Similarly, there are some goals that are common to all languages and models in this
level. Every DM in this level attempts to achieve these goals regardless of which ML it
is written in, or the specific DB requirements it is trying to capture. Therefore, we can
consider these issues and goals to be a part of the conceptual level itself rather than a
part of a specific language, a specific model, or a specific set of DB requirements—they
are something that every CDM must attempt to address in one way or another.

10.2.1 Conceptual-Level Issues

When we say that there are issues common to the conceptual level, we are not referring
to issues that data modelers will encounter because of the DB they are attempting to
design. These issues are more universal; the authors of the modeling language usually
consider these issues more carefully than the data modelers consider them. Depending
on the strengths and weaknesses of the conceptual modeling language being used, the
data modeler might need to be more or less concerned about these issues. Even if the
language being used provides adequate remedies for these issues, the data modelers
should at least be aware of these issues—if nothing else, this awareness can be used
to select the appropriate conceptual modeling language to use.

We will consider three categories of issues for CMLs and CDMs:

• DBE design and implementation independence issues
• Abstraction issues
• Emphasis issues

10.2.1.1 DBE Design and Implementation Independence Issues Later in this chapter
(in Section 10.3), we will examine three examples of conceptual modeling languages:
namely, the entity relationship model (ERM), the crow’s feet notation (CFN), and
the Unified Modeling Language (UML). At first glance, the ERM and CFN languages
might appear to have a slightly relational flavor to them, while the UML has a definite
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object-oriented flavor. However, all three MLs are actually independent of the DBE
storage design and implementation. This means that we can use any DBE to implement
a model written in one of these languages—or more specifically, we can use a CDM
written in any of these MLs to generate LDMs (and ultimately generate PDMs) for
any environment. If the CML is dependent on the design of the DBE, this means
that there is a dependency between the conceptual modeling language and a particular
physical modeling language—that is, they have some terms, rules, or representations
in common. As we mentioned in Section 10.1.3, working with the CDMs, LDMs,
and PDMs can become confusing, ambiguous, or even error prone when this happens.
Even when the MLs for the different levels are conceptually independent, merely using
some of the same vocabulary, nomenclature, or representations can sometimes cause
confusion and errors. Theoretically, we can have two extreme scenarios. In the first
situation, all of the MLs being used across the levels are either identical, or at least
appear to be identical—in other words, they use the same terms, or perhaps different
definitions and interpretations for the same terms. The other extreme case would require
all three languages to be completely different from each other (sharing no common
terms, etc.), which increases the complexity of the data modeling process. Usually, we
want to find a balance between the two extreme cases. Although we do not want to
use the same ML for all three levels, we also do not want the MLs to be so radically
different from each other that we cannot manually recognize the general mappings
between the levels and languages.

Because different MLs are used for each of the levels in the taxonomy, we always
need to consider how a given construct in one ML will be translated into a differ-
ent language in a different level. Usually, we are more concerned with the forward
direction, which means we are more focused on any issues encountered in the map-
pings from the conceptual-level ML into the logical-level ML, from the logical-level
ML into the physical-level ML, and ultimately from the conceptual level to the DBE
implementation. When reverse engineering is also used, we must also consider issues
in the reverse mappings (from physical to logical and logical to conceptual). It is not
always easy to prevent aspects of a particular data storage design or data storage imple-
mentation methodology from creeping into the CML and the CDM. In other words,
the same CDM should in theory be compatible with several different logical modeling
(data storage design) techniques, and several different physical modeling (data storage
implementation) alternatives for each technique, but this is not always easy to ensure.
Ignoring the MLs in the other levels for a moment, we could say that the different con-
ceptual modeling languages are merely slightly different representations of the same
abstract conceptual modeling process. While there are certainly advantages and dis-
advantages to the various alternative languages, they are all essentially capturing the
same concepts—similar to singing the same song in a different (human) language or
in a different (musical) key. Carrying the analogy a bit further, we can also say that
depending on the song, the lyrics, the language, and the key being used, the various
renditions of this song might be very similar or rather different from each other yet
still recognizable as the same tune. What this means is that the same CDM can be
captured and represented using different CMLs—although there will be differences
between the CDMs themselves, each language should be powerful enough to capture
essentially the same details.
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Even when the CML authors have considered the issue of independence carefully,
there are going to be ramifications for the lower-level models. If the CML is very
abstract and independent when compared to the logical and physical modeling
languages, we will encounter semantic impedance issues. For our purposes here,
semantic impedance simply means the degree of difficulty we encounter when
trying to translate a concept across different DMs. We will consider some of the
semantic impedance issues between logical and conceptual modeling languages
in Chapter 11, when we look at forward and reverse engineering. If the CML
is not very abstract or independent when compared to the logical and physical
modeling languages, we will have lost this independence—this might make it
more difficult to generate data models for certain logical and physical approaches.
Typically, a CDM will capture a range of interrelated concepts; some concepts will
be more complex, more important, more prominent, or simply more emphasized
than others. Sometimes the language will influence this emphasis, but as we shall
discuss in the next sections, the ML should always provide the necessary support
to emphasize or deemphasize the concepts based on the conceptual analysis.

10.2.1.2 Abstraction Issues Recall that a CDM, which is also called a conceptual
schema, captures abstract schema details for a DB, in particular, semantic details about
the concepts being modeled and their interdependencies. Depending on the language
used to capture these details, the CDM might represent these concepts and interdepen-
dencies using special ML constructs, textual descriptions, assertions, rules, or some
other technique. When we create a CDM, there is always a set of specific requirements
for the DB that the model is intended to satisfy. Any single concept taken from these
requirements might be included in the CDM or omitted from it. Ideally, when the data
modelers are capturing these concepts from the requirements, the conceptual modeling
language guides them to consider things at the correct level of abstraction. By using a
particular nomenclature, vocabulary, notation, tool, or technique, the CML can nudge
the data modeler to capture metadata (everything about the data except for the content
itself) that is appropriate for this level. For example, most tools used to create CDMs
have the ability to capture textual descriptions, definitions, and annotations for almost
every construct that the CML is capable of rendering. By providing this ability, the
tool encourages the data modeler to consider and document the specific definitions,
goals, rationales, and so on for almost anything in the model regardless of the actual
construct being used to capture the concept.

Many CMLs provide an abstract (LDM and PDM independent) rendition of some of
the lower-level metadata details. Let’s look at an example of how a CML can guide the
data modeler to the right level of abstraction. Consider how we would store a person’s
name as an example; we might store this concept using three pieces of interrelated data
(the first, middle, and last names). Now consider this simple question (which we could
ask about any piece of data that we intend to store in a DB): “Must we always store a
nonempty value for this concept?” In this case, we are considering the person’s name
and wanting to capture whether the value for each piece is mandatory or optional.
Notice that when we consider this at the appropriate level of abstraction, we are only
focusing on the semantics. In other words, our CML should allow us to consider this
question and capture our answer in a manner that is independent of the mechanism
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used to implement or enforce our decision. Suppose we decided that every person
must have a first name and a last name, but the middle name should be considered
optional—once we have captured these semantic details in our CDM, suppose we want
to generate multiple LDMs and PDMs from this same CDM (similar to the scenario
we looked at in Figure 10.1). We might choose to enforce a mandatory first and last
name using several different mechanisms in these lower-level MLs and DMs. For
example, in a relational ML we could use things such as table constraints, column
constraints, and triggers. In other MLs, we might use other techniques, or perhaps we
might need to enforce the requirements outside of the data model for those situations
where the language cannot enforce our desired semantics. If the CML is careful to use
a vocabulary and representation that is at the appropriate abstraction level, then we
can easily map this requirement appropriately to many different logical and physical
modeling languages. Conversely, if the CML had not captured this requirement in an
abstract manner (e.g., if the CML captured this requirement directly as a trigger), it
would be difficult to translate the requirement into any language with a different point
of view (e.g., the language used to capture a HDM).

10.2.1.3 Emphasis Issues Whenever we decide to capture a concept in our CDM,
we also need to decide how important or complicated the DM representation needs
to be for it. Every CML provides various ways to capture a particular concept, rang-
ing from a single language construct to a complex arrangement of several constructs
working together in a sophisticated configuration. For example, suppose we have a
set of requirements for a database representing a small company. This DB needs to
store information about each department within the company and all the employees
who work within each department. When we decide to include these concepts in our
CDM, we can draw on various sources of information to identify the possible data we
could store about this situation. Let’s consider what it means to capture “information
about each department.” At a minimum, we could capture the department name, but
we could also capture additional information about each department, such as the yearly
budget for the department and the name of the department manager. Similarly, captur-
ing information about “all employees who work within each department” could be as
simple as storing a list of employee names for each department or as complicated as
storing detailed information (such as the salary, birthday, date of hire, promotion his-
tory, list of family members, current home address, hobbies, or favorite color) for each
employee. Obviously, some of the details we just mentioned are probably not important
(such as favorite color)—in fact, based on the actual requirements, it is possible that
we only need to capture employee names! Of course, the actual details required are
determined by working through the actual requirements and refining our understanding
of the database using these details and feedback from the prospective database users.

Once we understand the requirements, we are ready to start capturing the concepts
in our model. Regardless of the conceptual modeling language we use, we need to have
the flexibility to model a concept as simply as a single value (like a department name),
or as complex as required. By using a simple construct, we place minimal emphasis
on a particular concept. Using more complex construct configurations places greater
emphasis on the concept. Clearly, data modelers need to be careful about the emphasis
they place on each concept they include in their CDMs. In our example, if the DB
requirements do not call for detailed information about the department (if we never
want to populate, query, or report on these details), then we should not include them
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in the model. Conversely, if we need to have more complex information captured, then
we need to have the ability to model the semantics in the most useful way possible.
Ideally, it should be possible to update the model at a later date to increase or decrease
the emphasis by changing the parts of the model used to capture a particular concept.
Although this is usually possible, it can be very difficult to do once the DB is used in
a production environment.

10.2.2 Conceptual-Level Goals

There are three simple goals that apply to the conceptual level as a whole (all the
conceptual modeling languages and CDMs have them). Once again, we are not referring
to goals or requirements that data modelers will encounter because of the DB they are
attempting to design; we are considering goals that are universally shared by the authors
of the CMLs as well as all potential data modelers.

Simply put, these three goals are:
• Documenting the DB requirements
• Supporting forward engineering
• Supporting reverse engineering

10.2.2.1 Documenting the DB Requirements There are several reasons why we say
that a CDM provides the best documentation for a set of DB requirements, and a CML
provides the best format or language for writing that documentation. In particular,
each CML is capable of capturing schema details in a much more clear, concise, and
unambiguous way than mere textual documentation ever could. Because a CDM only
contains high-level details, we do not need to “wade through” all the low-level details.
This also means that it is usually easier to change model details in existing CDMs
(especially when compared to the task of altering a purely textual description of the
DB requirements). Often, the tools used in this level provide facilities for generating
reports and diagrams, which can allow us to narrow the focus even further (especially
useful for complex models). Assuming that the issues identified in Section 10.2.1
have at least been minimally addressed, the CML will provide better handling of
these issues than a typical data modeler using only textual descriptions can ever
hope to do—regardless of the actual CML being used. However, this does have one
caveat: we need two things to happen in order to achieve this goal. First, the CML
authors and tool vendors need to provide useful facilities, and then, the data modelers
need to use them appropriately. Unfortunately, data modeling is often like application
development—sometimes the comments, annotations, and other tool facilities are not
used properly or not even used at all.

10.2.2.2 Supporting Forward Engineering Whether we use tools or manual tech-
niques, a CDM can be employed to generate an initial rendition of the model used
for the lower levels. As we mentioned earlier, this is called forward engineering (FE).
Using a tool to forward engineer a CDM into an LDM (and later into a PDM) can pro-
vide many advantages. Obviously, the tool can automate the same techniques we would
manually apply, and perform them in a much more efficient (and presumably much
more accurate) fashion. When there are multiple applicable techniques, the tool can
allow us to generate multiple renditions and analyze them further. This can be very use-
ful when prototyping a new model, or when analyzing the impact of a proposed feature
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enhancement or defect correction in an existing model. Many tools also support the
ability to compare different versions of the lower-level models, when they are regener-
ated from the same high-level model. For example, suppose we use a CDM to generate
an LDM and then later modify the CDM and regenerate our LDM (based on this mod-
ified CDM). Many tools will provide a merge facility to compare the newly generated
LDM with the previously generated version. Such a facility would allow us to identify
differences between versions in order to avoid overwriting any additional details added
to the first LDM after it was generated. This is important, since there are always addi-
tional details needed for the lower-level DMs that are not specified in the higher-level
DMs—these details are often manually added after the LDM is generated. Therefore,
both automatic forward generation and interactive merge facilities are very useful facil-
ities to have in a modeling tool. Even when manual techniques are used for FE, the
ability to generate multiple LDMs and PDMs from the same CDM is a terrific advan-
tage, when compared to generating multiple database models completely from scratch.
If the models are intended to be used as different implementations of the same system,
then they should capture and represent the same semantic details (even if the imple-
mentation and enforcement is different across the different deployed systems). Using a
single, consistent CDM as a source provides an easy mechanism for tracing the require-
ments through the analysis, design, and implementation phases for these environments.

10.2.2.3 Supporting Reverse Engineering Whenever an existing system needs to be
modified, it is useful to isolate the implementation details from the semantic details.
This is one way that we can prevent unintentional semantic changes (errors) from being
introduced into an existing model. As we mentioned in the previous section, many
tools provide regeneration and merging facilities, but before we can use these facilities
(assuming we have a tool that provides them) there are two important requirements
that need to be met. The first requirement should be obvious—we must have existing
CDMs, LDMs, and PDMs for the DB we are trying to modify. There are many reasons
why this might not be true: perhaps the DMs were lost, perhaps the tools required to
read and modify the DMs are no longer available, or perhaps these DMs were simply
never created. Assuming that we have the appropriate DMs, the second requirement
is also simple to understand—the DMs must be up-to-date when compared to the
actual DB. Once again, there are several reasons why this might not be true. For
example, suppose the DB is intended to support one or more applications (which is
usually true). It is possible that there were feature enhancements or defect corrections
in these applications that required changes to the DB schema, for which the DMs
were not necessarily updated. It is also possible for the DMs to be changed without
updating the existing DBs—we do not always forward engineer all of the updates to
all of our DMs or DBs. Lastly, any of the applications or DBE users with sufficient
authorization can change the DB schema using the schema command facilities that
many DBEs supply.

When using forward engineering and DM merging is not possible or appropriate,
we can use reverse engineering to generate the DMs in the reverse direction. If no
DMs exist or the DB is radically different from the PDMs, we can generate the PDM
from an existing DB. Similarly, we can pick one PDM to reverse generate the LDM
applicable to all PDMs sharing the same logical design—for example, we could use
the “ORACLE Employee PDM” from Figure 10.1 to reverse generate an LDM written
in the RDM language. We can also choose a particular LDM to reverse generate the
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CDM. Once we have all the DMs, we can examine the semantics within an existing
system, even if it was created without using the forward engineering approach we just
discussed. This can be very useful when moving an existing physical DB system to
a new version, new platform, or new release. Again, this can be done manually or
automatically—with the obvious advantages for the automated case. It is important
to realize that the reverse engineered DMs might not be as unambiguous and precise
as we want them to be. Recall that when we are performing the forward technique,
sometimes a set of CDM constructs can be mapped into one of several alternatives;
this also means that the reverse process is not completely deterministic. Whenever we
perform reverse activities, it is important that we manually analyze the new higher-level
DMs and correct them before attempting any new forward engineering steps.

10.3 CONCEPTUAL MODELING LANGUAGE EXAMPLES

In this section, we will examine three different conceptual modeling languages (CMLs).
Although each CML is unique, and there are always some differences between a specific
pair of languages, in some respects, all of these languages are also very similar to each
other. Because of this similarity (and the fact that this chapter is only intended to
be a brief review), we will cover the first language in greater detail than the other
two—but all three MLs mentioned in this chapter, and many other MLs that we do
not mention here, can be used effectively to create a DB. First, we will look at the
entity relationship model (ERM) language, and then we will briefly look at the crow’s
feet notation (CFN) language and the Universal Modeling Language (UML).

10.3.1 The Entity Relationship Model

The first example CML we will consider is the entity relationship model (ERM)
language. Sometimes, the CDMs written in this language are also referred to as ERMs
(even though this is actually the name of the CML). It is also fairly common to
refer to these CDMs using the name of the most common diagrammatic technique
used to display them, namely, the entity relationship diagram (ERD). In order to
avoid confusion, we will usually use the term ERD for the CDM and ERM for the
conceptual modeling language. Both the ML and the diagram representation were
described by Peter Pin-Shan Chen [Chen76]. After Chen introduced the ERM, he
extended it (or “enhanced” it) by adding additional constructs to support inheritance.
This extended/enhanced version of the ERM is often called the extended entity rela-
tionship model (EER) or enhanced entity relationship model (EER). Both names
are equivalent—they do not refer to different MLs. Although entity relationship model-
ing and extended entity relationship modeling are often considered to be two separate
representations, we will cover them both at the same time. Because EER is simply
ERM with the additional techniques of generalization and specialization (inheritance),
we can consider them to be one CML sharing one diagrammatic representation—we
can simply consider the traditional ERM as an example of EER that chose not to use
any inheritance.

10.3.1.1 Construct Review There are three fundamental constructs in both ERM and
EER: the entity type (ET), the relationship type (RT), and the attribute type (AT).
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EER has one additional construct, the inheritance type (IT). Since the concept of
inheritance is now fairly commonplace, EER might even seem more natural to many
modern data modelers. From now on in this chapter, we will use the terms ER and
EER interchangeably (we also use them interchangeably in all the other chapters in
this book). Chen [Chen76] referred to instances of ETs as entities, RTs as relationships,
and ATs as values, while he called the “types” for these things “sets.” We will use a
slightly different nomenclature and refer to the types explicitly as ETs, RTs, and ATs,
while the instances will be referred to as merely entities, relationships, and attributes
(or even more explicitly by using the word “instance” or the word “value”).

Attribute Types Each attribute type (AT) is either Singular or Plural, either Identi-
fying or Nonidentifying, and either Atomic or Grouping. This means that there are
theoretically eight possible flavors of ATs (see Table 10.1). In a CDM written in this
language, we also typically define the set of possible values (called the domain) for
each AT—perhaps even modeling them as domain types (DTs). But since (at least
for our purposes here) this starts to move into the logical and physical levels, we will
simply say that our CDM should include some notions about the values that ATs could
possibly hold, and depending on the tool used this might be captured in a more or less
sophisticated fashion.

In practice, we usually use much fewer than these eight flavors. We almost never use
the Plural Identifying (PI) ATs—for example, suppose we created a model with a PIA
AT named “EmpNumber” contained within an ET named “Employee.” Modeling it this
way would mean that each Employee instance has a list of numbers and this entire set
of values for a single employee is necessary to identify that person uniquely. Having
a Plural Identifying value is not very practical—thus, the PIA and PIG ATs are not
really used much. Many data modelers will also avoid using the Singular Identifying
Grouping (SIG) AT because using a Grouping AT as an Identifier is also somewhat
awkward. In the real world, any CDM written in this language will usually only contain
(at most) five of the eight possible flavors for ATs shown in Table 10.1—namely the
SIA, SNA, SNG, PNA, and PNG flavors. Data modelers who allow logical or physical
considerations to creep into their ER models will also tend to avoid all Plural ATs,
meaning that they only use three flavors (SIA, SNA, and SNG) instead of the five
we just mentioned (or the eight we listed in Table 10.1). Lastly, data modelers who
are heavily influenced by the relational data model (RDM), which is a very popular
logical-level ML, will also tend to avoid Grouping ATs—meaning that they only

TABLE 10.1 Possible AT Flavors

Singular or Identifying or Atomic or Typical CDM
Plural Nonidentifying Grouping Abbreviation Usage Frequency

Singular Identifying Atomic SIA Usually only one per ET
Singular Identifying Grouping SIG Rarely used, if ever
Singular Nonidentifying Atomic SNA Several per ET and per RT
Singular Nonidentifying Grouping SNG Sometimes used
Plural Identifying Atomic PIA Not really practical
Plural Identifying Grouping PIG Not really practical
Plural Nonidentifying Atomic PNA Sometimes used
Plural Nonidentifying Grouping PNG Sometimes used
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use two flavors (SIA and SNA) in the CDMs that they create using this conceptual
modeling language. In summary, eight flavors are possible; up to five flavors might be
used in practice; but many models use only three of these flavors (or even only two of
them) in the real world. Data modelers with different biases or modeling backgrounds
might tend to favor different flavors in their conceptual models, and of course reverse
engineered data models are always influenced by the physical and logical models (and
languages) from which they are generated.

Entity Types In some respects, entity types (ETs) are the primary construct in the ERM.
An ET serves as a container for attribute types (ATs), an endpoint for relationship types
(RTs), and the thing being generalized or specialized by an inheritance type (IT). We
call an instance of an entity type an entity and, similarly, an instance of a relationship
type a relationship. The ET provides two important qualities to the concept being
modeled: existence and identification. Ultimately, the existence of any value for any
other construct type depends on the existence of one or more entities. In other words,
we cannot have a relationship unless all the entities being connected by it already exist.
This is also true for ITs, which we will discuss in the next section. An IT is similar to
an RT, it connects two ETs together, with one ET (the Super ET) being a conceptual
superset of the other ET (the Sub ET). We cannot have an IT instance (which we
call an inheritance) without a Super ET instance. Often a Sub ET instance is also
required, but as we shall see in the next section, this is not always the case. Since
every attribute (AT instance) must be contained in either an entity or a relationship,
once again the entity’s existence plays a crucial role for attributes. However, merely
existing is not enough; we also need to be able to identify a particular instance within
an ET. Therefore, we need to consider the identification of a particular entity carefully
in any model. Ultimately, an entity’s identification comes from the set of Identifying
ATs (usually one or more SIA ATs) contained within the ET—this set of attribute types
is called an Identifier.

Each ET is categorized as either Strong or Weak. Each Weak ET is partially
identified by its Identifier and partially identified by the Identifiers of all the other ETs
connected to it via specially flavored RTs (called Identifying RTs). A Strong ET is
simply an ET that is not a Weak ET—Strong ETs do not rely on any Identifying RTs.
When the ET participates in an IT, we must consider how it participates before we
can understand its identification completely. A Strong ET that does not participate in
any ITs is completely determined by its own Identifier (which it must contain in this
situation). If the ET is a Super ET, then it is possible for it to be either a Weak ET or
a Strong ET. If the ET is a Sub ET, then it must not be a Weak ET. In this case, even
though the Sub ET is technically a Strong ET, its identification is slightly different.
Here, the ET is actually completely identified by the Identifier of the Super ET that it
is connected to via the IT. The valid ET flavors are summarized in Table 10.2.

Inheritance Types Each inheritance type (IT) connects a single entity type (ET) as the
Super ET, and one or more other ET as the Sub ET. Each Sub entity instance must have
one and only one Super entity instance associated with it via the IT, and these instances
are said to represent the same thing. For example, consider a simple case where we
have a Super ET named “Person” and two Sub ETs called “Employee” and “Customer.”
Obviously, each and every Employee (instance) is one and only one Person (instance);
similarly, each Customer (instance) is one and only one Person (instance). We do not
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TABLE 10.2 Possible ET Flavors

IT Status Strength Description

None Strong Identification is completely determined by the ET itself.

None Weak Identification is partially determined by the ET and partially
determined by at least one other ET connected to this one via an
Identifying RT.

Super ET Strong Same as a Strong ET that does not participate in an IT.

Super ET Weak Same as a Weak ET that does not participate in an IT.

Sub ET Strong Identification is completely determined by the Super ET.

Sub ET Weak This is not possible.

consider a real-world person to be something separate or distinct from a real-world
employee or a real-world customer—there is only one person to consider, regardless
of whether that person is an employee, a customer, both, or neither! In other words,
these distinctions merely focus on more specific (employee, customer) or more general
(person) aspects of the same concept! If we want the Person ET to be capable of
storing information about a person who is neither an employee nor a customer, then
we want to allow a Person Super entity instance to exist when there is no corresponding
Employee or Customer Sub entity instance associated with it. This is called Partial
participation, and it is analogous to the situation in OO modeling where we have a
concrete superclass. If we wish to prevent this behavior (in other words, if we want
to prohibit Person Super entity instances for people who are neither employees nor
customers), then this is called Total participation. This is analogous to the situation in
OO modeling where we have an abstract superclass. If we want to allow an Employee
(instance) to also be a Customer (instance), then we need to allow more than one Sub
entity instance to share the same Super entity instance. This is called Overlapping
participation. If we want to prevent this situation, meaning that each Person instance
cannot be associated with more than one Sub entity instance, then we use Disjoint
participation. This is also called Mutually Exclusive participation. In other words,
there are four valid flavors of ITs to be considered in the ERM (see Table 10.3), and
every IT must have one of these four flavors.

Relationship Types There are four characteristics we need to consider for each rela-
tionship type (RT) in any ERM CDM:

• The degree of the RT
• The minimum and maximum cardinality of the RT
• The ATs in the RT
• The “flavor” of the RT

A relationship type (RT) instance is called a relationship and represents a set
of connections between entity type (ET) instances. Each connection participating in
an RT can specify a role name, which is simply a name used to represent what
role the ET instance is playing in the relationship. The number of roles (i.e., the
number of connections) participating in an RT is called the degree of the RT—we
can also call this the degree of the relationship. Role names help to disambiguate the
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TABLE 10.3 Valid IT Flavors

Super ET to Sub ET Across Sub ETs Abbreviation

Total Participation Disjoint Participation T-D-P
Total Participation Overlapping Participation T-O-P
Partial Participation Disjoint Participation P-D-P
Partial Participation Overlapping Participation P-O-P

RT and the database requirement that the RT is trying to capture. Data modelers do
not always specify the role name for each connection—they will often simply use an
abbreviated version of the connected ET name when there is no other obvious role
name to use. When no role name is specified, we can pretend that the role name is
something like “role-1” or “role-2.” However, there is one scenario where role names
are extremely useful and therefore usually specified—whenever the RT connects the
same ET more than once. This usually only happens with RTs of degree two (which
are called binary relationship types). A binary relationship type that connects to
only one ET is called a recursive relationship type, and the role names are vital to
understanding the semantics behind the RT in this situation. For example, if we wanted
to model the fact that some employees work for other employees, then we would create
an RT (perhaps named “WorksFor”) that connects to the Employee ET twice. Here,
we could use the role name of “manager” for one connection to the Employee ET, and
the role name of “subordinate” for the other connection to the Employee ET.

Each connection can also specify the minimum cardinality and maximum cardi-
nality for the ET instance playing the role that the connection represents. For example,
we could set the maximum cardinality to one for the connection with the role name
“manager” in the WorksFor RT example we mentioned earlier to indicate that no
employee has more than one manager. The maximum cardinality for the other connec-
tion (with role name “subordinate”) could be set to a specific number (such as 10, 20,
etc.) or simply to a value representing “many.” A minimum or maximum cardinality
of “many” is typically represented as a capital letter “M” or “N.” Although specific
numeric values can be specified, most data modelers restrict themselves to using only
“zero,” “one,” or “many.”

An RT can have attribute types (ATs) contained within it, but usually it cannot have
any Identifying ATs (no SIA, SIG, PIA, or PIG ATs). Identifying ATs are normally not
allowed in this situation, because the relationship can only exist if all of the entities
participating in the relationship already exist. Each relationship instance is uniquely
identified by those entity instances. This means that it is not possible for the same
entities (playing the same roles) to be related to each other more than once in the same
RT. For example, suppose we have two Employee instances representing two employ-
ees in our organization (let’s call them Alice and Bob). If Alice is Bob’s manager,
we can populate the WorksFor relationship by connecting the ET instance represent-
ing Alice using the connection with the role name “manager” and connecting the ET
instance representing Bob using the connection with the role name “subordinate.” If
Bob is Alice’s manager, then we can simply populate this relationship with their roles
reversed. The only other scenario to consider is if neither Alice nor Bob works for
the other person, in which case, we simply do not populate this relationship or those
connections at all. But notice that there is never any situation where it makes sense
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to populate the same relationship instance more than once! Alice cannot be Bob’s
manager more than once!

Some data modelers choose to allow Identifying attribute types in RTs but
this is really a logical-model-dependent consideration creeping into the conceptual
level—which is not necessarily a bad thing, as long as it is understood and translated
correctly. In most situations where we would be tempted to use an Identifying AT in
an RT, we can use other standard techniques rather than resorting to this situation. For
example, suppose we are modeling something that is composed of many parts, such
as an engine made from several pistons. Also suppose that we create an Engine ET
and a Part ET with a PartType AT defined in it (and, of course, all the other necessary
ATs and Identifiers). Now, we create an RT named “EngHasPart” to connect the two
ETs. We might think we need an RT Identifier because the same Engine might contain
the same Part more than once, for example, a Part instance with PartType equals
“Piston.” However, this is a modeling mistake rather than an ML deficiency. There
are several ways to capture this situation more correctly such as adding a Quantity AT
to the RT and using a single RT instance or modeling Part as a Plural Nonidentifying
Grouping attribute type (a PNG AT).

The fourth characteristic to consider for each relationship type is its flavor. We have
already informally mentioned the two flavors of RT to consider: namely, Identifying
RTs and Nonidentifying RTs. We will use these terms, even though Chen used different
terminology in his original paper. An Identifying RT is used to complete the identi-
fication for Weak ETs, while a Nonidentifying RT has no impact on the ETs or their
identification. One or more Identifying RTs are always used whenever we have a Weak
ET, because the Weak ET must be partially identified by some other ET connected
to it via an Identifying RT. This also means that it is impossible to have a recursive
Identifying RT. Some variations of this conceptual modeling language also allow other
flavors to specify additional behavioral constraints in their ERM conceptual data mod-
els, but these tend to be logical modeling language concepts that have crept into the
conceptual modeling language they are using, and we will not discuss them any further
here. See Table 10.4 for a summary of the RT flavors.

ERM Construct Summary In summary, there are three pairs of options (eight flavors)
for attribute types, one pair of options (two flavors) for entity types, two pairs of
options (four flavors) for inheritance types, and one pair of options (two flavors) for
relationship types. The various flavors for these constructs are summarized in the
tables we have already seen (Tables 10.1–10.3, and 10.4, respectively). Although the
ERM language is fairly well known, it is not standardized, and thus, there are many
different variations or dialects in use. Obviously, the options, flavors, restrictions, and
exceptions can vary across these different (but similar) languages—especially when the

TABLE 10.4 Possible RT Flavors

Behavioral Constraint Description

Identifying Connects one or more Strong ETs to one or more Weak ETs, causing the
Weak ETs to be partially identified by the Strong ETs

Nonidentifying Connects two or more ETs (Strong or Weak) without changing any
identification details for the ETs
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conceptual modeling language is implemented by a tool, but the fundamental constructs
and concepts remain the same.

Modern hardware and software systems have changed dramatically since the ERM
was first introduced in 1976. Software engineering and software development practices
have also changed substantially since then. We now recognize that there are many
further details that we need to specify and capture in order to improve the quality
and maintainability of complex DMs. For example, we usually try to capture some
minimal amount of version control information. This might include details such as
version, revision or release numbers, dates, times, and authors of various additions and
modifications to the model, and other important details such as comments, descriptions,
annotations, and definitions. All of these details are called metadata (data about the
data), and most modern tools support the capture and management of at least some
minimal amount of metadata for any DM we create or modify. The original diagram
notation introduced by Chen, called the entity relationship diagram (ERD), does not
show any of these metadata details. Most diagram notations used today do not show
these details either. This is done purposefully—once again, if the diagrams included all
the possible details, they would likely become overly cluttered and confusing. Some
tools do allow the user to selectively include or exclude some of the details—this
enables the user to show important details and hide distracting details while storing
all of these important details behind the scenes. Diagram notations also do not usually
show any of the rules defining the valid construct combinations and configurations. In
other words, although the diagram is the best way to communicate the important details
within a particular DM, we should never confuse the diagram with the DM itself or
the ML—the diagram is merely one picture containing only some of the details for a
given DM.

10.3.1.2 ERM Rules and Guidelines It is beyond the scope of this chapter to try to
describe all the possible details that a good CDM written in the ERM language should
have. It is even beyond the scope of this chapter to list all of the rules governing
what a valid CDM can or cannot do in this modeling language. We will limit the
discussion here to the bare minimum: a few basic naming rules (and even less-restrictive
naming guidelines) followed by a few basic rules that control how the constructs can be
combined and configured within a data model. Although the rules are stricter than the
guidelines, both are actually merely suggestions rather than absolute prohibitions. All
data modelers who work together should create their own list of rules and guidelines
as they create their DMs. Then, they should try to conform to these rules as much as
possible. This means we should consider the ramifications carefully whenever we add,
modify, or delete anything from our list.

Naming Rules

• Every ET, RT, IT, and AT must have a name.
• Generally, we try to avoid spaces and punctuation in the names (limit the charac-

ters to underscores and alphanumeric characters—some people use dashes in their
names but these tend to translate poorly when PDMs are generated later on).

• Different naming conventions and restrictions exist, but generally we try to avoid
using the same name across the first three types (ET, RT, and IT), and it is a good
idea to avoid duplicate names across all four types.
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• A popular exception to the no-duplicate-naming rule just mentioned is to allow
multiple ATs with the same name—provided that they are not used within the
same containing construct. In other words, when two ATs are not used within the
same Grouping AT, not used within the same RT, and not used within the same
ET, then they can have the same name.

• Another popular exception to the no-duplicate-naming rule is to allow multiple
RTs with the same name—provided that they connect different ETs. For example,
the RT name “Has” is often used more than once in a model—there is even one
technique that specifies a “Relationship Class Type name” as a way of grouping
RTs (using the same name) together, but it is not a very commonly used technique
as far as we know.

• While case sensitivity is a personal (or tool-dependent) choice, it is considered
bad form to use names that differ only in case to represent different concepts.
In other words, if we are being case sensitive, then we should avoid using both
“Employee” and “employee” as names within the same model. If we are being case
insensitive, then using both “Employee” and “employee” should be considered
a duplicate name—and the appropriate “no-duplicate-naming” rule or exception
should be applied. While it can be difficult and tedious to maintain consistent case
usage, allowing the case to vary randomly can cause confusion and maintenance
issues later on.

Now that we have discussed the basic naming rules that most DMs will follow,
we will consider some softer conventions or guidelines. These are less restrictive than
the previous list and also tend to be more idiosyncratic or personal decisions. These
guidelines suggest alternatives that we can choose from when naming the constructs.
They merely help to define a naming convention for our DMs. Once a particular naming
convention is chosen, it should be used consistently within the DM (and across all DMs
if possible)—but we should not be surprised if we see different naming conventions
being used in DMs that we did not write ourselves. Naming conventions also tend to
change over time based on changes within the corporate culture and tools being used.

Naming Convention Guidelines

• ET names tend to be singular rather than plural. For example, we would usually
name an ET “Employee” rather than “Employees.”

• ET names tend to be common nouns (not proper nouns, verbs, adjectives, adverbs,
etc.) [Chen80] [Chen97].

• AT names can be simple or compound. For example, “Name” is simple, while
something like “PrjName,” “Project−Name,” or “Project−Name” is compound.
For large DMs, we prefer compound names using a standard abbreviation of the
container type for the first part. This is especially useful if the simple version
is likely to be reused across different containing types (e.g., we prefer using
“EmpName” and “PrjName” rather than using “Name” and “Name”). While this
technique is not necessary, it can improve maintenance by making it clear to
which AT (along with its container type) we are referring.

• Plural AT names can themselves use either plural or singular naming conven-
tions, for example, “EmpEmailList,” “EmpEmails,” and “EmpEmail” are all valid
choices for a Plural AT name.
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• AT names tend to be common nouns, adjectives, or adverbs [Chen80] [Chen97].
• RT names tend to be verbs (often transitive or linking verbs) [Chen80] [Chen97].

If there are many RTs in the DM, we prefer to include some form of “verb
phrase including a standardized abbreviation ET name” as the RT name, but this
is merely a suggestion. For example, we would tend to use “EmpWorksForDept”
rather than simply using “WorksFor,” “Works−For,” or “Works” if there were any
real potential ambiguity. Another option is to use the full ET names in the RT
name, for example, “EmployeeWorksForDepartment,” but this can lead to long
names and truncation issues later on when the CDM is used to generate LDMs
and PDMs.

• IT names almost always begin with “is a” as part of the name. This can be written
in different ways, for example, “ISA−Person,” “IS−A−Person,” “Is−Person,” or
even “IsPerson.” This convention has limited impact since IT names are often
unseen in the LDMs and PDMs generated from CDMs—but the naming conven-
tion is useful nonetheless.

Lastly, we will consider some of the basic construction rules to follow when writing
a CDM using the ERM language. Although these rules might vary depending on the
tool being used to write the model, they are more rigid than the naming rules or naming
convention guidelines we have just discussed.

Basic Rules of Engagement/Existence for ERM Constructs

• Each AT must exist inside an ET, an RT, or a Grouping AT.
• RTs cannot contain Identifying ATs.
• ITs cannot contain ATs.
• Each RT must connect at least two ETs (with one exception allowed, namely, if

there is only one ET connected, but we connect to it twice—this is the recursive
RT we discussed earlier).

• Each RT can only connect ETs (RTs cannot connect to other RTs, to ITs, or to
ATs—they can contain ATs but cannot connect them).

• Each IT must connect one Super ET to at least one other (different) Sub ET.
• Each IT can only connect to ETs (ITs cannot connect to RTs, ATs, or other

ITs—unlike RTs, ITs cannot contain ATs).
• The set of all ETs connected via ITs must be acyclic (in other words, they must

form a tree and must not form a graph).
• Each Strong ET must have an Identifier (a set of one or more Identifying ATs).
• Each Weak ET must be connected to at least one Strong ET via an Identifying

RT—unless the Identifying RT is one-to-one (which is a bizarre and extremely
rare thing to see in a CDM, but possible in a PDM).

• Each Weak ET should have an Identifier contained within it that partially
identifies it.

• The set of all Weak ETs connected via Identifying RTs to other ETs must be
acyclic. In other words, we cannot have the identification forming an endless
loop.
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• Each Identifying RT must connect at least one Strong ET and at least one Weak
ET. Chaining Weak ETs together via Identifying RTs is probably not valid for
most tools, and certainly not necessary.

There are, of course, many more suggestions, conventions, and rules that can be used
in addition to those listed here, especially if the CDM is going to be converted into a
specific type of LDM or PDM. But again, that is not really important for our purposes
in this section. Most of these suggestions and conventions can be either applied to a
basic CDM as a postprocess or integrated into the CDM creation process from the start.

10.3.1.3 Traditional Chen ERD Notation See Figure 10.3 for an example of a CDM
using a nonstandardized, but fairly common, representation for a traditional ERM. This
diagram uses a representation that is very similar to the notation that Chen introduced
in his seminal paper [Chen76], but it is not the notation we would recommend for use
in the real world. Having said that, this is the first diagrammatic notation that many data

Figure 10.3 Traditional Chen notation (ERD) for an EER CDM.
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modelers are introduced to: it is capable of showing all the flavors for all the constructs
we discussed in Section 10.3.1.1, and it is very easy to understand. Although we will
not exhaustively list everything that this model (or even this diagram) represents, we
will point out some examples of the more important notations.

Points of Interest in Figure 10.3

• There are many ATs shown in this diagram. Each AT is represented by a name
inside an oval that is connected via a line to the container for that AT.

• There are four SIA ATs (EmpNo, DepNo, PrjNo, and DptNo). We know they are
Singular ATs because they are drawn as ovals with a single border. We know
they are Identifying ATs because the AT names are underlined. We know they are
Atomic ATs because they do not have any other ATs connected to them.

• There is one PNA AT (EmpEmailList) shown as an oval with a double border. We
know it is a Plural AT because of the double border. Since there is no underline,
we know it is a Nonidentifying AT, and like the previous ATs mentioned, we
know that it is an Atomic AT because there are no other ATs connected to it.

• There is one SNG AT (DptAddress). We have already mentioned the notation
clues needed to know it is Singular and Nonidentifying, and we know it is a
Grouping AT because there is one line connecting it to its container type and
another set of lines connecting it to the other ATs that it contains.

• There is one PNG AT (EmpPhoneList). We have already discussed all the notation
clues necessary to understand why this is Plural, Nonidentifying, and Grouping.

• All the remaining ATs in the diagram are SNA ATs.
• There are several ETs shown in this diagram. Each ET is represented by a name

inside a rectangle.
• There are six Strong ETs (Employee, Department, Project, PartTime, FullTime,

and Project). We know they are Strong ETs because they are each drawn as a
rectangle with a single border.

• There is one Weak ET (Dependent). We know it is a Weak ET because it is drawn
as a rectangle with a double border.

• There is one IT (ISA−Employee), connecting two Sub ETs (PartTime and Full-
Time) and one Super ET (Employee). The only way we can know this is by
looking at the IT that connects them and noticing which way the arrow with
the label inside it points. Because of the label (“TD”), we know this IT has Total
Participation (“T”) and Disjoint Participation (“D”). If the IT had Partial Participa-
tion, the first letter would be different (“P”). Similarly, if the IT had Overlapping
Participation the second letter would be different (“O”).

• There are two RTs in this ERD. There is a Nonidentifying RT named “On”
and an Identifying RT named “Has.” We know they are RTs because they are
drawn as diamonds. The minimum and maximum cardinalities for each RT are
shown using two numbers separated by a colon. For example, each instance of
the ET “FullTime” is related via the RT “Has” to a minimum of zero and a
maximum of “N” (“Many”) instances of the ET “Dependent.” This cardinality
is indicated by the “0:N” hovering around the line connecting the RT to the ET
named “Dependent.” The fact that each instance of the ET “Dependent” has a
minimum of one and a maximum of one instance of the ET “Employee” related to
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it through this RT is indicate by the “1:1” closest to Employee. The Nonidentifying
RTs have a single border while the Identifying RTs have a double border, and a
different line style on the connection to the Weak ET.

• The RT “On” has degree equal to three (3). In other words, this is a ternary RT.
This is something that can happen in the real world and can be represented easily
in a conceptual model. In the real world, RTs with degree greater than two are
often avoided in the CDM—especially if the planned LDM and PDM do not
support nonbinary relationships gracefully or efficiently.

Obviously, this notation has its advantages, but also its disadvantages. In particular,
it uses a lot of space but only conveys a limited amount of information. This technique
is good for clarity and initial brainstorming. However, once we start doing real analysis
or start considering LDM or PDM diagrams, it is not as expressive or concise as we
would like. It is also not practical in the real world, where we are likely to have a large
number of ATs within each ET. Notice that our diagram here averaged three Atomic
ATs per ET; in a real DM, we can easily see hundreds of ETs, hundreds of RTs, and
perhaps even thousands of Atomic ATs. So, even though Chen’s notation is often the
first notation learned by data modelers, we think that the next representation is a better
choice for most CDMs.

10.3.1.4 Crow’s Foot/Feet Notation There are several alternatives to Chen’s
ER/EER notation that share a common characteristic known informally as crow’s foot
notation or crow’s feet notation (CFN) [Everest86]. This notation was invented by
Gordon Everest, who originally called it an “inverted arrow” but now calls it a “fork.”
Each of these names refers to the representation used for RTs (and, in particular,
their cardinalities). While Chen’s notation could support any value for the minimum
and maximum cardinalities of a relationship type (e.g., “4:8” or “5:N”), the strict
CFN will limit us to a smaller set of possible cardinalities because it represents the
cardinalities graphically rather than textually—we could add the textual cardinalities
to the CFN to achieve the same representational power, but then we are no longer
simply using the notation (and these numbers can clutter the diagram if the model is
complex or simply large).

In CFN, each end of an RT connection can only represent one of four possible
cardinality combinations (see Figure 10.4). Although there are several conceptual
modeling alternatives that use the CFN, and their actual representations can vary
slightly, the notation shown in Figure 10.4 is a reasonably common one. In a CFN

Figure 10.4 Crow’s foot notation cardinality summary.
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diagram, each RT is shown simply as a line with the RT Name hovering somewhere
along it (no diamond). Each end of the line uses two symbols representing the
minimum and maximum cardinality with respect to the ET connected at that end. The
first symbol (farthest from the ET being connected) uses either a perpendicular line or
a circle to represent the minimum cardinality. In other words, this symbol will look
like either a one or a zero—which is precisely what the two alternatives represent.
The second symbol will look like either a one or a crow’s foot (a symbol that sort
of looks like a greater than or less than sign with a line bisecting the angle). This is
the symbol closest to the ET, and it represents the maximum cardinality—the “like a
one” symbol obviously still means “one” and the crow’s foot symbol means “many.”
Since “many” always implies “one,” sometimes the crow’s foot will also have a one
in front of it. When the minimum cardinality is zero, if the maximum is one, we read
this as “Zero or One,” if the maximum is “many” then we read this as “Zero, One,
or More.” Figure 10.4 lists the remaining two possibilities and a summary of all the
possible symbol combinations for one end of the RT.

ETs in a CFN diagram are drawn as rectangles, with the name of each AT listed
inside the rectangle. Some tools put the ET name outside the rectangle at the top. Other
tools put it inside the rectangle with a line separating it from the rest of the rectangle
contents. Regardless of the ET name location or CFN representation, it is important to
recognize that the CFN does not directly represent all of the possible AT variations that
EER did. In particular, CFN can only support SIA and SNA attribute types. Another
way to explain this limitation is to say that there are no Plural ATs and the only valid
container for an AT is an ET, which means that neither Grouping ATs nor RTs can
have ATs. CFN has further limitations; in particular, CFN cannot support nonbinary
RTs (RTs with a degree greater than two). We mentioned earlier that there are other
data modeling categorizations that collapse the conceptual and logical categories into
a single category—CFN is often used as the diagram notation when this approach is
used, especially for RDMs. But remember that CFN can be used for any DM, so we
should not assume that CFN implies any particular categorization or category of DM.

10.3.1.5 Unified Modeling Language Unified Modeling Language (UML) is a stan-
dardized format for creating object-oriented models. As object-oriented (OO) tech-
niques began to gain acceptance and become more popular, several competing OO
modeling methodologies emerged. As these methodologies evolved, their differences
diminished, and eventually the major methodologies merged into a single unified
method. One of the results of this merging was the creation of UML, and in the
years since the unification, UML has become the de facto standard for OO modeling.
There are many articles and books describing the history and continuing evolution of
UML; see [Muller97], [Quatrani98], and [Liberty98].

For our purposes here, an OO model is an example of LDM, but this really depends
on how it is used. UML models are somewhat similar to CFN models, in that the
notation does naturally lend itself to certain LDM biases. Like CFN, UML can still
be used somewhat generically (naively) if we really want to use it that way. From a
DB perspective, if we ignore the OO programming interpretations and implications,
we can treat UML diagrams the same as ERDs or CFN diagrams by using a very
naı̈ve interpretation of the UML—but this is somewhat risky. This technique relies
on a nonstandard interpretation of a standardized format—in other words, it sort of
defeats the primary purpose of UML (capturing concepts using all the nuances that
OO modeling has to offer). There are also some concepts that have no concise, direct
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representation in UML. For example, Identifiers in the ERM have a strict set of rules
and interpretations, but UML does not have this same level of enforcement because it
uses the concept of a reference or pointer rather than an Identifier. Another example of
a feature that can cause confusion is Associations—in UML, Associations represent
connections between concepts (like RTs in the ERM do) but Associations can be
unidirectional in UML. This is quite different from how RTs behave in ERMs or in CFN
diagrams. UML does not directly represent inheritance using the ERM flavors—so it
is more difficult to specify these participation details in a UML model of a CDM. In
summary, although UML has many facilities for documenting special scenarios (using
things like stereotypes), they are not well suited for conceptual data modeling in our
opinion: this is because of the emphasis we place on forward and reverse engineering
all of the possible LDMs and PDMs that a database environment is capable of using.

Using the naı̈ve interpretation of UML is too fragile—if we accidentally interpret
the UML data model using the standard (LDM biased) UML semantics instead of
this naive interpretation, there are going to be many problems. For example, an ERM
can have a Weak ET participating in two Identifying RTs: if we try to represent this
same concept using the UML notation for composition, we would try to model the
same class (the Weak ET) as being a private part of two different parent classes at
the same time, which is a completely different set of semantics for UML. So, in this
extreme scenario, we have a CDM that merely uses UML Classes instead of ETs,
UML Member Properties instead of ATs, UML Inheritance instead of ITs, and UML
Associations instead of RTs. If we ignore all the other features, nuances, and semantics
that UML has to offer, we can create a naı̈ve UML rendition of a CDM. For example,
see Figure 10.5, for a naı̈ve UML rendition of the same CDM that we looked at

Figure 10.5 A naive UML rendition of the same CDM as shown in Figure 10.3.
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previously in Figure 10.3. We strongly recommend using the CFN language instead of
this naı̈ve UML approach.

The other extreme scenario is to create a CDM using the UML that is also an OOM
(using all the power, flexibility, features, and semantics that the OOM can provide),
but sacrificing some logical and physical modeling language independence. When rep-
resenting a CDM using UML and the standard (as opposed to the naı̈ve) semantics
and rules, we create a CDM that is LDM biased. We use the same nomenclature and
semantics that we would use for OO programming. By using UML in this fashion,
we can represent all the constructs that the ERM language can represent for the same
situation, but the notation and nomenclature are somewhat different. Unlike the situa-
tion we had when using CFN, there are no obvious shortfalls in what the model can
represent when we use UML this way—UML is at least as expressive as the ERM.
However, if we create the CDM by following the same steps as we would normally
use to create an OO programming model, the resulting DM can be rather different
from a traditional CDM. For example, consider the impact of using interfaces, multi-
ple inheritance, accessibility qualifiers (public, private, etc.), other specifiers (virtual,
static, abstract), sophisticated associations (aggregations, composition, dependencies),
and other UML features on a traditional CDM. This model might be very difficult to
translate into multiple LDMs and PDMs later on—especially if the LDMs are not all
OO in some respect. Figure 10.6 shows an LDM-biased (OO-biased) rendition of the
same DM we used in Figures 10.3 and 10.5. In our opinion, this approach should only
be used when it is certain that an incompatible LDM or PDM language will never be

Figure 10.6 An LDM-biased UML rendition of the same CDM as shown in Figures 10.3
and 10.5.
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used in the future—realizing that logical-level (and perhaps physical-level) details are
creeping into the CDM when we do this.

10.4 WORKING WITH DATA MODELS

We will now explore how we work with conceptual, logical, and physicals data models
(CDMs, LDMs, and PDMs). First, we will discuss how CDMs are created. After that,
we will briefly discuss how LDMs and PDMs fit into the data modeling process. Finally,
we will consider some of the issues we would expect to encounter when working with
multiple DMs (and MLs) within the same development environment.

10.4.1 CDMs

In this section (and in most of the book) we will use the CFN for CDMs, since we
feel this notation is probably closest to the notation used in the real world (for most
scenarios at least). The steps to create a CDM are actually fairly similar regardless
of the language used to capture the CDM. There are various techniques described by
Chen and by Sanders (see [Chen83] and [Sanders95]). But the overall idea is the same
for most techniques. Instead of summarizing one of these techniques, we will simply
present a high-level overview of the steps that we have informally followed when
creating conceptual level data models.

Steps to Create a CDM

• Capture the requirements.
• Identify concepts in the requirements.
• Group concepts together.
• Remove ambiguities.
• Apply corrections, conventions, and standards.

Let’s examine each of these steps briefly.

10.4.1.1 Capture the Requirements In this first step, we attempt to capture the
requirements using some standard technique. Typically, we use a series of questions,
interviews, facilitated sessions, and so on to build a description of the problem and
proposed solution. Often we will use techniques like Structured English, State Dia-
grams, and Use Cases based on the software development processes followed within
our project. While the more sophisticated techniques can be very useful, often the
Structured English approach is the easiest to understand and implement. Structured
English is merely an attempt to capture requirements in a more formalized and uni-
form sentence structure and vocabulary. It tends to be very repetitive, unimaginative,
and boring to read (and to write), but it has the advantage of removing ambiguity and
easily identifying similar patterns within the requirements. Sometimes we will even use
high-level ERDs to help capture these details—showing some (not all) of the possible
ETs and RTs without all the other details (such as ATs, cardinalities, and role names)
that a real ERD would require. These high-level ERDs are merely short-hand notation
and not intended to be anything more than simple reminders of the basic structures
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involved, similar to the way an artist might create a set of rough pencil sketches before
painting a detailed portrait.

10.4.1.2 Identify Concepts in the Requirements Once the requirements have been
captured, we simply go through the content we captured (usually Structured English and
a few simple “sketch” submodels) and try to identify concepts from the problem or solu-
tion that seem to be important. For example, if we created a set of Structured English
requirements for the Employee CDM examples we used earlier, this set would probably
mention some details about our employees, the projects they work on, the departments
they work for, and some of the other details like the phone numbers they have, salaries
they are paid, and the names for everything. The Structured English would include
descriptions for these concepts and also some clues about their interdependencies. For
example, is it possible for an employee to work on more than one project at the same
time? Can an employee work for more than one department at the same time? These
details and others like them will form the foundation of our initial CDM.

10.4.1.3 Group Concepts Together Some concepts will naturally start to group
together cohesively based on our understanding of the concepts themselves or the
language used to capture the DB requirements. For example, we will know that
employees are either full time or part time (but not both), and that this distinction
affects how they get paid. Similarly, we will know that departments have names and
budgets, employees have phone numbers, and so on. By combining these concepts
together, we are starting to form the CDM. As we put ATs together inside container
types (ETs, RTs, or Grouping ATs), we start to understand which concepts are more
complicated—and then start to ask questions about their existence, identification, and
relationships with other concepts. We simply create groups of cohesive concepts using
the constructs, rules, and guidelines provided by the conceptual modeling language
we have chosen to use.

10.4.1.4 Remove Ambiguities Even if the previous activities were done properly,
there will probably be some things that are not completely clear—this is normal.
If the requirements were not explicit enough, then either we need to use our own
understanding to clarify the missing details, or we need to go back and ask more
questions. There are many questions we need to answer here. For example, if we
know that an employee can have a phone number, we might need to clarify how
many numbers that employee can have. Does every employee have a phone number
or do some employees have no phone number? Can an employee have more than one
phone number? Can the same phone number be had by more than one employee?
What exactly is a phone number? Does it have smaller parts to it? What parts are
necessary? What parts are optional? What do we need to keep track of? Do phone
numbers exist outside of employees or are they a part of the employee? If we delete
an employee does the phone number need to be preserved? Does the phone number
need to be deleted when we delete an employee? These are just some of the questions
that will help us to choose the appropriate construct type and the appropriate metadata
for each concept. Often, these details can be exposed by considering questions similar
to those we just mentioned—namely, questions that arise when we start to consider
the addition, modification, and deletion of other concepts that are related to the one
we are focusing on at the moment.



WORKING WITH DATA MODELS 413

10.4.1.5 Apply Corrections, Conventions, and Standards In this last step, we need
to review the model and apply any corrections, conventions, or standards as needed.
For example, if we are using entity relationship modeling, then each AT must be
defined within a container (ultimately an ET or RT); each Weak ET must have at least
one Identifying RT connected to it; and so on. Similarly, if we have agreed on any
particular naming convention or modeling convention, then we need to ensure that
these conventions are being followed correctly and consistently. For example, if we
agreed that attribute type names would be all lowercase and begin with an abbreviation
of the container type (like “empName” for the AT representing an employee’s name
within the Employee ET), then these conventions need to be verified and corrected
as needed. Lastly, if we have agreed on a particular notation, or modeling technique,
we need to verify conformance to the standard and fix any discrepancies. This would
also be a good time to verify that we are using the tools we have to the best of our
ability—supplying meaningful and accurate comments, descriptions, definitions, and
annotations for all the constructs we have defined in our model.

10.4.2 LDMs

Logical data models (LDMs) are similar to CDMs—both capture high-level concepts
and their semantic interdependencies. Sometimes, we can even use the same diagram-
matic representation for both types of data models. But while the CDM tried to be
independent of both the design and implementation for the DM, the LDM is only
striving to be independent of the implementation. This means that design details are
supposed to be captured in the LDM (along with the logical-level translation of the
details that were previously captured in the CDM). While we cannot look at all possi-
ble LDM languages, we will look at some common examples in the next chapter—so
we will not go into great detail about the languages or the data models in this section.
Instead, we will provide a quick overview of the purpose of an LDM and then look at
a high-level overview of the steps we have followed when creating logical-level data
model by forward engineering it from a CDM.

10.4.2.1 Purpose The LDM is where we capture all the details that are independent
of the data storage implementation but dependent on the data storage design. For
example, suppose we want to implement our CDM using some relational DB—this
means that our logical-level modeling language is equivalent to the RDM. Many of
the rules, restrictions, and required details needed to design our relational DB schema
are DBMS independent. For example, we need to consider things like Candidate,
Alternate, Primary, and Foreign Keys, Functional Dependencies and Normalization,
Nullability, and rules to maintain Relational Integrity (things that are often enforced
by clauses such as “cascade” or “restrict”). Of course, the actual physical DB used
to implement this schema will have a great impact on our model eventually—but
not at this stage. If we are using the RDM as our modeling language, then there are
many things we can do here without knowing any implementation details—especially
if we are only considering ANSI SQL compliant RDBMSs (see [ANSI86a], [ANSI89],
and [ANSI92]). If we are considering nonrelational LMLs, we can still have a similar
situation—for example, all network DBs behave similar to each other (see [ANSI86b]),
all hierarchical DBs behave similar to each other, and all OO DBs behave similar to
each other. If we need to support more than one logical modeling language, then we
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need to use separate LDMs, but often we can generate all of these from the same CDM
and then perform additional modifications as necessary.

10.4.2.2 Steps to Create LDMs We will look at some specific details for specific
LDM languages in the next chapter, but we can provide a brief, generic overview here.
These steps can be used for both automatic and manual forward engineering situations,
but the steps are usually easier to follow and the activities are usually easier to perform
in the automatic forward engineering scenario.

Steps to Create an LDM

• Create an LDM translation of a CDM.
• Remove ambiguities.
• Apply corrections, conventions, and standards.

Create an LDM Translation of a CDM First of all, we need to capture all the seman-
tic details in our LDM. If we have already created a CDM, then we can translate it
into the equivalent LDM representation automatically with some tool or manually if
necessary. Depending on the conceptual and logical modeling languages being used,
there are different translation rules to apply, but usually there is a straightforward tech-
nique that can be applied to each CDM construct in order to generate a corresponding
LDM construct or constructs. We will discuss some examples of these translations in
Chapter 11, but we will not cover all possible CDM and LDM combinations—only
some of the most common ones. If we did not already create a CDM (and do not want
to create one), we will still have to perform the equivalent activities. In other words,
if we decide to use some other categorization (such as the one with Conceptual and
Logical combined), then we can simply repeat all the steps in Section 10.4.1 as the
precondition for the activities in this step.

Remove Ambiguities Perhaps because of the translation process, or perhaps for other
reasons, there might be some ambiguities in the LDM that need to be resolved—even
if the CDM was unambiguous. For example, the naming rules we used for our CDM
might be different from those used by our LDM tool or methodology. Usually we
can ensure that these rules are followed in the CDM creation process by establishing
conventions and standards appropriately (considering all the tools and languages we
might want to use ahead of time); but even after we have established these things,
we should always check the LDM for potential problems. When logical model con-
structs are generated from the conceptual model, it is possible that our groupings of
constructs might change. For example, concepts that were contained in a single ET
in our CDM might be translated into constructs contained in several different rela-
tions in our LDM. In general, some constructs that were together in our CDM might
be translated into separate constructs in our LDM while other constructs that were
separated in our CDM might be translated into the same container within our LDM.
Therefore, all the rules and semantics need to be revisited in the new model to ensure
that things are still correctly capturing the original requirements. For example, naming
rules, existence details, nullability details, and minimum/maximum cardinalities might
need to be defined differently in the new model based on these new separations and
combinations.
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Apply Corrections, Conventions, and Standards Since the CDM and LDM are not
identical, we will have to make some corrections, provide nondefault values for some
metadata properties, and consider the conventions and standards defined for the LDM.
For example, since many of the constructs in the LDM might be automatically gen-
erated from the CDM, it is common for new LDM constructs to be created based
on the names of existing LDM constructs. This can cause problems if names are too
long, or if the same CDM construct is used as the basis for more than one new LDM
construct. There are also other things that need to be considered for the LDM—which
might not be appropriate or possible in the CDM. For example, if we are using the
RDM as our logical modeling language, and we have agreed that our tables should
be in third-normal form (3NF) or higher, then we need to examine this and fix it as
necessary. A CDM has no notion of normalization, and even if we tried to enforce
normalization in the CDM, it would be premature since there are details dependent on
the translation technique used for generating the LDM. We will discuss this more in
the next chapter.

10.4.3 PDMs

Physical data models (PDMs) are similar to LDMs (and also somewhat similar to
CDMs). Once again, all of the details we defined in the LDM (and CDM) need to
be reflected in the PDM, but perhaps not in the same way that they were represented
before. The format and content of the PDM is highly dependent on the actual imple-
mentation and deployment details of a DB. If we deployed the same physical DB on
different machines, they could have different PDMs. Although the representation for
the PDM can be the same as the LDM, this is a little deceiving because so many of the
important details are not shown in any diagram used for the LDM. For example, a dia-
gram of a logical-level, relational data model for a DB shows many (but not all) of the
necessary LDM details, but if we wanted to see the important PDM details, we would be
better off looking at the Structured Query Language (SQL) for the PDM rather than the
PDM diagram. It is also possible for some of the details we captured in the requirements
(CDM) or design (LDM) to be absent from the implementation/deployment (PDM).
Sometimes this is necessary because of limitations within the physical systems, but
sometimes we decide not to implement these details for other reasons—perhaps we
do not implement them due to performance considerations, resource requirements, or
different priorities. Because the PDM details (other than those that are merely simple
translations of their LDM and CDM counterparts) are so proprietary and deployment
dependent, it is beyond our scope to discuss them much further here. PDM details
include all the tuning details (indexing, storage usage, etc.), which are far beyond what
we can cover in this chapter or the next.

10.4.3.1 Purpose The PDM is where we capture all the details that are dependent on
the data storage implementation and deployment. By definition, the PDM also contains
details that are dependent on the design of the data storage and the semantics of the
model. In other words, the PDM includes all of the CDM and LDM details, but it also
includes details that are not in these other categories. These physical details can be
vendor specific, platform specific, release specific, or even specific to the DM being
created. For example, some details are dependent on which DB vendor we are using,
especially the details about proprietary data types, indexing, and storage allocation.
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Other details might only make sense when the DB is deployed on certain operating
system platforms, especially if they include physical device details, block sizes, and
buffer sizes. Even if we consider two deployments that use the same vendor, and are
on the same platform, there can be PDM details that are different for the same DB. For
example, the PDM might specify some of the details that are new options or obsolete
settings depending on what release of the DBMS software, operating system, and so on
that we are using. Lastly, some options might be specific to a particular configuration
or set of deployment details that simply depend on a particular deployment of the actual
DB we are creating with this PDM. For example, a PDM representing a deployment in
a production environment might be different from a PDM representing a deployment
in a development or test environment.

10.4.3.2 Steps to Create PDMs While it is possible to create the PDM directly
(bypassing the CDM and LDM), this is definitely not recommended. If there is no
LDM or CDM for a PDM, we would suggest reverse engineering these models before
making any serious modifications to the PDM. The steps to create the PDM are similar
to those used for the LDM. The only difference is that the “Ambiguities, Corrections,
Conventions, and Standards” we consider now include physical implementation and
deployment details as well as those we previously included. Therefore, we will simply
list the steps here without going into any further details.

Steps to Create a PDM

• Create a PDM translation of an LDM.
• Remove ambiguities.
• Apply corrections, conventions, and standards.

10.5 USING MULTIPLE TYPES OF MODELING

The levels in CLP taxonomy are not only interrelated (as we mentioned at the beginning
of this chapter) but they are also, in essence, subsets and supersets of each other.
In other words, most of the information contained within a particular CDM is also
contained within each LDM generated from it—and most of the information contained
within each LDM is also contained within each PDM generated from it. The DMs in
these levels form a natural one-to-many, one-to-many dependency chain. This means
that if we need to update or change a detail contained in the CDM for some model,
then we would also need to change it in all the LDMs generated from that CDM and all
the PDMs generated from each of those LDMs. Obviously, if we could actually make
the changes in the CDM and then simply regenerate the LDMs and PDMs, we would
greatly simplify the maintenance issues and reduce the risk that something would be
out of sync or incorrectly modified. Many tools offer the ability to generate LDMs and
PDMs automatically, and some also support merging rather than simply overwriting the
information. When this is the case, we can preserve modifications specific to the LDM
or PDM while propagating modifications based solely on the shared (CDM or LDM)
details. Although these automations are never completely foolproof or perfect, and
although they can never replace the manual verification steps needed, this automation
can greatly streamline the process.



USING MULTIPLE TYPES OF MODELING 417

There is also one more level to consider when evaluating these modifications—
namely, the actual deployed DB. Recall that even the PDM is still just a model—it
is not the actual DB, just a very detailed picture of many important physical (as well
as logical and conceptual) details. Once the DB has been created and deployed, the
applications, users, development staff, and support staff can (and will) begin using
it. This means that some of the physical details might change on the real deployed
system. Some changes to the DB will not affect our models in any meaningful way
(e.g., selects, inserts, updates, and deletes are all instance-level commands with little
or no impact on schema design or implementation details), but it is also possible that
other changes will impact the schema. For example, suppose that a programmer adds
a column to a table in order to implement some feature request; now the PDM details
for that table are out of sync, the LDM details for the LDM construct(s) from which
we generated the PDM table are out of sync, and the CDM details for the CDM
construct(s) from which we generated the LDM construct(s) are also out of sync. If
we did not generate the models automatically from one level to the next, we still have
a problem. If we modify the deployed DB, how do we manually update each PDM,
LDM, and CDM? If we do not have the “higher-level” models, we might still need
to propagate the changes to all the appropriate PDMs. There has to be a better way to
handle this situation (and there is)—but it means we need to work with the models
and synchronize in the appropriate directions whenever we make meaningful changes.

10.5.1 Conversion to Multiple Models

Using the CLP models can be a great benefit, even for environments where we only
have one DB schema to maintain. In the real world, most DBs exist to support one
or more applications, and most applications change over time. By separating the DM
details across the levels (CDMs, LDMs, and PDMs), we encapsulate the details within
the appropriate level and thereby improve reusability. This means that when changes
are made for the sake of feature requests, defect removal, or new development, we
can manage those changes across the current and future deployments in a much more
efficient way. If we clarify conceptual details, they can be propagated and used across
all the systems with minimal impact and effort. Similarly, any changes made to the
deployed systems can be captured and carried forward in future development. In order
to do this properly, we need to be able to generate DMs automatically in both directions:
forward from CDM to LDM to PDM to deployed DB and in reverse from deployed
DB to PDM to LDM to CDM.

10.5.2 Forward Engineering

We have briefly discussed how the LDM can be generated from the CDM, and
how the PDM can be generated from the LDM. Because the PDM details are so
proprietary, we won’t discuss the actual details here, but most tools do support some
mechanism for generating/deploying the schema for the physical DB based on the
PDM. Some tools connect directly to the DBMS to do this; other tools generate
script files (e.g., SQL files), which can then be batched into the DBMS through
some vendor-supplied facility. We will discuss some of the specific mapping rules for
generating LDM constructs from CDM construct with specific LDM languages in the
next chapter. As we mentioned earlier in this chapter, the term forward engineering
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(FE) refers to any tools or techniques that help us to generate, translate, or propagate
any details from a higher-level representation to a lower-level one (including the
actual deployed DB, which is the lowest level possible).

10.5.3 Reverse Engineering

Similarly, the term reverse engineering (RE) refers to any tools or techniques that
help us to generate, translate, or propagate any details from a lower-level representation
to a higher-level one (including the actual deployed DB, which is the lowest level
possible). We mentioned earlier that even when this is possible, there will always be
some omissions or minor mistakes made. While we will not discuss this in great detail
here, consider the reverse engineering of a PDM from a deployed DB when absolutely
no DMs of any kind exist beforehand. Obviously, the names for the constructs will be
identical to those in the DB, and all of the metadata (comment, purpose, annotation,
definition, goals, and so on) that we would normally define in the CDM will be blank.
If the DB naming rules are restrictive, even the names we reverse engineer might be
truncated versions of what we would define in the CDM. If we try to reverse engineer
this further (to the LDM or CDM categories), there are some mappings that we won’t
automatically be able to reverse. We will discuss the LDM to CDM issues in the next
chapter, but for now, recall the differences we discussed in the sections on CFN and
UML. Suppose we wanted to generate an ERD (CDM) from an LDM written in the
relational data model. The RDM has no notion of Strong or Weak ETs—there are
simply relations and primary keys. We would not always be able to automatically
recognize a Strong ET connected to a Weak ET via an Identifying RT—the relation
representing the Weak ET would look like all the other relations representing Strong
ETs, and we certainly can’t automatically infer anything from the construct names!
Although reverse engineering is a valuable tool for such an environment, it is better
to have all the forward engineered models if possible.

10.6 SUMMARY

DMs are an attempt to capture all schema-level details (metadata) that define and
describe the intended plan for the structure and shape of a DB. These details can be
split into different categories by various techniques and then represented by creating
multiple DMs using different MLs for each category of details. The CLP taxonomy is
one such technique. It defines three levels for data models, data modeling languages,
and data modeling activities. The taxa (specific groupings) in this taxonomy encap-
sulate the DM details at the appropriate level, in order to maximize reusability and
minimize maintenance issues. Each CDM only contains concepts that are independent
of data storage design and implementation. Each LDM includes all the details from the
single CDM on which it is based, as well as additional details that are independent of
data storage implementation, but dependent on data storage design. Each PDM includes
all the details from the single LDM on which it is based, as well as additional details
that are dependent on the data storage implementation. Different MLs (approaches
combined with nomenclature, rules, and notation details) can be used within each DM
category. DMs in each category can be used to forward engineer the next level (includ-
ing the lowest level, which is an actual deployed DB) or reverse engineer the previous
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level (up to the CDM which is the highest level). Various tools and techniques can be
used to translate between DMs on different levels, both manually and automatically.
While forward and reverse engineering are both powerful techniques, they are not a
substitute for manual design and analysis—regardless of which direction we are con-
sidering. Differences in the purpose of each level, differences in the languages used
to represent models in each level, and alternatives provided as part of the generation
process can greatly alter the results we generate.

Although a CDM can be represented using any number of tools or notations,
we looked briefly at three popular CML diagram notations. When exploring these
techniques, we must remember that the tool is not necessarily the same as the
technique—sometimes the tool implementers choose to add their own features or
restrictions. These enhancements and limitations should not necessarily be ascribed to
the particular alternative being used, or to conceptual data modeling as a whole. In
general, any CDM representation can be used to capture a CDM, but the limitations of
the language might cause the concepts to be captured in different ways—sometimes
these differences are equivalent, other times they are not. This does not mean
that the CDM is necessarily better or worse in a particular representation. While
each technique has its strengths and weaknesses, we did not compare them in that
fashion—for example, both the ERM and CFN techniques were recommended for
both centralized and distributed database environment development.

When working with DMs from different levels we must be aware of the differences
between the levels, MLs, and DMs. We must also consider the mechanisms used to
map concepts from DMs in one level or ML into another. Although these differences
and mapping techniques are important, we must try to prevent them from creeping into
our DMs prematurely—otherwise this will cause difficulties whenever we use more
than one ML from any level. When used appropriately, the levels help us to manage
the complexity and maximize the reuse between DMs and MLs so that we can gain
the most advantage from each.

10.7 GLOSSARY

Atomic AT A CDM construct that represents an AT that cannot contain other ATs.
Attribute Type (AT) A CDM construct representing a property that can hold a value.

ATs can be one of eight possible flavors due to the three pairs of options possible
(Singular or Plural, Identifying or Nonidentifying, Atomic or Grouping).

Cardinality (of an RT) The explicit specification of the minimum and maximum
number of instances on one side of a relationship. For example, if each Employee
works for a minimum of zero and a maximum of one Department, then the cardi-
nality for Employee is “0:1.”

Conceptual Data Model (CDM) A high-level DM capturing semantic concepts and
their interrelationships/interdependencies for a DB in a way that is independent of
both the LDM and PDM (independent of the data storage design or implementation).

Crow’s Foot/Feet Notation (CFN) A diagram notation that is named after the rep-
resentation used for cardinalities in RTs. This notation is usually used for CDMs,
but it is also usable for diagrams in the logical or physical levels.

Degree (of an RT) The number of roles (separate connections to ETs) participating
in an RT.
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Disjoint Participation See Mutually Exclusive Participation.
Entity Relationship Diagram (ERD) A diagram showing all or part of a CDM

written in the ERM ML.
Entity Relationship Model (ERM) A conceptual modeling language (CML) devel-

oped by Dr. Peter Pin-Shan Chen in 1976. It captures concepts using ETs, RTs,
and ATs. We also use this term to refer to the extended or enhanced ERM, which
includes ITs for inheritance.

Entity Type (ET) A CDM construct used to represent anything for which we want
to capture details, relationships, and identity.

Grouping AT A CDM construct that represents an AT that contains other ATs. This
is analogous to a structure or user defined data type in a programming language.

Identifying AT A CDM construct that represents an AT that is used to help uniquely
identify an ET instance.

Identifying RT A CDM construct used to connect a Weak ET to the one or more
Strong ETs that partially identifies it.

Inheritance Type (IT) A CDM construct that represents a generalization/speciali-
zation between two ETs.

Intentional Model A model that represents the planned structure or shape rather than
the actual contents—all the DMs discussed in this chapter are intentional models.

Logical Data Model (LDM) A middle-level DM that captures details pertinent to
the logical design of the data storage for a DB. This model will also usually capture
the semantic concepts and their interrelationships/interdependencies in a way that
is dependent on the data storage design (but not necessarily dependent on the data
storage implementation).

Modeling Language (ML) A vocabulary and set of rules used to define a model.
Typically, there are also hints or suggestions for diagrammatic representations of
the model, but this is not strictly speaking a requirement. For example, consider the
entity relationship modeling technique described by Dr. Chen, the relational model
as formalized by Dr. Codd, and the ANSI standard, or each proprietary Structured
Query Language (SQL) defined by a particular RDBMS implementation.

Mutually Exclusive Participation An option that can be specified for an IT. It
indicates that no two Sub Entity instances can be connected to the same Super
Entity instance.

Nonidentifying AT A CDM construct that represents an AT that has no impact on
the identification status of an ET instance.

Nonidentifying RT A CDM concept used to connect two or more ETs, without
affecting the identification status of any of the connected ETs.

Overlapping Participation An option that can be specified for an IT. It indicates
that two or more Sub Entity instances can be connected to the same Super Entity
instance.

Partial Participation An option that can be specified for an IT. It indicates that each
Super Entity instance does not necessarily need to be connected to any Sub Entity
instance.

Physical Data Model (PDM) A DM that captures details pertinent to the physical
implementation of the data storage for a DB. This model will also usually capture
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the semantic concepts and their interrelationships/interdependencies in a way that
is dependent on the data storage design and/or implementation.

Plural AT A CDM construct that represents an attribute type that contains one or
more values. This is analogous to a collection, list, or array in a programming
language.

Relationship Type (RT) A CDM concept used to connect two or more ETs.
Singular AT A CDM construct that represents an AT that holds a single (Atomic or

Grouping) value.
Strong ET A CDM construct used to represent an ET that contains one or more

Identifying ATs that fully identify it.
Total Participation An option that can be specified for an IT. It indicates that each

Super Entity instance must be connected to one or more Sub Entity instances.
Unified Modeling Language A standardized approach (and representation) for cap-

turing an OOM. While UML can be used for CDM, it is not generally recommended.
Weak ET A CDM construct used to represent an ET that is partially or fully identified

by some other ET connected to it via an Identifying RT.
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EXERCISES

Provide short (but complete) answers to the following questions.

10.1 Suppose we are going to create a new database representing a small university.
Our model will capture details about students such as their names, date of
birth, current grade point average, declared major and minor fields, the list of
classes they are currently taking, as well as the grade they received for each
class already completed (or an incomplete for courses that they have taken but
not fulfilled all the requirements for). We will also capture details about the
classes offered by the university—each class is actually a specific section of
a course, which is offered during a specific semester by a specific instructor
and department, meeting at specific times on specific days in a specific room
of a building on campus. We also need to capture some minimal details about
the departments such as the names and standard abbreviations used for them,
and about the instructors, such as their names, credentials, and office locations
(room and building) on campus.

Create a CDM representing this database schema using the ERM (including
EER) language, and any diagramming notation you choose.

10.2 Suppose we are going to create a new database representing a small univer-
sity, using the same description as provided in Exercise 10.1, but with some
additional details. In particular, we must differentiate between graduate and
undergraduate students, between graduate and undergraduate courses, and also
between full-time and part-time instructors. Each undergraduate student must
have a full-time instructor as an advisor, while each undergraduate course taught
by a part-time instructor can optionally have one or more graduate students as
teaching assistants. Of course, graduate students can only take graduate courses,
and undergraduate students can only take undergraduate courses. Each gradu-
ate student can optionally be a teaching assistant for at most three classes per
semester.

Create another CDM representing this database schema using the ERM
(including EER) language, and any diagramming notation you choose—try to
capture as many of these new details as unambiguously as possible.

10.3 What is the difference between an IT and an Identifying RT?
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10.4 Suppose we captured the details representing the day of the week, time of day,
building name, and room number that a particular section of a course meets in
the university CDM discussed in Exercises 10.1 and 10.2 by creating one SNA
AT for each detail. Would there be any differences between a model that placed
these SNA ATs directly inside the ET representing a section and one that placed
them in a SNG AT placed inside this ET?

10.5 Consider the same situation as described in Exercise 10.4, but suppose that
each section meets multiple times per week (perhaps in different locations).
How would we capture this in a CDM written in the ERM language?

10.6 How does the conceptual, logical, physical (CLP) taxonomy differ from the
ANSI SPARC three-level model (3LM) categorization?

10.7 Suppose we created a database by following the traditional CLP taxonomy for-
ward engineering (FE) approach—first creating a conceptual data model (CDM)
then generating the logical data model (LDM) using the RDM, followed by the
physical data model (PDM) for some RDBMS platform, and ultimately creat-
ing the database itself. If we reverse engineered a new PDM from the existing
database, would it be identical to the PDM we originally used? If not, how
would it be different?

10.8 Suppose we reverse engineered a new LDM written in the RDM language from
the PDM we reverse engineered in Exercise 10.7. How would this LDM be
different from the original LDM?

10.9 Suppose we reverse engineered a new CDM written in the ERM language from
the LDM we reverse engineered in Exercise 10.8. How would this CDM be
different from the original CDM?





11
LOGICAL DATA MODELS

In Chapter 10, we discussed data modeling in general and the CLP taxonomy for
data models (DMs) and modeling languages (MLs). This chapter will focus on four
logical modeling languages (LMLs) commonly seen in real database environments
(DBEs). In particular, we will look at the relational data model (RDM), the network
data model (NDM), the hierarchical data model (HDM), and the object-oriented
data model (OODM). For each language, we will briefly review the ML itself,
look at its nomenclature and notation, discuss the general rules for forward and
reverse engineering, and then examine some of the special cases to consider when
forward engineering (FE) and reverse engineering (RE) data models written in these
LMLs.

The physical details controlling how a DBE manages the data store behind any
database are very dependent on the deployment details for that database. Even if we
use the same conceptual data model (CDM) and logical data model (LDM) details as a
starting point, the physical data model (PDM) details for two separate deployments can
vary greatly across different DBEs due to different DBMS vendors, different operating
system (OS) platforms, or even just different versions of the same OS and DBE. This is
not surprising because many of the physical details are implementation or deployment
dependent details, and the implementation can be very different even when only one
of these areas changes (e.g., even when we look at different versions of a DBMS
from the same vendor, on the same OS platform, and implementing the same data
model). The logical details do not vary quite as much because they are based on
design details—in other words these details are related to the public interface that the
DBE supports.
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In software engineering an interface is like a contract—an interface defines “what
needs to be done” but not “how to do it.” This means that different implementations
with the same interface are required to comply with the interface definition, and this
definition can only be changed through a very controlled and managed mechanism.
Even though there can be changes to the interface over time, any changes are
more likely to be gradual when adding new features or restrictions or when altering
previous features or restrictions. In addition to the stability that most vendors provide
across their different DBMS releases (new versions, new platforms) with respect to
the LDM details, there are often industry standards (or simple vendor cooperation)
ensuring that the LDM will not radically change.

When new innovations are introduced (new versions, new systems, new platforms,
new approaches or techniques), there tends to be some similarities with other LDMs.
So even though we are only looking at four examples of logical modeling languages in
this chapter, the impact of these four languages goes beyond the systems that physically
implement them. For example, even though the NDM and HDM are both primarily
used in mainframe based implementations, the OODM actually has some parts that are
very similar to these legacy approaches. It is quite possible that we could encounter a
database system years from now using some completely new approach, with a com-
pletely new logical modeling language—but utilizing pieces that are similar to the
pieces in one or more of the languages covered here. Object relational modeling is one
such approach that is not really used much now (because it is still evolving and not
standardized) but might be popular in the future.

11.1 THE RDM

The relational data model (RDM) is compatible with almost every relational database
management system (RDBMS) that we might encounter in the real world. Although
there have been many changes in RDBMSs since the RDM was first introduced by E. F.
Codd in 1970 [Codd70] (most notably, the impact of the American National Standards
Institute standardization efforts [ANSI86a] [ANSI89] [ANSI92]), the RDM itself has
actually remained relatively unchanged. We will look briefly at the RDM nomenclature
(the terms defined by Codd as well as those more commonly used today) and some
common diagram notations for representing LDMs written in the RDM.

11.1.1 Nomenclature

If we are using the strict RDM nomenclature, then we are working with relations. As the
RDM gained acceptance and became standardized, the nomenclature shifted slightly,
and the terms used were based on an example representation that Codd included as
a convenient mental picture, which he called the “array representation for a relation”
[Codd70] more commonly known as a “relational table” or simply a “table.” Strictly
speaking, the RDM deals with relations, tuples, domains, and keys, while standard
SQL uses a more PDM-biased nomenclature. When using the RDM as a language
for data modeling in the real world, it is fairly common to use the SQL-flavored
nomenclature instead of the original terms that Codd introduced. We will briefly discuss
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both vocabularies and then look at notations for representing data models written using
this logical modeling language.

11.1.1.1 Relations, Tuples, and Domains The RDM is relational because it is based
on the mathematical concept known as a relation—not to be confused with the con-
cept of a relationship, which is used in the entity relationship model (ERM) that we
discussed in Chapter 10. In order to explain what a relation is, we first need to define
two other terms: tuple and domain. A tuple is simply an ordered list of component
elements, usually represented by a comma separated list enclosed within a set of paren-
theses. Figure 11.1 shows a tuple with four component elements in it—called a 4-tuple
because there are four elements in the list, and also called an n-tuple for any generic
tuple with n elements (here n equals 4). The elements in the tuple are ordered; this
means that the 4-tuple in Figure 11.2 is not the same as the 4-tuple in Figure 11.1. They
are different because the first component in Figure 11.1 (‘Alice’) is not the same as the
first component in Figure 11.2 (‘100’) and the second component in each tuple is also
different. A domain is defined as a set of possible values. We typically think of the
values as being conceptually similar rather than completely random, but this depends
on the semantics of the problem being considered. For example, a domain could be
all the possible values for an hourly pay rate, all the possible colors of paint used in a
manufacturing process, all the possible first and last names for our employees, or even
the textual content of all the possible suggestions written on scraps of paper and placed
in a suggestion box. Clearly, the last example domain could include almost any value,
including well-written suggestions, text with incomplete sentences, text with spelling
errors, or even total gibberish.

A relation is a set of n-tuples where each component element comes from a specific
domain defined in the model. It acts as a template (called a relational schema) that
represents all the possible combinations of values taken from the domains included in
its definition. We can then say that the degree of the relation is n, where n is the number
of component elements in each and every n-tuple in the relation. Although the concept
of a relation is very useful as a mathematical construct, and completely necessary for
serious mathematical arguments or proofs concerning the strengths or weaknesses of
the RDM, this concept is not very easy to use in less formal discussions.

Therefore, Codd suggested some other useful, but nonessential ways to think about
relations—he called one of these the “array representation of relations” [Codd70].
In this representation, we create a table (not a database table, but a textual one—a
rectangle with gridlines dividing it into smaller cells) with each column representing
the corresponding domain from the order defined in the relation. Each row in the table
represents an n-tuple from the relation, with no duplicate rows allowed. The rows
are unordered, but the column order is significant, because it is possible for the same
domain to be used more than once in the same relation. In order to make this even

Figure 11.1 Example of a 4-tuple.

Figure 11.2 Example of a 4-tuple that is different from Figure 11.1.
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more useful, we can list the name of the relation as the name of the table, and also
include the role-qualified domain names as column headers in the table. Since the
same domain can be used more than once, a role-qualified domain name is simply the
domain name with additional clues clarifying the meaning or context for the domain
when it would otherwise be ambiguous. For example, suppose we defined a domain
named “EmpNo” to represent the unique number assigned to each employee in some
company, and another domain named “EmpName” to represent each employee’s name.
We could then create a relation using the EmpName domain once and the EmpNo
domain twice—once to represent the employee number for a particular employee and
a second time to represent the employee number of that particular employee’s manager.
This is not a problem for the mathematical definition of the relation, but if we did not
qualify the domain name, we would not be able to read the table representation for this
relation: How would we know which column was the employee’s number and which
was the manager’s number? If we use EmpNo for the domain representing the employee
number of the employee and the role-qualified domain name “MgrEmpNo” for the
domain representing the employee number of the manager, the ambiguity disappears.
The relational schema for this situation is shown in Figure 11.3.

If we always use role-qualified domains when the same domain is used more than
once in the same relation, it makes the table representation more useful, but it is still a
little difficult to discuss the particular instances (rows in the table). For example, if we
consider the relation instances (n-tuples) from Figures 11.1 and 11.2, it is not clear what
each instance is supposed to represent. Codd included another useful (but nonessential)
concept called a relationship [Codd70] to address this situation. A relationship is a set
of (name, value) pairs, where there is one pair listed for each domain in the relation.
In other words, we can think of this as the combination of column header and column
value for one row in the table. By using this concept of a relationship, the column order
in the table or in a relationship instance can safely be ignored, making it much easier
to discuss things generically in the RDM, or specifically in any particular LDM written
in the RDM. The term table, which is used by standard SQL and all the RDBMSs that
conform to it, is derived from Codd’s array representation for a relation. However, as
we mentioned earlier, the term relation in the RDM should not be confused with the
term relationship type (RT) in the ERM. Similarly, the term relationship in the RDM
should not be confused with the ERM term relationship, which refers to an RT instance
in the ERM. This term has a different, unrelated meaning and derivation in the ERM.

11.1.1.2 Keys For any given relation (table), we can always find at least one subset
of domains (columns) that uniquely identifies each instance (row). Any such set is
called a primary key (PK). We can always use the full set of domains (i.e., all the
columns) as the primary key. However, we usually do not need to include all the
domains in order to guarantee the unique identification of all rows. This means that
there are usually multiple primary keys, since adding any unnecessary domain to such
a PK will result in a new PK. When there are multiple PKs, we can arbitrarily pick
one of them to be the “official” PK defined for the relation. We can refer to the other

Figure 11.3 Relational schema with a role-qualified domain name.
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PKs as either candidate keys (CKs) or alternate keys (AKs). When the elements in one
relation need to reference other elements (in the same or different relation), we can use
the concept of a foreign key (FK). A FK is defined as a set of domains (which is not
the PK for this relation) that contains the values of the PK for any relation (including
this same relation). This allows us to connect one relation instance to another relation
instance (exactly like the concept of an RT instance does in the ERM). If we define an
“official” PK for a particular relation, we indicate this by underlining the name of each
domain that is part of this PK in the relational schema. If we define any foreign keys,
we usually indicate this by drawing a line from the domains in the FK in one relational
schema to the relational schema containing the PK to which the FK links (assuming that
both relational schemas are being shown). If we are only looking at a single relational
schema (only for a single relation), then the FK details might be unclear or hidden.

11.1.2 Rules for Forward Engineering

Although there can be complicated scenarios requiring sophisticated transformations,
we will only discuss a few basic rules and techniques to consider when forward gen-
erating an LDM written in the RDM from a CDM written in the ERM language. We
will consider these rules and techniques for this specific conceptual modeling language
(CML) to be a representative (but far from exhaustive) example. In general, we need
to consider how we must transform certain configurations and certain constructs in
order to generate the equivalent semantics in the LDM—or at least how to transform
the constructs into a set of LDM constructs capable of capturing some of the same
semantics. In particular, some AT flavors do not translate directly. Similarly, some RT,
ET, and IT configurations require special handling. In general, some situations have
multiple generation alternatives, with various benefits and disadvantages for each. The
rules listed in the following sections describe how to map constructs from the ERM
into the RDM—these rules are grouped by the construct type, not the order in which
they need to be applied. In practice, the constructs in the ERM are considered one at a
time, and the appropriate rule is applied based on the order in which the constructs are
considered. In other words, even though we will consider the rules for ATs first in this
chapter, attempting to transform all ATs as a first step is not necessary or recommended.

11.1.2.1 Forward Generation of ATs In the RDM, all domains are atomic, which
means that each domain value only holds a single indivisible value. Therefore, only
the Singular Identifying Atomic (SIA) and Singular Nonidentifying Atomic (SNA)
attribute types will translate directly. Each SIA attribute type and each SNA attribute
type becomes a domain in the relation representing the ET. Each domain representing
an SIA attribute type becomes part of the “official” PK for the relation. We can ignore
the Plural Identifying Atomic (PIA) attribute types and the Plural Identifying Grouping
(PIG) attribute types here because these are not really valid flavors in the ERM (as
we discussed in Chapter 10). Therefore, in the following sections, we will consider
the transformation alternatives for each valid AT flavor and discuss how each must be
modeled in the RDM.

Singular Identifying Grouping The first flavor-based transformation we will consider is
the transformation needed for a Singular Identifying Grouping (SIG) attribute type from
the ERM. This AT flavor is not used very often, but because it is a valid flavor, we need
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to consider how to transform these constructs into an RDM. Luckily, this transformation
is not too difficult to understand. Although it is possible for the component ATs con-
tained within our Grouping AT to be other flavors, we will only consider the simplest
case here—namely, when all the component ATs have the SIA flavor. We will treat
this simple case the same way we would treat an ET with multiple SIA attribute types.
After we create a relation representing the containing ET, we will add one domain for
each component AT and make it part of the PK for this relation. We call this technique
subsuming the component ATs, because that is what we have done with them. In most
cases, the repeated application of the techniques in this section should be sufficient to
handle more complicated SIG attribute type configurations and ultimately generate the
LDM. When this is not sufficient, we would recommend simplifying the CDM.

Plural Nonidentifying Atomic The second flavor-based transformation we will consider
is the transformation needed for a Plural Nonidentifying Atomic (PNA) attribute type
from the ERM. For example, a PNA could represent a list of names, a list of numbers,
or a list of dates. Since this is a Nonidentifying AT, we need to transform it into
something that can represent an unordered list of possibly duplicated atomic values
from some domain. In addition to the relation representing the containing ET, we also
need to create a separate, new relation containing a Singular Nonidentifying Atomic
(SNA) domain for each Plural Nonidentifying Atomic AT contained in the ET. Each of
these new relations must have a PK, and since the PNA attribute type is not guaranteed
to be unique, we recommend creating a new domain that will hold a meaningless but
unique value to be used as the PK for the new relation. After we have created the
new relations and domains for each PNA, we must connect each new relation to the
relation representing the container ET. This means that we need to add a new domain
to each new “PNA” relation to act as an FK. For example, recall the Employee ET
we discussed for the CDM shown in Figure 10.3 in the previous chapter. To generate
a relation for this ET, we need to transform the EmpEmailList Plural Nonidentifying
Atomic attribute type. Here, the EmpEmailList is intended to represent the set of all
email addresses for a particular employee instance (e.g., all of Alice’s email account
addresses). First, we create a new relation called EmpEmailList and a new domain
called “EelAddress” to hold a single email address value from the list. We then create
a new domain to use as the PK of the EmpEmailList relation. This can be a simple
integer value here, which we will call “EelNo.” Finally, we create a new domain to
act as the FK in the new EmpEmail relation and connect it to the Employee relation.
We will call this FK domain “EmpNo.” The relational schema for the new relation is
shown in Figure 11.4—here EmpNo is an FK to the Employee relation, even though
the relational schema for the Employee relation is not shown here.

Singular Nonidentifying Grouping The third flavor-based transformation we will con-
sider is the transformation needed for a Singular Nonidentifying Grouping (SNG)
attribute type from the ERM. For example, an SNG could represent an address, a
multipart name, or anything that has recognizable component ATs. In other words, this

Figure 11.4 Transforming a PNA AT into a new relation.
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AT is made up of other ATs (each of which might be either Singular or Plural, either
Identifying or Nonidentifying, and either Atomic or Grouping). We will consider the
simplest case, namely, when each component is an SNA attribute type. To transform
an AT such as this, we have two different alternatives.

The first alternative is similar to the technique we used for the SIG attribute types
earlier. In this alternative, we can simply map the component ATs to domains and
subsume these component domains into the relation representing the container ET.
However, since these are Nonidentifying ATs, we do not make them part of the PK
for that relation here. For example, recall the DptAddress AT we discussed for the
CDM shown in Figure 10.3 in the previous chapter. To transform it, we would create
domains for each of the component ATs contained within the DptAddress AT and then
subsume those domains into the Department relation. To do this, we simply place
the component domains found inside the DptAddress relation inside the Department
relation. Assuming we use the same naming convention for all the domains, the new
relational schema generated for the Department relation using this technique is shown
in Figure 11.5.

The second alternative is somewhat similar to the approach taken for the PNA
attribute types described earlier, but there are some important differences here. When
transforming the AT we need to consider how the Grouping AT and the ET interact. For
example, let’s reconsider the DptAddress AT and the Department ET. Strictly speaking,
in the CDM, each Department has one DptAddress and each DptAddress is for only
one Department. But because Grouping ATs do not have identifiers unique to the AT,
we can have identical values for the ATs across different Department entity instances.
Because a Grouping AT will be transformed into a relation in the RDM (somewhat
similar to the way that an ET will be), we need to consider the implications of this
more carefully. If a DptAddress is intended to represent a United States Postal Service
(USPS) mailing address, then we might consider whether there is any advantage to
storing this value only once in the database and reusing the instance when it is used
by more than one Department instance. In other words, if multiple departments can
share the same address, then transforming the SNG AT this way would be equivalent
to promoting the AT to an ET and connecting it to its old container via a one-to-many
relationship. Modeling it the way we have discussed it so far would mean that many
Department instances could be connected to one DptAddress instance. If modeling it
this way has benefits, then we can treat this case similar to the PNA situation and
create a new relation for DptAddress. We would add a PK to the new relation, add all
the component domains to it, and then add an FK domain to the Department relation
so that we could refer to the DptAddress instance for a particular Department instance.
The relational schema for this situation is shown in Figure 11.6.

However, if we reconsidered the DptAddress AT and the Department ET and decided
that we did not want to reuse the new DptAddress instances this way, then we have
another option. We can still decide to model the SNG AT as a separate relation, but
now we are considering it in a way that is equivalent to promoting the AT to an ET

Figure 11.5 Transforming an SNG AT by subsuming the component ATs.
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Figure 11.6 Transforming an SNG AT using DptAddress instance reuse.

and connecting it to its old container via a one-to-one relationship. In this case, we
could choose to put an FK in the Department relation (as we did in Figure 11.6) or in
the DptAddress relation (as shown in Figure 11.7).

Plural Nonidentifying Grouping The final flavor-based transformation we will consider
is the transformation needed for a Plural Nonidentifying Grouping (PNG) attribute type
from the ERM. The technique used for this flavor is similar to the one we just looked
at in the previous section. We are considering a Plural AT whose elements are made
up of other ATs, which, in turn, might be Singular or Plural and Atomic or Grouping.
To simplify things in this example, we will consider the simplest case—namely, when
each component AT is an SNA attribute type. Now, in order to transform an ET
containing this PNG AT configuration, we will essentially follow the second option
for the second transformation technique for the SNG attribute types. This means that
we will create a new, separate relation, where each instance (row) in the new relation
(table) will represent an instance of the Singular Nonidentifying Grouping AT. For
example, recall the EmpPhoneList AT we discussed for the CDM shown in Figure
10.3 in the previous chapter. Here we will create a new relation named “EmpPhone”
and add all the component domains as well as a PK to it. Although the CDM told
us that the same employee can have multiple phone numbers (because it was a Plural
AT), it did not tell us if the same phone number can occur in more than one list!
Either way, we will use a separate relation, with a new PK and an FK to refer to
it but we need to be more explicit when we transform it here. This means we must
make a decision before we can transform it into our LDM—depending on what we
decide, each decision will require a different transformation into the RDM. If we wish
to reuse phone numbers (if the same EmpPhone instance can be used by more than one
Employee instance), then we need to use a many-to-many relationship to connect the
new EmpPhone relation to the Employee relation. We will discuss that transformation
for many-to-many relationships in Section 11.1.2.2 of this chapter. For now, let’s
assume that the same EmpPhone instance is not used more than once—in other words,
even if the same value is used for more than one of the component values, there will
be separate instances (rows) and distinct PK values for each instance. Assuming we

Figure 11.7 Transforming an SNG AT without using DptAddress instance reuse.
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use the same naming convention for all the domains, the new relational schema for
the EmpPhone relation is shown in Figure 11.8.

11.1.2.2 Forward Generation of RTs In Section 11.1.2.1, we mentioned that domain
values in the RDM are atomic. We also mentioned earlier in this chapter that each
relation type (RT) in the ERM is represented in the RDM by adding a new domain (a
FK) to a relation that corresponds to one or more domains (PKs) for some relation in
the RDM. Because of these two characteristics, an FK value for a particular relation
instance (row) is capable of capturing only one PK value and therefore each relation
instance (row) can only be connected to (at most) one instance (row) for the RTs
represented this way.

This means that transforming any binary RT from the ERM into the RDM is trivial
when at least one side has a maximum cardinality of one (we simply add an FK to
the relation on the “other” side of the relationship). Similarly, when we transform a
one-to-one relationship, we can add the FK to the relation corresponding to the ET
on either side (since they are both on the “one” side, putting the FK on the “other”
side means that choosing either relation is valid). However, this is not the case for
many-to-many RTs. When we transform a many-to-many RT, we need to create a new
relation containing a separate FK for each participating role (each connection to an
ET). This set of FKs must also be used as the “official” PK for the new relation. This
is sometimes done in a CDM using a concept called an associative ET. Similarly, if we
want to transform an RT with degree higher than two (a nonbinary RT), we must use
this approach—even if the cardinality is one-to-many or one-to-one. In both the many-
to-many scenario and the nonbinary scenario, we need to create a new relation and use
the FKs as the PK, with each FK connecting to a separate relation representing each
participating role. For example, recall the On RT we discussed for the CDM shown in
Figure 10.3 in the previous chapter: this is an RT with degree equal to three (3) and
therefore a nonbinary RT (it is a ternary RT). Figure 11.9 shows the relational schema
for the new relation representing this RT.

11.1.2.3 Forward Generation of ETs The forward generation of a Strong ET is
straightforward. Simply create a new relation for each ET and a domain for each of
the ATs it contains following the rules in Section 11.1.2.1, as we previously discussed.
When the ETs are all Strong ETs that do not participate in any ITs, the process is
intuitive and trivial, with only a few special considerations with respect to normalization
(see Section 11.1.4). If the Strong ET participates in any ITs, then the additional
mapping techniques described in the next section must be applied.

Figure 11.8 Transforming a PNG AT without using EmpPhone instance reuse.

Figure 11.9 Transforming an RT with degree greater than two.
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When transforming a Weak ET we follow the same approach and then each SIA
attribute type contained in a Strong ET connected to this Weak ET through an Identi-
fying RT needs to be propagated into our new relation. This will result in the creation
of new domains within this relation that act as part of the PK for the relation. In other
words, we first transform the Weak ET the same way that we would a Strong ET. Next,
we simply add a new domain for each Identifying AT that is not directly contained
in the Weak ET being transformed. Each of these new domains is both an FK to the
relations corresponding to the Strong ET from which it came and also part of the
“official” PK for the new relation corresponding to the Weak ET. As we discussed in
Section 10.3.1.1, Weak ETs usually should not participate in ITs. If they do, then they
should only be allowed as Super ETs, and the additional mapping techniques in the
next section should be considered and applied—but this scenario is not very common
and not recommended.

11.1.2.4 Forward Generation of ITs The forward generation of ITs is reasonably
straightforward. There are three general techniques for mapping a particular IT (includ-
ing the Super ET and all the Sub ETs that participate in it) into relations in the RDM.
Although it is possible to use all three techniques within a single DM, this can be
somewhat confusing. This should only be done when there are compelling reasons
for doing so—most of the time, the data modelers should choose one technique and
overall strategy to use for most (if not all) of the ITs defined in the data model.

In the first IT transformation technique, each ET involved in the IT is mapped to a
separate relation, and each IT connection between the Super ET and Sub ETs is mapped
as though it were an Identifying RT. This means that the SIA attribute types in the
Super ET generate new domains in each of the relations corresponding to each of the
Sub ETs. These domains become the PK of the relation for each Sub ET and also act as
an FK connecting back to the relation representing the Super ET. In this technique, the
SNA attribute types contained in the Super ET can be generated in one of two ways.
In the first alternative, we only generate the domains corresponding to these ATs for
the relation corresponding to the Super ET. In the other alternative, we also generate
new domains corresponding to these ATs for each relation corresponding to a Sub
ET. There is no direct enforcement of Total versus Partial participation in the RDM
itself, but some physical modeling languages (PMLs) can enforce the participation via
mechanisms such as triggers and cascade constraints. Similarly, the Disjoint versus
Overlapping participation is not directly enforced in the RDM for this first technique,
but some physical modeling languages can enforce these participation flavors using
similar mechanisms.

In the second IT transformation technique, there is only a single relation generated
for the entire IT configuration. In other words, the collection of Super ET, Sub ETs, and
the ITs themselves will result in the generation of a single relation containing domains
for all the ATs contained in all the ETs participating in the IT. Here, the values for
the domains are present or empty based on the actual type of ET being stored in the
relation; therefore, we also require a special AT to be used to specify which ET the
information in a particular instance (row) is intended to represent. We call this special
AT the specifying AT, and the corresponding domain is called the specifying domain. If
any of the Sub ETs require FKs for the RTs in which they participate, these domains are
also generated in the new relation. Similar to the first IT transformation technique, there
is no direct enforcement of participation flavors. Unlike the first technique, this second
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technique requires some additional, special considerations for the domains generated
on behalf of the mandatory ATs and RTs defined for the Sub ETs. Since there is
only a single relation representing the instances for several different ETs, the domains
corresponding to the mandatory ATs and RTs are no longer mandatory when a different
ET is stored in the relation. For example, if an AT is mandatory for one Sub ET but
not defined for another Sub ET, then it cannot be mandatory for the new relation—we
would not be able to store instances for any of the other Sub ETs if this were enforced!
Therefore, these “mandatory AT and RT” domains lose the ability to simply enforce
the desired semantics when this second IT transformation technique is used.

In the third IT transformation technique, we generate one relation for each Sub ET
but do not generate a relation for the Super ET. Each AT and RT defined for the Super
ET will result in the generation of corresponding domains and FKs in each of the
new Sub ET-based relations. Because there is no relation for the Super ET, this third
technique only makes sense when the IT uses the Total participation flavor. The RDM
cannot directly enforce Disjoint participation, but Total participation is enforced by
definition. Any complex constraints or restrictions on the ATs and RTs defined for the
Super ET are also not directly enforceable by simple means with this technique—since
any checks must now be performed across all the corresponding domains and FKs in all
the corresponding relations. Similarly, if any applications wish to perform operations
involving the ATs and RTs defined in the Super ET, they must repeat the operations
for each of the new Sub ET-based relations.

11.1.3 Rules for Reverse Engineering

When reverse generating a CDM from an LDM written in the RDM language, some
constricts will map simply, but some constructs will not be possible to generate auto-
matically. A given relation will reverse generate an ET, or an RT, or combination of
several ETs and RTs in the new CDM. Similarly, each domain will reverse generate
either an SIA attribute type, an SNA attribute type, or perhaps something more compli-
cated if the domain participates in a PK or in an FK. When the relations being reverse
engineered are the result of more complex configurations (such as ITs or Weak ETs
with Identifying RTs), the reverse generation process will not be able to capture the
semantics automatically. Similarly, participation flavors for ITs will not be recognized
in most reverse generation scenarios. If the relations have been further transformed
based on the special considerations described in the next section, then the original
semantics will not be reversed. For example, the reverse generated rendition of the
CDM will not contain any Plural ATs and will also not contain any Grouping ATs.
Sometimes these more complex configurations can be added manually to the resulting
CDM after it has been reverse generated, but this is not an automatic or trivial process.

11.1.4 Special Considerations

In theory, domains in the RDM can store any kind of value, but this leads to undesirable
situations. Therefore, Codd suggested a set of rules that can prevent some of these
situations from happening. These rules and the design process we follow to apply
them are called normalization. A relation that obeys one or more of these rules is said
to be in a particular normal form (NF). The rules are numbered, starting at one, and
each successive rule requires conformance with the previous rule. We will not discuss
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all the details of normalization or look at all the NFs, but we will briefly review the
first four forms/rules.

11.1.4.1 Normal Forms A relation is in first normal form (1NF) if and only if
every domain in the relation contains only simple values—if and only if each domain is
equivalent to an SIA attribute type or equivalent to an SNA attribute type. Luckily, there
are very simple techniques that we can use to transform a relation that is not already
in 1NF into a 1NF relation. If a relation is not in 1NF, then it must have one or more
domains that are nonsimple. If we transform every nonsimple domain into a simple
domain, then we have achieved 1NF. Sometimes, there will be extremely nonsimple
domains, where these techniques need to be applied more than once—we will not
discuss those cases, but careful application of these techniques can always (eventually)
bring us to a set of one or more relations in 1NF. Merely following the forward
generation rules discussed in the previous sections will usually result in 1NF relations.

11.1.4.2 Second Normal Form In order for a relation to be in second normal form
(2NF), it must already be in 1NF as a precondition. To determine if a relation that is
already in 1NF is also in 2NF, we must explore the dependencies between the domains
in the relation and the PK. The concept used for this is called a functional dependency
(FD). A domain has an FD upon another domain if the other domain determines the
value for it. In order for a relation to be in 2NF, every domain that is not part of the
PK must have an FD upon the PK (but not an FD on merely some subset of the PK).
If it is dependent on only part of the PK, we say that there is a partial functional
dependency (PFD). When the domain is only functionally dependent on the whole
PK, we say that there is a fully functional dependency (FFD). In order to be in 2NF,
each domain that is not part of the PK must have an FFD upon the PK of the relation.

11.1.4.3 Third Normal Form and Beyond In order for a relation to be in third
normal form (3NF), it must already be in 2NF as a precondition. To determine if
a relation that is already in 2NF is also in 3NF, we must explore the dependencies
further and look for transitive dependencies. A transitive dependency (TD) occurs
when some domain has an FD upon another domain, which has in turn has an FFD
upon the PK. In order to be in 3NF, every domain in the relation that is not part of the
PK must have an FFD upon the PK, and no TDs can exist for these domains. The last
level of normalization we will discuss is referred to as Boyce–Codd normal form
(BCNF). Because 3NF did not consider TDs for domains that are part of the PK, a new
normal form called BCNF was defined to address the situation. In order for a relation
to be in BCNF, it must first be in 3NF. Additionally, BCNF requires that no TDs exist
for the domains that are part of the PK. There are additional normal forms defined,
but most relational data models are only concerned with these four forms (1NF, 2NF,
3NF, and BCNF), so we will not discuss the other forms beyond BCNF here.

11.2 THE NETWORK DATA MODEL

The network data model (NDM) was defined by the Conference on Data Systems
Languages (CODASYL) committee and later standardized by ANSI’s Network Data
Language (NDL) [ANSI86b]. Historically, the NDM has been used in many mainframe
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DBEs, but it is not typically used for more modern platforms. Having said that, many of
the constructs and concepts defined in the NDM are similar to those used in other logical
modeling languages and therefore might be applicable for new DBEs in the future. The
NDM was developed roughly parallel to the RDM and therefore there are several papers
comparing and contrasting the two logical modeling languages [Date75] [Chen84].

11.2.1 Nomenclature

We will not go into exhaustive detail when discussing this language. Instead, we will
merely introduce the high-level constructs and concepts. Unlike the RDM, the NDM
is not based on tuples, domains, relations, or PK/FK references. Instead, it focuses on
records, data items, record types, and set types.

11.2.1.1 Records, Data Items, and Record Types A record is somewhat similar to
the concept of a tuple, but they are not equivalent—a record is merely a collection of
data values. By examining these collections of values, we can define abstract types to
define their structure, which we will call record types. Each record type has a name
and further details describing the types of data it contains. Again, this is somewhat
analogous to relations containing domains in the RDM, or ETs containing ATs in the
ERM. Each data item is analogous to an AT in the ERM and capable of storing simple
or complex values depending on its data type definition (which is called its format).
Formats are analogous to the data types commonly used in RDBMSs, but the actual
details, features, and restrictions are, of course, dependent on the DBE implementing
the NDM, not some other DBE implementing the RDM. The NDM supports plural
data items (called vectors), grouping data items (called groups, complex, or composite
data items), and plural grouping data items (called repeating groups). Each data item
has one of two possible flavors—it is either an actual data item or a virtual data
item. Actual data items are analogous to the ATs and domains that we have discussed
in other MLs, while virtual data items represent values that are calculated or derived
from other data items.

11.2.1.2 Set Types A set type is used to represent a one-to-many relationship
between two record types. Each set type must define the set type name and the names
of the record types being connected. We refer to the record type on the one side of the
relationship as the owner record type, while the record type on the many side is called
the member record type. Since the words “owner” and “one” both start with the letter
“o” and the words “member” and “many” both begin with the letter “m,” it is easy
to remember the corresponding cardinalities for the two record types involved. When
NDMs are diagrammed, they usually use a notation called a Bachman diagram (BD)
[Bachman69]. In this notation, each record type is drawn as a rectangle containing
the name of the record type and the names of all the data items contained inside it.
Set types are represented as a simple arrow pointing from the owner record type to
the member record type with the name of the set type displayed somewhere near the
arrow. In Bachman’s notation, the set type is also called a link type (LT). A link
type cannot connect the same record (instance of a record type) more than once.
This means we cannot have the same record as a member of more than one set type
instance for the same set type, and can therefore identify a set type instance using
either the owner record instance or any of the member record instances. Set types
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also have another useful characteristic—they define an order for the record instances
that they contain. This is very different from the RTs defined in the ERM and the
references defined in the RDM.

There are three special types of set types that need to be considered in addition
to this generic description. A system-owned set type is one where there is no owner
record type. This can be thought of as a set being owned by the DBE itself (the system).
This is a useful mechanism for navigating the instances of a particular record type as
well as a convenient way to define a particular ordering scheme for those instances.
A multimember set type is a special set type where the member record type allows
instances from several different record types rather than restricting the instances to only
one record type. Lastly, there are recursive set types which allow the NDM to capture
concepts equivalent to the recursive RT scenario for the ERM, which was discussed
in Chapter 10. However, recursive set types are somewhat cumbersome to use and
therefore recursive relationships are often implemented using special techniques (such
as the technique we will discuss in Section 11.2.2).

11.2.1.3 Data Storage and Navigation Unlike the RDM, which uses domains con-
taining values that reference other domains (FKs referencing PKs), the NDM uses
pointers to uniquely identify and relate record type instances. Therefore, the concept
of a PK does not really exist in the NDM. We can define complex rules and restrictions
for the data item formats, including rules that enforce uniqueness, rules that define the
optional or mandatory nature of a data item, rules that define which data items are
used to order the instances within a set type, and even rules that control the semantics
for deletion.

11.2.2 Rules for Forward Engineering

Similar to the situation discussed for the RDM, we will only consider a few basic rules
and techniques for the forward generation of an NDM from a CDM. Once again, we
will consider a CDM written in the ERM language, but similar rules and techniques
can be defined for any conceptual modeling language.

11.2.2.1 Forward Generation of ATs Because the data items defined in an NDM
can be quite complex, we can directly translate the various AT flavors directly into
their NDM counterpart most of the time. In particular, all of the Nonidentifying ATs
have no significant issues to consider. However, since the concept of a PK does not
really exist in the NDM, we need to consider Identifiers differently. It is, of course,
possible to simply create a data item corresponding to the Identifying ATs—essentially
treating them the same as Nonidentifying ATs. We can also consider whether they are
still necessary. If the ATs were defined merely to support the unique identification of
ET instances and connectivity within relationships, then we can choose to not generate
a corresponding data item for these ATs. However, if the ATs also have some semantic
value, then we should treat them the same as Nonidentifying ATs and generate the data
item in the corresponding record type.

11.2.2.2 Forward Generation of RTs The ERM can support several RT configu-
rations that the NDM does not directly support. For example, we must use special
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techniques to represent many-to-many RTs and RTs with degree greater than two (non-
binary RTs) in the NDM. This is essentially the same situation that the RDM had to
handle. Here, we would create a new record type with multiple set types rather than
creating a separate relation with multiple FKs, but otherwise the technique is essen-
tially the same. However, there is an addition RT configuration that we must consider
for the NDM, which the RDM did not need to consider. This is the recursive RT we
mentioned earlier. In this situation, we might be able to use the special recursive set
type, but usually we will model this using a technique similar to the many-to-many
RT. Here, we will create a new record type representing the RT and then create two set
types to connect the two roles within the RT. The first set type specifies the original
record type as the owner member and the new record type as the member, while the
second set type reverses these roles. This new record type will often contain no data
items—it merely exists to link the records to each other. Therefore, this record type
is often referred to as either a linking member (emphasizing its role) or a dummy
member (emphasizing the fact that it contains no data items). Because identification
is different in the NDM, Identifying and Nonidentifying RTs are handled identically
and the PK issues discussed for the RDM forward engineering do not apply.

11.2.2.3 Forward Generation of ETs Like the case for the RDM, the forward gen-
eration of the ET is straightforward. Simply create a new record type for the ET and
a new data item for each AT contained within the ET. Because of the differences in
identification (as we discussed in Section 11.2.2.1), Weak and Strong ETs are typically
handled identically and the PK issues discussed for the RDM forward engineering do
not apply.

11.2.2.4 Forward Generation of ITs Similar to the RDM, we have three alternatives
to consider for the ETs participating in ITs. Once again, it is possible to use multiple
techniques but probably unwise. Identifying ATs would be treated like Nonidentifying
ATs (as we discussed in Section 11.2.2.1) and RTs would be handled (as discussed in
Section 11.2.2.2) by creating set types as needed without any data item corresponding
to an FK being generated.

In the first alternative, we generate a new record type for the Super ET and a new
record type for each of the Sub ETs. We then create a separate set type for each IT
connection, with the record type corresponding to the Super ET acting as the owner
record type and each ET corresponding to the Sub ET acting as the member record
type of its corresponding set type. Using the constraints available to the NDM, we
can enforce the Total participation flavor directly in this alternative and also enforce
the Disjoint flavor directly. Once again, we can choose to generate the data items
corresponding to the ATs defined in the Super ET only once or to generate them once
for each record type corresponding to a Sub ET.

In the second alternative, we generate a single record type and then create all the
necessary data items to correspond to all the ATs defined in the Super ET and its Sub
ETs. Again, we would make sure to have a specifying data item so that we could dis-
tinguish the actual ET being represented in a particular instance. In this alternative, the
Total and Disjoint are not directly enforceable, and the same precautions with respect
to AT and RT rules and restrictions that we discussed in Section 11.1.2.4 still apply.

In the third alternative, we generate one record type for each Sub ET but do not
generate any record type for the Super ET. The ATs and RTs involving the Super ET
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will cause data items and set types to be generated for each record type corresponding
to a Sub ET. As discussed in Section 11.1.2.4, this alternative only makes sense when
the IT has the Total participation flavor. In this alternative, the NDM can only directly
enforce the Disjoint participation flavor if we generate a data item corresponding to
the PK.

11.2.3 Rules for Reverse Engineering

Similar to the reverse engineering scenario discussed in Section 11.1.3, we will be
able to reverse generate some constructs more directly than others when we attempt
to create a CDM from an NDM. We will again consider the CDM to be written in the
ERM language, but we could use other conceptual modeling languages instead with
slightly different rules and techniques. Each record type will reverse generate an ET,
or an RT, or combination of several ETs and RTs in the new CDM. Because the NDM
does not capture PKs, we will not be able to automatically generate an Identifying AT
based on an existing data item, but we can simply generate a surrogate identifier (a new
Identifying AT that is not based on any existing data item or AT). This also means that
Identifying RTs will not be part of the reverse generated CDM. Similar to the situation
for the RDM, we will not be able to automatically reverse generate any ITs from the
NDM. It is also unlikely that the reverse generation will automatically recognize the set
types used to represent recursive relationships or many-to-many relationships. If we use
other set type flavors such as the system-owned, multimember, or recursive set types in
our NDM, we cannot capture the semantics correctly in the CDM because there are no
equivalent constructs to generate. Similarly, the rules and restrictions (e.g., the defined
orders for record type instances and the enforcement of various things such as Disjoint
or Total participation) will not be automatically recognized or reverse generated. In
summary, the CDM that we reverse generate from an NDM will most likely require
manual engineering in order to make it accurate or usable for any future activities.

11.2.4 Special Considerations

The NDM supports record type, data item, and set type definitions that are fairly
similar to the complexity supported by the ERM, but it also has some restrictions that
the ERM does not. Constructs such as pointers, virtual data items, and special set type
flavors combined with the NDM’s facility for defining rules and restrictions makes
it a powerful LDM, but these constructs also make it difficult to directly translate
DMs written in this logical modeling language into a CDM or into an LDM written in
another language. Although simple DMs can be translated in and out of a DM written
in this LML in a relatively straightforward fashion, intermediate to advanced DMs will
require knowledge of both the NDM language and the other MLs in order to ensure
that semantics are not lost or incorrectly translated.

11.3 THE HIERARCHICAL DATA MODEL

The hierarchical data model (HDM) is another logical modeling language commonly
used in mainframe environments, but seldom seen in other places. This is not a stan-
dardized ML in the same way that the RDM, NDM, and OODM are—instead, this is
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the language used by several different DBE implementations all of which are based on
hierarchical data storage structures. In some respects, there are parallels between the
HDM and the object-oriented data model (OODM), which is not surprising since the
OODM often uses inheritance hierarchies. However, the HDM was not created for OO
purposes. The HDM was developed to represent the hierarchical relationships between
data that occur naturally in the real world without the additional considerations that
the OODM defines. For example, the HDM is well suited to capture data represent-
ing corporate structures (who works for whom) and taxonomic classification schemes
(class, species, subspecies, etc.).

11.3.1 Nomenclature

The HDM uses some of the same terms as other logical modeling languages, but the
definitions and restrictions are not the same. In particular, the HDM defines records,
fields, record types, parent–child record types, and hierarchies.

11.3.1.1 Records, Fields, and Record Types Similar to the nomenclature used by
the NDM, the HDM uses the term record to refer to a collection of values. Each of
these values is called a field value, while the definition of their structural details is
called a field (or sometimes called a data item). Once again, the term record type
refers to the structural definition of a record, which includes the name for the record
type as well as all the fields defined within it.

11.3.1.2 Parent–Child Association and Link Types In the HDM, a link type (LT)
represents a one-to-many relationship between two record types. The record type on
the one side of the LT is called the parent record type, while the record type on the
many side of the LT is called the child record type. Similar to the NDM, the HDM
link type indicates a one-to-many association. Here, the LT associates a parent record
with its children, resulting in a hierarchy of records in the database.

11.3.1.3 Hierarchies A hierarchy is a collection of record types connected by LTs.
This is not merely a collection—each hierarchy must also conform to a strict set of
rules. One record type in the hierarchy must be designated as the root of the hierarchy.
This record type must not be the child record type in any LT. Every other record type in
the hierarchy must be a child record type in exactly one LT. In short, the LTs are used
to construct a tree using all record types contained in the hierarchy. An LDM written in
the HDM language is simply a collection of these hierarchies (separate trees of record
types connected via LTs). Each record type must belong to only one hierarchy.

11.3.1.4 Virtual Record Types and Virtual Link Types In order to capture nonhier-
archical associations, the HDM uses the concept of a virtual record type, which is
merely a record type containing pointers to other records rather than the actual field
values themselves. Virtual record types are used to support many-to-many relation-
ships, to effectively allow the same record type to be a child record type in more than
one LT, and to support a situation equivalent to an RT defined in a CDM written in the
ERM with degree greater than two (a nonbinary RT). Similarly, a virtual LT (VLT)
refers to a construct similar to an LT that uses a virtual record type rather than the
actual record types. A VLT connects a virtual parent record type to a virtual child
record type by using pointers to the actual record types involved.
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11.3.2 Rules for Forward Engineering

The HDM has some fairly strict restrictions that make it difficult to automatically gen-
erate LDMs in some situations, but the fundamental mappings are not that complicated.
Because many of the issues and alternatives are similar to those mentioned for other
logical modeling languages, we will focus on the aspects unique to the HDM and refer
to the other sections for those aspects shared with other LMLs. Again, we will consider
a CDM written in the ERM language here, but we could have chosen to use a CDM
written in any other conceptual modeling language.

11.3.2.1 Forward Generation of ATs Each AT defined in the CDM written in the
ERM language will result in a new field being defined inside a record type. The HDM
uses pointers rather than PKs and FKs; therefore, it is quite similar to the NDM for
many of the AT mapping issues and considerations. The rules and restrictions available
to the HDM are as complete as those in the NDM, but otherwise the NDM data item
and HDM field are fairly similar.

11.3.2.2 Forward Generation of RTs Only one-to-many RTs can be directly repre-
sented in the HDM, and these must form a tree in order to make a hierarchy. When the
data being captured by the CDM is not particularly hierarchical, we will be forced to
generate several hierarchies and use VLTs to connect the record types found in different
hierarchies. Similarly, VLTs must be used for all nonbinary or many-to-many RTs.

11.3.2.3 Forward Generation of ETs Each ET in the CDM will result in a new
record type in the HDM with new fields defined for each AT contained in the ET.
Otherwise, the situation is very similar to that considered in the NDM with respect
to the identification issues and ET flavors, except that the location of the record type
in the hierarchy affects the existence and lifetime. In other words, whenever a parent
record type instance is deleted, all of its associated child record type instances are also
deleted. VLTs reduce the impact of this situation, but this restriction greatly affects the
decision process for determining which ET should be generated as the parent record
type of another. In some cases, this restriction is compatible with the definition of
Weak ETs, but that is not always the case.

11.3.2.4 Forward Generation of ITs ITs defined in the CDM written in the ERM
language can be used to define the hierarchies of record types and link types in the
HDM. The generation is straightforward, with only a single technique—namely, gen-
erating a record type for the Super ET and each Sub ET and then generating one
link type for each IT connection between Super ET and Sub ET. Fields are generated
in the corresponding record types. Both the Total and Partial participation flavors are
supported, as well as the Disjoint and Overlapping participation flavors—but no direct
support for enforcing these flavors is provided. Similar to the NDM, the lack of a PK
concept makes this mapping use slightly different semantics than the RDM did.

11.3.3 Rules for Reverse Engineering

The reverse generation is fairly straightforward. Each field becomes an AT. Each record
type will generate an ET or an RT. Similarly, each LT will “reverse generate” an RT.
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However, there is no automatic support for reverse generating ITs. Because most rela-
tionships are stored in the HDM using the hierarchy, we certainly cannot assume that
the hierarchy is the basis for any ITs! Therefore, manual inspection and analysis is the
only way we can recognize when a particular LT represents an inheritance (compatible
with the concept of an IT) versus when that LT represents a simple relationship (more
compatible with the concept of an RT). Similar to the NDM, the reverse engineering
of the HDM equivalent of many-to-many RTs and nonbinary RTs might also require
manual analysis. VLTs and virtual record types will also not always reverse generate
the constructs we would expect to see.

11.3.4 Special Considerations

Because the HDM cannot capture nonhierarchical data elegantly, any attempt to bring
DMs capturing nonhierarchical data into or out of an LDM written in the HDM lan-
guage will result in a DM with issues. These issues need to be addressed manually
by somebody who understands the data being captured as well as the nuances of the
HDM. In summary, using the HDM when there are no naturally occurring hierarchies
is not recommended.

11.4 THE OODM

Loosely speaking, the OODM can refer to any DBE using an OO approach for persist-
ing data. This does not mean that there have not been efforts to standardize the OODM;
in particular, the Object Database Management Group (OODMG) created three ver-
sions of its standard before disbanding in 2001. The third version of the standard
(“The Object Data Standard 3.0”) defined programming language specific bindings as
well as language independent concepts. This effort has been revived by the Object
Management Group (OMG), which has set up the Object Database Technology Work-
ing Group (ODBTWG) and obtained the rights to continue developing the OODMG’s
now-defunct standard. Regardless of the efforts to standardize the model, the overall
concepts can be considered, and that is the purpose of this section.

11.4.1 Nomenclature

Some of the terms used for the other concepts in this logical modeling language might
be influenced by a particular vendor or a particular OO language. If we ignore those
biases, we can focus on the overall concepts and rules used to capture data in an OO
fashion. In particular, we will consider properties, methods, classes, class inheritance,
objects, object identifiers, navigation, and extents.

11.4.1.1 Properties and Methods In the OODM, we can model data as well as the
operations that surround that data. Methods are essentially functions, subroutines, or
routines that surround the object. These methods can be used to include code along
with the data that provides operations and behavior for the object. The data is captured
using properties. A property is essentially the same as the other concepts with the
same purpose that we have already discussed for other logical modeling languages.
Properties have some OO specific characteristics, such as the allowable data types
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including the use of classes as data types (classes are defined in the next section).
Each property definition can also include qualifiers or specifiers to control its scope,
lifetime, persistence, and accessibility characteristics. Similar to data items in the NDM
and ATs in the ERM, properties can be defined to store plural or singular values. They
can also be defined to use primitive data types (atomic values) or classes. When the
property is using a class as its data type, it can also be thought of as implementing a
relationship between the instances of the container class and the class used as the data
type for the property.

11.4.1.2 Classes and Class Inheritance Similar to the way that an ET is an abstrac-
tion of an entity, a class is an abstraction of an object. The class defines the methods
and properties for the object, as well as its inheritance details. Often, we say that there
is some ultimate class from which all other classes inherit. This ultimate class often has
a simple name, such as “Object,” and provides the fundamental properties, operations,
or behavior required by the system. Different physical modeling languages might have
different rules and restrictions, especially with respect to class inheritance. In partic-
ular, the question of multiple inheritance (allowing the same subclass to have more
than one superclass) and its nuances is a very implementation dependent consideration.
Regardless of whether multiple inheritance is allowed or prohibited, inheritance is a
fundamental part of the OODM.

11.4.1.3 Objects and Object Identifiers In the OODM, every instance is called an
object, and every instance must be uniquely identifiable by an object identifier (OID).
This is a system maintained property that is usually assigned a globally unique identifier
(GUID) or some other system dependent value. Often, this is a property (and perhaps
some methods implementing the desired behavior surrounding this property) defined
in the ultimate superclass we discussed in the previous section.

11.4.1.4 Navigation and Extents Each object is accessible by navigation. This means
that we find an object instance by following a chain of pointers or references (prop-
erties). But how do we add the first object or navigate to it once it has been created?
The answer is a concept known as an extent. A class captures the intentional view of
the objects (the structure) while an extent captures the extensional view of the object
(the instances). An extent is very similar to the system-owned record set concept we
discussed (in Section 11.2.1.2) for the NDM language. It provides us with a (possibly
sorted) list of objects.

11.4.2 Rules for Forward Engineering

Similar to the situation discussed for the RDM, we will only consider a few basic rules
and techniques for the forward generation of an OODM from a CDM. Once again, we
will consider a CDM written in the ERM language, but similar rules and techniques
can be defined for any conceptual modeling language.

11.4.2.1 Forward Generation of ATs Each AT defined in a CDM written in the
ERM language will generate a property. Similar to the NDM and HDM, the OODM
has no construct equivalent to the PK. Therefore, ATs that are used merely to provide a
PK for the ET might be omitted if they have no semantic purpose, and the Identifying
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AT flavor is essentially ignored. Similar to the RDM, we will generate classes for
any Grouping ATs defined, but unlike the RDM, we do not need to be concerned
about Plural ATs because the OODM supports them directly. Atomic ATs will generate
properties using either primitive data types or perhaps using system supplied wrapper
classes that provide additional behavior.

11.4.2.2 Forward Generation of RTs Each RT defined in the CDM written in the
ERM language will result in the generation of properties in the OODM. Because RTs
in the ERM are bidirectional, we need to create a separate property for each direction
if we want to support navigation for both directions in the OODM rendition of the DM.
Each many-to-many RT will result in the generation of at least one plural property (two
of them if the bidirectional navigation is desired). Although there are several techniques
for generating the equivalent of an RT with degree greater than two, avoiding them in
the CDM is probably a wiser choice. Similar to the NDM, the Identifying RT flavor is
not directly generated in the DM using this logical modeling language, because PKs
and FKs are not used.

11.4.2.3 Forward Generation of ETs Each ET defined in a CDM written in the
ERM language will result in the generation of a new class in the OODM. The OODM
is similar to the NDM and HDM, with respect to the handling of Weak ETs—in other
words, it is essentially ignored most of the time. Each AT defined in the ET will result
in the generation of a property in the new class.

11.4.2.4 Forward Generation of ITs Each IT defined in the CDM written in the
ERM language will generate an inheritance relationship in the OODM. The classes
corresponding to Super ET and Sub ETs will be used as the superclass and subclasses
in the OODM. ITs in the ERM usually use single inheritance, but if multiple inheritance
is used, then there might be some issues when generating the OODM inheritance
relationships. If an IT uses the Total participation flavor, the superclass in the OODM
will be declared as abstract (or virtual) to enforce this. Otherwise, if the IT uses Partial
participation, then a concrete superclass will be used. There is no direct support for the
Overlapping IT flavor—all inheritance in the OODM is Disjoint, but techniques similar
to those used in the RDM can be used to capture this flavor indirectly if necessary.

11.4.3 Rules for Reverse Engineering

Each class in the OODM will generate a new ET in the CDM written in the ERM
language. Each property using a primitive data type will generate an SNA attribute
type except for the OID, which will require an SIA attribute type. Properties using
classes for their data type will generate a new ET for the property along with an RT
connecting the new ET to the ET corresponding to the container class. Each superclass
and its associated subclasses will generate ITs connecting the corresponding ETs.

11.4.4 Special Considerations

When reverse engineering, many details may be lost. In particular, the specifiers
and qualifiers used for properties will not be captured by the new ERM. Similarly,
methods are not represented in an ERM. This means that methods will not be reverse
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engineered in an ERM and it also means that an OODM generated from an ERM
will not have any methods defined in it. Unidirectional associations and references
used by the OODM are not the same as the bidirectional RTs used in the ERM:
ambiguities and errors may occur when reverse engineering an OODM into a CDM.
If the OODM does use extra properties to implement a bidirectional relationship, the
CDM will contain duplicate RTs.

11.5 SUMMARY

The LDM is written using a logical modeling language (LML) that is intended to
capture the semantics defined in the CDM along with additional details that are impor-
tant to the data storage design (but not its implementation or deployment). Different
LMLs correspond to the different classes of existing DBEs and the physical modeling
languages/PDMs on which they rely. We examined four LMLs: the RDM, the NDM,
the HDM, and the OODM. Each language has its own nomenclature, features, and
restrictions. When generating an LDM written in one of these languages from a CDM,
many of the conceptual constructs have a simple and direct mapping, some conceptual
constructs have several techniques to choose from in lieu of a direct mapping, and
some conceptual constructs have no generation option. When considering the reverse
process, we will usually encounter some ambiguities or problems—in particular, we
often cannot reverse generate the original conceptual construct when there are mul-
tiple alternatives for the forward generation activities. Although all of the LMLs we
considered here were quite different from each other, they also had quite a few simi-
larities. Depending on the actual constructs defined in a DM, the forward engineering
and reverse engineering activates might be easier or more difficult than first suspected.

11.6 GLOSSARY

Bachman Diagram (BD) A diagrammatic notation developed by Charles Bachman
for capturing the structure of data—especially when using the network data model
(NDM).

Boyce–Codd Normal Form (BCNF) A normal form higher than third normal form
(3NF)—a relation is in BCNF if it is already in 3NF and also has no transitive
dependencies for any of the domains in the relation that are part of the primary key
(PK).

Child Record Type The record type connected to the many side of a parent–child
record type (LT) in the hierarchical data model (HDM).

Class A class is an abstraction of an object in the object-oriented data model (OODM)
in the same way that a relational schema is an abstraction for a tuple in the relational
data model (RDM).

Class Inheritance The rules and nomenclature used to define how classes inherit
from one another in the object-oriented data model (OODM).

Data Item A term that is used in both the network data model (NDM) and hierarchical
data model (HDM) to refer to a construct that is analogous to an attribute type (AT)
in the relational data model (RDM).
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Degree (of a Relation) The number of (possible role-qualified) domains in a relation
in the relational data model (RDM)—it is analogous to the number of columns in
the “table” representation for a relation.

Domain A set of possible values in the relational data model (RDM)—it is analogous
to a column in the “table” representation for a relation.

Dummy Member The name given to a record that is created simply to be the mem-
ber of a special purpose set type used in the network data model (NDM). Because it
typically contains no data items, it is called a “dummy” and is used to model situa-
tions that are not directly supported by the NDM, like many-to-many relationships.
It is also sometimes called a linking member.

Extent A construct that contains all the instances for a particular class or interface
type in the object-oriented data model (OODM)—this is somewhat analogous to
the system-owned set type used in the network data model (NDM) and the relation
in the relational data model (RDM).

Field An alias for “data item” in the hierarchical data model (HDM).
First Normal Form (1NF) A relation in the relational data model (RDM) is said to

be in first normal form (1NF) if all of its domains are single valued and atomic—this
is often claimed to be guaranteed by the RDM.

Foreign Key (FK) A set of domains, in the relational data model (RDM) (which
is not the PK for the relation containing it), that must contain the values of the
domains in the PK for any relation (including the PK for this same relation in the
case of a recursive relationship).

Functional Dependency (FD) A domain is functionally dependent on another
domain if the other domain determines the value for it.

Group A compound or complex data item in the network data model
(NDM)—analogous to a Grouping AT in the entity relationship model (ERM).

Hierarchical Data Model (HDM) A logical modeling language (LML) commonly
used in mainframe DBEs. It captures concepts using record types, parent–child
record types, and hierarchies.

Link Type (LT) A record type that is used to connect two record types in a one-to-
many relationship within the hierarchical data model (HDM). The record type on
the one side is called the parent record type, while the record type on the many
side is called the child record type, and the parent–child record type (LT) is used
to connect the two.

Linking Member An alias for “dummy member.” The name linking emphasizes the
role that the record plays in the set.

Logical Data Model (LDM) A middle-level DM that captures details pertinent to
the logical design of the data storage for a DB. This model will also usually capture
the semantic concepts and their interrelationships/interdependencies in a way that
is dependent on the data storage design (but not necessarily dependent on the data
storage implementation).

Method A method is essentially a function, subroutine, or routine that surrounds an
object in the object-oriented data model (OODM). Methods can be used to include
code along with the data and typically provide operations and behavior for the object.

Modeling Language (ML) A vocabulary and set of rules used to define a model.
Typically, there are also hints or suggestions for diagrammatic representations of
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the model, but this is not strictly speaking a requirement. For example, consider the
entity relationship modeling technique described by Dr. Chen, the relational model
as formalized by Dr. Codd, and the ANSI standard, or each proprietary Structured
Query Language (SQL) defined by a particular RDBMS implementation.

Navigation The mechanism used in the object-oriented data model (OODM) to find
an object instance by following a chain of pointers or references (properties) from
one object to another.

Network Data Model (NDM) A logical modeling language (LML) commonly used
in mainframe DBEs. It was defined by the Conference on Data Systems Languages
(CODASYL) committee and later standardized by ANSI’s Network Data Language
(NDL) and captures concepts using records, data items, record types, and set types.

Normalization A set of rules defined by E. F. Codd and others to transform logical
data models (LDMs) written in the relational data model (RDM) language in order
to prevent some undesirable situations with regard to functional dependencies.

Object An instance of a class in the object-oriented data model (OODM)—this is
analogous to a tuple in the relational data model (RDM) or a record in the network
data model (NDM) or hierarchical data model (HDM).

Object-Oriented Data Model (OODM) A logical modeling language (LML) com-
monly used in object-oriented DBEs. Although there is no single standard, there are
several attempts at standardization such as those performed by the Object Database
Management Group (OODMG) and the Object Management Group (OMG). It cap-
tures concepts using properties, methods, classes, class inheritance, objects, object
identifiers, navigation, and extents.

Parent Record Type The record type connected to the one side of a parent–child
record type (LT) in the hierarchical data model (HDM).

Parent–Child Record Type See Link Type.
Primary Key (PK) A subset of the domains (columns) defined within a relation

(table) that uniquely identifies all the instances (rows) within the relational data
model (RDM).

Property A term used in the object-oriented data model (OODM) to refer to a con-
struct that is analogous to an attribute type (AT) in the relational data model (RDM).

Record An instance of a record type in the network data model (NDM) or
hierarchical data model (HDM)—this is analogous to a tuple in the relational data
model (RDM) or an object in the object-oriented data model (OODM).

Record Type An abstraction of a record in the network data model (NDM) or hierar-
chical data model (HDM) in the same way that a relational schema is an abstraction
for a tuple in the relational data model (RDM) and a class is an abstraction of an
object in the object-oriented data model (OODM).

Relation A construct that contains all the tuples for a particular relational schema in
the relational data model (RDM)—this is somewhat analogous to the system-owned
set type used in the network data model (NDM) and the extent in the object-oriented
data model (OODM).

Relational Data Model (RDM) A logical modeling language (LML) commonly used
in RDBMSs. It was defined by E. F. Codd and captures concepts using relations,
tuples, domains, primary keys, and foreign keys.
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Relational Schema An abstraction for a tuple in the relational data model (RDM) in
the same way that a record type is an abstraction for a record in the network data
model (NDM) or hierarchical data model (HDM) and a class is an abstraction of an
object in the object-oriented data model (OODM).

Repeating Group A plural compound or plural complex data item in the network
data model (NDM)—analogous to a Plural Grouping AT in the entity relationship
model (ERM).

Second Normal Form (2NF) A normal form higher than first normal form (1NF)—a
relation in the relational data model (RDM) is said to be in second normal form
(2NF) if it is already in 1NF and it is also true that every domain contained in it
that is not part of the PK has FD upon the PK (but does not have FD on merely
some subset of the PK).

Set Type A construct that is used to represent a one-to-many relationship between
two record types in the network data model (NDM).

System-Owned Set Type A construct in the network data model (NDM) that repre-
sents a set of records that is not owned by any record type (it is owned by the DBE
system itself). This is somewhat analogous to the extent in the object-oriented data
model (OODM) and the relational schema in the relational data model (RDM).

Third Normal Form (3NF) A normal form higher than second normal form
(2NF)—a relation is in 3NF if it is already in 2NF and it is also true that every
domain in the relation that is not part of the PK has FFD upon the PK, with no
TDs existing for these domains.

Tuple/n-Tuple An instance of a relational schema in the relational data model
(RDM)—this is analogous to a record in the network data model (NDM) or
hierarchical data model (HDM) or an object in the object-oriented data model
(OODM).

Vector One name used for a plural data item in the network data model
(NDM)—analogous to a Plural AT in the entity relationship model (ERM).

Virtual Link Type (VLT) A construct in the hierarchical data model (HDM) that
is similar to an LT but uses virtual record types rather than actual record types in
order to capture nonhierarchical associations between record types.

Virtual Parent–Child Record Type See Virtual Link Type.
Virtual Record Type A record type in the hierarchical data model (HDM) that

contains pointers to other records rather than the actual field values themselves.
It is used in conjunction with virtual parent–child record types (VLTs) to capture
nonhierarchical associations between record types.
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EXERCISES

Provide short (but complete) answers to the following questions.

11.1 What is the difference between the degree of a relation in the relational data
model (RDM) and the degree of a relationship type (RT) in the ERM?

11.2 What is the difference between a relation and a relationship in the RDM?

11.3 Why do we need role-qualified domains in the RDM?

11.4 What are the benefits and disadvantages for each of the two forward engineering
alternatives we discussed for translating a Singular Nonidentifying Grouping
(SNG) AT from a CDM written in the entity relationship model into an LDM
written in the relational data model (RDM)?

11.5 How is the “data item” construct in the network data model (NDM) different
from the “domain” concept in the relational data model (RDM)?

11.6 The relational data model (RDM) needs to use keys, but the network data model
(NDM) and hierarchical data model (HDM) do not use keys. Why?

11.7 Why does the network data model (NDM) need to use dummy/linking members?

11.8 How is a virtual link type (VLT) in the hierarchical data model (HDM) different
from a link type or a virtual record type in the HDM?

11.9 What is the most obvious difference between a class in the object-oriented data
model (OODM) and a relation in the relational data model (RDM)?



12
TRADITIONAL DDBE ARCHITECTURES

In most large organizations, information that is vital to business operations does not
reside on a single computer system; instead, this information is scattered across many
diverse systems. This distribution of information is more the result of mergers and
acquisitions than any corporate strategy or plan. When a large company subsumes
several smaller companies, it also inherits the information systems that these smaller
companies own. In most cases, these systems do not fit neatly together—often, the
database systems are incompatible, the same information is stored in multiple places
using different representations, and the level of quality across these systems is incon-
sistent. The larger company, therefore, is faced with the challenge of application and
information integration across these preexisting, incompatible systems that are expected
to have inconsistent and duplicated data. If the company in this scenario decides to
build a new system in an attempt to address the integration challenges we just described,
what kind of system should the company build? This chapter provides some insight
into the traditional, architectural alternatives suitable for this task.

As we discussed in Chapters 10 and 11, there are several ways to categorize data
modeling and data storage techniques. Similarly, there are multiple ways to categorize
database management systems (DBMSs). There are even different techniques for
categorizing the different infrastructures and architectures on which these database
environments (DBEs) are built. In Section 12.1, we will present one such technique,
based on the taxonomy we introduced in Section 1.4 of Chapter 1. Before we do that,
however, it would be useful to revisit why we prefer to use the term “DBE” in this
book, rather than the term “DBMS.” In Section 1.1.4, we introduced the concept of a
DBE as a way to focus on the similarities between different database implementations,
while ignoring any potential differences in their requirements, abilities, or limitations.
For example, we said that even though a DBMS is a useful tool, there are times when
we do not need all of its power or complexity. Therefore, we developed our own
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vocabulary. This new term can now safely be used to identify a subsystem within
our architecture that would be satisfied by a DBMS, but could also be satisfied by
something much less powerful than a DBMS or by something much greater than a
mere DBMS. In other words, we introduced this term because the traditional term had
too many nonstandard usages and unintended implications and ambiguities.

We introduce our taxonomy-based categorization technique for similar reasons—we
think that the nomenclature used by other categorization techniques is unintentionally
laden with implications and ambiguities, due in part to the lack of standard definitions
for the fundamental terms being used. For example, the term “distributed database
management system” has traditionally been used in two distinctly different ways. In
the first usage, the term “DDBMS” refers generically to any architecture that supports
distributed data. Therefore, it is valid to say that “a federated database system is one
example of a DDBMS, and a multidatabase system is another example of a DDBMS.”
However, in its second (and still traditional) usage, the term “DDBMS” is interpreted as
the name of a specific architectural approach for implementing a distributed database.
The architecture to which this second usage refers is radically different from, and
incompatible with, many of the other architectural alternatives. Therefore, it is also
valid to say that “the architecture for a federated database system is completely inap-
propriate and incompatible with any implementation of a DDBMS.” It is difficult to
discuss the generic architectural issues across these two architectures when both inter-
pretations of “DDBMS” are being used. Similarly, it is potentially confusing to explain
how a system with multiple databases is not necessarily the same as a multidatabase
system because the former does not meet all of the necessary architectural require-
ments. Therefore, as discussed in Chapter 1, we will use the term DDBE, rather than
the generic usage of “DDBMS,” to encompass all architectures that support distributed
data—we will try to use only the second interpretation of “DDBMS.” We believe that
this will make it less confusing to discuss DDBE architectural issues.

In Section 12.1, we will apply our taxonomy-based categorization technique to
the traditional DDBE architectures. In Section 12.2, we will consider a different,
more traditional categorization technique, apply it to the same traditional architec-
tures we considered in Section 12.1, and discuss how these two techniques compare
with each other. In Section 12.3, we will discuss DDBE development alternatives for
the traditional architectures that we have now categorized. Next, we will focus on
the deployment considerations and integration challenges for these architectures. The
remainder of the chapter will focus on examples and experiments that demonstrate
many of the concepts covered in the other sections.

12.1 APPLYING OUR TAXONOMY TO TRADITIONAL DDBE
ARCHITECTURES

For all of the architectures discussed in this chapter (and most of the book), we are
looking at distributed DBEs (DDBEs). Often, we will compare them to a centralized
DBE (CDBE) in order to highlight the similarities while recognizing the differences.
A DDBE does not necessarily require more than one machine—the distinction is that
the components or subsystems (COSs), including the databases (DBs), are capable
of being deployed across multiple systems. In our classification, we use the term
“DDBE” to refer to any system implementing a distributed database, including all of
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the systems traditionally known as DDBMSs, multidatabases (MDBs), and federated
databases (FDBs). Examples of MDB and FDB experimental systems include DDTS
[Devor82][Dwyer87], Mermaid [Templeton86], SDD-1 [Bernstein80], and Multibase
([Landers82], [Landers86]). Without further qualification, the terms “DBE,” “CDBE,”
and “DDBE” do not imply anything specific about the architecture or implementation.
Similarly, we cannot determine to which taxonomic group (taxon) the system belongs
from just these abstract terms. In the next sections, we will apply our taxonomy to three
specific, traditional architectures: the DDBMS architecture, the MDBs architecture, and
the FDBs architecture.

12.1.1 Classifying the Traditional DDBMS Architecture

The DDBMS architecture (meaning the second, traditional interpretation) can be classi-
fied in many ways, but we will look at how it fits within our taxonomy first, before we
discuss any of the other classification methods. In this architecture, the DDBE consists
of several Sub-DBEs (S-DBEs) networked together. The S-DBE’s only purpose in this
architecture is to serve the DDBE as a whole. In other words, the S-DBEs do not allow
independent access from outside the DDBE. For this reason, it could be argued that
the S-DBEs are quite different from local database management systems (LDBMSs).
Instead, the S-DBEs act more like the Data Accessors or the Data Getters we dis-
cussed in Chapter 1 (without any application processor to support outside requests). For
example, even if the S-DBEs provided a query processor and a command processor, it
would not be LDBMSs. Typically, LDBMSs would provide one or more interfaces to
allow both users and applications direct access to the data contained in their databases.

12.1.1.1 The COS-DAD Level The first level in the taxonomy is the COS-DAD
level. Here, we group all the components and subsystems together (ignoring the differ-
ences between them) and focus on how distributed the deployment can be within the
architecture. For the traditional DDBMS architecture, we have several databases and
several S-DBEs. Each S-DBE is typically deployed at the same site as the database
or databases that it manages, but otherwise, all the COSs can be deployed in a highly
distributed fashion. The data stored inside the DBE can also be highly distributed
(fragmented, replicated, or merely located on different S-DBEs).

12.1.1.2 The COS-COO Level The second level in the taxonomy is the COS-COO
level. Here, we look at how closed or open the various components and subsystems
are. For the traditional DDBMS architecture, we have essentially implemented the
system from scratch. Therefore, this architecture is completely open. This is a great
advantage, since it means that we can always view and modify the implementation and
interface details for any COS in the architecture. However, it also means that in order to
implement this architecture, we probably need to write everything ourselves—which
can be a monumental task unless we limit the functionality that we will support.
For example, we might have restrictions on replication, fragmentation, or even the
transactions and write operations—all in an attempt to make the implementation more
practical (and possible).

12.1.1.3 The SAD-VIS Level The third level in the taxonomy is the SAD-VIS level.
Here, we focus on the schema and the data for all things stored in the DDBE—in
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particular, we will focus on the visibility (ability to access). Since the DBs in this
architecture (and S-DBEs) are only used to support the DDBMS as a whole, we can
have total visibility (TV). If we have TV, then we have both total schema visibility
(TSV) and total data visibility (TDV). In other words, there are no hidden data struc-
tures and no hidden data content in this architecture. Every data structure stored in the
database must be visible to the distributed database administrator (DDBA), because it
is impossible to define any data structures from outside the DDBMS—those opera-
tions are not allowed in this architecture. Similarly, all data content must be accessible
by the DDBA, because it is impossible to load any data content without using the
DDBMS. We mentioned in Chapter 1 that we can artificially mandate partial visibility
(PV), which means either partial schema visibility (PSV), partial data visibility (PDV),
or both PSV and PDV. This is a common practice, especially in relational DBMS
environments—in fact, this is one of the primary purposes of the SQL view, namely,
to limit the schema and data visible to particular users or applications. Again, this can
be artificially mandated (for several good reasons) for the non-DDBA accounts, but
strictly speaking, the architecture requires TV for the DDBA.

12.1.1.4 The SAD-CON Level The fourth, and final, level in the taxonomy is the
SAD-CON level. Here, we focus on the visible schema and the visible data for all things
stored in the DDBE, and we are mainly concerned with the degree of control that
the DDBA can exercise. In other words, if the DDBA can perform all possible (valid)
schema operations on the visible schema, then we have total schema control (TSC), if
the DDBA can do the same for the visible data, then we have total data Control (TDC)
and the combination is total control (TC). The partial schema control (PSC), partial data
control (PDC), and partial control (PC) are analogous to the previous level’s “partial”
scenarios. In the traditional DDBMS architecture, we have TC—since partial control
would imply that some other environment had control over some piece of schema
or data and that is not possible in this architecture. Once again, we could artificially
mandate PC for non-DDBA accounts, but the DDBE requires TC for the DDBA.

12.1.1.5 DDBMS Architectural Summary The schema for the DDBMS is designed
top–down in this architecture and components and subsystems are designed and imple-
mented from scratch. The databases, components, and subsystems can be completely
distributed within the environment. Because we write the COSs ourselves, and only
access the databases through the DDBMS environment, the system is completely open,
and the data and schema are completely visible and under the system’s control. We
can always artificially impose limits or restrictions on the distribution, visibility, or
control—but these are not required by the architecture itself.

12.1.2 Classifying the Federated Database Architecture

Another popular architecture is called the federated databases architecture. In this
architecture, the DDBE also consists of several Sub-DBEs (S-DBEs) networked
together—but unlike the traditional DDBMS architecture, each S-DBE is also an
independent (autonomous) DBMS in its own right. Here, each S-DBE completely
supports independent access from outside the DDBE. Each S-DBE consists of a
data processor (DP), and each DP leverages the functionality provided by a local
DBMS rather than implementing all of the functionality directly by itself. We can use



APPLYING OUR TAXONOMY TO TRADITIONAL DDBE ARCHITECTURES 455

different DBMSs at different sites, and these DBMSs can use different physical and
logical data modeling languages. For example, we can create a federated database by
combining relational, network, and hierarchical databases.

12.1.2.1 The COS-DAD Level The first level in the taxonomy is the COS-DAD
level. When we focus on the set of components and subsystems that make up this
DDBE and consider how distributed the deployment can be within the architecture,
we see that the system supports a high degree of distribution. Of course, the COSs
contained within the LDBMSs themselves are limited by the LDBMSs architectural
requirements and restrictions. Aside from this limitation, the components, subsystems,
schema, and data can be widely distributed throughout the environment.

12.1.2.2 The COS-COO Level The second level in the taxonomy is the COS-COO
level. The degree to which a LDBMS is closed or open depends on the actual LDBMSs
being used (see Section 1.4.2 in Chapter 1 for further details). The other components
are most likely written by us and therefore they are open. Thus, this architecture is
at least partially open. If the LDBMSs are not open to us, then we are only partially
open—but if the LDBMSs are open to us, then we are completely open. When we are
only partially open, it will be difficult for us to implement complex control mechanisms
such as new locking or transaction management techniques. However, using existing
LDBMSs also means that we do not need to implement the low-level data services
(like the Drd-S) or the higher-level services (like the Qry-S) from scratch.

12.1.2.3 The SAD-VIS Level The third level in the taxonomy is the SAD-VIS level.
Because the data stored in each database can be defined and modified by users and
applications outside the DDBE, we are more likely to have only partial visibility.
Typically, the DDBE will only see some of the schema and only some of the data.
In other words, there will probably be hidden data structures and hidden data content
in this architecture that even the DDBA cannot access through the DDBE. While it is
possible to create a federated database with total visibility, that is not a very common
or realistic scenario—usually there are existing applications that control and use the
data outside the DDBE, and these applications usually do not want to relinquish their
data or schema completely.

12.1.2.4 The SAD-CON Level The fourth, and final, level in the taxonomy is the
SAD-CON level. Recall that we focus on only the visible schema and the visible
data for all things stored in the DDBE here. Because we have partial visibility in
the previous level, due to other applications using and controlling much of the data
in the local databases, the DDBA will probably also have limited control over the
visible schema and data. Often, the non-DDBE applications will be the only place
where some of the semantic rules protecting the data’s integrity are implemented,
which means that the data in the federated database is often read-only from the DDBE
perspective. Similarly, any attempts to modify the schema through the DDBE could
have direct repercussions for these applications. Therefore, in the traditional federated
database architecture, we usually have PC—for both the schema and the data.
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12.1.2.5 Federated Database Architectural Summary The schema for the federated
database is designed bottom–up and S-DBEs are implemented using local DBMSs that
are integrated into a larger distributed environment. The DDBE can support a wide
range of distribution options, with the exception of the components and subsystems
contained in the LDBMSs themselves. The higher level COSs are completely open
while the openness of the lower-level COSs depends on the openness of the LDBMSs
being used. These LDBMSs usually share only some of their schema and only some
of their data—while retaining their autonomy and their ability to provide access to
their own non-DDBE users and applications. Because of this, the visibility and control
given to the DDBE is often limited and frequently does not include the ability to
insert, update, or delete data. Similarly, the DDBE is often prevented from altering
schema within the S-DBEs. Schema changes in the DDBE itself are allowed for the
global constructs only, allowing the creation, modification, and deletion of the mapping
details between global constructs and the local constructs that implement them.

12.1.3 Classifying the Nonfederated Database Architecture

Another popular architecture is called the nonfederated database architecture. This
architecture is similar to both the federated database architecture and the DDBMS archi-
tecture, but, of course, it is also different from both of them as well. In this architecture,
the DDBE also consists of several Sub-DBEs (S-DBEs) networked together. Like the
DDBMS architecture, each S-DBE is not an independent (autonomous) DBMS—the
S-DBE’s sole purpose here is to serve the DDBE. As a result, each S-DBE does not
support independent access from outside the DDBE. Each S-DBE consists of a data
processor (DP), and like the federated database architecture, each DP leverages the
functionality provided by a local DBMS rather than implementing all of the function-
ality directly by itself. We can create a nonfederated database by combining relational,
network, and hierarchical databases. Similar to federated databases, the global schema
for a nonfederated database is created bottom–up.

12.1.3.1 The COS-DAD Level For nonfederated databases, the COS-DAD level is
exactly the same as COS-DAD for federated databases. Components distribution and
deployment are only limited by the LDBMSs within the architecture and restrictions
that local systems impose. Once again, the COSs implemented by each LDBMS are
not under our control, and therefore their distribution and deployment alternatives are
limited by the LDBMS vendor, rather than the architecture itself. For example, we
cannot choose to relocate the subsystems implemented within a particular LDBMS
(like the query optimization service), unless the vendor provides this ability. Similarly,
if a particular LDBMS vendor does not support deployment on the UNIX operating
system, then our DDBE cannot have an S-DBE using that LDBMS deployed on the
UNIX operating system either.

12.1.3.2 The COS-COO Level The second level in the taxonomy is the COS-COO
level. Again, since a nonfederated database is created from a set of S-DBES imple-
mented on top of LDBMSs, the degree to which an S-DBE is closed or open (as
discussed in Section 1.4.2 in Chapter 1) depends on the actual LDBMSs being used.
As a result, this architecture is at least partially open. If the LDBMSs are open to us,
then the S-DBEs and the DDBE itself are completely open. When we are only partially
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open, it will be difficult for us to implement complex control mechanisms such as new
locking or transaction management techniques. Similar to federated databases, using
existing LDBMSs means that we do not need to implement the low-level data services
(like the Drd-S) or the higher-level services (like the Qry-S) from scratch.

12.1.3.3 The SAD-VIS Level The third level in the taxonomy is the SAD-VIS level.
In nonfederated databases, because the data stored in each database cannot be defined
or modified by users and applications outside the DDBE, we can choose to have total
visibility. Typically, the DDBE limits what a DDBE user sees in a local DBE by using
views. Therefore, users typically only see some of the schema and only some of the
data. In other words, we will probably choose to hide some data structures and data
content from the end-users, giving them only PV—but this is not a strict, architectural
requirement in the way that it was for the federated database architecture. The DDBA,
on the other hand, can access the entire schema and data content of each S-DBE
through the DDBE, and therefore we have TV for the DDBA.

12.1.3.4 The SAD-CON Level The final level in the taxonomy is the SAD-CON
level. Recall that we focus on only the visible schema and the visible data for all
things stored in the DDBE at this level. As mentioned in Section 12.1.3.3, we could
have total visibility to the schema and data. That is because in a nonfederated database
the local DBEs do not serve applications outside the DDBE environment. This also
means that we can have total control of local schema and data. Once again, in reality,
the DDBA may limit what each global user sees and controls by imposing views (and
granting or revoking access to individual users or to groups of users) that hide portions
of schema and data from these global users. Therefore, any attempts to modify the
schema through the limited view of a DDBE user or application might fail for the
same reasons that access to nonvisible contents through a local view might fail, but as
an administrator, the DDBA would have TC.

12.1.3.5 Nonfederated Database Architectural Summary The schema for the non-
federated database is designed bottom–up and local DBMSs used by each S-DBE are
integrated into a larger distributed environment. The DDBE can support wide distri-
bution options, with the exception of the components and subsystems contained in the
LDBMSs themselves. The higher-level COSs are completely open and the openness
of the lower-level COSs depends on the openness of the LDBMSs. In a nonfederated
database, these LDBMSs only serve the overall DBE, and not any other applications
or users outside the DDBE. As a result, while the local DBEs retain their autonomy,
they usually provide total visibility and control to both the schema and the data con-
tent. Because of this, the visibility and control given to the DDBE is not limited;
But the ability to insert, update, or delete data may be limited in some situations
where the local DBE imposes some restriction and does not provide a totally open
interface.

12.2 THE MDBS ARCHITECTURE CLASSIFICATIONS

A good representative of other classification techniques for DDBE architectures can
be found in a survey by Sheth and Larson [Sheth90]. What we call a DDBE in our
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taxonomy is called a multidatabase system (MDBS) in their classification system. In
a MDBS, each S-DBE is called an LDBMS and is actually limited to being a CDBE.
This is different from our nomenclature and taxonomy—although all the traditional
architectures we have considered so far also have this limitation; the architectures
we will discuss in Chapter 13 will use other DDBEs as their S-DBEs. According to
Sheth and Larson, a MDBS can be either a nonfederated database (NFDB) system or
a federated database (FDB) system. There are several differences between these two
subcategories, but the primary distinction is whether the component database systems
(S-DBEs) can be used outside the MDBS. In an FDB, the components can freely be
used outside the FDB, while component database systems participating in an NFDB
cannot be used in this way. This distinction makes the component LDBMS systems
in an FDB autonomous while they are nonautonomous in an NFDB. Therefore, the
FDB architecture provides partial visibility and partial control while the NFDB MDBS
architecture allows total visibility and total control. An example of an NFDB is the
UNIBASE architecture [Brzezinski84]. The COSs within FDBs can be coupled to
each other loosely or tightly, Sheth and Larson [Sheth90] define a loosely coupled
FDB as one that provides its users with an imported, global view of the schemas
defined by the local systems; while a tightly coupled FDB provides its users access to
an integrated, global schema. The difference in coupling is essentially the distinction
between an imported view and an integrated view. An example of a loosely coupled
FDB is the MRDSM architecture [Litwin87]. Tightly coupled FDBs are further divided
into single-federation systems, such as DDTS [Dwyer87], versus systems with multi-
ple federations, for example, Mermaid [Templeton86]. In a single–federation system,
all of the DDBE users have access to a single, integrated schema. In a multiple-
federation FDB, there are multiple, integrated schemas. How do these classifications
map to our taxonomy? Table 12.1 illustrates the mapping for the high-level categories.
Other classifications have also been proposed that focus on whether or not database
systems and data models are homogeneous or heterogeneous. Yet others focus on
degree of distribution. Interested readers are referred to ([Özsu99], [Litwin87]), and
[Ram89].

TABLE 12.1 Mapping the MDBS Classifications into Our Taxonomy

MDBS Category Example Mapping to
Name Architectures Our Taxonomy

MDBS Any generic DDBMS
architecture

A DDBE (no further classification)

DDBMS The traditional DDBMS
architecture

A DDBE that is fully distributed and
completely open, with total visibility (TV)
and total control (TC)

FDB The MRDSM architecture,
the DDTS architecture, and
the Mermaid architecture

A DDBE that is fully distributed and partially
open, with partial visibility (PSV and
PDV) and partial control (PSC and PDC)

NFDB The UNIBASE architecture A DDBE that is fully distributed and partially
open, with total visibility (TV) and total
control (TC)
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12.3 APPROACHES FOR DEVELOPING A DDBE

There are two main approaches for developing a DDBE—the first approach uses a
top–down methodology to create the entire system from scratch, while the second
uses a bottom–up methodology to integrate the DDBE from its component S-DBEs.
The top–down or bottom–up approaches apply to both software and database schema
creation.

Before delving into the details of the top–down and bottom–up alternatives, we
will review the architecture of a DDBE.

12.3.1 The Top–Down Methodology

In the top–down approach, we develop the entire set of DDBE software components
from scratch. In this approach, we design, develop, test, and deploy all required soft-
ware components such as the user interface, transaction management, recovery and
fault tolerance, and optimization services. We can choose to use any programming lan-
guages or development environments we like for these tasks. In effect, we act as the
DDBE software vendor. Taken in the extreme, this is not a good idea. In practice, we
feel that this approach is only acceptable for experimental or research-oriented DDBE
projects. This approach is simple to implement in the sense that it avoids the headaches
normally associated with integrating new software with existing DBMS software. How-
ever, we must be willing to invest the time and money necessary to develop all the
required software components, and we must have the necessary skills and experience
to implement this DDBE project by ourselves.

12.3.1.1 Creating the GCS Top–Down When a DDBE is created top–down, the
global conceptual schema (GCS) is created first. Next, the requirements for local con-
ceptual schemas (LCSs) are determined, and the global constructs are distributed and
deployed into LCSs as needed. Information is loaded into the local databases as spec-
ified by the local system’s LCS. Therefore, the DDBE has total visibility and total
ownership and control over the information in the system. Distribution and fragmen-
tation design decisions we discussed in Chapter 2 will be used to create the LCS for
each local system. Figure 12.1 depicts creation of a set of local conceptual schemas
from a global conceptual schema.

12.3.1.2 Developing the Software Top–Down In a top–down approach, we develop
all the necessary software components according to a predetermined set of require-
ments. The top–down strategy is typically used for experimental and research situations
where total control is necessary.

12.3.2 Bottom–Up Methodology

In addition to inherent philosophical differences between top–down and bottom–up
methodologies, it is important to mention that in a top–down implementation the DDBE
ends up with only one GCS—the original GCS that we started with. By contrast, in the
bottom–up implementation, the GCS is created by integrating portions of participating
LCSs, and, as a result, we have the option of creating more than one GCS. We can
create multiple GCSs to satisfy the needs of different groups of users and different
applications.
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Figure 12.1 Top–down information architecture design.

12.3.2.1 Creating the GCS Bottom–Up When we use the bottom–up approach to
implement a GCS, each local database administrator (DBA) decides what degree of
visibility and control to allow the DDBE to have. Each DBA defines a subschema for
each local database. Each subschema identifies which parts of the schema and data will
be made visible to the DDBE. Each subschema (called an export schema [Sheth90])
is then integrated with the other relevant subschemas from the other local databases
in the environment. This integration results in the creation of a single integrated GCS
(called the unified schema) as implemented in DDTS [Dwyer87] or the creation of
multiple unified schemas as implemented in Mermaid [Templeton86]. See Figure 12.2
for an example of a DDBE with multiple unified schemas.

12.3.2.2 Developing the Software Bottom–Up In the bottom–up software devel-
opment approach, we utilize the database management system functionality of the
underlying S-DBEs (usually CDBEs) to develop software capabilities for distributed
concurrency control, distributed fault tolerance, distributed commit, distributed query
optimization, and distributed semantic integrity control. Any additional software func-
tionality that we need to develop must use, or at least interface with, the capabilities that
the underlying S-DBEs provide. In order to accommodate this, the bottom–up architec-
ture typically uses the local DBMS software to manage the local data. The DP for each
S-DBE interfaces with the LDBMS software to run the local transactions that were del-
egated to it by the AP. Figure 12.3 depicts the software architecture for this approach.
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Figure 12.2 Bottom–up information architecture design.

12.4 DEPLOYMENT OF DDBE SOFTWARE

Once written, the software components of a DDBE need to be deployed across the
different computer systems within our environment. These computer systems may run
different operating systems and support different DBMS software. In order to deploy a
software component on one of these target computer systems, we must compile, link,
and install it using the facilities provided by the underlying platform (the facilities
satisfying the fundamental DDBE Platform requirements, which we will discuss in
Section 14.2). In a well-designed architecture, we can reuse the same source code
for several different component implementations and deployments (ideally, across the
entire set of target operating systems and DBMSs in our environment). In other words,
the design and implementation of the components have been done with portability to
different systems in mind, as we will discuss in Section 14.2.1.3. Figure 12.4 depicts an
example deployment, where a CP and an AP have been deployed to both a Windows
system and a UNIX-based system. In this example, since the CP has been deployed
on both systems, users on either system can access the information contained within
the other system (from both the Oracle and SQL Server databases collectively).
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Figure 12.3 High-level DDBE software architecture for a bottom–up system.

Figure 12.4 Example of packaging software.

Figure 12.5 depicts a different deployment, for a different environment, where a DP
has been deployed to a mainframe system, but there is no AP deployed within that
system. In this case, the users who login to the mainframe do not have access to the
data in the Oracle database, but users on the UNIX machine do have access to both the
local data within the Oracle database and the data within the DB2 database deployed
on the mainframe.
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Figure 12.5 Another example of packaging software.

12.5 INTEGRATION CHALLENGES

Integration and control of existing information systems brings up a new set of
challenges. There are several traditional DDBE architectural alternatives that run on
top of a set of existing information systems. These systems are collectively known
as multidatabases (MDBs). The DDTS architecture [Devor82], Multibase archi-
tecture [Landers82], Mermaid architecture [Templeton86], and SDD-1 architecture
[Bernstein80] are all examples of experimental multidatabase systems.

There are three fundamental, yet conflicting, requirements that make the develop-
ment of a MDB system more difficult.

1. Transparency. An MDB needs to provide the illusion that all data in the
environment is integrated and controlled by one DBMS. It must be able to
provide for location, replication, fragmentation, network, hardware, software,
and DBMS transparencies.

2. Heterogeneity. Local DBMSs use different approaches to handling the databases
they control. For example, one DBMS may use locking for concurrency con-
trol while another system may utilize timestamping; one DBMS may use the
immediate commit approach while another system may use the deferred commit
approach; and so on.

3. DBMS Autonomy. Local DBMSs need to work autonomously. It is not feasible
to change the characteristics of the underlying DBMSs to facilitate integration,
and the autonomy of these systems must be preserved.

A DDBE runs distributed transactions against the collection of data sources, each of
which is controlled by a CDBE. The first challenge in developing a DDBE system is
the creation of an integrated global conceptual schema (GCS) based on the underlying
local conceptual schemas (LCSs). Once we have created the GCS, we need to address
the end-user, access-related issues. For example, we need to answer questions such as,
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“Should the users of the integrated schema be able to not only query but also modify
the underlying data in the source systems?”

Therefore, a DDBE has to overcome three types of challenges—schema integration,
data access, and software integration/interface issues. We group schema integration
and data access under information integration challenges and discuss software interface
issues under software integration challenges. Since software and information integration
pose a lot of challenges for the developers of a DDBE, the right level of integration
that fits the users’ requirements must be chosen. There are many levels (or degrees)
of integration for existing database applications. These range from a nonintegrated
system, to a fully integrated system, and systems that are in between.

Degrees of Integration

• In a nonintegrated DDBE, existing systems are not integrated. These stand-alone
systems have been designed and developed in isolation from the other systems
in the environment and have possibly been acquired by the organization as a
result of mergers and acquisitions. Data redundancies, data inconsistencies, and
the lack of an integrated view of the data and applications in the environment are
all major headaches for the organizations attempting to integrate these systems.
There are some systems that cannot (or should not) be integrated: for example,
legacy systems that use data storage mechanisms that are not, per se, a database,
or systems implemented using languages that do not interface well with the newer
languages used in application development today.

• When an organization’s systems do not inherently lend themselves to integration,
total integration is required. Doing a total integration requires the organization
to invest the money to redevelop the functionality. This means redesigning and
reimplementing the organization’s applications (and their required databases) from
scratch, in a totally integrated DDBE, using the top–down methodology we dis-
cussed earlier. The existing systems are used while the new integrated DDBE is
being developed. To test the new system, both the legacy and new development
are run in parallel to make sure the results from the new system are correct during
a trial period. The roll over from the legacy systems to the new integrated sys-
tem can be attempted only after the new system passes all such tests. The main
issue with total integration is the cost. Companies have invested huge amounts
of resources in developing the applications and collecting information for their
mission critical systems. Therefore, most of the time, an organization will attempt
to develop a partially integrated DDBE before attempting the totally integrated
solution.

• In a partially integrated DDBE, some, but not all, of the applications’ functionality
and data are integrated. Partial integration attempts to streamline inefficient func-
tions in existing systems and/or create new functionality that does not exist in the
current systems. In this case, existing systems continue to remain in production
while the new functionality is being developed. The underlying databases are kept
intact to allow the existing applications to operate correctly. An integrated view
of the information contained in existing databases is created as a GCS. Then new
functionality is developed against the GCS. If the functions that are developed are
to replace existing functions, a crossover procedure, as explained in the previous
paragraph, is used. The new functionalities are put in production after process
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testing and verification. A benefit of using partial integration to replace existing
functionality is the smaller cost of development since existing data is used as the
base. Also, partial integration can provide a path to total integration by replacing
the older systems’ functionality over time.

12.5.1 Software Integration Issues

Integration between the DDBE software layer and the component DBMSs that make
up the environment is a difficult task. The reasons, as discussed earlier, are the hetero-
geneity, incompatibility, and autonomy of the local systems. As an example, consider a
Microsoft Excel spreadsheet as a data source for a DDBE. Now assume that the DDBE
software architecture intends to implement distributed concurrency control using lock-
ing. There are two types of challenges that the architect has to address. The first
challenge is mapping the spreadsheet rows and columns to similar rows and columns
within a relational view, assuming that the end-user of the DDBE is using the relational
data model (which we discussed in Section 11.1) as the canonical data model for all the
underlying information sources. The second challenge is locking the right granule of
the spreadsheet data when it is required by the distributed concurrency control service.

The first challenge is not as difficult to satisfy (see Section 12.5.2.2 on schema
mapping later in this chapter). The latter challenge, however, is more problematic. As
discussed in Chapter 5, row-level locking is the desired granularity for concurrency
control. This requires that a row in the Excel spreadsheet be locked before it is read
or written and unlocked only when the transaction is ready to commit. In Microsoft
Excel, access to the contents of a spreadsheet can be controlled programmatically
using Visual Basic for Applications (VBA). Using VBA, the DDBE programmer can
lock and unlock a desired number of cells within a sheet for as long as required. The
programmer also needs to add capabilities to add, read, and modify the cell contents.
Once such functionality is developed, the VBA program can be integrated with the
software of the local DDBE agent at the site where the file is deployed.

As another example, let’s now consider implementing the three-phase commit pro-
tocol in a DDBE where all underlying data is controlled by commercial off-the-shelf
(COTS) relational DBMS products. In this case, we need to be able to control (and
to some degree modify) the way the commit protocol of the underlying commercial
DBMSs work. As far as controlling the underlying commit functionality of the local
systems is concerned, these systems are mostly closed. Unless the DBMS vendor has
made provisions for supporting a distributed transaction commit operation, there is no
way that this commercial DBMS can be told to put a transaction in the pre-commit
state (since this state does not exist within its centralized commit protocol). Even
implementing the two-phase commit protocol can cause issues for some DBMSs. Sup-
pose that the DBMS we are using does not support the concept of deferred commit;
that is, the DBMS commits a transaction as soon as it finishes executing it. In these
types of systems, it is not possible to implement two-phase commit, since delaying the
commitment of a transaction in a local system (until the global transaction wants to
commit it) is not possible.

Where do restrictions and limitations like these leave the developers of the DDBE
software? One thing is very clear—in most cases, disregarding the accessibility of these
required functions at the local level when designing a DDBE system does not work.
Some requirements must be lessened, compromises must be made, and simplifying
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assumptions are necessary. However, these concessions lead to the development of
DDBE systems that may not necessarily provide all the “bells and whistles” that a
fully integrated DDBE would provide.

The software integration challenges stem from the following facts:

• Local DBMSs are heterogeneous—they differ in their data model, their data
storage methodology, their support for transaction processing, their support for
concurrency control, and their fault tolerance support.

• Local DBMS systems are autonomous—they do not necessarily support the con-
cept of integration since they are rigid functionally; that is, it is difficult, if not
impossible, to change the local DBMS support functions to suit the distributed
DDBE’s desired functionality.

• Not all local DBMSs support standards suggested for integration such as XA (see
Chapters 14–19) for externalization of transaction support, for example.

• A truly heterogeneous DDBE system incorporates three levels of control over
global transactions. At the highest level of the hierarchy, the Global Transaction
Manager (GTM) decides on how a transaction must be divided to run on multiple
sites. Within each site, the Local Transaction Manager (LTM) decides on how
to run the transaction on multiple DBMSs that it supports locally. Within each
DBMS, at the lowest level of control, transactions are processed as if they were
local. Coordinating the activities of these three layers of software requires well-
defined and accepted protocols that guarantee the consistency of the database with
or without failures.

12.5.2 Schema Integration Issues

As mentioned earlier, the GCS is the main component of the GDD. It provides for an
integrated view of all the data in the local systems’ conceptual views. There are two
issues with GCS in a bottom–up design approach. The first deals with the creation of
the GCS from component LCSs. The second issue is with the maintenance of the GCS
once it has been created. We will address the maintenance issue first in Section 12.5.2.1.
The creation issue, which is more involved, is discussed in Section 12.5.2.2.

12.5.2.1 GCS Maintenance Issues When maintaining a GCS, our primary concern
is to making sure that its contents are synchronized with the local conceptual schemas.
This requirement does not pose a major concern if we assume that underlying local
database conceptual schemas do not change. In real life, however, this is not an
acceptable assumption. New structures are added to existing local databases; exist-
ing structures are modified; and existing structures are deleted from the local database
schemas on an ongoing basis. Each of these schema changes needs to be reflected in
the GCS to make sure that a distributed user’s view of the underlying local systems
is accurate. For example, let’s assume that a distributed user’s view includes a table
called EMP with columns ID, FNAME, MI, LNAME, ADDRESS, and SAL. If the
column ADDRESS is removed from the underlying local database’s schema, the GCS
must be updated to reflect the fact that ADDRESS no longer exists in the global view
for this user. How do we maintain this synchronicity? The answer depends on how the
GCS is implemented.
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Logical Implementation of GCS We can implement the GCS as a logical view of
information in the local conceptual schemas. In this implementation, the GCS does
not physically exist. A global view of the information is created from the LCSs as
needed. This approach is similar to the bootstrap approach that a computer operating
system takes. When the computer is first started, it loads a small program from the
disk (boot sector) into the main memory. This program then loads the rest of operating
system and other necessary programs to bring the computer to full functionality. In a
logical implementation of the GCS, we load a small amount of information such as site
names, IP addresses, and number of tables into the GCS at each site that participates
in the distribution. In this case, the first step when executing a distributed user’s query
against the DDBE is to retrieve the local conceptual schema information for those
constructs accessible to the user. After this discovery step, the user can employ this
schema information to actually submit the request to the DDBE. Since no physical
copy of the GCS is maintained in this approach, there is no need to synchronize its
contents with the local conceptual schemas at the local sites.

Physical Implementation of GCS We can also implement the GCS physically. In this
approach, the GCS contents are maintained physically and are accessible to the GTM
for lookup when a global query is processed. Maintaining a physical GCS brings up
a new set of issues. The main issue with a physical implementation of the GCS is its
currency.

Maintaining Currency for a Physical GCS This copy of the GCS is kept in sync
with the local sites’ LCSs either manually or automatically. In manual synchronization,
the DBA will update the GCS when the underlying LCS information is changed. The
issue with this approach is the fact that the GCS may contain outdated information
if manual updates are not done frequently enough for systems with many changes to
their local conceptual schemas. The DBA could set up batch-updates for synchronizing
the GCS contents as well. These jobs run periodically and compare the contents of
the GCS with the information from the local systems and update the GCS as needed.
Depending on the frequency of schema changes to the local systems, the sync job can
run daily, weekly, or less frequently.

There are two extreme deployment alternatives for implementing a physical GCS. At
one end of the spectrum, the GCS is implemented completely at one site. At the other
end of the spectrum, the GCS is implemented as multiple copies—perhaps some copies
are merely subsets of the GCS—at multiple sites. We refer to the first implementation
as a centralized implementation and the second as a distributed implementation.

Centralized Implementation of a Physical GCS In a centralized implementation of
a GCS, a single copy of the GCS is physically maintained at one site. The DBA
has to decide where the single copy of the GCS is stored. Like any other central-
ized implementation of control, this implementation of the GCS has advantages and
disadvantages. Updating the single copy of the GCS is most efficient since all GCS
information is local to one site. On the other hand, since the entire GCS is stored at
one site, the site becomes a bottleneck for network traffic from all sites requiring GCS
access at runtime. This approach is also less resilient to failures since the failure of the
site will cause complete loss of access to the GCS contents. Figure 12.6a illustrates
the centralized implementation of the GCS in a three-site system.
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Figure 12.6 Physical GCS implementation alternatives.

Distributed Implementation of a Physical GCS In a distributed implementation of
a GCS, either multiple copies of the entire GCS are created or multiple copies of
subsets (fragments) of GCS are created (see Figure 12.6b–d). The simplest form of
implementing a distributed GCS is to have a backup copy of the GCS that is kept in
sync with the GCS all the time. This copy acts as a “hot” standby copy and can act as
the GCS if the main copy fails. To protect against loss of the GCS when a site fails,
the standby should be kept at a site different from the main site. We can also create
multiple copies of the entire GCS and keep one copy at each site that participates
in the DDBE. This approach is called a replicated GCS implementation. Finally, a
GCS can be partitioned, with each partition stored at a separate site. Ideally, the GCS
partition that pertains to the information on a local site is stored at that site. This
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implementation of the GCS is called a fragmented GCS. Although there are multiple
variations to implementing a distributed GCS, a careful reader realizes that the more
distributed the GCS, the more difficult it is to query its contents. As a matter of fact, the
distributed implementation of the GCS presents all the problems that we are trying to
solve for distributed data access. In other words, when a GCS is distributed, we need to
formulate a distributed query that can find the location, replication, and fragmentation
information about the underlying data items in the environment prior to processing the
actual query. It is therefore questionable that such a complicated distribution approach
for the GCS is worth the overhead that the approach puts on the system.

12.5.2.2 GCS Creation Issues In this section, we explain the issues related to the
generation of the GCS. Recall that in the bottom–up approach, the local conceptual
schema information from the local databases is used and integrated into a cohesive
global conceptual schema. There are many references in the literature that talk about
schema integration challenges and provide methodologies for addressing those chal-
lenges. Sheth and Larson [Sheth90] and Özsu and Valduriez [Özsu99] have formalized
the steps in GCS integration. The steps in these formalisms outline the details for cre-
ating a GCS from a set of local conceptual schemas. We encourage interested readers
to review these sources. We will merely summarize these steps here for completeness.
Then we will use an example to explain the proposed process in the next section.
There are three main steps in the process, with Step 3 being further divided into four
substeps as outlined below.

Step 1: Translation to a Common Data Model The DBMS components that make up
a DDBE can be homogeneous or heterogeneous. The “homogeneity or heterogeneity”
between any two DBMSs depends more on the database’s logical data model than the
differences in how the DBMSs are implemented or deployed. For example, we consider
a DDBE to be homogeneous if, although from different vendors, all the underlying
DBMSs use the relational data model. In a heterogeneous environment, the challenge
is to translate all the logical data model constructs used into a neutral (common) format
before integration. In a homogeneous environment, on the other hand, since all data
models are of the same type, the challenge is only in integration.

The relational data model (RDM) and the entity relationship model (ERM) have
both been proposed as candidates for the common model. The ERM has been chosen
over the RDM by many. The reasons for selecting to use the ERM as the common
model are: (1) the ERM is a graphical representation of the schema that is the de-
facto standard in database modeling and design; (2) ERM concepts are understood by
many database users and designers; (3) the rules for translating relational, network,
and hierarchical data models to the ERM and vice versa (see Chapter 11) are well
understood; (4) the ERM can better model the real world than the RDM; and (5)
translation to the ERM and vice versa can be automated, that is, programmed. Note
that we need to write one translator program for each database model that we intend
to support as part of the DDBE.

Figure 12.7 depicts the relational schema for a relational database and its translation
into the ERM. Note that in this database, although an employee can work only for one
department at any given point in time, the employees can work for multiple departments
during their tenure. Of course, this model does not capture the situation where the same
employee worked for the same department on-again-and-off-again several different
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Figure 12.7 Example of relational to ER translation.

times. The database keeps track of the tenure details by using two date columns that
indicate the duration of the time a given employee has been working for a given
department. This information in the relational schema is kept in the Works For table.
In the ERM, the same information is mapped to the attribute types contained within the
relationship type that connects the Employee entity type to the Department entity type.
As a result, although we start with three tables in the relational model, we end up with
two entity types in the ERM. In addition to mappings of the table names to entity type
names and column names to attribute type names, the additional fact that the Works
For relationship type is mapped to the Works For table needs to be maintained. An
auxiliary database is used for this purpose (see later discussion)

Step 2: Export Schema Generation Local DBAs have control over the local schema
and data. They may or may not wish to share all of the information under the control
of the local schema with the DDBE users. The data that a local DBA is willing to
share with the DDBE users is typically a subset of the locally stored data. This subset
schema is called the export schema. Designers of a DDBE negotiate with local DBAs to
define the structures that will be included in any export schema. A DBA may generate
one or more export schemas. When multiple export schemas are generated from the
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same site, they may be disjoint or they may overlap in their contents. In most cases,
the export schemas have a limited scope as compared to the local conceptual schema.
The limited view of an export schema creates challenges with respect to transaction
management. For instance, if all mandatory (“NOT NULL”) columns of a given table
are not included in the exported schema, users may not be able to update, delete, or
insert information at the global level.

The limited view of an export schema may invalidate modifications to the entire
row, due to invalidation of the consistency constraints attached to the columns that
are not part of the export schema or constraints that are associated with the primary
key or referential integrity of a foreign key. We referred to this type of visibility as
partial (PV). Even if all columns of the tables are included in the view that a DBA
shares, the DBA may still decide to limit the access to only query and not allow
modifications. This gives the DDBE users limited ownership, which we categorized
under POC. Export schema generation is the second step in GCS integration. Note that
export schema generation is done after all source data models have been translated into
the ERM. This allows us to write the schema generation tool once and use it regardless
of the source data model.

Figure 12.8 illustrates how the example ER schema in Figure 12.7 is used in gener-
ating a component export schema in the ERM. In this example, the DBA does not want
to share the entire local database with the DDBE users. The DBA would use a tool
to graphically pick and choose which entity types and which attribute types contained
within those entity types should be part of the export schema. In this case, the DBA
restricts access to sensitive information such as salary and department budget. Also,
the primary key of the Department entity type is not included in the export schema.
The elimination of the primary key from an entity type in the export schema raises
issues with respect to updating the database through the view that is based on this
export schema, as explained above. Additionally, the elimination of the primary key
from the Department entity type causes the generator to combine the information into
a single entity type called “Employee.” Generation information such as this is kept in
the auxiliary database.

Figure 12.9 depicts the fact that our export schema does not contain all of the
attributes in the original local schema. The empty ovals in the export indicate what
attributes are missing from the original schema.

Each local component database’s conceptual schema will be put through the same
process until all component export schemas have been generated. Figure 12.10 depicts
these two steps combined. As shown in this figure, translation to the ERM and export
schema generation steps are not 100% automatic and need interaction from the DBA.

Step 3: Schema Integration Schema integration is the last step in the generation of
the GCS from its component export schemas. The challenges in this step are due to
overlaps, similarities, differences, conflicts, inconsistencies, and interpretations of each
export schema that is to be integrated. This is the most time-consuming and error-
prone step in the process. The difficulty of this step does not have a technical source
but stems from not understanding the contents, the intentions, and the semantics of
structures contained in each export schema. That is why this step cannot be completely
automated. Stepwise refinement of the GCS is required with the DBAs and the DDBE
designers working together to make sure that the outcome is correct. The integration
step is divided into four substeps.
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Figure 12.8 Export schema generation in the ERM.

Step 3.1: Preintegration In this step, a designer decides on the order and nature
of integration of export schemas. The most common approach for integration is the
ladder approach. In this approach, the designer starts with the first export schema as
the GCS. Other export schemas are integrated one at a time to complete the process.
Figure 12.11 shows the use of ladder integration. The current integrated schema (the
first schema when we start) is integrated with a new export schema and generates the
revised integrated schema. When we need to integrate another schema, we use the
revised integrated schema as the current schema and create a new integrated schema.
This process is repeated until all schemas have been integrated.

Step 3.2: Discovery In this step, the designer looks for similarities, differences,
conflicts, and overlap in the two export schemas being analyzed.

In this step, the goal is to identify:

• Overlap—where a structure in one schema is a subset of a structure in the second
schema

• Naming conflicts—where two objects are synonyms or homonyms
• Structural conflicts—where two constructs have incompatible mappings: for

example, this occurs when the same entity type has a primary key in one schema
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Figure 12.9 The export schema as compared to the original schema.

but does not have that primary key in the other schema, or when a concept is
mapped to an attribute type in one schema but it is mapped to an entity type in
the other schema

• Constraint conflicts—where the same construct has different, incompatible
requirements: for example, this occurs when the same attribute is optional
(nullable) in one schema but is mandatory (not null) in the other schema

Step 3.3: Resolution In this step, the designer resolves the conflicts identified in
Step 3.2.

The following techniques can be used to resolve the conflicts found in Step 3.2:

• Inheritance types are used to embed the concepts from one overlapped schema
into the other.

• Aliases are used for synonyms and schema names are used as prefixes to make
the homonyms map to different names.

• Mapping of attributes to entities is used as a way of resolving structural conflicts.
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Figure 12.10 Schema translation and export schema generation.

• Conflicting constraints are recorded in an auxiliary database for use in query
processing later.

We will use these techniques in an example in Section 12.6 to integrate schemas
from three different databases.

Step 3.4: Merging In this step, the designer constructs the integrated schema. Note
that we use the term assembly since by the time Step 3.4 starts all inconsistencies
between the two schemas have been resolved.

The integrated schema satisfies the following three requirements:

• No structure from component schemas is lost in the integrated schema. This
requirement is known as the completeness of the integrated schema.

• The integrated schema must not have any duplicate information. This requirement
is known as the minimality of the integrated schema.

• The integrated schema must be easily understood.

Figure 12.12 depicts how two example schemas have been integrated.
We have summarized all the substeps in schema integration in Figure 12.13.
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Figure 12.11 Integrated schema generation process.

Auxiliary Database As discussed earlier (see Chapter 1, Figure 1.9), the information
architecture for a DDBE consists of four levels of abstraction—the local internal
schema, the local conceptual schema, the global conceptual schema, and the user
schemas. The integration process requires an auxiliary database with its own schema
to keep track of the translations, mappings, and integration decisions. The DDBE users
work with their integrated view at the highest level of the abstraction. Their queries will
need to be decomposed into a set of subqueries that run against the local databases. One
auxiliary database, stored at each site, enables the processing of the local subqueries
against the local database. Figure 12.14 illustrates the information architecture for
the DDBE including the auxiliary database and its schema. The contents of the local
conceptual schemas and the GCS have been discussed in detail up to this point. We
will describe the contents of the auxiliary database in the next section.

An auxiliary database is a repository of supporting information for schema inte-
gration. The information in this repository is not part of the GCS but it is part of
the global data dictionary and it is necessary for processing queries and transactions
running against the integrated DDBE’s distributed database. Information about data
model translations, export schema generations, and schema integration are stored in
the auxiliary schema. A designer’s assumptions and assertions during the integration
process are also kept in the auxiliary schema.

The information in the auxiliary database can be categorized as follows:
• Location information such as server name, site ID, and site IP address.
• Database information such as database name, logical data model, and schema

name.
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Figure 12.12 Integration of two export schemas.

• Translation information such as mapping type from original objects and associ-
ations to ERM. Assume we are mapping the schema of a relational database to
ERM. The mapping type is Relational-ER. We also track the original database or
schema name, the original table name and its name as an ER entity type, original
column name and its name as an ER attribute type, and so on.

• Constraint information such as capturing that an item must be positive, an item
has to have a value in a given range, and so on.

Figure 12.15 represents a subset of the conceptual model of the auxiliary database
(please refer to Chapter 10 for information on the diagram notation used). We have
eliminated data types for attributes and other details so as not to clutter the diagram.
We will show more of the details in our example in the next section.

In Figure 12.15, the generic term Object refers to Table in relational and Record
Type in network and hierarchical data models. Similarly, we have also used the term
Property to refer to Column in relational and Field in network and hierarchical data
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Figure 12.13 Steps in schema integration process.

models. Note that server and database information are already part of the GDD. We
have shown these entity types here again for clarity.

12.6 SCHEMA INTEGRATION EXAMPLE

This example integrates three export schemas from three local systems. The first
database is a hierarchical database (IBM IMS), the second database is a relational
database, and the third database is a network (CODASYL) database. All three databases
pertain to different aspects of a university environment. For this example, we assume



478 TRADITIONAL DDBE ARCHITECTURES

Figure 12.14 Information architecture including the auxiliary database.

that the ERM is used as the interface for the users of the DDBE. This requires a
graphical query interface as opposed to use of a relational model that can be queried
using the language SQL.

12.6.1 Translation Step

The Db1 database contains information about graduate students working for a depart-
ment (see Figure 12.16a). Although not really a good idea, we have used the department
name and student name as primary keys for simplicity in this example—the primary
keys are underlined. Each department can have one or more graduate students work-
ing for it. A single graduate student can work for more than one department (they
really need the money to pay those high graduate tuition fees). Different departments
pay different students different amounts. This is clearly a many-to-many relationship
between the graduate student and the department entity types.

In the hierarchical model, the database schema is a tree consisting of two subtrees,
one to show the students hired by a given department (the right subtree) and one to
show which departments a given graduate student works for (the left subtree). Although
the tree shows two copies of each record type, in reality each copy is a virtual record
type. Each subtree has three record types—the department, the graduate student, and
the support. The department and graduate student record types are self-explanatory.
The support record type has one field that tracks the amount of support a department
pays for a graduate student. This information is kept in a separate record type since
it is not a property of the graduate student or the department but a property of their
association.
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Figure 12.15 Conceptual model of the auxiliary database.

In translating this database to the ERM, the graduate student and the department
record types are mapped to two entity types with the same name. The fields within
these record types are mapped to attributes in the corresponding entity types. The
amount of money (Amt) that each department pays each specific graduate student is
kept with the relationship between the two entities (see Figure 12.16b).

The second database is a CODASYL (network) database (see Figure 12.17a). This
database contains information about classes that students take. A student is either a
graduate student or undergrad student. The schema has three record types—Student,
Class, and Takes. Both Student and Class own the Takes record type. The Takes record
type has only one field (called “Grade”), which records the grade that is given to a
specific student for a specific class. This indicates a many-to-many association between
student and class. The equivalent schema for this database in the ERM contains two
entity types. One entity type is mapped from the Student record type and the other
from the Class record type. The Takes record type is mapped to a relationship type
connecting the Student and Class entity types. The Grade attribute type is contained
within this relationship type (see Figure 12.17b).

The third database is a relational database and maintains information about the
university’s departments and departments’ faculty. A faculty member works for only
one department while a department can have one or more faculty members. This
represents a one-to-many association between the Faculty and the Department entity
types. Since a faculty member can only work for one department at a time, the primary
key of the Department table is used as a foreign key of the Faculty table to show the
association. A faculty member also teaches one or more sections of one or more
courses. A specific section of a course is keyed by the course name and a section
number, requiring the combination of the columns “CName” and “Sec#” to be included
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Figure 12.16 Hierarchical database schema—mapping details for Db1.

in the primary key for Course. Different sections of a course are taught by one or more
faculty members, making the association between Faculty and Course many-to-many.
This is shown as a separate table, called “Teaches,” in the database. The tables in this
database are defined as follows:

DP(Name)

Faculty(FName, Rank, Salary, Dname)

Teaches(FName, CName, Sec#)

Course(CName, Sec#)

The ER equivalent schema for this database is depicted in Figure 12.18. This figure
should be self-explanatory.
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Figure 12.17 Network database schema—mapping details for Db2.

Figure 12.18 Relational database schema—mapping details for Db3.

12.6.2 Export Schema Generation

For this example, we assume that each database’s entire contents are shared. As a
result, there is no export schema generation step.

12.6.3 Discovery and Resolution Steps

In this step, we analyze the component export schemas for conflicts, similarities, and
overlaps. We also resolve issues we find by entering the decisions made to resolve them
in the auxiliary database. We have chosen to use the ladder approach for integration.
We start by integrating the Db1 schema with the Db3 schema. Analysis of the two
schemas reveals that “Dept” and “DP” are aliases used for the Department object. We
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Figure 12.19 Integration of Db1 and Db3.

choose “Department” as the name of the object in the integrated schema. The two
entity types that represent the Department entity type have different attribute types
defined in each schema as well. In Db1, the entity type has two attribute types while
in Db3 the entity type has only one attribute type. The Department entity type in the
integrated schema will, therefore, have two attribute types. We have chosen “Name”
and “Budget” as the names for these attribute types. Our schemas do not capture any
interdependencies between Course in Db3 and Grad_Student in Db1, so we will simply
carry them over into the integrated schema unchanged. Figure 12.19 shows the latest
integrated schema.

Once we have completed the integration of Db1 and Db3, we integrate the Db2
schema into the resulting schema. The Db2 schema contains the Student and Class
entity types. The Class entity type in Db2 is a synonym for Course in the integrated
schema. We decide to continue to use “Course” as the name for this entity type.
Although our schemas do not reflect it, we know that the Student entity type in Db2 is
a supertype of Grad_Student in Db1 (and the latest version of the integrated schema).
However, since Student does not exist in the integrated schema, it is therefore carried
over “as is,” without conflicts. The result of this integration is depicted in Figure 12.20.

12.6.4 Restructuring Step

Once the analysis step has been completed, we are ready to restructure the results to
remove redundancies and make sure the schema is complete and minimal. There are
no redundancies in our integrated schema so far, but there are structures that can be
combined into hierarchies. As mentioned before, Grad_Student is a subtype of Student.
Although each student takes classes, only graduate students can work and get support
from a department. This supertype/subtype structure is shown as a thick double-lined
arrow from the subtype to the supertype in Figure 12.21. Since each subtype inherits
all the attributes and relationships of its supertype, the Name attribute type only needs
to be associated with Student and not directly defined for the Grad_Student. Similarly,
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Figure 12.20 Final integration result for Db1, Db2, and Db3.

both Student and Faculty are subtypes of an entity type that we call “Person.” As
a result, we need to show this inheritance type in the final schema as well. Again,
Name is contained within the Person entity type making it possible to be inherited
by all its immediate subtypes (Faculty and Student) and also lower-level subtypes
(Grad_Student). The complete and minimal integrated schema for these three databases
is shown in Figure 12.21.

12.7 EXAMPLE OF EXISTING COMMERCIAL DDBEs

Commercially available DDBEs from IBM, Oracle, and Microsoft are all bottom–up
implementations. They integrate information from existing database systems into a
virtual database that users can query and, with some limitations, modify. In order to
be able to perform their intended tasks, these products have to address the schema
translation/integration and software integration challenges as we discussed earlier in
this chapter. In this section, we provide an overview of the capabilities of some of
these products. We encourage interested readers to review the product literature from
these companies for more information.

Commercially available products provide an integrated view of the information in
heterogeneous multidatabases and allow the users to query and update the information
regardless of where it is stored and how it is controlled. None of the commercial
products we have reviewed are able to achieve this goal completely. The difficulty
they each have is the ability to support schema and data modifications within the local
databases performed by a global user. The issues they encounter are the issues we
outlined in Section 12.5.1. The overall goal of the software and schema integration
process is to create an environment like the one depicted in Figure 12.22.

The commercial products, however, do not provide a single schema transla-
tion/integration and a software integration layer. Instead, these products offer software
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Figure 12.21 Complete and minimal integrated schema for our example.

wrappers or gateways that are designed and developed to work with specific data
source types. Figure 12.22 contains an integrated schema for the six databases shown.
In this figure, the integrated schema is shown in the oval at the center of the diagram
surrounded by the software layers we just mentioned. The various deployed DDBMS
environments are shown in orbit as different geometric shapes—emphasizing the
heterogeneous nature of the DDBMSs. Within each DDBMS, there is an export
schema (ES) containing a single letter representing the local constructs contained
within it. These export schemas are linked to an integrated construct within the
integrated schema (named with an uppercase version of the same letter). Let us
suppose the user wants to query the F global table, which is defined in the integrated
schema, by issuing a query written in SQL. Also assume that the target local system
is a hierarchical database such as IBM IMS. We, therefore, know that F is mapped
from the F record type. We also know that SQL, which is a ‘table–oriented’ language,
is quite different from the record-oriented language used by this hierarchical system.
Even though the user thinks that the SQL query runs against F, in reality the query
must run against the F record type in the IMS system. The SQL query must be
mapped to an equivalent set of IMS operations—typically a loop structure with all
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Figure 12.22 The schema integration goal for commercial DDBE products.

records within the F record type being examined. These IMS commands will run
against the F record type and a set of records that satisfy the query conditions will
be returned by the IMS DBMS. The client software does not understand records and
needs to receive a set of rows instead. This necessitates another translation of the
results from the record set to the row set for presentation and processing in the client
application. The software that achieves this is specific to IMS and is different from
the other software that works with other DBMSs (perhaps even using different logical
data models, such as the network data model or the object-oriented data model).
The DBMS vendor, who supports a specific logical data model, offers the packaged
software as a gateway or wrapper. Figure 12.23 depicts the gateway necessary for
working with the IMS hierarchical system.

12.7.1 Schema Integration in Commercial Systems

Commercial products do not use the theoretical approach for schema integration that
we discussed in this chapter. That is because, as we outlined earlier in this chapter,
although the theoretical approach is doable, commercial products have to operate within
the limitations and restrictions that the DDBMS vendors put on the interface to their
products.
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Figure 12.23 Use of gateway or wrapper in integration.

The differences between the theoretical approach and the commercial product
approach for schema translation and integration are as follows:

1. The target data model is the relational data model instead of the ER model that
we used in our discussion and examples, because these products use SQL as
their interface language.

2. Since the interface is SQL, the target of any mapping is a relational table.
3. The mapping of the source constructs (such as relational system tables and views,

Excel spreadsheets, comma or tab delimited files, and other data sources) to target
constructs is done on a per-construct basis. In other words, the entire schema
(or a subset of it) is not handled as a unit of integration. Instead, the DBA must
choose which individual construct of the source schema to use as part of the
integrated schema.

4. Mapping software does not support many constraint types including referential
integrity. For example, if the user chooses two tables from a local database to
use as part of the global schema, the tables are mapped to two tables in the target
database. The table and column constraints are not mapped over. In addition, if
the two tables have a referential integrity between them, this constraint is not
visible in the target database either.

12.7.2 Software Integration in Existing Products

As mentioned at the beginning of Section 12.7, existing products use the concept of
a gateway or wrapper software to interface local existing databases into the DDBE.
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The gateway software utilizes open standards for communicating with the underlying
DBMS software whenever possible. The most commonly used standard interface is the
open database connectivity (ODBC) standard and its related technologies (OLEDB,
ADO, DotNet, etc.) The ODBC interface has been widely used to provide access
to many data sources used in the market today. Many relational databases, flat files
(comma and tab delimited files), Excel spreadsheets, and other data sources provide an
ODBC public interface. This interface software, called an ODBC driver, is supported
either by the original “data source vendor” or by a third party.

When an ODBC driver is not available to interface to a particular local system, we
have to develop an interface on top of the publicly available interface from the vendor.
This interface is not necessarily well suited for our purpose, and there is a danger that
if the “data source vendor” changes the interface, our interface will not work. This
situation can be considered both a challenge and an opportunity. The challenge is in
upgrading our interface software to work with the new interface that the “data source
vendor” provides. The opportunity is for third-party software vendors whose existence
depends on maintaining the software that fills this gap.

In the following two sections, we review two existing commercial products that
provide for DDBE implementation. The two products we have analyzed are Microsoft
Access and IBM InfoSphere Federation Server. The reason for choosing these two
products is the fact that these two represent two extremes in integration. We first
summarize each of the two products. Then, we will provide the details of database
setup and the experiments we have run.

12.7.3 Microsoft Access

We choose Access for two reasons: first, Access is a database integration environment
that can easily support a DDBE implementation, and second, Access is a widely used,
single-user DBMS software package and many people are familiar with it. The capabil-
ities that Access provides to integrate different data sources are easy to understand, but
at the same time Access only provides for limited functionality. The version of Access
used in our experiment is Access 2003, SP3. Access is a relational based DBMS in
which the entire database is stored as a flat file. This file has the file extension. MBD
under the Microsoft Windows operating systems. Although the graphical user interface
is probably the most popular interface to Access, the system also supports SQL and an
application programming interface as well. The basic unit of storage in Access, like
any other relational DBMS, is a table. Queries are run against one or more of the tables
available within the system (using joins) and the results are displayed on the screen as
a table or printed as a report.

Access can also work with information stored outside its databases, such as infor-
mation that is stored in other relational DBMSs, flat files, or Excel spreadsheets. This
ability makes Access a multidatabase (with some limitations). To work with informa-
tion stored outside Access, the system can either import a snapshot of the information
(as a table) or link to it. An import is a disconnected copy of the source, while a link
provides live connection to the source. Access uses ODBC, similar related interfaces,
or the native interface provided by the “data source vendor” to connect to data that
is stored outside the Access databases. Access can also interface with information in
XML files, Microsoft Outlook, Microsoft Exchange, Paradox, Microsoft Sharepoint,
HTML documents, dBase databases, flat files, other Microsoft Access databases, and
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any data source that supports an ODBC interface. Regardless of the data source and
its format, inside Access information is treated as a relational table.

12.7.3.1 Differences Between Importing and Linking in Access A table that is acces-
sible inside Access is either a native table, an imported table, or a linked table. Tables
that have been created inside Access give the creator complete visibility, ownership,
and control. Imported tables that are accessible inside Access are snapshots of the
source data. They are disconnected from the source and therefore do not reflect the
changes made to the source after the snapshot has been taken. This can be a useful fea-
ture because it allows us to copy a table from outside Access and then work with it as
if it were created by Access. The schema details for the imported tables can be changed
by Access users inside the system. The users can also modify the contents as needed
without having to worry about the source. A table that is linked to Access can dynam-
ically be modified by the users of the Access database. It is not a copy of the original
data source but is instead the actual data. In other words, what users see in Access is
the live data as it appears within the data source, which is actually outside Access.

In our experiments, we only used linked tables since we were interested in see-
ing how Access dynamically works with other DBMS products and non-DBMS data
sources such as spreadsheets and flat files. Access did not have any problem with
linking in our experiments.

12.7.4 InfoSphere Federation Server

The second product we reviewed is from IBM, and it is called “InfoSphere Federation
Server 9.5.” This product was chosen since it is exactly the opposite of Access in
functionality and scalability. IBM has allowed us to use the software free of charge
as part of the IBM Academic Initiative in our Distributed Database class. To provide
enhanced performance and functionality, instead of ODBC, the Federation Server uses
the native client for most of the data sources that it accesses. For example, Federation
Server uses Net8 client for Oracle and CTLIB for Sybase. ODBC is used as a catch-all
for these data sources for which there is no specific wrapper/connector ([Nelson03],
[Roth97]). The specific wrapper/connector is always customized for a particular data
source. A wrapper is a software package that specifically targets a type of data source.
For example, a wrapper for Oracle allows Federation Server to see and work with
data in Oracle, while a wrapper for XML allows the Federation Server to work with
XML data. To be able to do this, a wrapper must map SQL queries to the query dialect
language that the target data source understands when processing requests, and perform
data format mapping when results are sent back.

IBM provides wrappers for most of today’s DBMS products including SQL Server,
Oracle, Sybase, and Teradata. There are also wrappers provided for working with flat
files, such as comma/string delimited files, tab delimited files, XML, and spreadsheets.
In addition, users can write their own wrappers for custom databases and applications
using the Java or C++ programming languages. Once a user has a wrapper for the
data source, the IBM Federation Server can map the data source objects (e.g., tables,
views, files) as if they were tables inside DB2. The IBM Federation Server refers to the
data source objects that are mapped into DB2 as “nicknames.” Think of a nickname as
an alias or synonym for a remote data source object. Once the nickname for a remote
data source is defined in the Federation Server, the nickname can be used as if it was a
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local DB2 table. In other words, the nickname can be referenced in an SQL statement
the same way that a table can be (e.g., it can be referenced in the “FROM list” for an
SQL select statement). User applications can also use these nicknames in conjunction
with other nicknames and DB2 tables and can view remote data regardless of where
the data resides. A nickname in DB2 and a linked table in Access are similar concepts;
however, there are differences with respect to the flexibilities and limitations for these
concepts with the two systems.

12.8 THE EXPERIMENT

This section covers the experiment we ran using Microsoft Access and InfoSphere
Federation Server. We will discuss the sample database we used, how the database
was distributed, where each component of the data was stored, and what queries and
transactions we ran.

12.8.1 The Example Database

The conceptual model of the database is depicted in Figure 12.24. In this example, we
keep track of the employees (Emp), the grants they supervise (Grant), and the children
they have (Child). Since an employee can supervise one or more grants and can have
one or more children, the relationship type connecting the Emp entity type to the Grant
entity type has one-to-many cardinality and so does the relationship type connecting
Emp to Child.

12.8.2 Database Distribution

We decided to use a hybrid fragmentation for this database. The Emp table is vertically
distributed into two fragments: “Emp_Name(EmpID, Ename)” and “Emp_Sal(EmpID,
Sal).” The Emp_Name table is replicated into two copies. These copies are called
“Emp_Name_Access,” which is under the control of the Access database, and “Emp_-
Name_DB2,” which is controlled by DB2. The Emp_Sal table is further fragmented
horizontally based on salary—one fragment holds the employees who make less than
or equal to $5000 and the other holds those who make more than $5000. These frag-
ments are called “Emp_Sal_LE5K” and “Emp_Sal_GT5K.” The other tables are not
fragmented and are stored as a whole. Since the Emp and Emp_Sal tables are frag-
mented they do not physically exist. These are called logical/virtual tables, as we
discussed in Chapter 2. Note that even though we have intentionally used unique
names for these table fragments, in reality, that is not required. We have used unique
names to make it easy to know which table we are talking about in this chapter.

The tables and fragments are deployed based on the following criteria:

• There are four computers utilized in this experiment: Computer 1 (C1) runs
Access 2003, Computer 2 (C2) runs Oracle, Computer 3 (C3) runs InfoSphere and
DB2, and Computer 4 (C4) runs Microsoft Access and Excel 2003. All computers
run Microsoft Windows XP Professional Edition operating system. The four com-
puters are networked together using TCP/IP over Ethernet for communications.

• Table “Emp_Name_Access” is stored on C1 under the control of Access.
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Figure 12.24 Conceptual model of the sample database.

• Table “Emp_Name_DB2” is stored in DB2 on C3.
• Tables “Emp_Sal_GT5K” and “Child” are stored under the control of Oracle on

C2.
• Table “Emp_Sal_LE5K” and the Grant spreadsheet are stored on C4.
• Table “Child(Cname, EmpID, Budget)” is stored in an Oracle 10g database on C2.

Figure 12.25 illustrates the data deployment across the four computers.
Tables 12.2, 12.3, and 12.4 provide a conceptual view of the data stored in this

distributed database environment. Note that, although we have shown the contents of
the Emp table as one table for simplicity’s sake here, in reality, the table is fragmented
and its physical components are stored across computers C1, C2, C3, and C4. Also
note that we are assuming the first row in the spreadsheet has the column names (as
headings).

12.8.3 The Setup

In order to be able to compare the functionality of Access and InfoSphere Federation
Server, we ran the same set of queries and modifications in SQL across both sys-
tems. The following subsections outline how the two systems were prepared for the
experiment and then discuss the experiment’s results for both systems.

TABLE 12.2 The Emp Table

EmpID Ename Sal

1 Rahimi 7500
2 Haug 4800
3 Jones 5000
4 Paul 8100
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Figure 12.25 Data deployment across computers in our experiment.

We assume the following has already been done by the user:

1. Both Microsoft Office 2003 and InfoSphere 9.5 are installed and the supporting
ODBC drivers for Oracle and DB2 are in place in appropriate computers. Oracle
10 and SQL Server 2005 server and client software are installed where necessary.
For example, since Federation Server needs access to Oracle client, the software
must be installed on C3.

2. There is a spreadsheet called Grant loaded with the information from Table 12.3
stored in C4. This sheet is called “Grant.xls.”

TABLE 12.3 The Grant Spreadsheet

Gname EmpID Budget

DD_Design 1 1000
Fed. Database 1 2000
Online teaching 3 3000
Grid Technology 3 4000
XML in databases 4 5000
Distributed System

Development
2 6000
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TABLE 12.4 The Child Table

Cname EmpID Age

Omeed 1 23
Leela 1 21
Jack 3 19
Jill 3 20
Sam 4 15

TABLE 12.5 The Emp_Name_Access Table

EmpID Ename

1 Rahimi
2 Haug
3 Jones
4 Paul

TABLE 12.6 The Emp_Sal_GT5K Table

EmpID Sal

1 7500
4 8100

3. There is an Oracle database on C2 called “SEIS733.” This database has a table
called “Child” populated with the information from Table 12.4. This database also
has a table called “Emp_Sal_GT5K” loaded with information from Table 12.6.

4. There is an Access database on C1 called “DB1.MDB.” This database has a table
called “Emp_Name_Access” properly loaded with data from Table 12.5.

5. There is a DB2 database called “DB2DB” running in C3. This database has a table
called “Emp_Name_DB2” also loaded with the information from Table 12.5.
Based on this distribution, the DB2 table (Emp_Name_DB2) and the Access
table (Emp_Name_Access) are copies of each other.

6. There is also an Access database in C4 called “DB4.MDB.” This database has a
table called “Emp_Sal_LE5K” loaded with data shown in Table 12.7.

12.8.4 Setting Up Data Source Names

Both Microsoft Access and InfoSphere Federation Server have the capability to use the
native data source client interface when it is available. For example, Federation Server
can use Net8 to connect to an Oracle database and DBLib to connect to an SQL Server
database. Similarly, Microsoft Access can connect directly to another Access database
or to information stored in Microsoft Exchange Server. In the absence of such a native
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TABLE 12.7 The Emp_Sal_LE5K Table

EmpID Sal

2 4800
3 5000

interface, the ODBC interface can be used. In this section, we will create the data
sources required for the experiment. Note that all these data sources are machine data
sources and not user data sources. This allows any user who logs into the computer
to run the experiments. Each data source is identified by a data source name (DSN),
which is specified as part of the data source configuration steps that follow.

Define the DSN for the Emp_Name_Access Table in the “DB1.MDB” Access
Database

• Open Start → Settings → Control Panel → Administrative Tools → Data Sources
(ODBC).

• Make sure you click on the “System DSN” tab.
• Click on the “Add” button.
• Choose Microsoft Access Driver (*.mdb).
• Click on the “Finish” button.
• In the “Data Source Name” field, type “Emp_Name_Access_DNS” (without the

quotes).
• Click on the “Select” button.
• Traverse to the directory where the “DB1.MDB” file is located and select it.
• Click on the “OK” button in the file browser dialog.
• Click on the “OK” button in the other dialog.
• The DSN is now added. Click on the “OK” button to close the ODBC dialog.

Define the DSN for the Emp_Sal_LE5K Table in the Access DB4.MDB
Database

• Open Start → Settings → Control Panel → Administrative Tools → Data Sources
(ODBC).

• Make sure you click on the “System DSN” tab.
• Click on the “Add” button.
• Choose Microsoft Access Driver (*.mdb).
• Click on the “Finish” button.
• In the “Data Source Name” field, type “Emp_Sal_LE5K_DNS” (without the

quotes).
• Click on the “Select” button.
• Traverse to the directory where the “DB4.MDB” file is located and select it.
• Click on the “OK” button.
• Click on the “OK” button again.
• The DSN is now added. Click on the “OK” button to close the ODBC dialog.
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Define the DSN for the Child Table in the Oracle SEIS733 Database

• Open Start → Settings → Control Panel → Administrative Tools → Data Sources
(ODBC).

• Make sure you click on the “System DSN” tab.
• Click on the “Add” button.
• Choose Oracle—OraDb110g_home1 and click on the “Finish” button.
• In the dialog that opens, fill in the following:

For the Name of the data source, type “Child_DNS” (without the quotes).
Under the TNS Service Name, choose SEIS733 (in our case, the service name

is also SEIS733).
Under the user ID, type the name of the user you used to create the table Child

(SKR in my case).
• Click on the “Test connection” button.
• Enter the password for the user and then click on the “Test” button.
• Make sure it worked!
• Click on the “OK” button.

Define the DSN for the Emp_Sal_GT5K Table in the Oracle SEIS733
Database

• Open Start → Settings → Control Panel → Administrative Tools → Data Sources
(ODBC).

• Make sure you click on the “System DSN” tab.
• Click on the “Add” button.
• Choose Oracle—OraDb110g_home1 and click on the “Finish” button.
• In the dialog that opens, fill in the following:

For the Name of the data source, type “Emp_Sal_GT5K” (without the quotes).
Under the TNS Service Name, choose SEIS733 (in our case, the service name

is also SEIS733).
Under the user ID, type the name of the user you used to create the table Child

(SKR in my case).
• Click on the “Test connection” button.
• Enter the password for the user and then click on the “Test” button.
• Make sure it worked!
• Click on the “OK” button.

Define the DSN for the Emp_Name_DB2 Table in the DB2 Database

• Open Start → Settings → Control Panel → Administrative Tools → Data Sources
(ODBC).

• Make sure you click on the “System DSN” tab.
• Click on the “Add” button.
• Choose IBM DB2 ODBC DRIVER—DB2COPY1.
• Click on the “Finish” button.
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• Type “Emp_Name_DB2_DNS” (without the quotes) for the data source name.
• Under Database Alias choose DB2DB.
• Click on the “OK” button.

Define the DSN for the “Grant” Excel Spreadsheet in Computer 4

• Open Start → Settings → Control Panel → Administrative Tools → Data Sources
(ODBC).

• Make sure you click on the “System DSN” tab.
• Click on the “Add” button.
• Choose Microsoft Excel Driver (*.xls).
• Click on the “Finish” button.
• Type “Grants_DNS” (without the quotes) for the data source name.
• Click on the “OK” button.
• Click on the “OK” button again.

12.8.4.1 Linking Data Sources into Access This step is required to link the tables
and Excel spreadsheet outside Access (DB1 on C1).

Linking to the Grant Excel Spreadsheet on C4

• Linking an Access database to an Excel spreadsheet that resides on a different
machine requires setting up a mapped network drive on the remote system. In
our setup, we need to link the Excel spreadsheet named “Grant.xls,” which is
located on C4, to the Access database named “DB1.MDB,” which is located on
C1. We assume there is a mapped drive on C1 called “C4Drive” that points to
the directory with this sheet in it. Linking Access to an Excel spreadsheet cannot
be done via ODBC and must be done using the native interface to Excel.

• Open up the Access database “DB1.MDB” (if it is not open already).
• Choose File →Get External Data→ Link Tables.
• In the “Look in” field, type “C4Drive:\ Grants.xls” (without the quotes) or browse

to the directory and choose the file.
• For “Files of Type,” scroll down and choose Microsoft Excel (*.xls)—you cannot

use ODBC here.
• Click on the “Link” button.
• Make sure that the checkbox for “First row contains column headings” is checked.
• Click on the “Next” button.
• For the name of linked table type “Grants_Sheet” (without the quotes).
• Click on the “Finish” button.
• The “Grant” spreadsheet is now linked as a table called “Grants_Sheet” (without

the quotes).
• Double click on this table to see its contents.

Linking to the Emp_Sal_LE5K Table in Access on C4

• Open up the Access database if not open already.
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• Choose File → Get External Data → Link Tables.
• Scroll all the way down in the “Files of Type:” and choose ODBC Databases().
• Click on the “Machine Data Source” tab.
• Choose “Emp_Sal_LE5K_DSN.”
• Click on the “OK” button.
• The “Emp_Sal_LE5K” table from Access is now linked.
• Double click on it to see its contents.

Linking to Child Table in Oracle on C2

• Open up the Access database if not open already.
• Choose File → Get External Data → Link Tables.
• Scroll all the way down in the “Files of Type:” and choose ODBC Databases().
• Click on the “Machine Data Source” tab.
• Choose “Child_DNS.”
• Type in your Oracle user_name and password and click on the “OK” button.
• Choose the “UserName.Child” table (in our case “skr.Child”).
• Click on the “OK” button.
• The table with the name “SKR_Child” in Access is now linked to the Child table

in Oracle.
• Right click on it and rename it Child.
• Double click on it to see its contents (when asked, put in your Oracle credentials).

Linking to the Emp_Sal_GT5K Table in Oracle on C2

• Open up the Access database if not open already.
• Choose File → Get External Data → Link Tables.
• Scroll all the way down in the “Files of Type:” and choose ODBC Databases().
• Click on the “Machine Data Source” tab.
• Choose “Emp_Sal_GT5K_DSN.”
• Put in your Oracle user_name and password and click on the “OK” button.
• Choose the “UserName.Emp_Sal_GT5K” table (in our case “skr.Emp_Sal_

GT5K”).
• Click on the “OK” button.
• The “Emp_Sal_GT5K” table from Oracle is now linked to Access as the

“SKR_Emp_Sal_GT5K” table.
• Right click on it and rename it “Emp_Sal_GT5K.”
• Double click on it to see its contents (when asked, put in your Oracle credentials).

Linking to the Emp_Name_DB2 Table in DB2 on C3

• This is not really required since we have a copy of the same table in Access. We
outline the steps here for completeness.

• Open up the Access database if not open already.
• Choose File → Get External Data → Link Tables.
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Figure 12.26 The contents of the Access database“DB1.MDB.”

• Scroll all the way down in the “Files of Type:” and choose ODBC Databases().
• Click on the “Machine Data Source” tab.
• Choose “Emp_Name_DB2_DNS.”
• Provide your DB2 user name and password and click on the “OK” button.
• Choose the “UserName.Emp_Name_DB2” table (in our case “SAEED.Emp_

Name_DB2”).
• Click on the “OK” button.
• The table is linked as “SAEED_Emp_Name_DB2.”
• Since we are going to use the table “Emp_Name_DB2” in our queries, right click

on the “SAEED_Emp_Name_DB2” table and choose Rename.
• Change the name to “Emp_Name_DB2.”
• Double click on it to see its contents (when asked, put in your DB2 credentials).

When all the steps listed above have been successfully completed, the Access
database “DB1.MDB” will have all the tables shown in Figure 12.26 in it. As seen
from this figure, only table “Emp_Name_Access” is a local table. All other tables are
linked from outside Access, as was expected. This fact is indicated by an arrow next
to the table name that is linked from outside Access.

12.8.5 Linking Data Sources into Federation Server

The InfoSphere Federation Server uses wrapping technology to connect to different data
sources. A wrapper allows you to connect to different types of data sources. The Fed-
eration Server provides two types of wrappers: relational wrappers and nonrelational
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wrappers. Relational wrappers let you manipulate data in other relational databases
such as DB2, Oracle, or Microsoft Access. Nonrelational wrappers support retrieving
data from nonrelational data sources such as flat files (e.g., comma-delimited) or XML
sources. A wrapper maps the data outside the Federation Server to a nickname in DB2.
As explained earlier, a nickname is a table-like object or an alias in DB2 for data that
resides remotely. This is similar to mapping data sources into a Microsoft Access
database with one exception. When using the nonrelational wrappers in the Federation
Server to access nonrelational data sources (e.g., using the Excel wrapper to retrieve
data from MS Excel spreadsheets), we have to specify the mappings of the data source
column names to our nickname columns. However, some nonrelational data sources
(e.g., Microsoft Excel, flat files) can be accessed using the ODBC wrapper, which is
a relational wrapper, and thus column mapping will be performed automatically. We
also have to specify the credential for the remote user to connect to the data source.

In order to retrieve data from a data source, Federation Sever follows a four-step
process:

• Wrapper definition
• Server definition
• User mappings definition
• Nickname definition

We will first retrieve data from the Excel spreadsheet to get the Grant information.

12.8.5.1 Creating the Nickname for the Excel Spreadsheet on C4 InfoSphere
Federation Server provides two mechanisms for accessing an Excel spreadsheet. One
is based on the ODBC interface and uses the ODBC wrapper (relational wrapper).
The other is based on the Microsoft Excel application interface and uses the Excel
wrapper (nonrelational wrapper). We will use the Excel wrapper here.

Steps to Create a Nickname for an Excel Spreadsheet

• Launch the Federation Server administration conceal (DB2 Control Center).
• In the “All Databases” expand the database “DB2DB.”
• Right click on the “Nicknames” button and select “Create.”
• After the “Create Nicknames” wizard comes up, click on the “Next” button.
• In the “Specify the data source and the wrapper” panel, select the “Microsoft

Excel” data source type from the drop down and click on the “Create” button.
• For wrapper name type in “Excel” and click on the “OK” button.
• In the “Specify the data source and the wrapper” panel, highlight the wrapper

name we just created and click on the “Next” button.
• In the “Specify the Server Definition for the data source” panel, click on the

“Create” button.
• Specify the server name where our Excel spreadsheet is located. Since the sheet

in on C4 and IBM Federation Server is on C3, we assume there is a mapped drive
on the system where the Excel spreadsheet is located that refers to the Federation
Server machine. Here, we’ll assume the mapped drive for C4 is named “C4Drive.”
In this case, we will use the name of the local server as the server name (in our
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case, “gateway”). Note that the server name specified in this step is a logical name
and can have any value regardless of the actual machine name.

• Click the “OK” button.
• In the “Specify the Server Definition for the data source” panel, highlight the

server we just created and click on the “Next” button.
• In the “Define Nicknames” panel, click on the “Add” button and type “Grant_NN”

for the nickname.
• Click on the “Add” button in the “Add Nickname” dialog box and specify the

columns names and their data types, the same as we specified in the Excel data.
• In the “Add Nickname” dialog box, click on the “Settings” tab.
• For the “FILE_PATH” option, type “C4Drive:\Grants.xls” in the value field.
• Leave the “Range” option unchecked.
• Click on the “OK” button.
• In the “Define Nicknames” panel, click on the “Next” button.
• Click on the “Finish” button.
• The nickname “grant_nn” in Federation Server database (i.e., the DB2 database)

now refers to the Excel spreadsheet on Computer 4. To test it out, right click
on the nickname and choose “Open” from the context menu. We should have a
table with six (6) rows and three (3) columns. If there are any errors, go back
and check what was done for each step.

12.8.5.2 Creating the Nickname for the “Empl_Sal_LE5K” Table For interfacing to
Microsoft Access databases, Federation Server uses ODBC. In this example, we will
take a different route from the one we used for Excel to create the mapping. Instead
of using the “Create Nickname” Wizard, which guides us through the steps to retrieve
data from a data source, we will perform these steps one-by-one: first, we define an
ODBC wrapper to the Federation Server; second, we add a server definition for our
ODBC data source (which is the Microsoft Access database “DB4.MDB”); third, we
define a user mapping from the local user to the remote user; and lastly, we define a
nickname.

Registering the ODBC Wrapper

• Note: If we have already created an ODBC wrapper, we can skip this part.
• Launch the DB2 Control Center if it is not open already.
• In the “All Databases” expand the database named “DB2DB.”
• Traverse to the “Federated Database Objects” entry.
• Right click on this entry and then choose the “Create Wrapper” button.
• In the dialog that opens, under the data source field, choose “ODBC.”
• Click on the “OK” button.

Registering a Server Definition for the ODBC Wrapper

• Expand the ODBC wrapper we just created.
• Right click on the “Server Definitions” folder and choose the “Create” menu item.
• In the dialog that opens, click on the “Discover” button.
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• Click on the “Uncheck All” button.
• Find the DSN called “Emp_Sal_LE5K.”
• Put a check mark on the check box under the “Create” field for this data source.
• Click on the “OK” button.

Creating User Mapping and Nickname for This Server Definition

• Expand the server definition you just created; it should be named “Emp_Sal_
LE5K.”

• Right click on the “User Mappings” folder and choose “Create.”
• In the dialog that opens, select your Federation Server user name and click on

the “>” button.
• Click on the “Settings” tab.
• Type in your Microsoft Access user name and password.
• Click on the “OK” button. User mapping is now added.
• Right click on the “Nicknames” folder and choose “Create.”
• In the dialog box “Create Nicknames,” click on the “Add” button.
• For nickname type “Emp_Sal_LE5K_NN,” leave Remote schema name blank.
• For Remote table name, type “Emp_Sal_LE5K.”
• Click on the “OK” button.
• The nickname “Emp_Sal_LE5K_NN” in DB2 database now refers to the table

“Emp_Sal_LE5K” in the “DB4.MDB” Access database on Computer 4. To test
it out, right click on it and choose Open. We should have a table with two rows
and two columns. If there are any errors, go back and check your steps.

12.8.5.3 Creating the Nicknames for Emp_Sal_GT5K and Child InfoSphere Feder-
ation Server provides a specific wrapper for Oracle that is customized for accessing
Oracle databases. The wrapper is referred to as the Oracle wrapper and uses Oracle
native client protocol (i.e., Oracle OCI) when accessing Oracle databases. Another
alternative to accessing Oracle databases is to use the ODBC wrapper, which relies on
Oracle’s ODBC interface. Since the ODBC wrapper is a generic wrapper that is not
customized for a specific type of data source, we will use the Oracle wrapper instead.
The following steps are based on the Oracle wrapper, which requires the installation
of an Oracle client on the Federation Server machine (on C3).

Registering the ODBC Wrapper

• Launch the DB2 Control Center if not open already.
• In the “All Databases” expand the database “DB2DB.”
• Traverse to “Federated Database Objects.”
• Right click on it and then choose “Create Wrapper.”
• In the dialog box that opens, under data source field, choose “Oracle using OCI 8.”
• Click on the “OK” button.
• Note: The wrapper is now created for working with Oracle using the Oracle

OCI (also known as Net8) communication interface. When creating the wrapper,
Federation Server needs to know where Oracle is installed—what is known as
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“Oracle Home.” If this environment variable is set in your computer, it will be
used automatically. To see this, right click on the Net8 wrapper and then choose
“Alter.” In the dialog, click on “Set variables.” The “Set environment variables”
dialog comes up. If the checked box with the variable name “Oracle Home” in
it appears, we are done. Otherwise, enter the full path to where Oracle client is
installed in the Federation Server machine. As mentioned earlier, the Oracle client
has to be installed on the computer where the Federation Server is installed.

Registering a Server Definition for the Net8 Wrapper

• Expand the Net8 wrapper you just created.
• Right click on the “Server Definitions” folder and choose “Create.”
• In the dialog that opens, click on the “Discover” button.
• Click on the “Uncheck all” button.
• Find the TNSName for the Oracle database where the “Emp_Sal_GT5K” is (in

our case, SEIS733).
• Put a check mark on the check box under the “Create” file for this database.
• Under the Version field, click on the “Select” button, and then choose the version

of Oracle being used (in our case, 10g).
• Click on the “OK” button.

Creating User Mapping and Nickname for This Server Definition

• Expand the server definition you just created; in our case, it is named SEIS733.
• There should be four folders: User mappings, Nicknames, Federated stored pro-

cedures, and Remote table.
• Right click on the “User mappings” folder and choose “Create.”
• In the dialog that opens, select the Federation Server user name and click on the

“>” button.
• Click on the “Settings” tab.
• Type in your Oracle user name and password as values for “REMOTE_AUTHID”

and “REMOTE_PASSWORD” fields.
• Click on the “OK” button. The user mapping is now added.

Once the user mappings for the “Emp_Sal_GT5K” and the “Child” tables are cre-
ated, the following steps are used to create nicknames for them in the Federation
Server.

Creating the Nickname for the Emp_Sal_GT5K Table

• Right click on the “Nicknames” folder and choose “Create.”
• In the dialog “Create Nicknames,” click on the “Add” button. (For an alternative

approach, see the note at the end of these steps.)
• For the “Nickname,” type “Emp_Sal_GT5K_NN” (without the quotes).
• For “Remote schema,” enter the schema name in the Oracle database where the

tables “Emp_Sal_GT5K” and “Child” reside (note that the remote schema name
is in all uppercase, SKR in our case).
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• Enter “EMP_SAL_GT5K” (in all uppercase without the quotes) as the “Remote
table name.”

• Click on the “OK” button.
• The nickname “Emp_Sal_GT5K_NN” in the Federation Server database now

refers to table “Emp_Sal_GT5K” in the Oracle database on Computer C2. To
test it out, right click on it and choose “Open.” You should have a table with two
rows and two columns. If there are any errors, go back and check your steps.

• Note: Instead of creating nicknames individually (by using the “Add” button) or
when the remote schema and table names are unknown, one can use the “Dis-
cover” button in the “Create Nicknames” dialog to browse through tables and
views that reside in the Oracle database. This option is convenient when creating
multiple nicknames.

Creating the Nickname for the Child Table

• Right click on the “Nicknames” folder and choose “Create.”
• In the dialog “Create Nicknames,” click on the “Add” button.
• For “Nickname,” type “Child_NN”(without the quotes).
• For “Remote schema,” enter the Oracle schema name where the “Child” table

resides (note that the name is in all uppercase, SKR in our case).
• Enter “CHILD” (in all uppercase without the quotes) as the “Remote table name.”
• Click on the “OK” button. If your schema and table name are correct, the Feder-

ation Server finds the table in the proper schema and displays it. If not, go back
and enter the correct information.

• Click on the “OK” button.
• The nickname “Child_NN” in the Federation Server database now refers to the

table “Child” in the Oracle database on Computer C2. To test it out, right click on
it and choose “Open.” You should have a table with two rows and two columns.
If there are any errors, go back and check your steps.

Although we used DB2’s Control Center to create the wrapper definitions, the server
definitions, and the nicknames interactively using the GUI interface, the process is a
lot more straightforward using the Command Window interface for DB2. We urge
readers interested in using the command line interface to consult the Federation Server
manuals. Once we have successfully completed the above steps, we have a native DB2
table called “Emp_Name_DB2” and the four nicknames as shown in Figure 12.27. At
this point, both the Microsoft Access and IBM Federation Server environments are
ready for starting the experiments.

12.8.6 The Experiments

Our experiments consisted of a set of queries and a set of modification statements
(update, insert, and delete), which we ran against the distributed database. The same
commands were run in Access and in Federation Server and the results were compared.
The first set of queries used a single table on a computer (either remote or local). The
second set of queries used fragments of a table stored at different computers. The mod-
ification statements were also run against the same type of tables (nondistributed and
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Figure 12.27 DB2 database contents.

distributed). We used the “Command Editor” in the DB2 Control Center for working
with the objects in the Federation Server and used the query interface for working with
objects in Access.

12.8.7 Querying the Database from Access and Federation Server

The following are queries for the experiment:

Query 1: Print the names of all employees in the database. Figure 12.28a shows
the results for Federation Server and Figure 12.28b shows the results for Access.
The queries in this case are local queries against a single table.

Query 2: Print the names of all employees and the names of their children. This
is a two-site query against two nonfragmented tables. Figures 12.29a and 12.29b
show the results from Federation Server and Access, respectively.
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Figure 12.28 Single-site queries.

Figure 12.29 Two-site queries.

Query 3: Print the names of all employees, the grants they work on, the names of
their children and their salaries. This is a four-site query that uses all the tables
and fragments in the system. This can be done in a couple of different ways.
For Federation Server, we used an inline view to union the rows from the two
vertical tables that hold the salaries for the employees and then joined all the
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Figure 12.30 Federation Server and Access multisite queries.

fragments together to arrive at the answer. The query for Federation Server is
shown in Figure 12.30a. For Access, on the other hand, the inline view concept
causes problems. We chose to create a query called “Emp_Sal”—in Access
views are called “queries”—and then used this query to get the results as shown
in Figures 12.30b and 12.30c. The results are displayed in Figure 12.31.

12.8.8 Modifying the Database from Access and Federation Server

We also ran a set of single-site and multisite modification statements from Access
and Federation Server. The modifications included update, insert, and delete. We ran
the commands first from Access and then from Federation Server. To make sure the
database was restored to the original state, after running a command from Access, we
compensated for it before we ran the same commands from Federation Server. For
example, after inserting a row from Access, we deleted it to be able to reinsert it from
DB2.

The following are modification statements for the experiment:

1. In this experiment, we try to update a single remote Access table and then a
remote Oracle table. Table 12.8 shows the commands and the results for this
experiment. Both Access and Federation Server handle this case easily.
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Figure 12.31 Results of multisite queries.

TABLE 12.8 Single Remote Table Update

Target Table Command Ran Results

Target is a remote
Access table

Update issued from Access

update Emp_Sal_LE5K
set sal = 4850
where EmpID = 2;

Succeeded

Update issued from DB2

Update Emp_Sal_LE5K_NN
set sal = 4850
where EmpID = 2;

DB20000I, the SQL command,
completed successfully

Target is a remote
Oracle table

Update issued from Access

update Emp_Sal_GT5K set
sal = 8000
where EmpID = 1;

Succeeded

Update issued from DB2

Update mp_Sal_GT5K_NN
set sal = 8000
where EmpID = 1;

DB20000I, the SQL command,
completed successfully

2. In this experiment, we try to run an update against a remote Excel spreadsheet.
Table 12.9 shows the commands and the results for this experiment. Both Access
and Federation Server fail to support this. According to Microsoft, the capability
to modify linked Excel spreadsheets has been disabled in Access for legal rea-
sons. This applies to Access 2002, Access 2003, and Access 2007 (see article
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TABLE 12.9 Update Against a Remote Excel Spreadsheet

Target Table Command Ran Results

Target is a remote
Excel spreadsheet

Update issued from Access

update Grants
set Budget = 5500
where EmpID = 4;

Not allowed

Update issued from DB2

update Grant_NN
set Budget = 5500
where EmpID = 4;

No updates were allowed to Excel
spreadsheet rows

number 904953, September 17, 2007, Revision 7.1 on the Microsoft web site). In
Federation Server, inserts and updates are allowed against the target sheet when
the wrapper is based on ODBC. No modifications are allowed when Federation
Server uses a native Excel wrapper, which is what we used.

3. In the third experiment, we try to insert a new row into a remote Access table
and then into a remote Oracle table. Table 12.10 shows the commands and results

TABLE 12.10 Single Remote Table Insert

Target Table Command Ran Results

Target is a remote
Access table

Insert issued from Access

Insert into Emp_Sal_LE5K
values (5, 3000);

Delete from Emp_Sal_LE5K
where EmpID = 5;

Succeeded

Insert issued from DB2

Insert into
Emp_Sal_LE5k_NN values
(5, 3000);

DB20000I, the SQL
command,
completed
successfully

Target is a remote
Oracle table

Update issued from Access

Insert into Emp_Sal_GT5K
values (6, 6000);

Delete from Emp_Sal_GT5K
where EmpID = 6;

Succeeded

Update issued from DB2

Insert into
Emp_Sal_GT5k_NN values
(6, 6000)

DB20000I, the SQL
command,
completed
successfully
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TABLE 12.11 Single Remote Table Delete

Target Table Command Ran Results

Target is a remote
Access table

Delete issued from Access

delete from Emp_Sal_LE5K
where EmpID = 5;
Insert into Emp_Sal_LE5K
values (5, 3000);

Succeeded

Delete issued from DB2

delete from
Emp_Sal_LE5K_NN where
EmpID = 5;

DB20000I, the SQL
command,
completed
successfully

Target is a remote
Oracle table

Delete issued from Access

delete from Emp_Sal_GT5K
where EmpID = 6;

Insert into Emp_Sal_GT5K
values (6, 6000);

Succeeded

Delete issued from DB2

delete from
Emp_Sal_GT5K_NN where
EmpID = 6;

DB20000I, the SQL
command,
completed
successfully

for this experiment. Note that we delete the row we added from Access before
we try to add it again from DB2.

4. Now we try to delete the Salary row we added for employees 5 and 6. Table 12.11
shows the commands and the results. Again, to make sure we undo the delete
we performed from Access, we reinsert the row before deleting it from Feder-
ation Server. Both Access and Federation Server handle the single table delete
easily.

5. Multitable modification statements in SQL are not allowed. Instead, we have to
create a view that uses unions, joins, or both to bring the tables together and
then apply update, insert, and delete to it. Creating a complete view of employee
information requires using all tables we have. We are going to use an inner join
and therefore will be leaving out those employees who do not have children.
Also, since we know that modifications to the Excel spreadsheet are not allowed
by Access linked tables and via the Excel wrapper by Federation Server, we will
not include the Grants sheet in this experiment. The view that we need to create
is the one we used previously for Query 3, except that we need to leave out
grant information as shown below. Neither Federation Server nor Access allows
update, delete, or insert statements against multiple table views.
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Access View:
Emp_Sal Query:
((select sal, EmpID from emp_sal_le5k)
union
(select sal, EmpID from emp_sal_gt5k));

SELECT E.Ename, C.CNAME, S.sal
FROM Emp_Name_Access AS E, Child AS C, Emp_Sal AS S
WHERE (((E.EmpID)=C.Empid And (E.EmpID)=S.EmpID));

Federation Server View:
create view EMP(EmpID, Ename, Cname, sal) as
select E.EmpID, E.Ename, C.Cname, S.Sal
from Emp_Name_DB2 E, Child_NN C,
((select sal, EmpID from emp_sal_le5k_NN)
union
(select sal, EmpID from emp_sal_gt5k_NN)) as s
where E.EmpID = C.Empid AND E.EmpID = S.EmpID;

12.9 SUMMARY

In this chapter, we reviewed architectures for managing distributed databases. We cate-
gorized these systems, which we generically called DDBEs, as DDBMSs—systems that
are designed and developed top–down and provide total visibility and controls—and
MDBSs—systems that are designed and developed bottom–up and provide partial
visibility and control. We further classified MDBSs into two groups called federated
databases (FDBs) and nonfederated databases (NFDBs). We discussed issues in design-
ing and developing the top–down and bottom–up systems. Challenges in software
and schema integrations for MDBSs were also pointed out. In the last section of this
chapter, we introduced two commercial products that help in integrating heterogeneous
database systems and compared their functionality.

12.10 GLOSSARY

Auxiliary Database A database that contains translation, mapping, and integration
information for a federated database.

Bottom–Up A methodology that creates a complex system by integrating system
components.

CODASYL A DBMS standard that uses a network data model.
Commercial Off-the-Shelf (COTS) Any piece of commercially available software.
Data Accessor (DA) A service in a DBE that enables a user to access information

under the control of the DBE.
Data Getter (DG) A service in a DBE that enables a user to read information under

the control of the DBE.
Data Source Name (DSN) An alias given to a data source using the open database

connectivity (ODBC).
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Database Environment (DBE) A collection of one or more DBs along with any soft-
ware providing at least the minimum set of required data operations and management
facilities.

Distributed Database Environment (DDBE) A collection of one or more DBs along
with any software providing at least the minimum set of required data operations
and management facilities capable of supporting distributed data. A DDBE can also
be a collection of dispersed software services or components that control access to,
and modification of, data in a database.

Distributed Database Management System (DDBMS) A term with two interpre-
tations: it either refers to a specific DDBE environment that is built top–down, or
to a generic environment we will refer to as a “DDBE” instead.

Export Schema A portion of a database schema that a DBA shares with the systems
outside the DBA’s control.

Federated Database (FDB) A specific DDBE that is built bottom–up.
Global Conceptual Schema (GCS) An integration of schemas from two or more

databases’ local conceptual schemas.
Global Data Dictionary (GDD) The portion of global conceptual schema that con-

tains dictionary information such as table name, column names, or view names.
Global Transaction Manager (GTM) A service or component that handles transac-

tions that need to access data on multiple data sources.
Linked Table A table that resides outside the Microsoft Access DBMS and is acces-

sible from within Access.
Local Conceptual Schema The conceptual schema of a system that pertains to the

data inside the local system.
Local Transaction Manager (LTM) A transaction manager that only handles a local

transaction.
Multidatabase (MDB) A DDBE that consists of a number of existing and possibly

heterogeneous DBEs.
Nonfederated Database (NFDB) A federated database in which the local DBEs do

not support any request from outside the federation.
Nickname An alias given to a data source outside IBM’s InfoSphere Federation

Server.
ODBC The open database connectivity standard that enables creation of uniform

code across different data sources and types.
Schema Integration The act of integrating local conceptual schemas of the compo-

nent database systems into a cohesive global conceptual schema.
Schema Translation The act of translating the conceptual schemas of heterogeneous

databases into a uniform model such as ER or relational.
Top–Down A database design methodology that starts with the requirements of a

distributed system (the global conceptual schema) and creates its local conceptual
schemas.

Unified Schema An integrated, nonredundant, and consistent schema for a set of
local database systems.
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Wrapper A software component that wraps a data source and provides a uniform
interface to the outside world by hiding the specifics of its representation and com-
mand interface.
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EXERCISE

Provide short (but complete) answers to the following question.

12.1 Map each of the following three schemas (shown in Figure 12.32) to ER and
then integrate them into a minimal and complete integrated database.

Student (Name, GPA, Dept_name)
Dept (Dept_Name, Budget)
Where Dept_Name is primary key of Dept and foreign key.

Name

Dept

Name

Grad_Student

GPA

(a) Relational Database

Has
(a) Network Database

Faculty Dept
1M

SalaryName Name

Rank

(a) ER Database

Works

Figure 12.32 Example databases to be integrated for Exercise 12.1.
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NEW DDBE ARCHITECTURES

In this chapter, we will discuss two new architectural alternatives for implementing a
distributed database environment (DDBE). When these architectures were first intro-
duced, their names used the traditional nomenclature (DDBMS); in this book, the term
“DDBE” is used instead. These two alternatives have several things in common with
each other. In particular, both are attempts to implement an environment that is more
dynamic (with respect to deployment details) than the traditional DDBE alternatives
we discussed in Chapter 12. The first architecture is called the cooperative distributed
database environment (COOP) [Rahimi07a] and the second is called the peer to peer
distributed database environment (P2P) [Rahimi07b]. After we have discussed each
of these architectures, we will explore the similarities and differences between them
and then discuss the similarities and differences between these two architectures and
the traditional architectures discussed in Chapter 12.

13.1 COOPERATIVE DDBEs

The first approach we are going to explore in this chapter is the cooperative distributed
database environment (COOP). The primary motivation for this architecture came
from various cooperative systems that started to gain popularity in the late 1990s
and early 2000s. Although cooperative systems can be used for various tasks, and all
cooperative systems will have some aspects in common, the primary motivation for the
COOP is in the similarities that exist between a set of cooperative DDBE subsystems
and a set of cooperative systems designed to share content. These content-sharing
systems typically share streams of music or some other type of electronic file content
over a loosely controlled and extremely dynamic system environment [Ripeanu01].
Each of these environments consists of a set of systems, which in turn combine to
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form a loosely coupled network. Often, one or more components or subsystems
(COSs) will act as a directory or communication switchboard for the loosely affiliated
network nodes currently connected to a particular environment. Some of these nodes
will provide content, while others will be seeking to consume content. The nodes in
these networks can operate over an extremely dynamic environment (i.e., an intranet
or even the Internet/World Wide Web). These systems also provide a very resilient and
efficient distribution mechanism for the content being shared.

If we consider the environment from the content consumer node’s point of view,
it begins its participation with the system by sending out a request message to the
environment. This request message typically contains query criteria for a particular
piece of desired content. Each provider node that is capable of supplying the content
responds to the request—if it is connected to the environment at that time and available.
Often, there are multiple provider nodes available and even multiple renditions or
versions of the same content available at the same time in the environment. When this
situation occurs, the consumer node can select the provider node it wishes to use.

If we consider the environment from the content provider node’s point of view, par-
ticipation in one of these networks of content-sharing systems is usually a relatively
simple and easy process. Although there is some communication overhead (perhaps
registering with or connecting to the switchboard system), there is usually not a rigid
control structure or an overly complex protocol to follow in order to join the envi-
ronment. Each provider node can freely enroll in the network, provide its content to
any consumers in the environment that wish to receive it, and then exit the network
gracefully whenever the provider decides that it no longer wishes to participate in the
network. These enrollment and exit activities can occur frequently and haphazardly
based on the idiosyncratic whims of the provider nodes and consumer nodes without
any complicated reconfiguration or shutdown/restart process required. Obviously, exit
activities should attempt to be graceful whenever possible, but otherwise the exit pro-
cess can be very simple and hassle-free. In a graceful exit for a provider node, the
exiting provider node should deny requests for future connections and wait for existing
connections to complete before exiting. In a graceful exit for a consumer node, the
exiting consumer node should close all the connections to its providers before exiting
the network.

In some implementations, each provider includes self-ranking metadata in the
response it provides to the initial request. This metadata can describe conditions at the
provider (such as the current number of transfers, the current number of connections
available, etc.) and can also include details that describe the content being provided
(such as the file size, creation date, modification date, and other similar details about
the data content and data quality). Additional metadata can be calculated from these
details, such as the estimated transfer rate and the relative distance between the
consumer node and the provider node. All of this metadata is intended to help the
client choose from the list of currently active providers for a given set of content. In
most cases, the consumer node is able to build a prioritized list of providers for the
desired content. This list is built using the provider-supplied self-ranking metadata
and a flexible combination of both automatic and user-influenced strategies. This also
allows the client to automatically switch to the next most desirable provider if it is
unable to complete the transfer with a particular provider for any reason.

The COOP system is an attempt to provide the same sense of loosely coupled
cooperation that other non-DBE systems have demonstrated—but rather than forming
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Figure 13.1 A typical COOP deployment.

environments using networks of cooperating systems in order to provide the function-
ality of a file server or web server, the COOP architecture is intended to provide the
functionality of a DBE. Historically, the components in a DDBE are rather tightly
coupled; altering the deployment details for any particular COS is not a trivial task in
these traditional environments. In order to achieve the desired level of decoupling, the
components and subsystems in the COOP need to be designed differently. For sim-
plicity, we will refer to these parts of the COOP environment as subsystems—even
though some subsystems are often implemented as a single component.

13.1.1 Subsystems Overview

Figure 13.1 shows a typical deployment of the COOP environment. In this example,
there is a single client subsystem instance (“Client-A”) deployed at Site A, a single dis-
tributed query service provider (DQSP) subsystem instance (“DQSP-B”) deployed
at Site B, and a single data dictionary service provider (DDSP) subsystem instance
(“DDSP-C”) with its associated global interface schema (GIS) instance deployed at
Site C. Sites D and E are identical with respect to the number of component and
subsystem instances deployed at each site—at each site there is a single local query
service provider (LQSP) subsystem instance deployed along with a single instance
of a local deployment schema (LDS) for that site. At each site, there is also a single
instance of a Sub-DBE (S-DBE), which we refer to as a local database environment
(LDBE), deployed along with the local databases (LDBs) that it contains and controls.
This is merely a simple example deployment: an actual deployment in the real world
could have many more clients, service providers, and DBEs, but this diagram should
be sufficient for our discussions in this chapter.

The subsystem instances in the COOP database environment can be heterogeneous
or homogenous. For example, LDBE-D might be a relational database management
system (RDBMS) while LDBE-E could be either the same RDBMS package, a differ-
ent RDBMS package, or a non-RDBMS based DBE. Usually, the DBEs will depend
on existing system deployment details while the various service provider subsystems
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are more likely to be multiple instances of the same package. Each deployed LDS
instance contains only the details about the DDBE constructs deployed at that particu-
lar LDBE site, and only the details that pertain to the LDB used to deploy it. Because
the LDS is focused on such a narrow set of details, the LDBE instances can be very
loosely coupled with respect to each other. Similarly, each LDS only contains simple
reference values (similar to surrogate keys) linking it to the constructs defined in the
GIS. The LDS only contains references to the GIS constructs directly impacting the
pieces deployed at that particular site—thereby enabling the loose coupling between
the LDBE instances and the DDSP instances. The DQSP instances and client instances
use similar techniques to ensure that they are not coupled to any of the other subsystem
instances tighter than they need to be.

When we apply the taxonomy that was introduced in Chapter 1 to the COOP envi-
ronment, the first taxon we consider is the COS distribution and deployment (COS-
DAD). Clearly, the COOP environment is a completely distributed system—each
subsystem can be deployed on a separate machine. The next level considers the open-
ness or closedness of the subsystems in the environment. The lowest level subsystems
(the LDBEs) might be implemented by commercial off-the-shelf (COTS) components,
by open source components, or potentially by components that we developed from the
ground up. Regardless of the decision made for the LDBEs, all the other components
are written by us. Therefore, the COOP environment is either a completely open system
or a mostly open system depending on the details for the LDBEs. The next level of the
taxonomy considers the schema and data visibility at each local database environment.
Although there is some flexibility within this level, most COOP environments will
consist of LQSP instances that provide only a small subset of the GIS. The COOP
environment is similar to the federated DDBEs discussed in Chapter 12—its LDBEs
can operate outside the DDBE and can contain data that is not part of the LDS or the
GIS. It is even possible for the deployed data to be implemented by a partial subset
of an existing table in the LDB. Therefore, the visibility for both schema and data
is probably partial visibility in most scenarios. Because of the dynamic nature of the
environment, updates are not really a practical consideration in the COOP environ-
ment. In other words, because the LQSP instances can dynamically join and exit the
environment frequently and haphazardly, there is no practical way to enforce the syn-
chronization required for all of the replicas when insert, update, and delete operations
are allowed. While it is possible to use some external mechanism (outside of the COOP
DBE) to enforce synchronization, it is not necessarily a requirement. Each LDBE can
instead supply details about the most recent modifications and allow the clients to
determine whether the data is out-of-date or not (from the client’s point of view). The
final level of the taxonomy considers the schema and data control, which is also quite
limited in this environment. For the reasons we just mentioned, data modification is
not supported through the DQSP interface for extremely dynamic, ad hoc environ-
ments. Similarly, schema modifications in the COOP DBE are somewhat complex and
therefore not supported through the DQSP interface in this extreme scenario.

However, we can consider deploying the COOP environment in a more restricted set
of circumstances—we do not have to configure our DDBE deployment as a completely
ad hoc environment just because the architecture can support it. Instead, we can use
this loose coupling to minimize the impact of deployment changes, while still retaining
enough static characteristics to support data modification or even schema modification.
It should be noted that this is not the primary goal of this architecture and therefore
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the controls and facilities for these operations are not as simple, efficient, or powerful
as other alternatives. In other words, if our goal is to deploy a DDBE with a high
volume of data modification or a high volume of schema modification operations, then
a different architecture would probably be a better solution.

In summary, the COOP DBE is typically a completely distributed, mostly open (or
perhaps completely open), partially visible, partially controlled DBE. It works best for
mostly read-only environments where the goal is to support dynamic, ad hoc providers
of (mostly) read-only content whose structure does not need to be changed dynamically
within the environment. This architecture is well suited for supplying multiple deploy-
ment plans for the same data and dynamically changing those deployment details. In
the next sections, we will briefly describe each of the subsystems in the environment.
After that, we will examine the interactions between the subsystem instances in this
deployment example.

13.1.1.1 Client Each client subsystem is a user-written program or end-user applica-
tion implemented using web services or similar-minded approaches. Approaches such
as web services [Singh04] are intended to be platform independent (as much as possi-
ble), which is implicitly part of the COOP environment’s primary goal. In reality, most
clients are written on top of a simple framework that provides the necessary communi-
cation details—allowing the client code to focus on its intended operations instead of
the underlying communication details. This also means that clients can easily be imple-
mented as small, lightweight, and multithreaded applications. Although the framework
provides the necessary functionality, it is important to keep the overhead low and the
logic simple—otherwise, it would be difficult for users to create the client programs
that they need. Each client subsystem instance sends requests to a single instance of
the distributed query service provider. Theoretically, this request could be implemented
using any interface we choose to use. In practice, however, we chose to use a subset
of the ANSI standard Structured Query Language (SQL) or a programmatic interface
that mirrors the select statement defined within the standard.

13.1.1.2 Distributed Query Service Provider The distributed query service
provider (DQSP) subsystem is reasonably lightweight. The DQSP subsystem can
be deployed as several instances within the intranet and can be pooled within an
application server. For example, it can be deployed using a managed assembly within
the Microsoft .NET Framework or it can be deployed as an EJB within a J2EE
application server such as JBOSS [Fleury03]. It can also be deployed as a web service
and registered dynamically by using the web services description language (WSDL)
and the universal description, discovery, and integration (UDDI) facility. The
DQSP is merely an encapsulation and decoupling of the communication complexities
and potentially complex threading required for processing query requests and results
correctly and efficiently in the network of cooperating subsystem instances. The
DQSP verifies that the client (SQL) request uses valid syntax and parses it into a
more efficient format. The DQSP requires no access to the GIS or LDS because it
does not validate the names of the global tables and columns used in the request. The
DQSP does not verify that the request is unambiguous either—this would require
access to the GIS in order to determine the global column names defined for the
global tables involved. Instead, the DQSP sends the more efficient format of the query
to the DDSP subsystem for verification with respect to the GIS and disambiguation.
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13.1.1.3 Data Dictionary Service Provider The data dictionary service provider
(DDSP) subsystem has a very specific role in the environment—it acts as the dynamic
registry for all the constructs, components, and subsystems active in the environment
at the present moment. This means that the DDSP needs to know how to look up
information about the global constructs defined within the environment and the LDBEs
active within the environment.

The DDSP subsystem provides two important services to the COOP DDBE:

• It provides access to the GIS.
• It monitors and tracks the LQSP subsystem instances registered in its network.

First and foremost, the DDSP subsystem is the only subsystem in the environment
that directly accesses the GIS. It does this on behalf of the DQSP in order to val-
idate and disambiguate the global schema constructs referenced in the client SQL.
The DDSP uses the GIS to look up the fully qualified names for all the global con-
structs referenced in the SQL—using the additional user-supplied qualification details
when they are present. When the qualification details (container names or aliases) are
not present, the DDSP attempts to determine the fully qualified name without them.
This is only an issue if there is more than one possible container name referenced
in the (SQL) request. If there is more than one possible name, the (SQL) request is
ambiguous—a fatal error for the query. Similarly, if any of the construct names refer-
enced in the query are not defined in the GIS (regardless of whether they are qualified
or not in the query), the (SQL) request is invalid—another fatal error. If there are any
fatal errors with the request, the DDSP returns an appropriate error message to the
DQSP. Otherwise, the DDSP uses the information it retrieves from the GIS along with
other details to locate potential LQSP instances in the environment at the time of the
request.

Keeping track of the details used to locate potential LQSP instances is the other,
equally important service provided by the DDSP. These location details are not con-
tained in the GIS—instead each DDSP instance dynamically keeps track of the subsys-
tems currently registered within its environment. Each LQSP instance registers itself
with the environment (and with the DDSP in that environment) when it joins the envi-
ronment. Similarly, each LQSP deregisters itself from the environment (and DDSP)
before leaving the COOP environment. There are several alternatives that could be used
for this registration process, but if we are using web services, then using a standard
approach (like WSDL and UDDI) makes the most sense.

This registration information is usually simply cached in memory, but it is possible
to persist it in some database (DB) if necessary. The basic registration mechanism must
include the necessary communication details (protocol and port details) for the sub-
system instance being registered. More advanced registration mechanisms could also
be used to improve performance and reduce communication overhead—for example,
each LQSP subsystem instance could include details about the GIS constructs it pro-
vides when it registers with the environment. These details could then be used to
narrow the list of potential LQSPs available for a distributed query request. When the
DDSP disambiguates and validates all the global constructs referenced in a particular
(SQL) request, it might use those details to filter the list of currently registered LQSP
instances. Regardless of whether the DDSP filters the list or simply uses the unfiltered
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list, the list of LQSP instances is returned to the DQSP component along with a sta-
tus message indicating that there were no errors with the request, as well as all the
qualification details for the constructs in the original request.

13.1.1.4 Global Interface Schema The global interface schema (GIS) replaces
the traditional global data dictionary (GDD), which is discussed in Section 2.4 of
Chapter 2 and Section 12.5 in Chapter 12. Like a GDD, a GIS is a special purpose
database that contains all the global table names, global column names, and global
data types/nullability details in the environment. However, unlike a GDD, a GIS does
not contain any fragmentation, replication, or location details. All of those deployment
details are relegated to the LDS instances. Instead, a GIS model focuses on the concep-
tual definition of the global tables and columns, along with the constraints that apply
to them.

The GIS provides a virtual namespace for global constructs by defining global
databases, schemas, and tables. The GIS also supports the definition of global users
and groups along with the population of relationships between these security constructs
and the global databases, schemas, tables, and columns. These details enable security
details to be queried from the GIS. Obviously, the actual enforcement of these details
can rely on more secure mechanisms such as those discussed in Chapter 9. However,
when it is deemed appropriate, these policies can be reflected in the GIS model in order
to provide metadata about the GIS to tools. When security needs to be more tightly
enforced, and schema details need to be more closely guarded, these policy details can
be omitted. But the dynamic nature of the COOP architecture probably lends itself to a
somewhat loose security policy. In other words, a dynamic environment consisting of
several loosely coupled data providers only makes sense when the data is not highly
confidential and proprietary, or when all participants are guaranteed to be secure by
virtue of stronger circumstances: for example, if the COOP environment is deployed
on an isolated network of machines within a locked room and/or using advanced
techniques in order to provide the necessary security (i.e., functions like confidentiality,
authentication, and nonrepudiation—which are all discussed in Section 9.1).

Another important difference between the GIS and a traditional GDD is the level
of completeness for an individual instance and the degree of synchronization required
when multiple instances exist for the same DDBE. Traditionally, the GDD is a bot-
tleneck for traditional DDBE architectures that disallow multiple GDD instances. In
these architectures, there is a single, centralized GDD that must be consulted whenever
global constructs are translated into their physical deployed counterparts. Although the
contents of the GDD are usually small compared to the contents of the global tables
they represent, this restriction requires all components to have access to a central
server and central database. To remove this bottleneck, some other traditional DDBE
architectures permit multiple copies of the GDD to be deployed in the environment
as long as all GDD instances have identical structure and content. This works well in
environments with minimal deployment changes and minimal schematic changes, but
can be cumbersome for more dynamic environments.

The COOP DDBE permits either a single GIS instance or multiple GIS
instances—even when there are multiple DDSP instances in the environment. When
we consider multiple GIS instances that are deployed in the same environment, the
instances do not need to be identical with respect to their content (or even their
structure). When we consider each GIS instance with respect to the LDS instances



520 NEW DDBE ARCHITECTURES

deployed within the same environment, once again, the content and structure do not
need to be identical. However, we will only be able to use LQSP instances whose
LDS corresponds to the desired GIS construct.

In order to support these independencies, the GIS model needs to differ significantly
from the GDD in three key respects:

• Focus on the interface
• Support for multiple deployment plans
• Use of unique identifiers for both plans and constructs

The first difference between the GIS and GDD is the concept of an interface. We could
characterize a traditional GDD as considering each global construct to be a virtual con-
struct. A virtual construct is merely a convenient mapping mechanism for dealing with
the real tables—that is, the physical fragments and replicas (or the simple physical table
stored at a particular location in the case of a nonfragmented and nonreplicated global
table). By contrast, the GIS considers the global table and column definitions to be an
interface to the deployed content in the same way that object-oriented programming
(OOP) techniques consider an interface and the concrete classes that implement it. All
of the deployment details are unimportant to the GIS as long as they are consistent
with respect to the global interface represented by the virtual table and its columns.

The second difference between the GIS and the GDD is the GIS’s support for mul-
tiple deployment plans for the same global construct. This support is only possible
because of the first difference—that is, it is precisely because the global tables and
columns act like an interface, that we can support multiple deployment plans for the
same global table and its global columns. Again, this is analogous to using differ-
ent concrete classes that implement the same interface in OOP. The details for each
deployment plan are stored in the LDS instances where that plan is implemented, but
not in the GIS. This means that even when multiple plans for the same global construct
exist in the same environment, the GIS is unaffected—as long as the plans conform
to the GIS information.

The third difference between the GIS and the GDD is the GIS’s reliance on unique
identifiers for constructs and plans. These identifiers are crucial to supporting the
loosely coupled situation we desire. The GIS requires the use of unique identifier values
to enable the easy identification of specific constructs or plans with minimal overhead
and minimal synchronization. These unique identifiers can be implemented using any
reasonable technique, but the most obvious choice is to use the same mechanism
used in many interface implementations for program environments—namely, globally
unique identifiers (GUIDs). A GUID uses a unique combination of system details
(network card unique addresses, date and timestamps, and other details) to ensure that
a value generated on a particular machine, at a particular date and time, cannot also be
generated by another computer anywhere else. This is true even though the computers
never communicate with each other. When a global construct is defined, it is assigned
a GUID, which is stored with the construct definition in the GIS. If the same definition
for the same construct needs to be shared across multiple systems (such as different GIS
instances or the LDS instances that implement a deployment plan for the construct),
this same GUID value must be copied to the other systems—but we do not need to
copy all the constructs! Each LDS must be synchronized with the GIS for only those
constructs deployed at the LDBE where the LDS resides. When the DDSP queries the
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GIS, it retrieves the GUID for each global table and column referenced in the query
as part of its validation and disambiguation process. These GUIDs are then added to
the fully qualified version of the query (along with the other qualification details).

Using a GUID value as a unique identifier for GIS constructs (and LDS constructs)
is not a new idea—it is somewhat analogous to the version identifier (“serialVer-
sionUID”) used by Serializable classes in Java, and also similar to the various iden-
tifiers stored in the registry by the Microsoft Common Object Model (COM)—the
ancestor of Microsoft .NET Framework. While those two environments were ini-
tially implemented as centralized programming environments, many distributed
computing mechanisms also use GUID values for this same purpose—namely, iden-
tifying when a deployed or distributed version of something matches the expected
version. There are many examples of environments using this approach, such as
the Common Object Resource Broker Architecture (CORBA), Microsoft .NET
Framework, and Java’s Remote Method Invocation. This enables components that
are disconnected from each other most of the time to verify that they are synchro-
nized each time they dynamically connect to each other.

13.1.1.5 Local Deployment Schema Each local deployment schema (LDS) instance
contains the deployment details for the global constructs defined in the GIS that are
deployed (in whole or in part) at the site where that LDS instance is deployed. In
particular, the LDS must store the GUID values for these global constructs. The LDS
must also store mapping details for each local construct deployed in the local database
environment at the site (the local tables representing the whole tables, table fragments,
or replicas). These mappings connect each local construct to the global construct (or
fragment of a global construct) that it represents. When a global table is deployed, it
must define a deployment plan (which can also be considered a reconstruction plan).

For example, suppose we have an Employee table (represented by the first relational
schema in Fig. 13.2) that is fragmented vertically into two fragments (represented by
the second and third relational schemas in Fig. 13.2). In this example, the MgrEmpNo
and DptNo columns reside in one vertical fragment (EmpVf1) and the EmpName and
EmpTitle columns reside in a second vertical fragment (EmpVf2). Because the EmpNo
column is the primary key for the global table, it must appear in both fragments (it is
used to join the fragments back together in reconstruction). The LDS would need to
define the fragmentation plan for this table. This plan would include information about

Figure 13.2 A global relation and its two vertical fragments.
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the type of fragmentation, the number of fragments, and also the mappings for each
global column defined in the table. This plan would also be assigned a GUID when it
was first defined, so that all of the LDS instances containing a fragment for this plan
can be synchronized without being connected to each other—having the same GUID
value for the plan means that they are the same plan. Similarly, a simple method using
bitmask values allows us to easily determine when all the required plan fragments are
present. For example, suppose the EmpVf1 fragment has a bitmask value of “0x01”
and the EmpVf2 fragment has a bitmask value of “0x02.” In this scenario, the plan
would store a bitmask value of “0x03” for the completed table—now we simply use
the binary OR operation to combine the bitmask values for each fragment and compare
this result with the desired value for the whole table. This same technique can be used
for hybrid fragmentation to determine when all of the subfragments are present to
reconstruct a larger fragment.

The GIS and LDS can support multiple plans for the same global construct by simply
storing different plans with different GUIDs. All of the LDS instances participating in
a particular plan would use the GIS GUID value for the global construct and the LDS
GUID plan value for its fragments. Meanwhile, all the LDS instances participating in
a different deployment plan for the same global construct would still use the same GIS
GUID value, but they would use a different LDS GUID plan value for the fragments
of this different plan.

13.1.1.6 Local Query Service Provider The local query service provider (LQSP)
subsystem is responsible for all the local query processing. It connects to the LDBE and
executes the necessary commands for a global request. Each LQSP instance registers
itself with the environment, which allows the DDSP to know about its availability.
As we mentioned earlier, this registration can be very simple or it can include further
details to help reduce the communication overhead when queries are being processed
after the registration has completed. The details included in the latter scenario would
provide hints (perhaps using the GUIDs for global constructs or deployment plans) to
aid in the LQSP election process.

When the environment processes a query, each LQSP instance registered in the
environment at that time and containing a deployed part of a construct (a local table,
fragment, or replica) referenced in the query is a candidate for being a content provider
to the query. When the DDSP returns a fully qualified version of the query to the
DQSP (including the necessary GUIDs), it also includes a list of LQSP instances that
might be used to answer the query. The DQSP then passes this information on to the
LQSP instances in the list and waits for feedback from them. If there are not enough
LQSP participants capable of providing the content, or if they do not respond within
a configurable time limit, then the query will fail. If there are enough responding
LQSP instances (and if they have the same plan and all the required pieces for all the
necessary global constructs), then we can process the query. If there are more than
enough LQSP instances responding, the DQSP can use additional information included
in each of the responses (one response from each LQSP) to determine which LQSP
instances the query should use.

The additional information contained in each response message is determined by
each LQSP instance itself and is based on statistics and configuration settings that are
under its control. We refer to this information as self-ranking information—because it
contains values, used to rank how efficient or suitable a particular LQSP instance is for
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a given part of a given query, that were generated by the instance itself. Each LDBE
in the environment stores metadata about the data it stores—this is also a common
practice for many traditional, centralized RDBMSs [Elmrasi94]. In addition to this
traditional metadata (which typically captures details about the size and shape of the
centralized data such as the estimated selectivity for columns, details about the row
size and index utilization, etc.), the LQSP and LDBE also store metadata relevant to
the DDBE in which they participate, including deployment details. For example, the
self-ranking information for LQSP-D could include the date and time its data was last
updated, the average response time for the server, the number of queries currently
being processed, load factor details, and estimated latency times. This information is
crucial to the distributed query plan creation, which is discussed in the next section.

13.1.2 Implementation Specifics

In this section, we will briefly consider the registration/deregistration process and then
we will look at a query processing example to demonstrate how the subsystems coop-
erate within the environment to satisfy a client request (SQL query).

13.1.2.1 DQSP/LQSP Registration and Deregistration Each DQSP instance can
support several client instances at the same time. Although it is theoretically possible
for each DQSP instance to register and deregister with several DDSP instances for
the same set of clients, this is not the intended deployment architecture. Each LQSP
instance can support several DDSP instances at the same time. These registration
(and deregistration) activities are typically implemented as part of a Directory
Service, which is discussed in Chapter 14, Section 14.3.2. Each DQSP instance
is intended to serve as the query service provider for a set of loosely affiliated
LQSP instances—namely, those that have registered with the same DDSP instance
where the DQSP is registered. Although the DQSP instances could register with
multiple DDSP instances (and therefore connect to multiple sets of LQSPs), this
can complicate the DQSP processing unnecessarily. Because LQSP instances can
dynamically register and deregister with different DDSP instances, there is usually no
need for the DQSP to register with multiple DDSP instances. As a fallback strategy,
the DQSP could be asked to connect to other DDSP instances when no provider for
a global table or column can be found. However, it would probably be better for the
client to implement this strategy instead, since this would have a smaller impact on
the other deployed clients and services. After the DDSP performs its tasks, it will
return a message to the DQSP instance. This returned message will contain either
error information or details used to communicate with the LQSP providers in the
environment.

13.1.2.2 The Client Sends a Query to the DQSP The COOP environment uses a
generic form of structured query language (SQL)—actually it is a subset of the Amer-
ican National Standards Institute (ANSI) standard SQL, to communicate requests from
the client subsystems to other parts of the environment. For example, suppose we
have two global tables named “Employee” and “Department” defined by the relational
schemas shown in Figure 13.3. If a client needs to retrieve the names of all the engi-
neers as well as the name of the department for which each engineer works, it can
send a query like the one shown in Figure 13.4 to any DQSP in the DDBE.
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Figure 13.3 Two relational schemas for two global relational tables.

Figure 13.4 A global query written in SQL requiring the use of table aliases.

Because the COOP DDBE provides complete distribution transparency (as discussed
in Chapter 2), the SQL commands sent by the client do not need to include any table
fragmentation, location, or replication details. The only requirement for the client SQL
is that it be written using the accepted syntax (a subset of ANSI SQL excluding DDL,
DML, and overly complex queries) and be unambiguous and correct with respect to that
syntax. The syntax requirements for the global SQL are a subset of the requirements
we would expect to see for any DBE supporting ANSI SQL. Because the syntax must
be validated for every query before it can be processed by the DDBE, we perform
syntax validations in the subsystem responsible for providing the query service (the
DQSP). Only syntactically correct queries need to be checked for ambiguity (because
queries with syntax errors will not be processed).

13.1.2.3 The DQSP Sends a Query to the DDSP After the DQSP has validated the
syntax for a given query, it is possible to check if all the global tables and global
columns referenced by the query are valid and unambiguous. This is done by checking
the global definition of the DDBE and the contents of the query. Because the global
definitions are contained in the GIS, which is usually not deployed on the same site
as the client or the DQSP, neither the client nor the DQSP can directly implement
this type of validation. Instead, the DQSP passes the syntactically correct query to the
DDSP for validation and disambiguation.

The queries sent by the client nodes to the DDBE are intended to be written by
(and readable by) the client application authors and users. In this sense, the client is
the only external subsystem in the environment. Therefore, its queries are written in a
well-known, standardized language—namely, SQL. Other messages, sent and received
among the other subsystems, are internal to the DDBE and can therefore use a more
programmatically efficient format. These internal formats are implemented in XML.
Figure 13.5 shows a brief example of one of these XML formats—here only the top-
level elements are shown, with ellipses taking the place of additional subelements that
define the clauses more completely.

The contents of these subelements are highly dependent on the actual content being
represented. For example, Figure 13.6 shows the SelectExpressionList contents for the
SQL query we discussed for Figure 13.4. This is the list of expressions being returned to



COOPERATIVE DDBEs 525

Figure 13.5 Internal XML format (showing only top-level elements).

Figure 13.6 SelectExpressionList for global query in Figure 13.4.

the client. In this example, they are simple columns, but more complicated queries could
perform other operations, including functions or mathematical operations. Figure 13.7
shows the FromExpressionList for this same query—notice that since the user query
included table aliases, they are also included here. Figures 13.8 and 13.9 show the
JoinConditionList and NonJoinConditionList contents for this query, respectively.

The ambiguity concerns in the global query are analogous to the concerns found in
any traditional RDBMS—we must qualify the global table names and global column
names whenever the unqualified name could refer to more than one concept in the
query. For example, we must qualify the global column names by adding the global
table name or a table alias as a prefix to the column name if the same column appears
in more than one table referenced in the query. We must also qualify the global col-
umn names if the query references the same global table more than once within the
same context. The query shown in Figure 13.4 is written against two global tables,
which are named “Employee” and “Department” (their relational schemas are shown in
Figure 13.3). This query is an example of an unambiguous query performing a natural
join (the join coloums have the same name). In order to ensure that this query is not
ambiguous, we defined two table aliases (“E” and “D”), and also used each alias to
identify the table containing each join column in the join condition.

13.1.2.4 The DDSP Sends a Fully Qualified Query to the DQSP Once the query
has been disambiguated, the DDSP sends a message back to the DQSP. This message
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Figure 13.7 FromExpressionList for global query in Figure 13.4.

Figure 13.8 JoinConditonList for global query in Figure 13.4.

contains the fully qualified XML version of the query, which is similar to the examples
we have seen, but with even more information included for each subelement. This
message also contains a list of candidate LQSP instances.

13.1.2.5 The Election Process After receiving the message from the DDSP contain-
ing the fully qualified query and candidate list details, the DQSP sends a message to
each of the candidate LQSP instances. Each LQSP instance in this list will consider
the information in the query message, the information in the LDS deployed at its site,
and other site metadata (such as the current load factor and number of requests being
processed). If a particular LQSP instance decides to participate in the query, it will
form a rough execution plan for the parts of the query that it can provide. By doing this,
the participating LQSP instance calculates an estimate for the self-ranking metadata
that we discussed in Section 13.1.1.6. This self-ranking information is then returned
to the DQSP.
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Figure 13.9 NonJoinConditonList for global query in Figure 13.4.

The DQSP waits until it hears from all the candidate LQSP instances or until a
specified timeout limit has expired. If there are multiple candidates for any part of
the query, then the DQSP uses the self-ranking information to pick the best candidate.
When there is only one candidate capable of providing a part of the content, this candi-
date is elected by default. If each part of the query has elected an LQSP instance, then
the DQSP sends out a message to all the candidates identifying the elected instances.
If we do not have adequate coverage in the environment at this time, then the DQSP
sends a message (to the candidates and to the client) indicating that the query has
failed because of insufficient provider availability.

When there is adequate coverage, each elected LQSP instance uses the plan cal-
culated in the previous step to process its part of the query. All LQSP instances use
the same logic for deciding the control logic (which partial results are sent to which
instance) in a manner similar to those discussed in Chapter 4. This means that no
further coordination is required unless there are timeouts or errors.

The query results are returned using data types native to the programming lan-
guages that the clients are written in or using another simple XML format. The COOP
DDBE uses the relational data model (RDM) as its logical level modeling language
(LLML), which we discussed in Chapter 11. Therefore, the external query format,
internal query formats, and query result format all have a relational flavor. Like most
DDBEs, each database cooperating in the COOP environment must translate its phys-
ical level modeling language (PLML) constructs into the appropriate logical level
modeling language constructs in order to participate in the COOP DDBE. Obviously,
this is easier to implement when all of the DBs use the same LLML as the DDBE,
but this is not a strict requirement of the system. As we discussed in Chapter 12, other
LDMs can be used if the appropriate translations are implemented. We simply translate
the requests and results from the low-level subsystems (Query Processors, Command
Processors, or Data Processors) into the canonical format for the DDBE (and here, it
is the RDM). This means that subsystems within the environment can pass the inter-
nal queries and query results to each other without knowing the PLML (or even the
LLML) used by each DB in the environment.
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13.2 PEER-TO-PEER DDBEs

The second approach we are going to explore in this chapter is the peer-to-peer
distributed database environment (P2P). It is based on many of the same concepts
as the COOP environment. However, in the P2P environment, additional emphasis is
placed on the idea of service providers being peers—that is, equal members of the
environment. In the P2P environment, each peer is a query service provider—we do
not consider the clients to be peers because they usually do not have a local database
environment. In many respects, the P2P environment is an evolution of the COOP
environment, sharing many of the same characteristics. Therefore, we will limit the
discussion in this section to aspects that are different from the COOP environment.
The subsystems defined within each of these architectures are not identical—there are
some subtle, but important, differences across the architectures (even for subsystems
with identical names).

13.2.1 P2P Overview

Figure 13.10 shows a typical deployment of the P2P environment. In this example,
there is a single client subsystem instance (“Client-A”) deployed at Site A, and three
query service provider (QSP) subsystem instances (“QSP-B,” “QSP-C,” and “QSP-
D”). There are two GIS instances: one deployed at Site B (“GIS-B”) and one deployed
at Site C (“GIS-C”). The QSP at Site D uses the GIS deployed at Site C. Each QSP
instance is deployed with a single instance of its LDS, local database environment,
and the (one or more) associated LDBs that it contains and controls. This is merely a
simple example deployment: an actual deployment in the real world could have many
more clients, service providers, and DBEs but this diagram should be sufficient for our
discussions in this chapter.

Figure 13.10 A typical P2P deployment.
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The client subsystem is essentially equivalent to the client in the COOP—except that
it talks to a peer-to-peer QSP instance instead of a cooperative DQSP instance. The GIS
and LDS we discussed in the COOP environment are also present in this environment
and behave in essentially the same way as before, but because of the emphasis on
query provider subsystems behaving as peers, there is only one programmatic nonclient
subsystem—the query service provider.

13.2.1.1 Client Once again, each client subsystem is a small, lightweight, multi-
threaded, user-written application written on top of a framework and implemented
using web services or similar-minded approaches. This allows the client code to largely
ignore the underlying communication details. Clients will again communicate with the
DDBE using the same subset of ANSI SQL that the COOP clients used. Similarly,
the clients will again retrieve the results as program-dependent data structures or as
XML streams. A client in this DDBE connects to a QSP instance, which means that
in the deployment shown in Figure 13.10, the client can connect to any QSP instance
(QSP-B, QSP-C, or QSP-D).

13.2.1.2 Global Interface Schema The global interface schema (GIS) subsystem is
almost the same as the GIS subsystem we defined for the COOP environment. It also
uses GUIDs for the global constructs and contains no deployment details. Once again,
it does not need to be completely synchronized across the various subsystem instances
in the environment. Each subsystem instance only needs to be synchronized for the
actual constructs being used by that instance in the environment. Total synchronization
is not discouraged, but it is also not required. However, there is an important difference
in the P2P environment: each QSP instance will directly connect to a GIS instance.
When it is feasible, multiple QSP instances can share a common GIS instance, but this
is merely an option and not a requirement. Notice that this sharing is demonstrated
by QSP-C, QSP-D, and GIS-C in Figure 13.10, while QSP-B uses its own separate
(GIS-B) instance.

13.2.1.3 Local Deployment Schema The local deployment schema (LDS) subsystem
is essentially identical to the LDS defined in the COOP environment. It still uses
deployment plan GUIDs to link deployed plans together across multiple LDBEs. Once
again, the GUIDs from the GIS are used to tie the local constructs to their global
counterparts. Each LDS instance is still deployed with a single LDBE, and each instance
is only required to be synchronized with respect to the contents deployed at that site.
Further synchronization is not forbidden but not required. The LDS also uses the same
bitmask-based technique to determine coverage and completeness for the fragments
within a particular deployment plan.

13.2.1.4 Query Service Provider The query service provider (QSP) subsystem is
quite different from the other components (DQSP, DDSP, and LQSP) defined in the
COOP environment. It is somewhat correct to say that the QSP is the combination of
the DDSP, DQSP, and LQSP subsystems from the COOP environment, but this is also
somewhat inaccurate and misleading. Each QSP subsystem connects to a GIS instance
and to an LDS instance. The GIS instance and LDS instance could be deployed in the
same DBE or even the same DB but that is not a requirement. Alternatively, several
QSP instances can share a common GIS instance.
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Each QSP instance in the environment must register with the environment before it
can begin providing content. Once again, there are several options for this registration
process. Because there is no single subsystem instance responsible for registration,
the process is somewhat different for the P2P environment than it is in the COOP
environment. Although we can still use some of the same mechanisms (WSDL, UDDI,
etc.), each QSP instance is responsible for keeping track of the currently active nodes.
Therefore, it is more reasonable to use a messaging facility to accomplish this task.
QSP instances can use broadcast messages or any form of message propagation to
ensure that all of the nodes in the environment keep track of the currently available
nodes. These functions are discussed in Chapter 14, Section 14.3.2.

13.2.2 Implementation Specifics

Each QSP instance in the environment is capable of receiving client (SQL) requests.
Once the QSP receives a request, it connects directly to a GIS instance and performs
the necessary verification and disambiguation activities. If there are any errors, the
QSP instance returns an error message to the client (exactly like we did in the COOP
environment), and if there are no errors, then the actual processing can begin.

The QSP instance that received the initial client request will use the registration
information to build a list of candidate QSP instances (exactly like the DDSP did for
candidate LQSP instances in the COOP environment). The verified and unambiguous
version of the request will then be sent to all the candidate (QSP) sites. Each (QSP)
instance capable of providing part of the query processing will then build a rough plan
and respond with its self-ranking metadata used to elect the actual providers. This is
similar to the election process in the COOP environment, but it is not quite the same
since we have no LQSP/DQSP separation.

The QSP subsystem will use the same criteria that the DQSP used in the COOP
environment to determine when an election is over and whether there is adequate cov-
erage or insufficient provider availability. When the query can be processed, the QSP
will notify all the candidates and each candidate will use the information contained in
the previously generated plan and the common query strategy information to determine
which partial results are sent to which QSP instance. The result format is the same as
used by the COOP. Ultimately, the results are returned to the client.

13.3 COMPARING COOP AND P2P

In this section we will briefly compare and contrast some of the different distributed
database environment architectures we have just discussed in this chapter and the
previous chapter. First, we will compare the two new alternative architectures (COOP
and P2P) to each other. Next, we will group these two architectures together and
compare them with the traditional architectures we discussed in Chapter 12. Lastly,
we will consider how the COOP and P2P architectures compare to other alternative
distributed database environment approaches.

13.3.1 COOP Versus P2P

The fundamental difference between these environments is the number of primary
subsystem types and the separation of query processing and registration functionality. In
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the COOP environment, each subsystem has a specific role to play in the environment.
Each DQSP subsystem instance receives the query request, manages the LQSP election
process, and ultimately returns the query results to the client instance. Each LQSP
instance only processes the part of the query that it can, using the LDS at its site.
In the P2P environment, each nonclient subsystem is truly a peer—providing equal
functionality (albeit with different data deployment details and content). Each QSP
instance is both a distributed query request coordinator and a local query processor.

The DDSP and DQSP in the COOP environment can potentially create bottlenecks
because of the way communications are forced into a “narrow channel”—all requests
move through a single point for the disambiguation, for the client query request, and for
the ultimate results. However, this can be alleviated by deploying additional instances
and distributing the load across them evenly. This narrow channel has some additional
benefits from a security viewpoint—limited access requirements require simple firewall
rules and also make it easier to ensure proper security is implemented on “external”
channels (connections between the client and the DQSP).

In the P2P environment, we can support a more flexible arrangement of query
provider (QSP) nodes than we can in the COOP environment. However, along with
this added flexibility, we also get the issue of added complexity with the registration
process and the load-balancing process. Luckily, there are various techniques avail-
able for us to use when addressing these concerns in a particular implementation of
the P2P environment. For example, we can use COS pooling (as will be discussed
in Section 14.2.2.1). We can also use a more sophisticated Directory Service imple-
mentation to provide support for better COS naming and versioning policies. We can
even choose to add “special” QSP instances to our deployment plan that essentially
act like DQSP instances. These instances can be used to make the environment more
manageable from a security or load-balancing perspective. Each of these “special” QSP
instances responds to distributed query requests but has no deployed content at its site.
All of these techniques can help to alleviate these issues in our P2P implementation.

13.3.2 COOP/P2P Versus Traditional DDBEs

Both the COOP and P2P environments are well suited for DDBEs that focus on read
operations. This is fairly similar for many traditional DDBEs as well, particularly
federated DDBEs, which are discussed in Chapter 12, Section 12.1.2. Both the COOP
and P2P environments can support CRUD (create, retrieve, update, delete) operations,
but only if we use additional constraints not defined by the architecture. For example,
we can support CRUD operations if we require all potential instances and sites to be
registered in the environment before allowing any write operations to be performed, or
if we implement additional services such as the replication control service discussed
in Chapter 7.

Unlike the traditional DDBEs, the COOP and P2P environments can support mul-
tiple deployment plans for the same construct to coexist at the same time. They can
also support multiple versions of the same GIS construct to exist within the environ-
ment. Most importantly, these environments do not require total synchronization of
all global/distributed schema and deployment details. Instead, they support database
environments where partial synchronization is sufficient, and deployment details can
change dynamically in between query processing requests.
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13.3.3 COOP/P2P Versus Other DDBEs

There are, of course, other DDBE alternatives than those mentioned in Chapter 12 and
this chapter. For example, there is one approach that uses a bidding algorithm to allow
the providers to process queries in a manner similar to our self-ranking-based election
approach [Pentaris06]. This approach uses e-commerce as its motivation—consumers
and providers engage in various types of trading (bidding, auctions, etc.) using the
cost estimates as the perceived values. There are also variations within this “bidding”
approach that differ in how the providers compete or cooperate as well as the proto-
cols used to control the trading. However, this particular approach still relies on total
synchronization of the GDD information. As far as we know, there is no support in
this approach for multiple versions of global constructs, multiple deployment plans for
the same global construct, or dynamic registration/deregistration of content providers.
Most DDBE alternatives that we know of require this GDD synchronization—and
many would consider the dynamic registration and deregistration operations as only
appropriate in the face of system errors.

13.4 SUMMARY

The COOP and the P2P distributed database environments are two new DDBE alter-
natives. Both of them support dynamic content-provider deployment and participation
(registration and deregistration) as the primary goal. Because they both share some
common architectural subsystems (namely, the GIS and the LDS), they both allow
multiple versions of global constructs and multiple deployment plans for the same
global construct to coexist within the environment at the same time. These environ-
ments work best for read operations, because they provide no architectural mechanism
for enforcing data synchronization of offline content (content deployed at LDBEs that
are unregistered at the time of modification). Although they do not prohibit CRUD
operations, the implementation of non-read operations is more complex than read-only
operations.

The COOP environment uses separate components and/or subsystems for the major
functions used in implementing a distributed query: the parsing, disambiguation, and
processing of the smaller parts of the query based on deployment details. The P2P uses a
single component or subsystem for all query processing steps (parsing, disambiguation,
and processing of parts). Both environments use a separate client subsystem, a separate
GIS subsystem, and separate LDS subsystem. Clients connect to the DQSP component
or subsystem in the COOP environment or the QSP component or subsystem in the
P2P environment. Both environments rely on the Directory Services (especially the
Registration Service) provided by the underlying DDBE Platform.

The dynamic registration and lack of total synchronization are the primary differ-
ences between these environments and traditional DDBEs. These are also the primary
differences between these environments and other DDBE alternatives. However, the
COOP and P2P environments both share some characteristics in common with fed-
erated DDBEs. There are also other DDBE alternatives that use a similar (but not
identical) approach for query plan creation and optimization.
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13.5 GLOSSARY

Client A COS in the COOP or P2P environment that sends queries from the user to
the DDBE.

Commercial Off-the-Shelf (COTS) Any piece of commercially available software.
Cooperative DDBE (COOP) The first DDBE we discussed in this chapter, which

supports dynamic registration, partial synchronization of global constructs, multiple
versions of global constructs, and multiple deployment plans for the same global
construct.

Data Dictionary Service Provider (DDSP) The COS in the COOP environment
responsible for query disambiguation and also responsible for monitoring the regis-
tration/deregistration.

Distributed Query Service Provider (DQSP) The COS in the COOP environment
responsible for coordinating the communication necessary for distributed query pro-
cessing.

Global Data Dictionary (GDD) A COS in a traditional DDBE responsible for storing
global construct information and deployment details.

Global Interface Schema (GIS) The COS in the COOP and P2P environments that
stores a subset of all the global construct information in the environment but no
deployment details.

Globally Unique Identifier (GUID) A value generated in a way that is guaranteed
to be unique without synchronization.

Local Database Environment (LDBE) The DBE (a CDBE) responsible for an LDB.
Local Database (LDB) The DB where the deployed part of a global construct is

stored and controlled.
Local Deployment Schema (LDS) The COS in the COOP and P2P environments

that stores the deployment details for all global construct pieces deployed at a
particular (single) site.

Local Query Service Provider (LQSP) The COS in the COOP environment that
communicates directly with the LDBE in order to process part of the global query.

Peer-to-Peer DDBE (P2P) The second DDBE we discussed in this chapter, which
supports dynamic registration, partial synchronization of global constructs, multiple
versions of global constructs, each non-client COS acting and multiple deployment
plans for the same global construct—with noncontent COS acting as a peer within
the environment.

Universal Description, Discovery, and Integration (UDDI) A facility that imple-
ments Directory Services for web services, providing an XML-based registry service
suitable for finding web service instances deployed within the environment and
defined using WSDL.

Web Service A component or subsystem that provides some service that conforms
to the web services specification, usually implemented using SOAP, UDDI, WSDL,
and XML.

Web Services Description Language (WSDL) An XML-based description of the
services and service providers implemented as web services within an environment.
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EXERCISES

Provide short (but complete) answers to the following questions.

13.1 How is the global interface schema (GIS) similar to the traditional global data
dictionary (GDD)?

13.2 How is the global interface schema (GIS) different from the traditional global
data dictionary (GDD)?

13.3 How is the local deployment schema (LDS) similar to the traditional global data
dictionary (GDD)?

13.4 How is the local deployment schema (LDS) different from the traditional global
data dictionary (GDD)?



14
DDBE PLATFORM REQUIREMENTS

Even in the best implementations, a distributed database environment (DDBE) is a
complicated, distributed computer application. In theory, it is possible for each piece of
software in the architecture to be deployed on a different, separate machine. Obviously,
in practice, this is most likely not the case—it is doubtful that there is a significant
advantage to implementing the architecture with that much distribution. Nobody would
choose to deploy the software with that degree of distribution just because it should
be possible. However, the fact that we could implement the environment this way
should act as a significant motivator in determining the underlying requirements for
the machines and software we use to implement our DDBE. In an attempt to prevent
bias toward a particular hardware system, operating system, local database environment
(DBMS vendor, version, etc.), programming language, or other technology, we will
call the combination of the aforementioned our DDBE Platform.

Enumerating all the possible hardware platforms, operating systems, local database
environment (LDBE) platforms, programming languages, networking technologies, and
so on that we can choose from when considering which ones to include in our DDBE
Platform can be a daunting task. We can choose to make our environment as homoge-
neous or heterogeneous as we need it to be, as long as we ensure that all our selections
can be integrated into our environment and can communicate effectively with each
other. In the past, this was a more difficult problem than it is today. Technological
advances in computing power, networking technologies, and programming languages
have made distributed computing reasonably easy, efficient, and almost ubiquitous
(at least compared to the way things were 10 or 20 years ago!). Similarly, we now
have a variety of different software packages including both commercial off-the-shelf
(COTS) and free or open-source software (FOSS) to choose from when attempting
to provide portability and interoperability for the pieces of our architecture that we
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deploy across different hardware systems, operating systems, programming languages,
and LDBEs within our environment.

There are several different types of “free” software. The primary distinction between
the various types of “free” software has more to do with the licensing details than
any other detail. For example, the GNU project provides “copylefted” software
that caries with it the GNU Public License (GPL), while the Apache Software
Foundation has its own license (actually there are several versions of the Apache
License and the GPL), and projects like Perl allow the user to choose from the GNU
Public License, the Apache License, or its own “Artistic License.” There are also
other licenses (including public domain) and other sources of open software that
we will not discuss any further in this book (see [Scacchi07] and [Michaelson04]
for further details). For our purposes, we are lumping all of these various “free”
software flavors and licenses together and referring to this collection of software
(and licensing details) as FOSS or simply “open.” Other terms that might fit our
very loose criteria include “Libre,” “FLOSS,” “F/OSS,” and “open source”—even
though these terms are not strictly speaking identical in other respects.

Listing all of the alternatives currently available for our DDBE Platform (or even
attempting to create a reasonably complete taxonomy for the alternatives) is out of
the scope for this chapter and this book. If we were to attempt such a listing, it is
likely that some of the alternatives mentioned would already have new releases and
different versions before this book left the publisher. Similarly, after this book has been
published, there will likely be some new alternatives available that did not exist at the
time this book was written, while some existing (or even popular) alternatives might
become obsolete or inactive. Therefore, it is more practical and pragmatic to define
our essential requirements for a DDBE Platform in this chapter and then consider
some of the historical alternatives rather than jumping directly into a discussion about
how a specific platform alternative fulfills our requirements. In Chapters 15–19, we
will discuss those details for the specific platforms we will be using to implement the
Starter Kits (SKITs) provided with this book.

In the first section of this chapter, we will briefly introduce some architectural
vocabulary—some of these terms have been discussed in other chapters while some
have not. Next, we will consider the functionality necessary to implement any DDBE.
When considering all the DDBE architectural alternatives (such as those discussed in
Chapters 12 and 13), and all the possible implementation alternatives that we might
want or need in our particular situation, there are several underlying features that we
need. These features can be grouped into cohesive categories of functionality. We will
refer to each of these categories as a set of Platform Requirements.

We will divide the set of all Platform Requirements into three high-level cate-
gories. The first category will focus on the requirements that should be considered for
any application architecture. These requirements should be considered regardless of
whether we are building a centralized environment or a distributed environment—even
if there are no databases within the environment. We will therefore call this category
the Fundamental Platform Requirements. Next, we will focus on the requirements
crucial to any distributed system. Although these requirements can be either consid-
ered or ignored for many centralized environments, we feel that they are necessary for
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any distributed environment (even systems without databases). Therefore, we will call
this category the Distributed Process Platform Requirements. Lastly, we will con-
sider the requirements that are crucial for any environments working with distributed
data—we will call this last category the Distributed Data Platform Requirements.

Because new implementations are often based on previous implementations, we will
also present a brief history of implementation alternatives. The “historic” implemen-
tations we will discuss can provide some of the features we need. However, this list
is not complete, and no implementation is the “ideal solution.” Because there is no
single, perfect set of implementation alternatives, we will not attempt to identify any
particular implementation alternative as being part of the “definitive implementation
platform.”

14.1 DDBE ARCHITECTURAL VOCABULARY

Before we discuss DDBE Platform Requirements, it is useful to formalize the termi-
nology used when discussing the architecture as a whole and the smaller architectural
components inside it. Some of the concepts we discuss in this section will be used
later in this chapter and in Chapters 15–19. First, we will review some architectural
concepts that we introduced in Chapter 1 (in Section 1.2). Next, we will look at how
we can group these architectural constructs into logical categories (called tiers) and
discuss how they interact with each other. We will also identify a special category of
software known as middleware and discuss its role within the architecture.

14.1.1 Components and Subsystems

As we mentioned in Chapter 1, a component is simply a deployable bundle that pro-
vides a reasonably cohesive set of functionality. This can take many forms, can be
implemented using several different technologies, and can include code, data, and con-
figuration details. A subsystem is a collection of one or more components (and perhaps
one or more other subsystems) that works toward a common goal. A subsystem is a
part of the total architecture (the system) but it is also a system in and of itself (hence
the name subsystem). In theory, some subsystems might consist of a single component,
but it is more likely the case that a subsystem will include several components. Com-
ponents and subsystems are similar in many respects—the primary difference between
them is merely a matter of scope and scale. A more formal definition of these concepts
can be found in [Booch07]. Usually, we will ignore these distinctions and simply refer
to these things as components or subsystems (COSs).

14.1.2 Service Consumers and Service Providers

In Chapter 1, we also discussed some terminology associated with services. Recall
that a service is a cohesive collection of well-defined functionality. A COS that uses
a service is called a service consumer. A COS that implements a service is called a
service provider. There is only one other detail that we need to know about service
providers and consumers within our architecture. It is possible for the same COS to
be both a service provider for one set of functionality and a service consumer for
another set of functionality. It is even possible for a COS to be both a consumer and
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provider for the same set of functionality. In fact, this is a fairly common scenario.
For a nondatabase environment example, consider the domain name service (DNS).
DNS servers frequently use other domain name servers in order to translate a domain
name into an Internet protocol (IP) address. We can also see an example of this in a
DDBE—recall the Semantic Integrity Service (Semi-S), which we discussed in Chapter
1. The Semi-S is responsible for verifying semantic integrity constraints—in a rela-
tional system this would include enforcing constraints such as referential integrity
constraints (foreign-key to primary-key references) or entity integrity constraints (table
or column check constraints). Typically, the Semi-S service provider will be used by
anything that needs to check database consistency. For example, both the Replication
Service (Repl-S) and the Transaction Management Service (Tran-S) might need to use
the Semi-S for this purpose. Here the Repl-S and Tran-S are service providers them-
selves (providing replication and transaction management services, respectively), but
they are also service consumers with respect to the Semi-S.

14.1.3 Architectural Visualizations

There are several different approaches we can choose from when trying to capture
the way pieces within our architecture fit together to create an environment. While
there are many approaches compatible with our usage in this book, we will merely
discuss two examples very briefly here: namely, the three-tier model (3TM) and the
service-oriented architecture (SOA) approaches.

14.1.3.1 The Three-Tier Model The three-tier model (3TM) is a useful technique
for visualizing and discussing distributed application architectures. This visualization
approach was popular with many implementation alternatives in the 1990s, and, in
particular, it was often used for describing distributed applications written using the
Microsoft Common Object Model (COM) and later implementation alternatives that
evolved from COM. In the 3TM, we partition the architecture into three different levels
(called tiers). Each component or subsystem (COS) that contains executable code is
allocated to one of the tiers based on the primary function being performed. Interaction
between COSs is very controlled within the 3TM tiers. Each COS is assigned to one
and only one tier. The COSs within the same tier can communicate with each other
freely, but the COSs on different tiers can only communicate with each other if the
tiers are adjacent.

Figure 14.1 shows a 3TM view for a traditional (centralized) database application.
In this example, we see five COSs: the “Sales Report” and the “Print Service” COSs
are allocated to the first tier, the “Overdue Accounts” COS is allocated to the second
tier, and the “Sales Record” COS is allocated to the third tier. The “Sales” database
is also a COS—if we consider the database to be a “black box” that does not contain
any code written by us for this application, then it is not allocated to one of the tiers.
Alternatively, even if there is code within the database (stored procedures, triggers,
etc.), we can consider the “Sales” database to be a black box that is part of the third
tier—in which case, the arrow connecting the “Sales Record” COS and the DB would
be connecting two COSs in the same tier. In this diagram, we draw an arrow from each
COS acting as a consumer to the COS acting as the provider for some service. Notice
that the “Sales Report” COS connects to providers in both the first and second tiers in
this example. If we follow the strict 3TM view of the architecture, then the interactions
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Figure 14.1 3TM diagram for non-DDBE architecture.

are even more rigidly defined—a COS can only provide services to another COS if the
consumer is either in the same tier or in the tier immediately above the provider. This
means that service consumers in the first tier can only connect to service providers in
the first or second tier. Similarly, service consumers in the second tier can only connect
to service providers in the second or third tier, and service consumers in the third tier
can only connect to service providers in the third tier. This is sometimes informally
referred to as “over and down” invocation because the diagrams like Figure 14.1 will
always contain arrows that are drawn “over” (within the same tier) or “down” (to the
tier immediately below). Notice that the arrows are never drawn “up” (from the third
tier to the second tier or from the second tier to the first tier). These arrows are also
never drawn “across” the tiers (they are never drawn from the first tier to the third tier,
skipping over the second tier).

The three tiers in the 3TM are called

• The User Services Tier
• The Business Services Tier
• The Data Services Tier

The User Services Tier is the first tier in the 3TM. Sometimes, this tier is also referred
to as the User Presentation Tier. Both names are accurate, because COSs in the first
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tier are typically visible to the end-user. These COSs ultimately provide the user with
some interface to the underlying data—usually in the form of a graphical user interface
(GUI). The primary function for software in this tier is information presentation rather
than information verification or processing. Software in the first tier does not directly
perform any integrity or CRUD operations on the data being presented. In Figure 14.1,
we have two COSs in this tier: the first COS provides a GUI to the data and the second
COS creates a hard copy (printout) of the data that is processed in the lower tiers.

The second tier is called the Business Services Tier because the COSs in this tier
implement the business rules. For our purposes here, business rules are validation rules
based on business logic and other business semantics pertaining to the underlying data
being considered. The primary function of software in this tier is the enforcement of
business semantics—these COSs prevent or detect semantic errors and rule violations.
Even though the COSs in this tier need to evaluate (or perhaps even modify) the data,
they do not directly interact with the data. Instead, they delegate those operations
to the COSs in the third tier to retrieve and manipulate the data. In Figure 14.1, the
“Overdue Accounts” COS in this tier contains the business logic necessary to determine
which data records contain accounts that are “overdue” based on the business rules
and semantic understanding of the data for this application.

The third and final tier is called the Data Services Tier. The COSs in this tier provide
routines that handle storage, retrieval, and manipulation of the underlying data, which
is contained within the “Sales” database in our example. They treat the information
at this level as simple data types and content—devoid of any business semantics. In
Figure 14.1, the “Sales Record” COS represents one or more sales records, but it is
devoid of any real understanding of the data contained within it—all of the logic and
semantics rules that are not implemented directly within the “Sales” database itself
must be implemented in the second tier not the Data Services Tier.

Putting it all together, we can see that the User would connect to the “Sales Report”
subsystem via its GUI. This GUI might include several options including information
that can be passed to the lower tiers as additional selection or filtering criteria—but
not the actual logic used to determine when an account is overdue. The “Overdue
Accounts” subsystem uses its internal logic and rules to process the data fetched via
the “Sales Record” subsystem. The final results are passed back to the “Sales Report”
subsystem. If a printed version of the report is desired by the end-user, then the final
results are passed to the “Sales Report” subsystem.

14.1.3.2 Service-Oriented Architecture The service-oriented architecture (SOA) is
another useful technique for visualizing and discussing application architectures—but
it is very different from the 3TM technique. The SOA has received a lot of attention
lately because of its applicability to more modern technologies such as XML Web-
Services [Nagappan03], and the benefits it has for distributed applications. Rather than
focusing on tiers, the SOA is concerned with interaction between the services in a
distributed architecture. Proponents of SOA argue that it provides a more practical
solution to managing the complexities involved when deploying and maintaining ser-
vices in a real-world distributed environment. A service in SOA is compatible with our
simplified definitions, but the SOA places additional emphasis and architectural con-
straints on the connections between service providers and service consumers. Because
the interactions between service consumers and providers can be quite complicated,
the SOA constraints help to simplify things and remove some potential issues.
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For our purposes here, there are only two high-level constraints to consider. The
first constraint that the SOA requires is for each service provider to agree to support a
contract (a small set of ubiquitous interfaces available to all service consumers and
providers). These interfaces are devoid of any service-specific semantics. Because of
this constraint, any additional information needed by the service provider or consumer
must be communicated using some other mechanism. This is addressed by the second
constraint, which has two parts. The first part states that all service-specific semantic
details must be communicated using descriptive messages and the second part states
that these messages must be defined using an extensible message schema. An extensible
message schema refers to a set of message types that can be expanded in a backward-
compatible fashion using techniques like inheritance, rather than replacements to refine
later versions of the messages. So the second constraint states that all service-specific
semantic details are communicated via descriptive messages, which are defined by an
extensible message schema.

By using a contract that is devoid of semantic details, changes in the service def-
inition or service semantics do not break the interfaces defined in older versions of
the consumer or provider for the service. Similarly, by using an extensible message
schema we can ensure that any changes in the messages being used will not break
the older versions of the service. While these constraints may seem overly restrictive,
they are an attempt to address a very important issue in distributed application archi-
tecture. Services tend to evolve over time and, therefore, the semantic details required
by different versions of the same service are also likely to change over time. Because
the COSs are tightly coupled to the interfaces they use and support, any changes to a
shared interface result in a ripple effect of required changes. Each COS that supports
or uses a particular interface needs to have the same definition for that interface. If the
interfaces were not identical, then the connection between the COSs would be broken.
In order to fix this broken connection, both COSs using the interface would need to
be redesigned, recompiled, reinterpreted, or redeployed to ensure that they are using
the same version of the same interface.

By constraining the interfaces (excluding the semantic details), the only changes
required to the interfaces are those that result from a systemwide version update. When
a systemwide version does change, breaking all COSs that are not using the correct
version of the interface is an acceptable outcome. Similarly, by defining the messages
using an extensible schema, we ensure that newer versions of the message definition
will not break our existing COSs. Even though the newer messages might not take
advantage of any new details contained in the new message format, the connection
between the COSs will not be broken. These two constraints help us to ensure that the
COSs are loosely coupled, and this helps us to avoid the undesirable ripple effect.

The SOA also emphasizes the value of descriptive communication between com-
ponents and subsystems. Notice that the messages are descriptive, meaning that they
do not include any instructions about how the service should process the informa-
tion. In other words the messages contain descriptive requests (details specifying
“what” things need to be done) rather than prescriptive requests (details specify-
ing “how” things should be done). Therefore, within an SOA-based project, we must
have some mechanism that enables service consumers to discover the available service
providers for a given service. There are several mechanisms that are compatible with
this requirement, and many of these mechanisms are also compatible with our defini-
tion of a Directory Service (which is discussed in Section 14.3.2). By using descriptive
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communication, the COSs in the environment are able to tell each other which version
of a service they support or desire. Ideally, these messages should also be based on
an extensible schema. Once again, this will loosen the coupling between service con-
sumers and providers and also loosen the coupling between different versions of the
same service consumer or provider.

There are several different interpretations of the SOA, with slightly different
nuances. Discussing all the specific techniques and requirements for SOA is beyond
our scope here, but the basic idea is to ensure that multiple versions of the service
can coexist without any issues. See [Bieberstein05] and [Josuttis07] for further details
about SOA.

14.1.4 Middleware

Every COS in our environment that contains executable code needs to communicate
with at least one other COS in the environment. Any COS that did not do so would
serve no purpose since it would either be a service provider with no clients or a
service consumer with no provider. Recall that the different COSs in our environment
can be as homogeneous or heterogeneous as we want or need them to be. This means
that the communication between our COSs might need to overcome several issues
depending on the degree of distribution and heterogeneity. For example, suppose we
have two COSs that need to communicate with each other. Perhaps they are on different
machines, perhaps they are written in different languages, and perhaps they even use
completely different instruction sets and character sets. It is even possible that the
underlying network communication mechanism they use is different from the COSs
themselves in these respects. We can overcome all of these differences by providing
(writing) additional code to interpret and translate the requests and responses for the
COSs wherever these differences arise. However, some of the COSs will be similar to
each other, even if they do not communicate with each other.

This implies that there is an opportunity for reuse—it is not necessary to rewrite
this translation code completely from scratch for each COS. At the very least, we can
probably factor out the code that implements the communication mechanisms. Perhaps
we can even factor out some of the logic (the application-defined protocol) needed to
control the conversation between the COSs involved. After we have factored out this
code, we can bundle it into a separate COS and then deploy in such a way that it is
available to any components or subsystems that need it. While this refactoring would
be useful, it is a bit impractical. In essence, if we try to refactor the code in this way,
we are really trying to analyze the code’s structure after-the-fact. In other words, we
are trying to discover structure and order within the end-product, even though we did
not consciously put any structure or order into its initial design or construction.

It makes more sense to consider the communication requirements before we imple-
ment the COSs. By looking across the different COSs in the architecture and consid-
ering the reasonable degree of distribution and deployment needed, we can address
these requirements architecturally. In particular, when we design our COSs, we can
attempt to encapsulate the communication details to a small set of low-level compo-
nents and then focus on making them as reusable as possible in order to achieve a
greater benefit throughout the architecture. For example, consider the query processor
(QP) subsystem and the command processor (CP) subsystem in a typical DDBE as
we discussed in Chapter 1. Each subsystem (which could be deployed separately on
different machines) needs to talk to the local data processor (DP) subsystem (which
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could also be deployed on another, separate machine at the same site). The QP and CP
also need to participate in distributed transactions for the sake of the environment as a
whole, and work invisibly behind the scenes when a client requests a distributed CRUD
(create, retrieve, update, or delete) operation. Therefore, it makes sense to attempt to
reuse the code connecting these COSs. Similarly, there might be an opportunity to
reuse the code used by the DP when it accesses the LDBE—even if we are using
different database management system (DBMS) vendors or different versions of the
DDBE from the same vendor.

There are many obstacles to overcome when attempting to integrate COSs in a larger
system. If the COSs are significantly different from each other, it is likely that they
will not fit together seamlessly. This can be true for many reasons, such as different
vendors, different underlying technologies, or even different purposes and goals. Even
when interoperability is a goal, COSs from different vendors might not support the
same interfaces. Integrating software developed using different computer languages
often requires some translation of the data types, stack frames, exceptions, function
invocation requests, and results.

Often in cases like those we just discussed, we can use an additional piece of
software to bridge the gap between the COSs. Generally, any piece of software that
does this for us is called middleware. Middleware can have various vendors, versions,
flavors, and goals, but for our purposes all middleware acts as the “glue” that attaches
our components and subsystems together. Middleware can be implemented using an
approach (technique and language) that is either object-oriented or non-object-oriented,
but in Chapters 15–19, we are primarily going to focus on object-oriented middleware
that implements features required by a DDBE.

Our definition for middleware is very informal, namely, the “glue” that attaches
our components and subsystems together. This is a common understanding of the
term, but there is also an alternate definition that considers middleware to be a
layer of software that sits on top of the operating system and beneath the COSs, in
effect attaching the higher-level code that we write to the lower-level code provided
by the operating system, networking system, or DBMS. This alternate definition is
not really incompatible with the first definition; it merely places different emphasis
on the role played by the middleware. As Daniel Yellin states in [Yellin01], the
first definition can be thought of as gluing the components together “horizontally”
while the second definition can be viewed as gluing components to the underlying
services “vertically.” Both definitions imply that the middleware factors out the
“glue” details, enabling the code we write to focus on its own goals rather than the
details needed to enable communication and interaction with other components or
the environment. This also makes it easier to replace those “glue” details at a later
time with a different flavor or type of “glue” with minimal impact to the code we
wrote.

Middleware is usually written at the “lower levels” necessary to allow us to reuse it
effectively in our architecture. Middleware can be used within COSs, and we can use
multiple flavors within the same environment at the same time. When thinking about
the environment using the 3TM, we can say that middleware can be used within any
of the tiers, and it can also be very useful in spanning the tiers. Different pieces of
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middleware can be used at the same time (and even by the same COS at the same time,
but it is probably better to try not to overcomplicate things). In general, we should
attempt to use as few middleware flavors, vendors, and packages as possible within
the DDBE Platform without negatively impacting the performance and maintenance of
the COSs.

14.2 FUNDAMENTAL PLATFORM REQUIREMENTS

In this section, we will look at the DDBE Platform Requirements that are equally
relevant for any architecture—even centralized environments that do not involve any
databases. We will call these requirements Fundamental Platform Requirements to
emphasize this fact, but remember that all of these requirements are also DDBE Plat-
form Requirements! In Chapter 12, we looked at several traditional DDBE architectures
and in Chapter 13, we looked at two new DDBE architectures. All of the architectural
alternatives in these chapters were designed by combining smaller pieces of software
(the COSs) and deploying them across multiple machines. When considering the (non-
database related) requirements for these COSs, it is useful to think about their life
cycle. For our purposes here, we can consider each COS to move through three dif-
ferent life-cycle phases: development, deployment, and execution. The development
phase refers to all the activities necessary to create the implementation (compilation,
linking, bundling, etc.); the deployment phase refers to all the activities required to
install the software on the target machine after it has been developed; and execution
refers to all the activities required to run the software within the environment once it
has been deployed. We will use these life-cycle phases to categorize the requirements
further, by considering the requirements for each phase. There will be some overlap and
interdependencies between the requirements and life-cycle phases but that is not impor-
tant since this grouping is merely a convenient way to organize the requirements—it
has no direct or indirect impact on the DDBE Platform itself. For example, the devel-
opment details for a particular COS (such as whether the COS is statically linked or
dynamically linked) will have a direct impact on the actual deployment and execution
details for that COS, but we are considering these requirements for the architecture as
a whole and not for a particular COS in this section.

14.2.1 Development Requirements

The Fundamental Platform Requirements in this section are strongly related to the
activities performed in the development life-cycle phase. This means that we are
considering the development activities and issues involved for each requirement. We
are looking at issues related to compilation, interpretation, byte compilation, linking,
and so on. In this section, we will not focus on any particular programming language
or development environment, but will instead try to consider the abstract requirements.
Of course, when considering these requirements for a specific environment, we would
consider all the specific details that were involved—but this is not our goal in this
chapter.

There are three subcategories within the Development Requirements:

• Integration Requirements
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• Extensibility Requirements (frameworks)
• Portability Requirements

14.2.1.1 Integration Requirements The Integration Requirements consider the abil-
ity of our COSs to work with each other during the development life-cycle phase. How
do two different COSs connect to one another? The answer is highly dependent on
the programming language we use to implement each COS, the operating system on
which we deploy and execute them, and whether or not the two COSs need to be able
to support nonlocal communication between them. In some cases, COSs implemented
in different programming languages can interact directly. For example, Java provides a
mechanism to execute code written in C, and all of the languages in the Microsoft .NET
Framework-based DDBE Platform are capable of integrating with each other through
well-defined mechanisms (see Chapter 18 for more details). When it is possible to use
a more direct approach, we usually can obtain better performance and less compli-
cated code. Often, when we do not use a direct mechanism, the alternatives we have
to choose from are similar to the alternatives we would consider in the cases involv-
ing different operating systems or remote communication. For example, COSs can use
Web Services written in different programming languages and deployed on different
operating systems. Of course, Web Services can also be used to connect COSs written
in the same programming language and deployed on the same machine under the same
operating system. We can often use middleware like Web Services and SOAP for both
situations, but the middleware solution will usually perform worse than the native
approach due to the internal overhead and complexities being addressed. Regardless of
the mechanism we use to connect the COSs, there are three main areas we are focused
on with respect to our Integration Requirements:

• The Namespace Requirements
• The Reference Requirements
• The Binding Requirements

Namespace Requirements Most programming languages allow us to name the various
constructs they contain, such as variables, functions, constants, modules, classes, and
interfaces. We will call this our Namespace Requirements, and it is our first area
within the Integration Requirements. Most programming languages also ensure that we
do not have duplicate, ambiguous names within the same program. This can usually
be done by enforcing specific syntax rules for the language. Whenever one COS needs
to connect directly to some piece of code defined in another COS, it must have some
way of indicating the name that exists in the other program. This is true whenever one
COS connects directly to another COS or directly to a piece of middleware. If all of
the names defined in each piece of code were visible to all of the other pieces of code,
it would be impossible for the programming language to prevent duplicate, ambiguous
names. Luckily, most languages have a way of limiting the visibility of names (private
scope) or a way of qualifying names using a namespace. This is identical to the
way that traditional relational DBMSs use namespaces to prevent duplicate ambiguous
names for the tables and columns defined within them. Regardless of how this facility
is implemented, we need to have some way of disambiguating names in our DDBE
Platform.



546 DDBE PLATFORM REQUIREMENTS

Reference Requirements Similar to the Namespace Requirements, whenever we refer-
ence some programming construct that is not defined within our COS itself, we need
to have a way to specify where the construct we want to reference is defined. We will
call this our Reference Requirements, and it is our second area within the Integra-
tion Requirements. Having an unambiguous name for a particular code construct is
not sufficient; we also need to have some way of referring to the code or library that
contains the definition or declaration so that we can use it correctly within the code.
Different programming languages and development environments have different ways
of implementing this. Regardless of how this facility is implemented, we need to have
some method for identifying that a set of unambiguous names is actually referring to
code constructs that are defined and implemented in some other set of code in our
DDBE Platform.

Binding Requirements Any piece of unambiguously named code that is defined outside
our program eventually needs to be connected to our implementation. We refer to this
“connection” as binding—and it can happen at different phases of the life cycle. It can
also happen in different ways, depending on the programming language, development
environment, and intentions of the developer. For example, sometimes the code is
compiled and linked into a single executable—we call this “static binding” or “static
linking.” Other times, we might use a mechanism that verifies the information at
development time but leaves the code in separate deployment bundles—we sometimes
call this “late,” “dynamic,” or “deferred” binding. We refer to the ability to specify
these binding characteristics as the Binding Requirements, which is our third main
area within the Integration Requirements. For example, Java classes can be bundled
into a single Java Archive File (JAR) or can be bundled into separate files. Similarly,
many systems and languages support so-called shared libraries or dynamic link libraries
(DLLs) that also postpone binding until a later time. Ultimately, we need to have some
form of binding available to us in the DDBE Platform, and ideally we have multiple
options for defining the binding.

14.2.1.2 Extensibility Requirements (Frameworks) The previous set of requirements
focused on the Development Requirements that help us to integrate our physical
pieces of code. In this section, we will consider the Development Requirements that
focus on the logical relationships between our pieces of code. How can we maxi-
mize the reusable code while minimizing the amount of implementation-specific code?
By using a technique known as a framework, we can define the boundary between
“more-reusable code” and “less-reusable code.” This technique uses a concept known
as extensibility (which we discussed briefly in Section 14.1.3.2). This is why we
refer to these Development Requirements as the Extensibility Requirements. Adding
implementation-specific code by building on a framework is referred to as “extend-
ing” the framework. We call the “less-reusable code” that we create by extending
the framework the extension. Although frameworks are traditionally discussed in an
object-oriented context, they can be implemented using an approach (technique and
language) that is either object-oriented or non-object-oriented. Using an object-oriented
approach is more natural and more common. Even if a non-object-oriented approach
is used, the object-oriented terminology is a useful way to describe the framework.

The framework typically consists of a set of public interfaces, public extendable
classes, and perhaps some private concrete or abstract classes. The public interfaces
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define a contract between all classes that implement them. For each method (a.k.a.
function, routine, procedure), the interface defines the method name, the return type (if
there is any), the exceptions (errors) that can be raised by the method, and parameter
details. When a method in the interface uses formal parameters, the interface defines
the name, data type, and order for all parameters in the method. Extendable classes
are classes that can be extended by using inheritance. Each extendable class can be
either abstract or concrete. Abstract classes cannot be directly instantiated. This means
that we cannot create a new object as an instance of that class. To create an instance
when the extendable class is abstract, we must define our own concrete class as an
extension of the framework class and then create an object as an instance of this new
subclass. Concrete classes can be directly instantiated. This means that we can create a
new object as an instance of the framework class directly or we can once again create
our own concrete class as an extension of the framework class and create an instance
of the subclass directly. When a framework provides a public extendable (abstract or
concrete) class, it can choose to implement the code for this class invisibly or visibly.
Being “public and extendable” means that we can inherit directly from the class and
invoke directly its methods. “Invisible implementation” means that we cannot see the
implementation source code, while visible means that we can see it. However, even
a visible implementation might delegate important details to other private classes and
interfaces that we cannot see or invoke directly.

Using frameworks to create extensions can be a very efficient way to replace one
implementation with another implementation within the DDBE with minimal impact
and effort. While the extensions we write can (and should) be reused within our
architecture, they are “less reusable” than the framework because they are less “general
purpose” and most likely written to suit the implementation details in our architecture.
So while our extension is reusable within our architecture, the framework can be
reusable within any architecture. This is why middleware is often implemented as a
framework, while our COSs are more likely to be implemented as an extension of a
framework.

14.2.1.3 Portability Requirements The Portability Requirements are those Develop-
ment Requirements that refer to the simple idea that the code for our COSs should be
as portable as possible. The Portability Requirements include all aspects necessary
to run our code across all of the platforms contained within our environment without
separate redevelopment. This means that the same code should be able to run across
different operating systems, different versions of the same operating system, different
hardware systems, and so on with little or no modification. The example platforms we
use in Chapters 15–19 (JMS, J2EE, and the Microsoft .NET Framework) all support
portable code—but in different ways. Both JMS and J2EE are implemented using Java,
which is portable to any platform supporting the Java Virtual Machine (JVM). This
is one of Java’s primary goals—enabling the same byte-compiled code to run on dif-
ferent platforms without modification or even recompilation. However, each platform
must have a different JVM, which means that there are potential caveats, omissions,
or delays in support for all features on all platforms. Similarly, the Microsoft .NET
Framework-based platform supports portability for its components across all the oper-
ating systems that support the platform. However, realistically, this is primarily the
Microsoft Windows-based operating systems, and again there are potential caveats,
omissions, or delays in support for all features on all these potential platforms.
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The degree of portability we require for our DDBE is highly dependent on the spe-
cific details for the environment we are trying to create. The more homogeneous our
environment is, the easier it is to run the same COS code on all our systems, or to
simply reinterpret/recompile the same code on each system. However, the more hetero-
geneous our environment is, the more difficult it will be to do these things. When we
cannot reuse our existing code, our only alternative is to redevelop the code separately
for each incompatible platform. Different programming languages and development
environments can provide some support for these redevelopment activities, but ulti-
mately we would like to reduce the amount of code that is nonreusable within our
environment.

14.2.2 Deployment Requirements

In the previous sections, we considered the development life-cycle-based Fundamental
Platform Requirements. Once we have developed the code for our COSs, we need to
deploy the COS instances at the appropriate sites within our environment. The Fun-
damental Platform Requirements that focus on the deployment life-cycle phase are
called the Deployment Requirements. The deployment life-cycle activities include
the physical transfer of code and data for each COS (installing the programs, libraries,
configuration files, etc.) as well as performing any steps necessary to make the envi-
ronment aware of the new instances. For example, we might need to populate registry
entries when a COS instance is installed at a site running one of Microsoft’s operating
systems. Alternatively, when a COS is installed at a site running a Java-based plat-
form, we might need to install deployment descriptors and perform some other related
activities.

Potentially, we have multiple instances of multiple versions of multiple COSs
deployed (installed) throughout the machines within our DDBE. We will discuss the
functionality required to manage this complex situation in this section. As we will dis-
cuss in Section 14.3.2, there are several different scenarios to consider when we look
at how our deployed COS instances are used within our DDBE. Sometimes, we will
accept any COS instance that provides any version of some desired service—this is one
extreme scenario. At other times, we might need to connect to a particular instance of
a particular version of a particular COS deployed on a particular machine—this is the
other extreme scenario. Of course, there are other situations that might require some-
thing in between these two extremes. Therefore, our Deployment Requirements must
consider several different types of functionality in order to ensure adequate support for
all these situations.

There are four subcategories of Deployment Requirements:

• COS Pooling Requirements
• COS Versioning Requirements
• COS Configuration Requirements
• COS Deployment Requirements

In order to support the first “extreme” scenario, we need to consider COS Pooling
Requirements. For the other “extreme” scenario, we need to consider COS Versioning
Requirements. In all possible scenarios, we need to consider theses two subcategories
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as well as the COS Configuration Requirements and the COS Deployment Require-
ments.

14.2.2.1 COS Pooling Requirements We strive to design our COSs for reusability.
This means that we want each COS to be reused by as many other COSs as possible. For
some COSs (especially those that wrap network, database, or messaging connections),
the startup and shutdown activities are the most expensive activities performed as part
of the execution process. If we can make our COS instances stateless, or enable them
to switch contexts efficiently, then we can place them in a pool. A pool is merely a way
to identify those COS instances that do not need to be shut down and restarted between
uses across different callers. The COS Pooling Requirements address the Deployment
Requirements that relate to pools and pooling. By pooling COS instances, we can
reuse the pooled instances among different callers—without performing the expensive
shutdown and startup activities in between the task swapping. The potential savings are
similar to those we experience when we choose to use the standby/hibernation features
on a computer (letting it go to sleep when it is not being used) rather than performing
a hard shutdown and cold reboot.

Many different platforms provide support for pooling. Both J2EE Application
Servers (like JBOSS) and the Microsoft .NET Framework have support for pooling.
However, merely using a platform that has this support available is not sufficient. We
must also be careful when we design and implement the COSs themselves to ensure
that they can be pooled (reused in this way). In particular, we must be sure to make
our COSs thread-safe and we must avoid using global variables within the code as
much as possible. We also need to avoid performing any operations that implicitly
depend on the state of the COS instance after returning from a procedure or method
call. For example, database connections and transactions are two very important
considerations for any pooled COS instances. We would not implement a method in
our COS that opened a database connection, began a database transaction, and then
did not commit or abort the transaction before returning from the call. If we want our
COS instances to be pooled, we either need to make sure that our COSs do not do
things like those we just mentioned, or we need to use more sophisticated techniques
to address these situations. Many platforms support sophisticated options such as
nested transactions and container managed transactions for precisely this reason.

It is beyond our scope here to discuss all the possible features or pitfalls for pooled
COS instances. Therefore, we will simply mention that pooling is a powerful feature
that we can use in many scenarios with minimal restrictions. Having sophisticated
facilities can make pooling an attainable goal for many COSs, but merely having these
facilities available within the platform does not ensure that it is always possible to con-
vert an existing COS into a pooled COS without redesign or reimplementation. In some
cases, it might not be possible to convert the COS without a complete redevelopment
regardless of level of support found within the deployment platform.

14.2.2.2 COS Versioning Requirements Ensuring that multiple versions of the same
COS can coexist within the system without causing errors or issues is a difficult goal,
but it is crucial to the development and maintenance of the DDBE. The COS Ver-
sioning Requirements refer to the Deployment Requirements that address this area. In
particular, we need to define how versions will be managed within the DDBE Platform,
and which specific features are most important. These requirements can make use of
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several facilities found within the programming languages, protocols, and platforms
used to implement the DDBE. Often, versioning considerations are addressed by the
facilities used to fulfill the Remote-Code Execution and Directory Service Require-
ments. In other scenarios, simple naming conventions can be used to identify the
desired COS version and the available COS version. Ideally, the version information
is separate from the naming information. This allows more flexibility when a client
is looking for a particular service. In all cases, the version information should be dif-
ferent whenever any significant change (to either the publicly visible interface or the
private, hidden implementation) has been made. The environment should also support
requests for a specific version as well as requests for “any version.” This can also be
implemented by having version numbers that have multiple parts; for example, if the
version number is indicated by a major version number and a minor version number.
The specific implementation details are often very dependent on the programming lan-
guage and other similar specific environmental details, but there are several different
alternatives that we can use to satisfy this requirement.

14.2.2.3 COS Configuration Requirements The ability to reconfigure our compo-
nents and subsystems on a per-deployed-instance basis is crucial to maximizing their
reusability. The COS Configuration Requirements refer to the Deployment Require-
ments that address this ability. They define how COSs are configured within the DDBE
Platform and identify how this can be decoupled from COS compilation and link-
ing. Many programming languages and application execution environments support
simple property files, which can be used for this purpose. More sophisticated environ-
ments also support more complex methods for specifying deployment-specific details
independent of the executable code. For example, J2EE uses a special XML file,
called a deployment descriptor, to store both system-defined and programmer-defined
deployment-specific details. Similarly, the Microsoft .NET Framework platform sup-
ports configuration files (which are also implemented as XML files) to provide the
same functionality.

14.2.2.4 COS Deployment Requirements The DDBE Platform needs to be able to
adapt to user and system needs if it is to be a scalable solution. This means that we need
to be able to change deployment details dynamically with minimal impact to the overall
system. Therefore, we need to define how COSs are dynamically deployed within the
DDBE Platform. We also need to identify how consumers of these newly deployed
services can react to these changes without requiring additional design or configuration
changes to the service consumers. We refer to the Deployment Requirements that
focus specifically on the act of dynamically deploying a COS instance as the COS
Deployment Requirements.

The most fundamental COS Deployment Requirement is the ability to create and
deploy dynamically linked COSs. If two COSs are dynamically linked, the code for
each COS can be compiled into a separate file. This means that the COSs can call
methods or procedures in each other without being linked as a single program or
library. Most modern operating systems and application environments support several
flavors of dynamic linking—but this does not make it an automatic situation. The COS
author must deliberately design the COS to identify which modules are (statically) part
of the COS and which parts are external—then the author must use the appropriate
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language and environment-specific facilities to ensure that the external components are
dynamically linked.

When the environment stores deployment/configuration details in a separate file
(as discussed in the previous section), changing the deployment can be done without
requiring recompilation or relinking. Often, a COS instance will require several files.
This can make it very complicated to install new COSs and uninstall old COSs. Luckily,
many environments provide a mechanism for packaging these files into a single bundle.
For example, J2EE has several different archive files such as Enterprise Archive
(EAR) files, Web Archive (WAR) files, and Java Archive (JAR) files. The Microsoft
.NET Framework supplies assemblies, which serve the same purpose.

14.2.3 Execution Requirements

In the previous sections, we considered the Fundamental Platform Requirements that
reflected our development and deployment life-cycle activities. In this section, we will
consider the requirements that address the execution life-cycle phase—the Execution
Requirements. Most modern operating systems (or at least most of the modern operat-
ing systems we are likely to use to implement a DDBE) have very powerful options for
controlling program execution. The execution of a program is usually called a process,
but there are other ways that code can be executed. We will refer to any mechanism
that executes a piece of code as a task, and the Execution Requirements will focus on
the various task execution details we need to consider. Because all of our COSs are
either service consumers, service providers, or both, we will almost always have mul-
tiple tasks executing in our environment. These tasks might be on the same machine
or on different machines. Since we are focusing on the Fundamental Platform Require-
ments in this section, we will limit ourselves to the single machine scenario (execution
on different machines will be discussed in Section 14.3). We will split the Execution
Requirements into two areas. The first area will focus on what we need to have in
order to execute multiple tasks on the same machine within the environment—the
Multitasking Requirements. Whenever we have multiple tasks executing at the same
time and interacting with each other, we also need to consider how these tasks address
process concurrency issues. Therefore, the second area we will consider for Execution
Requirements will focus on the Concurrent Execution Requirements. The concept of
execution concurrency should not to be confused with the concept of database con-
currency (which we discussed in Chapter 5), even though there are some similarities
between the two concepts. In the following subsections, we will highlight some of the
concepts and issues to consider for these two areas (multitasking and concurrency).
However, we will not discuss any specific issues or remedies—since these details are
very DDBE Platform dependent.

14.2.3.1 Multitasking Requirements For our purposes, a task is merely a generic
name for something that is running on the computer. This can be a complete program,
or it can be something that is more lightweight. Most single processor computers
cannot actually execute more than one task at the same time—instead, they provide
the illusion of multiple executions by switching back and forth between multiple tasks
very quickly. This is called task switching or task swapping. Some systems have more
than one central processing unit (CPU) and can literally execute multiple tasks at the
same time. Many modern processors actually contain multiple CPU cores, which is
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analogous to multiple processors. Even on these more sophisticated systems, however,
it is fairly common to use task switching—otherwise the number of active tasks would
be limited by the number of CPUs or the number of CPU cores. Regardless of how the
system supports multiple task execution, there are three distinct alternatives that we
want to consider in this set of execution life-cycle-based Platform Requirements. These
alternatives are somewhat interrelated, and therefore, we will consider them based on
their relative power and complexity. First, we will consider multitasking via multiple
threads; next, we will consider multitasking via multiple processes; and lastly, we
will consider multitasking via multiple users.

Multitasking Via Multiple Threads Whenever we write code in a traditional program-
ming language (Java, C#, C++, Visual Basic, etc.), we create statements that define
the logical control flow for the code. When the code executes, the system creates an
execution of the program code; this execution is called a process. The CPU follows
the instructions the program provides, in the specified order, obeying any control flow
statements (conditional branching, iteration, etc.) as necessary. We can call this execu-
tion a “thread of control.” When there are multiple “threads of control” within the same
process, we say that the process (or program) is multithreaded. In a multithreaded
process, even though there are not multiple instances of the same program executing
at the same time, the code gives the appearance of doing more than one task at the
same time. This is called multithreading.

While multithreaded programming is a powerful technique, it also requires careful
programming practices. Because multiple threads are executing within the same pro-
cess, they share the same data and same system resources. When we choose to write
a multithreaded program, we must ensure that none of our threads conflict with each
other to corrupt the data or resources they share. In some respects this is similar to
the way a DBMS must ensure that multiple transactions, cursors, and user connections
preserve the integrity of the database while avoiding dirty-reads and dirty-writes. We
will discuss the concurrent execution requirements further in Section 14.2.3.2.

When we use multiple threads within a single process, the threads share the data
and resources allocated to the process. If we were to execute the program separately
for each thread, these processes would not share anything and therefore would require
more overhead to accomplish the same effect. For this reason, threads are sometimes
referred to as “lightweight” processes. While using multiple threads has some definite
advantages, there are also some potential disadvantages to this situation. For example,
suppose we have a process with multiple threads. If this process encounters any serious
problems, failures, or errors, then all of the threads within that process will also be
adversely affected. If the error is severe enough, or if it is not handled properly, then
the entire process and all of its threads might be terminated (killed).

Multitasking Via Multiple Processes Some systems do not allow more than one pro-
gram to execute at the same time—even via task swapping. But most modern operating
systems that we are likely to use to implement a DDBE do not have this limitation.
When multiple processes run, they are similar to multiple threads except that each pro-
cess has its own data and resources. This means that each process can have a different
state (different values for its variables, etc.), but it also means that more resources are
required. Although there are no concerns about shared variables, we still have to worry
about conflicts for resources (files, network connections, etc.). We will discuss these
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concerns further in Section 14.2.3.2. In many multiprocessing systems, each process
must be executed by some other process (called the parent process). In these systems,
there are usually several different execution alternatives (such as spawn, fork, etc.) as
well as mechanisms that allow the parent process to pass configuration details to the
child process and also control its execution. We will not discuss these details further
here, but it is important to consider the specific details for each platform within our
environment before choosing a particular approach for deploying and executing the
COS instances that comprise our DDBE.

Multitasking Via Multiple Users Many systems support the concept of a user and
allow multiple users to be defined. Each user can then be configured with different
preferences, rights, privileges, and restrictions. If a system supports multiple users
being connected at the same time (and implicitly multiple processes executing at the
same time), we call it a multi-user system. Not all multiprocessing systems are multi-
user systems. For example, Microsoft Windows NT® and Linux® are multi-user (and
multiprocessing) systems. However, Version 1.0 of OS/2 was not a multi-user sys-
tem (although it was a multiprocessing system) and neither was MS DOS® (in any
version). Multi-user systems share the same benefits and disadvantages as multipro-
cessing systems but also provide a richer mechanism for customizing the process
executions because different users can have different privileges and different configu-
ration details.

14.2.3.2 Concurrent Execution Requirements Whenever two or more tasks interact
with each other (via shared data, shared resources, or actual interaction), we need to
ensure that the tasks do not unintentionally interfere with each other. Sometimes the
tasks need to cooperate with each other to achieve some larger goal; sometimes the
tasks are in competition with each other. There are several issues to consider when
implementing concurrent execution on the same platform—and several alternatives
for resolving those issues. In this section we will look at some of the alternatives that
might be provided by the DDBE Platform. The actual alternatives available are highly
dependent on the actual DDBE architecture, implementation, and deployment details.
The best approach to use for a particular situation is dependent not only on all these
details but also on the type of conflict we need to prevent and the type of multitasking
being used. In general, there are five techniques we can choose from to help us avoid
conflicts within our code.

These techniques for avoiding conflicts in the face of concurrent task execution are
as follows:

• Reentrancy
• Thread safety
• Synchronization
• Semaphores
• Message passing

Reentrancy A section of code is reentrant if it can be safely suspended and reentered
by multiple threads at the same time. Suppose that thread “A” was suspended while
executing a piece of reentrant code. If thread “B” begins to execute that same code,
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we would expect thread “A” and thread “B” to be able to continue their executions
successfully without any interference or unintentional interaction between the threads.
Writing reentrant code is certainly possible to do, but it is not always easy to do or
practical to attempt for all scenarios. Implicitly, reentrant code cannot use any static
or global variables (constants are allowed, but not variables). This also means that
reentrant code cannot obtain any locks or use any singleton resources (e.g., it cannot
write to the same, specific file). Lastly, for obvious reasons, reentrant code cannot call
any nonreentrant code. We must be very careful whenever we modify a piece of reen-
trant code—adding a single call to a nonreentrant method can destroy our reentrancy!
Therefore, when working with reentrant code, it is very important to maintain a list of
all the COSs and methods that it calls. It is equally important to maintain a list of all
the callers for a particular piece of reentrant code. This can often be done automatically
by the development tools and integrated development environment (IDE).

Thread Safety A section of code is thread-safe if it functions correctly with no side
effects when multiple threads of control are executing the code at the same time.
Thread-safe code has fewer restrictions than reentrant code. In particular, multiple
threads are allowed to access the same piece of data as long as they do so one-at-a-
time and do not cause any unexpected or unintended side effects. This is analogous
to the concept of serializability, which we discussed in Chapter 5—but here we are
looking at shared variables and resources not database values. One way to achieve
thread safety is also analogous to a database solution (transactions and locking): we
can use some technique (such as synchronization, semaphores, or messaging) to ensure
that only one thread enters the section of code where a conflict can occur. Each section
of code that is controlled like this is called a critical section or a guarded section
(the names are equivalent). There are also various other techniques that can be used to
ensure the necessary behavior. For example, Java code can use synchronized methods
to achieve this goal. Once again, we need to be careful when calling other code from
within our critical section, or else we might destroy the thread safety of our code!

Synchronization There are two types of synchronization possible between two poten-
tially conflicting threads: competitive synchronization and cooperative synchronization.
Competitive synchronization is precisely the situation we just discussed in the pre-
vious section—two threads compete over a shared piece of data or a shared resource.
Often, we can use critical sections or any similar techniques to handle competitive
synchronization conflicts. However, just like the similar scenario for databases, we
need to be careful to avoid deadlocks, starvation, and livelock scenarios. In the case of
cooperative synchronization, the threads are intentionally working together and there-
fore must find some way to communicate with each other. This can be via shared
variables (protected by critical sections), semaphores, or message passing. In cooper-
ative synchronization, it is very important for the threads to notify each other and
then to wait for each other at the appropriate points in the code. Once again, just
like the situation with competitive synchronization, there are still potential problems
with timeouts, deadlocks, starvation, and so on, when cooperative synchronization uses
these techniques.

Semaphores A semaphore is a piece of atomic data. This means that operations
(read, write, etc.) performed on it cannot be interrupted, just like the atomic property
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for transactions. Even though it looks simple, the programmatic statement that reads
or assigns a variable’s value is actually much more complicated than it seems. When
a computer accesses a variable (or any value stored in memory), there are actually
several low-level (machine language) instructions being performed. For example, first,
the computer may need to load a base address into one hardware register. Next, it
might load an offset value into another hardware register. It might then add the two
registers together and place the result in a third hardware register. The computer might
even need to perform other operations to dereference the register (look at the value
stored in the location to which it points). Unlike the operations performed on a normal
variable, operations performed on semaphores cannot permit multiple processes or
multiple threads to interleave their execution of these low-level operations. In particular,
semaphores are often used to implement synchronization and protect critical sections
by creating mutually exclusive objects (mutexs). Only one thread of control can
obtain a particular semaphore at a given time; any other threads attempting to read or
modify it will be forced to wait for it to be released. In this respect, semaphores are
analogous to exclusive locks in databases, but semaphores are implemented as part of
the operating system or program execution environment (independent of any database
or database management system).

Message Passing Many operating systems provide facilities for passing messages
between local processes running on the same system. This is sometimes referred to
as interprocess communication (IPC). When this facility is present, it can be used
to coordinate between different threads of control while they are executing the same
section of code. This can be used to support both competitive and cooperative synchro-
nization as long as the message passing facility is reliable. If it is possible for messages
to be lost or to arrive in a different order from that in which they were sent, then mes-
sage passing will not be an ideal solution for resolving potential conflicts or providing
either type of synchronization. The message passing solution and its potential issues
are similar to those we will disuses in Section 14.3.1.2. However, because the sender
and receiver are both on the same machine for the message passing scenarios we are
considering here, there are no network operations required. Therefore, the performance
will probably be much better for the message passing alternatives than it will be for
the remote messaging alternatives.

14.3 DISTRIBUTED PROCESS PLATFORM REQUIREMENTS

In the previous sections, we considered the Fundamental DDBE Platform
Requirements—the Development, Deployment, and Execution Requirements that
we feel should be considered for every project (even centralized, nondatabase
applications). In this section, we will consider the subset of DDBE Platform
Requirements necessary to implement any distributed environment (even when
there is no database involved). We call these requirements the Distributed Process
Requirements, and we will focus on two subcategories within this subset. The first
subcategory is called the Remoteability Requirements, while the second subcategory
is called the Directory Services Requirements. Remoteability is defined as the ability
to connect different COS instances to each other (either directly or indirectly) when
they are deployed on different machines within the same environment. While the
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Remoteability Requirements consider how we implement communication between
COS instances deployed on different machines, the Directory Services Requirements
consider how we manage the availability status of all the COS instances currently
deployed within our environment. In Section 14.3.1, we will consider two alternatives
for implementing our Remoteability Requirements. We can choose to use both of
the two Remoteability alternatives within the same environment at the same time,
or we can choose to use either one of them as the only Remoteability alternative
implemented within our environment. In Section 14.3.2, we will consider the
implementation alternatives for our Directory Services Requirements.

14.3.1 Remoteability Requirements

Remoteability is the ability to connect a particular COS instance that is deployed
on one machine to another COS instance that is (potentially) deployed on some other
(remote) machine. Because every component and subsystem in the DDBE can in theory
be on a different computer system, almost any interaction between COS instances might
potentially be considered a conversation between distributed (remote) applications.
As we mentioned before, this extreme scenario is not very likely. However, because
some level of distribution must exist within the DDBE, we would like to make the
architecture as flexible as possible with respect to the ability to change the location
for almost any COS instance. If we focus on a particular COS, and its point of view
of the architecture, it will be involved in several conversations over the course of
its execution. Some conversations will be initiated by this COS instance itself, but
other conversations will have been initiated by some other COS instance. Similarly,
sometimes the COS instances involved will be deployed on the same machine, while
at other times the instances will not be deployed on the same machine. When the
instances are on the same machine, we consider them to both be Local COSs. When
the COS instances are not deployed on the same machine, each instance considers the
other instance to be a Remote COS.

Conversations between Local COSs can use any valid mechanism provided by the
underlying DDBE Platform, including all the traditional mechanisms for interprocess
communication (IPC) that we mentioned in Section 14.2.3.2. We can also use sim-
ple function/method calls implemented in the native programming language/operating
system. Choosing the mechanism for remote conversations is a far more interesting
and challenging decision, and ultimately necessary for at least some COS instances. In
most scenarios, the remote communication mechanism will be less efficient than the
local mechanism, but most remote mechanisms can also be used to connect to Local
COSs with only a slight overhead penalty. The flexibility with respect to deploy-
ment opportunities often outweighs the penalty incurred by implementing the remote
mechanism—but we can always choose to reimplement the COS using local mecha-
nisms if the performance becomes unacceptable.

Code that is implemented within the same COS will be the most efficient (with the
least communication overhead), but it will be tightly bound to a single COS instance.
This means that it cannot be split into (or shared among) multiple COSs very eas-
ily. Code that is implemented in two, separate, Local COSs and implemented using
traditional IPC mechanisms will be slightly less efficient (with more communication
overhead than code within the same COS). However, this approach will have the
advantage of being more independent and modular than the previous approach. This
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code can be split into or shared among multiple COSs easily. Code that is implemented
in two, separate, Local COSs and implemented using some remote conversation mech-
anism will have even greater overhead than the COSs implemented with a traditional,
local IPC mechanism. When these COSs are both local, the communication will be
less efficient than traditional IPC communication, but more efficient than remote com-
munication. This code can not only be split into and shared by multiple COSs easily,
but it can also be deployed on different machines and moved to other machines very
easily.

The mechanism being used for this remote conversation can be either general pur-
pose or task specific. General-purpose mechanisms do not specify any restrictions
or details about the content of the conversation—this is compatible with the SOA
point of view (see Section 14.1.3.2). General-purpose mechanisms can be used for any
purpose, but offer no additional benefit for any conversations specific to a particular
task. By contrast, task-specific mechanisms are very detailed about the conversa-
tion content, restrictions, and protocols. Task-specific mechanisms usually use one or
more general-purpose mechanisms behind the scenes. There are two primary flavors
of general-purpose mechanisms: Remote-Code Execution and Remote Messaging.
There can be as many task-specific mechanisms as there are implementations of COSs
that execute specific tasks. Most task-specific mechanisms are flavored by the under-
lying general-purpose mechanism being used. Attempting to identify all the possible
task-specific mechanisms is far beyond our scope here. Therefore, we will look at the
two flavors of general-purpose mechanisms in greater detail, with the understanding
that any task-specific mechanism would be somewhat analogous to the general-purpose
flavors we discuss.

14.3.1.1 Remote-Code Execution Remote-Code Execution is the first general-
purpose Remoteability mechanism that we will consider. It allows one COS instance
(the caller) to call functions, procedures, routines, or methods that are implemented in
another COS instance (the callee)—even when the caller and callee are deployed on
different machines. Usually, we want to try to make this remote execution call look as
similar as possible to a local execution call in the programming language. Depending
on the particular implementation mechanism chosen for Remote-Code Execution,
there will be varying levels of support for heterogeneity across the components.
Some implementations are programming language specific but support multiple
operating systems and hardware configurations. Other implementations can support
multiple programming languages but only work on a single operating system or a
single hardware configuration. Obviously, it is not likely that a single approach will
cover all possible programming languages, hardware configurations, and operating
systems seamlessly. Remote-Code Execution alternatives can be implemented using
either a non-object-oriented approach or an object-oriented approach. In the next few
paragraphs we will describe the non-object-oriented approach and the object-oriented
approach. Then we will compare these alternatives. Because there are many issues
common to both alternatives, we will consider how values are passed between the
Local and Remote COSs. Similarly, we will consider how the control flow in the
calling program works for a multitasking caller and callee. Lastly, we will consider
how errors and exceptions are handled in both Remote-Code Execution alternatives.
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Remote Procedure Calls When a non-object-oriented programming language is used,
we can call the remote “function, routine, subroutine, or procedure” a Remote Proce-
dure. In most non-object-oriented programming languages (like C, Pascal, FORTRAN,
and Basic), Remote-Code Execution usually requires using a preprocessor to generate
code. This preprocessor replaces the local procedure calls with calls to the Remote
Procedure. In effect, each call spanning the components is actually using additional
library routes to perform a corresponding call on the remote machine. This is why we
refer to this technique as a Remote Procedure Call (RPC). Usually, the preproces-
sor is bundled with a set of third-party tools and libraries that implements the remote
execution. This third-party code is necessary to achieve the remote communication.

Remote Method Invocation When Remote-Code Execution is implemented using an
object-oriented approach, we can call the remote “function, routine, subroutine, or
procedure” a Remote Method. The object that implements these Remote Methods is
called a Remote Object. Because we are using object-oriented terminology, we do not
say that a method is “called”; instead, we say that the method is “invoked.” This is
why we refer to this technique as a Remote Method Invocation (RMI). While object-
oriented programming languages (like Java, Visual C#, Visual Basic, and Visual C++)
can choose to use a preprocessor and set of third-party tools and libraries to implement
the remote communication code (the same as most RPC implementations often do),
these languages can alternatively choose to use frameworks and extensions to include
the desired functionality as part of the development and runtime environment.

RPC Versus RMI There are a few significant differences between a Remote Procedure
and a Remote Method. When using Remote Procedures in our code, there are typically
some library-specific startup procedures that must be called before the remote calls
can be made. After the conversation is finished, there are usually some library-specific
procedures to be called to close the network connections and release the resources.
Failure to call these startup and shutdown procedures properly can result in errors or
resource (memory, network connections, etc.) leaks. Remote Methods essentially have
the same concerns, but because of the object-oriented nature of the implementation, we
can handle them differently. Typically, our Remote Methods would be organized (and
refactored as needed) into cohesive collections of classes, interfaces, and methods. The
required startup and shutdown code can be encapsulated into the class that implements
the Remote Methods or invokes them. While it is probably not a good idea to implement
the startup and shutdown code inside constructor/initializer and destructor/finalizer
methods, that is also one possibility. While memory/resource leaks are still a concern,
they are somewhat more manageable because of the garbage collection facilities pro-
vided within the object-oriented programming languages themselves. It is possible for
us to pool the Remote COSs—however, to do this we must ensure that they implement
the COS Pooling Requirements correctly. We usually need to consider thread safety and
reentrancy issues for the callee (and perhaps for the caller) when pooling is used here.

Marshalling and Unmarshalling Parameters Regardless of whether Remote Proce-
dures or Remote Methods are used, we need to consider how data is sent and received
between the local and remote code. There are several issues to be considered here.
Both approaches communicate via a “stream of data.” This “stream” needs to con-
tain information identifying which procedure/method is being executed, as well as the
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parameters/return values involved in the call. As part of the call, the list of parameters
needs to be converted into a single “stream” of data and then sent over the network to
the callee. The callee must then convert the “stream” back into individual parameters
again. We call the initial conversion process (from the parameters into the data stream)
Marshalling Parameters and the corresponding conversion process (from the data
stream back into parameters) Unmarshalling Parameters.

At first glance, Marshalling and Unmarshalling might seem to be relatively simple
operations, but this is not necessarily the case. Each parameter being sent needs to be
converted into a format that is compatible with the underlying network protocol used
to connect the two processes. Obviously each parameter received on the other side
must also be converted from this network compatible format into the format used by
the remote program. If there are any values modified by or returned from the remote
code, these also need to be translated into the network compatible format and then
translated into the format compatible with the original calling program.

Different programming languages, operating systems, and network protocols can
store data in different ways. Even simple integer values stored using two’s-complement
binary representations (the most common representation format on most PCs) can
be stored differently in each of these places—for example, one place might choose
use Big-Endian representations while the other might use Little-Endian representa-
tions. If the parameters or values being passed back and forth are implemented using
complex data types, then we need to convert all the fields contained inside the parame-
ters/returned values. For example, we need to perform this more complex conversion if
any parameters or returned values are implemented using structures or unions in a tra-
ditional programming language. This “complex conversion” is also used whenever the
parameters or return values are implemented using objects in an object-oriented pro-
gramming language. Similarly, if any of the fields within these complex data types are
themselves implemented using complex data types, then we need to do this conversion
process recursively for all such fields.

Because an object is essentially “data plus code,” passing objects as parameters
has an additional level of complexity to consider. Both the Local COS and the
Remote COS must have the ability to load all the classes and interfaces needed
to define the object being passed. Recall the Development Requirements that we
discussed in Section 14.2.1, especially the Integration Requirements we discussed in
Section 14.2.1.1. Implicitly, we must have the same version of these classes available
to both COSs (as we discussed in Section 14.2.2). Methods called on the object
will execute where the object is, unless the object passed as a parameter is itself a
Remote Object. If the object passed as a parameter is a Remote Object, any methods
implemented by this object and invoked by this Remote COS are themselves Remote
Methods that might be executing within yet another Remote COS (possibly on yet
another machine!). Similarly, if the object passed as a parameter contains any Remote
Objects inside it, things can become quite complicated from both a communication
perspective and potentially from a concurrent execution perspective. Obviously, the
communication overhead can also be greatly increased in scenarios like this.

The Marshalling and Unmarshalling operations must ensure that both the number
and the order of parameters being sent match the corresponding number and order of
parameters being received. Remember that the format used to send these values over
the network is ultimately just a stream of data. This means that we need to include
some information about the number, size, and data types used for each parameter in
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this block of data, and the code on both sides of the stream must agree on the format
used for representing this information. In order to handle network issues and failures
properly, the code on both sides must also verify the data inside each block, using
some form of checksum or some other similar techniques.

Blocking and Nonblocking Calls If the thread of control in the calling process (the
caller) waits for the Remote Method or Remote Procedure to return before it continues
processing, this is known as a Blocking Call. It is named this way because the thread
is blocked from further execution while the remote program (the callee) processes the
call. If the caller process is a single-tasking process, then the whole caller process is
blocked. If the caller process is multithreaded, then the other threads of control can
continue to execute in the caller process, even though this particular thread in the caller
process is blocked. If the callee process is a single-tasking process, then it will only
be able to handle one caller at a time! If the callee process is multithreaded, then each
call will be run as a separate thread.

However, if the thread of control in the caller continues immediately after the
call is made, without waiting for a response from the callee, then this is known as a
Nonblocking Call. The real distinction between these two types of calls is the expected
behavior when the callee does not immediately respond. In other words, if the callee
was always available and always returned quickly, then we would not notice any real
difference between the two call types. However, since most calls actually need time to
respond, and time to perform whatever action the call is supposed to implement, there is
usually a big difference between these call types. Typically, Nonblocking Calls do not
return any real information, since any variables receiving the return value of the remote
call are undefined until the call actually returns successfully. Therefore, we usually
expect remote calls to be Blocking Calls, but it does not necessarily need to be this way
in all implementations. When Nonblocking Calls are used, many of the same issues we
discussed in Section 14.2.3.1 (Multitasking Requirements) need to be considered, even
if the calling process is single-threaded. Also, when Nonblocking Calls are used, the
issues and considerations are somewhat similar to those we encounter with Nonblocking
Messaging, which we will discuss in Section 14.3.1.2.

Communication Errors and Exceptions All Remote-Code Execution calls need to con-
sider how errors in the network communication will be returned and handled. Typically,
a local procedure call might include some error conditions as part of its logic. All caller
code (both remote and local) should include the task-specific logic we wrote inside the
call to handle the expected errors for the action itself. With Remote-Code Execution
calls, we usually need to add special return codes to the callee and special error han-
dling logic to the caller representing any errors that might result from network-related
issues. In the very least, we must handle the case when a call does not return after some
configurable timeout period. This is necessary because the remote program might not
be executing any longer, there might be some other networking problem preventing
communication, or the remote program might simply be taking too long. These error
codes and the associated special handling also need to be tested!

14.3.1.2 Remote Messaging Remote Messaging is the other general-purpose
Remoteability mechanism that we will consider. Remote Messaging is similar to
Remote-Code Execution, but it is not identical. Once again, there are object-oriented
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approaches and non-object-oriented approaches from which to choose—but here, this
distinction is not as important as it was in the Remote-Code Execution alternative. In
Remote Messaging, the caller code passes its data in the form of a Message parameter
to a generic “send message” method, procedure, function, or routine. The code on the
callee side will either make a generic “check for message” call and a generic “retrieve
message” call or it will use a special piece of code that acts as a message event
handler/listener. Instead of using multiple methods or procedures with parameters
specific to the task being performed, we will use specific messages. Remote Messaging
is often implemented using an extensible framework. This description is potentially
compatible with the SOA view of messaging, which we discussed earlier. Of course,
we would still need to follow the other restrictions we discussed in Section 14.1.3.2
for this to be truly compatible with that view. In other words, Remote Messaging can
be compatible with SOA messaging, but this is not always the case.

In Remote Messaging, we need to consider the Messages themselves, as well as
the impact of Message-Oriented Programming. There are some issues that are unique
to messaging, such as the role of Message Timeouts, Ordering, and Durability. Other
issues are similar (but not identical) to those we discussed for Remote-Code Execution,
such as Blocking versus Nonblocking communication and the handling of Communi-
cation Errors and Exceptions. We will discuss each of these briefly in the following
sections.

Messages A message is usually implemented as a single data structure or a single
object. In object-oriented approaches, we create classes that inherit from a Message
class or implement a Message interface. Non-object-oriented approaches typically have
a common structure at the start of the message (a message header) that specifies
message type and length information. In this way, we can create as many different
messages as desired with virtually unlimited possibilities for the content.

When a framework provides the basic messaging functionality, we implement the
actual messages and the COSs that send and receive the messages as an extension.
The data passed inside each message must also be translated into and out of the “data
stream” (similar to Marshalling Parameters and Unmarshalling Parameters). Each data
structure or object representing a message needs to be converted into a single “stream”
of data sent over the network and then converted back into individual data fields,
structures, or objects again. Because messages are like complex parameters (they are
data structures or objects), this is once again a recursive process that needs to be
applied to each field in the message. Each field sent needs to be converted into a
format that is compatible with the underlying network protocol used to connect the
two processes, and converted from this network compatible format into the format
used by the remote program. For example, Big-Endian and Little-Endian conversions
(and other similar considerations) are still important, but there is no need to worry
about the number of parameters or the order/sequencing of parameter values within
the call. The message usually contains all the details needed about the size of all
fields and details about all the data types being used. Similar to the case when objects
were passed as parameters in RMI, both sides must agree on the definition of the
format. This is true even for non-object-oriented implementations of Remote Messag-
ing, which means we usually have some form of version or revision embedded in
the message to catch the case where they are not using the same message structure
definitions.



562 DDBE PLATFORM REQUIREMENTS

We mentioned the terms “Big Endian” and “Little Endian” once before when we
discussed Marshalling and Unmarshalling, and they refer to the same concepts here.
In particular, the terms “Big Endian” and “Little Endian” are derived from the novel
Gulliver’s Travels , written by Jonathan Swift. Here, however, these terms refer to
the order in which the bytes making up a multibyte word are stored. Big Endian
formats store the most significant byte first, while little Endian formats store the
least significant byte first. If we considered the two different representations for a
single multibyte word value, the representations look almost like mirror images of
each other (but at the byte level not the bit level). For example, consider the 16-bit
value 0x1234 (this is hexadecimal notation, for the decimal value 4660). This value
would be stored in Big Endian format using the byte value 0x12 first, followed by
the byte value 0x34. This value would be stored in Little Endian format using the
byte value 0x34 first, followed by the byte value 0x12. In binary representation,
the Big Endian representation would consist of the following sequence of bits:
0001001000110100; while the Little Endian representation would consist of the
bits 0011010000010010. Clearly, it is very important to know which representation
should be used at each step involved in the communication process.

Message Oriented Programming Consider a typical conversation between two or more
components. One of the components will begin the conversation by making a request.
Each of the other components in the conversation will react to the request in one of
three ways: respond to the request, ignore the request, or begin a new conversation.
When the requests and replies are implemented using Remote-Code Execution, the
conversation is more restricted—in effect, the request and response are implemented
by making separate Remote Procedure Calls or Remote Method Invocations between
each pair of components involved. In this case, the reaction is implemented using the
return value or the output parameters available after the call/invocation completes. In
other words, from the requesting component’s point of view, the “reaction details” are
“immediately available” after the procedure call/method invocation completes.

By contrast, when the same conversation is implemented using Remote Messaging,
we do not immediately see the “reaction details” as part of the messaging operation.
Instead, we must use separate operations (involving separate messages) to implement
the requests and the reactions. This is not difficult to implement: we simply send another
message, but this time the reacting component sends the message and the requesting
component receives the message. This subtle change has some radical implications for
the way we write the code in these COSs. Our code becomes focused on the messages
rather than the procedure calls and method invocations. We can say that the COSs
using Remote-Code Execution are somewhat process oriented (focusing on procedure
calls or method invocations), while the COSs using Remote Messaging are message
oriented (focusing on the messages used to implement requests and reactions/responses
to those requests). There is another subtle difference between Remote Messaging and
Remote-Code Execution—Remote Messages can be sent to multiple places with a
single call. This also means that sending a single message might result in multiple
response messages being returned.

Timeouts, Durability, and Ordering The remote calls used to implement a process-
oriented COS look like traditional method or procedure calls. By contrast, however,
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the code used to implement a message-oriented COS looks more like event-driven
programming. Message-oriented code uses techniques similar to those found in many
graphical user interface (GUI) programming scenarios. Typically, after the Local COS
sends a request message, it must do one of two things—it goes to sleep, or it goes off
to perform some other activity while it waits for one or more Remote COS instances
to send back a “reaction-details message.”

Messages can arrive at any COS that uses Remote Messaging, at almost any time.
These messages can be from almost any other COS in the architecture. These messages
can have different message types and can arrive in almost any order. It is also possible
for our code to be “hung” while waiting for a message that will never come (perhaps
the COS instance that was supposed to send it failed). In these cases, we cannot tell
the difference between a message that has been delayed due to a busy message sender,
a message that will never be sent due to a crashed message sender, and a message that
somehow got lost in transmission. In these situations, we usually specify some duration
(timeout period) to wait for a response before we consider the sender to be unavailable
and the conversation to be over due to some sort of failure. Often, the Messaging
Subsystem or Messaging Middleware will provide a message queue or similar construct
to allow the receiving program to continue to receive messages even when the receiving
program is not actively looking for them. Usually messages need to be processed in
the order that they are queued, but sometimes the Messaging Subsystem or Messaging
Middleware provides techniques to look ahead or filter the queue for more efficient
processing. Some Messaging Subsystems include a message priority flag inside the
message to ensure that higher priority messages are queued ahead of lower priority
messages. We will discuss some specific messaging implementations in Chapter 15.

Blocking and Nonblocking Messaging Remote Messaging can be implemented using
either Blocking Message Operations or Nonblocking Message Operations. These
operation types are not quite the same as their Remote-Code Execution counterparts
(Blocking Calls and Nonblocking Calls), but we can draw some parallels between them.
Typically, the code containing our send message operations will be implemented using
Nonblocking Messaging. This means that the sending COS can continue execution
immediately after the message has started its journey out of the Local COS. The
typical situation for the code implementing the receive message operations is not as
straightforward. When we explicitly use Nonblocking Message Operations (such as the
“check for message” or “retrieve message” operations), we refer to this as Nonblocking
Messaging. Similarly, we explicitly use Blocking Messaging Operations; we refer to
this as Blocking Messaging.

We can choose to use either form of messaging, assuming that the Messaging
Subsystem or Messaging Middleware provides both types of operation. Using
Blocking Messaging means that the thread executing in the receiving COS instance
will not return from the call to “check for message” or “retrieve message” unless
a message is actually available, or a timeout period has expired. When there is no
Blocking Messaging form of a particular operation provided, it is easy to write the
equivalent code by placing the corresponding Nonblocking operation inside a “while
loop,” a “for loop,” or similar programming language control flow construct. When a
Blocking Messaging form is supplied, it typically uses a configurable timeout period
to prevent the operation from waiting forever when network (or other) errors prevent
communication from continuing.
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Typically, Remote Messaging is implemented in multithreaded environments, but
this is not a requirement. Using multithreaded code can be a great advantage in this
situation, because this means that the Local COS instance and Remote COS instance
can continue processing during the lag time in communication. But this also means that
both the local and remote programs we must write will be more complicated. When
we use Blocking Messaging in a multithreaded program, only the thread making the
Blocking call will be suspended (the other threads in the program will not be
blocked). While this is a powerful technique, it also requires careful programming.
The issues we raised in the Multitasking Requirements (see Section 14.2.3.1) need to
be carefully considered in this scenario.

Communication Errors and Exceptions Each call used to send or receive a message
needs to consider how network communication errors will be returned and then handled.
Typically, the Messaging Subsystem will return error codes, throw exceptions, or raise
signals when a network error occurs. When messages are used to implement more
complex conversations, we usually define a protocol (an application-defined protocol)
to include error-status messages and handshake messages. This means that we need to
define specific positive acknowledgment (ACK) or negative acknowledgment (NACK)
message types and write our code to send and receive them at critical points in the
conversation. We also need to add code to respond appropriately when the expected
message is not received or a messaging exception is raised.

14.3.2 Directory Service Requirements

As we discussed in Section 14.1, we implement our DDBE architecture by creating sev-
eral COSs to provide (and consume) the various services we need. In Section 14.2, we
mentioned that in addition to having several different COS types we also may have mul-
tiple instances of the same COS deployed across several machines in our network—and
we may even have multiple instances of multiple versions of our COSs. Each of our
COSs must communicate with at least one other COS (using Remote-Code Execution
or Remote Messaging as discussed in Section 14.3.1). When one COS instance needs
to communicate with another COS instance, how does it specify which COS instance
it is looking for? How does this COS instance let the other COS instances know how
to communicate with it? For that matter, once it has specified which COS instance it
needs, how does it locate that COS instance on the network? These functions are often
referred to as Naming, Registration, and Lookup services, respectively. If we bundle
these three subservices together into one service, we can refer to this as a Directory
Service. We can use several different implementations and approaches for this service,
even within the same DDBE architecture. Often, there are even mechanisms or tech-
niques for bridging across different Directory Service implementations. In a distributed
processing environment, the DDBE Platform must provide these functions, and there-
fore we call the second subcategory of DDBE Distributed Processing Requirements
the Directory Service Requirements. This subcategory is split into three areas based on
the subservices we just mentioned—which we will discuss in the following sections.

The three areas of the Directory Service Requirements are

• Naming Service Requirements
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• Registration Service Requirements
• Lookup Service Requirements

14.3.2.1 Naming Service Requirements The Naming Service is the service (or sub-
service) responsible for managing all the possible naming issues. For example, in order
to find a particular instance of a particular version of a particular COS, we need to
have a unique name for that instance. Often, a “human readable” name is clumsy for
this purpose. How would we distinguish between two different versions of the same
COS? What about two different instances? If we simply attempted to append a version
number or instance number to the name, this would become cryptic and difficult to
maintain. Therefore, we need to have a more sophisticated naming system.

Using the phonebook as an analogy, we need to have the ability to handle COSs
with names that are only slightly different from each other (similar to people with the
same last name but different first name). We also need to support COSs with identical
names but different connection details (similar to multiple phone numbers for the same
person). There must be some way to manage the namespace, so that we can narrow
the scope when we use a COS name (similar to the way we can use country, city, and
street address information to restrict the names considered in a phonebook). A DDBE
Platform that satisfies our Naming Service Requirements needs to support multipart
names. Some parts of the name will be the same across all possible versions of a COS.
Some parts of the name will be specific to a particular version of the COS. Some
parts of the name might be specific to a particular instance (e.g., used in a particular
subsystem or on a particular machine). We also want to have some way of assigning
a unique name or unique number to this multipart name to improve the performance
and overall usability of the name. Lastly, we need to have some way of associating
additional information about the COS once we are using the full name or unique name/
number.

14.3.2.2 Registration Service Requirements We need to have some way for a par-
ticular instance of a particular version of a particular COS to indicate that it is ready
to have the other COS instances in the environment communicate with it. There are
several mechanisms that can be used for this process, but generically we can refer to
this COS instance as registering itself with the DDBE architecture. The Registration
Service is the service (or subservice) responsible for managing all COS registration
issues. As part of this registration process, the COS instance needs to provide its Nam-
ing details, Service details, Version details, and also some information about where the
COS instance is located. Therefore, our Registration Service Requirements are highly
dependent on other DDBE Platform Requirements.

After a particular instance of some service provider is deployed and ready to be used,
it registers itself with the DDBE architecture. This is analogous to what happens when
a person moves into a new neighborhood and gets a listed phone number. This person
must provide information (including their name, phone number, and some notion of
where they live or at least what state and city they are to be listed in) to the phone
company, and ultimately to the phonebook publishers. In the DDBE, we also have to
consider what happens when a particular instance of a COS is no longer available.
It makes sense to provide a deregistration function, allowing a COS to remove its
registration information when it is no longer valid (such as when a COS is being shut
down). Obviously, this is analogous to what happens when a person moves out of a
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neighborhood and makes a request for the phone company to disconnect the phone
service and remove the listing the next time the phonebooks are updated.

Registration and deregistration can be done in many different ways. They can use
a centralized service running on a single machine, they can involve several services
deployed throughout the architecture, or they can even be done with broadcast messages
to all COS instances currently running in the environment. Obviously, each of these
approaches has advantages and disadvantages. A centralized approach could become a
bottleneck for communication and could be costly for COS instances deployed on far-
away machines. This mechanism is also somewhat wasteful, since each COS instance
probably does not need to communicate with every other COS instance in the archi-
tecture. The broadcast mechanism is similarly wasteful and costly with respect to
bandwidth and potential timeouts in communication. Using some form of Registration
Service deployed for a local region of the network is the more typical implementation,
because it can provide a reasonable amount of control, with minimal overhead. These
local registries can communicate with each other to synchronize information on a reg-
ularly scheduled or need-to-know basis, similar to how Domain Name Servers (DNS)
work in a TCP/IP network.

14.3.2.3 Lookup Service Requirements The Lookup Service is responsible for man-
aging all service provider lookup issues. Assuming we have provided some form of
a Naming Service and also provided some form of a Registration Service, we still
need to have some way of querying the names of all registered COSs—otherwise a
service consumer would not be able to locate the service provider with which it needs
to communicate. The Lookup Service Requirements define how this location process
(the Lookup Service) works. This service is analogous to the 411 service that the
phone companies provide. Again, there are several mechanisms that can be used for
this function, but generically we can refer to this as a Lookup function. The Lookup
Service implementation depends heavily on the implementation details for the Naming
Service Requirements and Registration Service Requirements, which in turn depend
on other DDBE Platform Requirements.

Sometimes, we want to look up a particular COS instance deployed at a particular
location/machine. Other times we might want a particular version of a particular COS,
deployed at a particular location/machine. In other scenarios, we might accept a par-
ticular version of the COS if it is deployed anywhere within the “local” area of the
network. Perhaps, in some situations, we might accept any version of the COS that
is actively deployed anywhere within the “local” area of the network. We might even
have some cases where we would accept any COS that provides a particular service
regardless of the specific COS name, version, or deployment details. In some rare cir-
cumstances, it is even conceivable that we might want to look up a specific instance of
a particular COS, but most of the time we are not that specific. We always care about
actual service being provided and the version of that service (mainly for compatibility
concerns). We sometimes care about the location details (usually for communication
cost and efficiency concerns). But we rarely need to be more specific than that.

The lookup function will typically either return a single COS name, a list of potential
COSs, or an error/exception indicating that no such COS can be found at the moment.
If there is an error, we can go to sleep and try to look it up again later, or we can handle
the error in some appropriate fashion. If we obtain a list of potential COSs, we can
somehow select a single COS to communicate with (e.g., using additional registration
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information as filtering criteria, or simply picking the first COS that responds). Once we
have selected a COS instance, we attempt to communicate with it using Remote-Code
Execution or Remote Messaging as described in Section 14.3.1.

14.4 DISTRIBUTED DATA PLATFORM REQUIREMENTS

In the previous sections, we discussed the DDBE Platform Requirements for “any”
environment and “any distributed processing” environment. In this section, we will
briefly discuss the remaining DDBE Platform Requirements—some of which we will
discuss again in Chapters 15–19. The remaining DDBE Platform Requirements con-
sider requirements that are especially important for distributed processing environments
with distributed data. Once again, the Platform Requirements discussed in this section
are not irrelevant to other environments, but they are also somewhat less important
when there is no data in the environment. In Section 14.4.1 we consider the Architec-
tural Security Requirements—treating security as a DDBE architectural issue. Then, in
Section 14.4.2, we will discuss the Database Connectivity Requirements—here we will
consider how the COSs in our environment connect to the local databases and other
similar issues. Lastly, in Section 14.4.3, we will consider the Transaction Manage-
ment Requirements—these requirements focus on things like the level of distributed
transaction support supplied by the DDBE Platform.

14.4.1 Architectural Security Requirements

Security is an important and complex concept in any database system. This is espe-
cially true for a distributed database system. DDBE Security concepts and details about
the available mechanisms and techniques that can be used to enforce it are discussed
in greater detail in Chapter 9. Our purpose here is merely to identify the Architec-
tural Security Requirements for our DDBE Platform. When implementing Architectural
Security for a DDBE, we first define a Security Policy, and then use the facilities pro-
vided by the DDBE Platform to implement and enforce our Security Policy. There
are several facilities to choose from, and several security-related functions that we can
perform in most environments. In particular, we are usually concerned with authentica-
tion and authorization. When the data is sufficiently confidential or sensitive, we also
need to consider encryption. Ultimately, Architectural Security is an attempt to provide
the right level of protection based on the specific data and the specific environment
involved. We will briefly consider each of these points in the following sections.

14.4.1.1 Security Policies Within the DDBE, an identity is a user, a group of users,
a user role, or any system COS instance. A security target can be almost any DDBE
Platform construct, including DDBE and LDBE structures like tables or columns and
even the DDBE components and subsystems. Depending on the type of security target,
there are various possible Operations that can be performed on the security target.
A Security Policy is essentially a list of all the permitted and prohibited operations
between all identities and security targets.

We can specify further details about the identity, security target, and operation to
achieve a fairly fine level of granularity of control. For example, we can specify that
a particular user is permitted to select, insert, update, and delete column contents for
a particular column in a particular table. We can also specify structural operations.



568 DDBE PLATFORM REQUIREMENTS

For example, we can specify that a particular user is permitted to add, drop, rename,
or modify column definitions, constraints, or indexes for a particular table. We can
even be more specific, perhaps limiting the dates and/or the times when an operation
is allowed or denied. We might even specify which machines the request must come
from in order to permit the operation. For example, a particular user can only select
from the Employee table if the query is being run from the same machine as the LDBE
containing the table.

All of these Security Policy details are not part of our Architectural Security con-
cerns, but without proper Architectural Security, our Security Policies cannot be effec-
tively enforced. Without architectural support, what is to prevent a user or program from
circumventing our Security Policy? Architectural Security refers to the mechanisms
and techniques we can use to ensure that our COSs acting on behalf of the DDBE users
and subsystems are working within the defined Security Policy for the DDBE. We need
to ensure that COSs do not grant access to things that they should not and do not prevent
access when it has been granted. In order to ensure this, our DDBE Platform needs to
have architectural support for authentication, authorization, and encryption. This means
that our COSs can use these services correctly, and as needed within the DDBE.

14.4.1.2 Authentication The first step in Security Policy enforcement is authenti-
cation. Authentication is the process by which we establish and verify the identity
involved. In other words, we need to find out “who” is trying to do something. The
identity in question can refer to the subsystem or component directly making a request
or it can refer to the ultimate user on whose behalf the request is being made. Regardless
of which type of identity we are attempting to authenticate, it is vital for us to establish
who the requestor is before we allow any specific type of access to any specific target.
There are several different authentication mechanisms and technologies discussed in
Chapter 9. Our requirement here is merely to have the ability to use one or more of
these mechanisms easily, efficiently, and effectively in the DDBE Platform. Ideally,
we should be able to “wrap” our COSs inside an authentication technology. Wrapping
the COS means that we can add authentication support to an existing COS using only a
minimal amount of additional code or configuration. Architecturally, we are primarily
concerned about preventing “imposters,” meaning that we want to make it difficult for
COSs to lie about the identity they are representing to the DDBE architecture.

14.4.1.3 Authorization Authorization is the process used to determine if an oper-
ation is permitted or prohibited. There are several different authorization mechanisms
and technologies discussed in Chapter 9. For our purposes here, authorization merely
involves reading the Security Policy and obeying or enforcing it. This means that when
a COS instance requests a particular type of operation against a particular security tar-
get on behalf of a particular (and authenticated) identity, we want the architecture to
prevent the operation when it is not permitted. It would be relatively easy to circum-
vent our Security Policy decisions if we allowed the COS instance to be responsible
for enforcement by itself. By moving the enforcement into the architecture, we can
make our DDBE much more secure.

14.4.1.4 Encryption Encryption is a set of techniques used to protect the contents of
any information that is stored or transmitted in the DDBE architecture. There are several
different encryption mechanisms and technologies discussed in Chapter 9, and our
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DDBE Platform will probably use more than one encryption mechanism. Encryption
is vital to many areas within the DDBE. Obviously, we must use encryption to protect
confidential information like passwords. But it is also vital to the authentication and
authorization processes. Ideally, our DDBE Platform will include the ability to “wrap”
COSs inside an encryption mechanism, thereby creating a “secure” version of the COS.
“Wrapping the COS” means that communications to and from the COS become secure
(encrypted) communication, merely by changing some configuration or deployment
details. We should not need to change a lot of code inside the COS to achieve this,
and might not have to change any code at all!

14.4.1.5 Final Thoughts on Security Ultimately, the level of security required
depends on the sensitivity of the area within the environment we are attempting to pro-
tect, the risk of accidental or malicious security violations, and the ultimate cost of such
a violation. Even when the environment is nonsensitive, there is little justification for
making the system completely insecure. In particular, we should always attempt to use
the existing facilities within our environment to the best of our abilities. For example,
there is no excuse for making the Security Policy editable by the public, or allowing
nonadministrator users to edit, delete, or reconfigure our deployed COS instances.

14.4.2 Database Connectivity Requirements

The Database Connectivity Requirements consider the underlying Sub-Database Envi-
ronments (S-DBEs), especially the local database environments (LDBEs) that share
the same logical data modeling language. Whenever we can reuse the same COS to
access these environments without a significant performance or development cost, we
should. Most modern platforms provide some support for database connectivity across
different vendors and versions. In particular, Microsoft has a long successful history
of providing this type of access—via Open Database Connectivity (ODBC), Object
Linking and Embedding Database (OLEDB), Active Template Libraries (ATL), Active
Data Objects (ADO), and the Microsoft .NET Framework Data Providers. Similarly,
Java provides Java Database Connectivity (JDBC) as well as other mechanisms for
connecting to several different database platforms. Both of these platforms support an
impressive variety of COTS and FOSS database vendors and versions, as well as many
advanced features such as support for connection pooling. When there is no suitable
driver or connector available, we should attempt to implement our own driver/connector
if possible or, at the very least, we should attempt to create a COS that encapsulates
the proprietary details and behaves similar to one of the more standard environments.

Some environments are more interoperable than others are, but this is also highly
dependent on configuration details, the features being used, and the way in which they
are used. For example, many relational database management systems (RDBMSs)
support the American National Standards Institute (ANSI) Structured Query Language
(SQL)—but the level of support is typically not the same across all vendors or even
across all versions from the same vendor. Similarly, almost all RDBMSs provide
nonstandard features that are not portable by definition. Even when the same standards
are used across different platforms, there can be different versions of the standard or
different levels of compliance supported by the platforms. These differences could be
insignificant, a minor issue, or a fatal issue (depending on the standards involved, the
actual platforms, the user-designed COSs, and the specific implementation details for
these COSs).
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14.4.3 Transaction Management Requirements

Transaction Management is a very important consideration for most DDBEs. Of course,
it is more important for DDBEs where there are CRUD operations (as discussed in
Chapter 1). Even if the DDBE does not support CRUD operations (perhaps it is a read-
only distributed system with partial visibility and partial control), Distributed Trans-
action Management can prevent undesirable scenarios (dirty reads, isolation issues)
in the face of the CRUD operations being performed directly against the LDBEs by
legacy clients outside the DDBE. Transaction Management in the DDBE is typically
implemented by leveraging the underlying Transaction Management facilities in the
DDBE Platform and the LDBEs. By using the underlying features provided by the
platform as well as those provided by each LDBE in order to implement distributed
transaction processing (as discussed in Chapters 3 and 5), we can greatly improve the
performance and reliability of the DDBE. Although the underlying features are not
sufficient in and of themselves, since they usually do not contain any of the necessary
distributed semantic integrity control, we can use them to implement our own transac-
tion processing, whether that is using two-phase commit, three-phase commit, or any
of the other techniques discussed in Chapters 3 and 8.

There are several alternatives to choose from when looking for implementation
alternatives for this functionality, such as the X/Open XA interface for distributed
transactions. In Chapters 15–19, we will look at two specific implementations of the
Distributed Transaction Service (DTS). In Section 16.3.3, we will look at the DTS
as specified by the Java Transaction API (JTA) and Java Transaction Services
(JTS)—these are defined as part of the J2EE specification and the example implemen-
tation we will consider is part of the J2EE platform. In Section 18.3.3, we will look at
the Microsoft .NET Framework-based platform and, in particular, at the COM+ and
Enterprise Services subplatform support for this service. Although it should be possi-
ble to combine COSs written across these different platforms in the same distributed
transaction, there are many caveats and potential issues—beyond the scope of this
book—that we will not discuss. Our intention here is merely to introduce the topics
and some of the facilities available for future exploration and experimentation.

14.5 PREVIEW OF THE DDBE PLATFORMS USED IN CHAPTERS 15–19

In this chapter, we tried to identify the broad categories of functionality that need to be
present in the underlying platform (operating system, programming language, database
systems, development, deployment, execution environments, etc.) in order to make the
implementation of a DDBE feasible. In this section we will briefly preview the three
DDBE Platforms we will use to implement the starter kits for making DDBE implemen-
tation easier. In Chapters 15–19, each of these platforms will be discussed in greater
detail before each starter kit is presented. This discussion will not contain all possible
details (there are many books devoted to each of these platforms, so we certainly cannot
cover all the details for all of them), but will highlight the implementation alternatives
chosen to implement the starter kit for each platform. Each starter kit is intended to pro-
vide a jumpstart for implementing DDBEs like those discussed in Chapters 12 and 13 or
for implementing new architectural alternatives that nobody else has thought of before.

Chapters 15–19 will use the Java Message Services platform, Java 2 Enterprise
Edition platform, and the Microsoft .NET Framework-based platform to implement
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these starter kits. Therefore, we will briefly preview those platforms in this section and
also consider some of the other implementation alternatives that influenced these plat-
forms. Although we will not go into excessive detail for any of these implementation
milestones, it is important to recognize that even though some of these alternatives are
now antiquated or obsolete, many of their fundamental concepts are still relevant for
today’s DDBE Platform alternatives.

14.5.1 The Java Message Service (JMS) Platform

The Java Message Service (JMS) is a standard mechanism for providing Remote Mes-
saging as we discussed in Section 14.3.1.2; in particular, it provides reliable messaging.
Reliable messaging means Remote Messaging with some important, additional features.
Reliable Messaging guarantees that each message we send will either be received or an
exception will be raised—no exception means that the message was definitely received.
Each message that is received is also guaranteed to be sent and received only once
(no lost messages and no duplicate messages). Another important feature of reliable
messaging is the guaranteed order between the same sender and receiver. This means
that if we send three messages from a particular sender to a particular receiver, we
know that the messages will be processed in the order that they were sent—it is pos-
sible that other messages sent by some other sender might be interpolated within this
sequence, but the order is guaranteed with respect to the same sender and receiver.

The JMS is a standard specification, which defines the necessary Java interfaces
but does not define the classes that provide the implementation. There are several
standards-compliant implementations to choose from, including ApacheMQ, Open-
JMS, and others. The JMS uses another standard mechanism called the Java Naming
and Directory Interface (JNDI) to provide Directory Services that satisfy our DDBE
Platform Requirements. The JMS specification and the service it describes are also
part of the Java 2 Enterprises Edition (J2EE) platform. We implicitly have all of the
JMS features and functionality available within the J2EE platform. Conversely, we
often have J2EE’s features available to us when we use the JMS—although it is pos-
sible to use the JMS as an independent platform. The JMS is influenced by many
other implementation alternatives including the Enterprise Java Beans (EJB) and the
Java Transaction API (JTA) specifications, which were defined in 2001. The JMS also
evolved from the Java Remote Method Invocation (RMI) specifications in 2001 (and
before that in 1998). These specifications were, in turn, based on the work done in
Remote Procedure Calls (RPCs) by Sun and many others.

14.5.2 The Java 2 Enterprise Edition (J2EE) Platform

The Java 2 Enterprise Edition platform is a standard platform for developing, deploying,
and executing enterprise applications. It consists of a specification for an application
server, development APIs, and various file formats used by deployable components that
run within the application server. It also includes a family of related standards including
the JMS, JTA, and J2SE standards as well as many more specifications that define the
mechanisms suitable for providing for all the DDBE Platform Services we discussed
in this chapter. Components and subsystems are deployed within the application server
using archive files that contain the necessary code and deployment details—with many
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of the actual binding details being defined in special files contained in the archives
(called deployment descriptors).

The J2EE specification is a family of standardized specifications, which defines all
the necessary classes and interfaces required to implement an enterprise application
server. This includes several implementation alternatives for all of the DDBE Plat-
form Requirements we discussed in this chapter and many additional facilities which
we did not discuss. Although there is a reference implementation available, there
are also several other standards-compliant implementations to choose from, includ-
ing Apache Geronimo, JBOSS, JONAS, Websphere, and others. The J2EE platform
and specifications have evolved from many other implementations, including all of
those mentioned for JMS as well as the Common Object Resource Broker Architec-
ture (CORBA) defined by the Object Management Group (OMG) and the X/Open XA
specification for Distributed Transactions Processing defined by the Open Group.

14.5.3 The Microsoft .NET Framework-Based Platform

The Microsoft .NET Framework-based platform is a “mostly proprietary” platform
used to develop enterprise distributed applications that run “mostly” on Microsoft
Windows-based operating systems. We mention the qualifier “mostly” here because
there are specifications for the .NET Framework, as well as some “non-Microsoft”
implementations of the platform, and even some implementations for “non-Windows”
operating systems. However, most .NET discussions are usually focused on Microsoft’s
implementations and Microsoft’s operating systems. The .NET Framework has actu-
ally evolved from facilities provided within Microsoft’s earlier platforms and operating
systems. It incorporated many of the standards found in other environments, such as the
Simple Object Access Protocol (SOAP), the Extensible Markup Language (XML), and
XML Web Services. The .NET Framework has also incorporated facilities provided
by earlier releases of .NET itself. At its core, we find the Common Language Runtime
(CLR). Components and subsystems are bundled as deployable packages called assem-
blies and written in any of the programming languages directly supported by .NET
(C#, C++, Visual Basic, etc.) and its Common Language Specification (CLS). Like
the J2EE platform, .NET provides implementation alternatives for all of the Platform
Requirements discussed in this chapter.

The .NET Framework is a platform that supports distributed applications (primar-
ily) on Microsoft’s operating systems. There have been several different releases of
.NET, and multiple versions of this platform can coexist on the same machine at the
same time. The most relevant implementation milestones are those technologies previ-
ously created by Microsoft: Object Linking and Embedding (OLE), Common Object
Model (COM), Distributed Common Object Model (DCOM), Active-X, Common
Object Model Plus (COM+), and previous releases of .NET itself. This platform also
evolved from Microsoft’s implementation of Remote Procedure Calls (RPCs), which
in turn was based on the RPC implementation found within the Distributed Computing
Environment (DCE). The DCE was defined by the Open Software Foundation (OSF).
Although the DCE was an important precursor of many of the modern distributed
computing platforms used today, it is not nearly as popular as the other platforms we
just discussed. The .NET platform supports several standards including the X/Open
XA specification for Distributed Transactions Processing defined by the Open Group,
and those we already mentioned throughout this chapter (such as XML).
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14.6 SUMMARY

Implementing a DDBE architecture is complex and fraught with many potential prob-
lems. Distributed applications are complex on their own, but implementing a DDBE
includes many additional considerations. Heterogeneity is one of the greatest strengths
of a distributed database, but it is also one of the most difficult factors to manage within
an environment. By clarifying the DDBE architecture and identifying the DDBE Plat-
form Requirements, we can make the attempt to address some of the most important
issues in a mostly implementation-independent way. Even a DDBE with minimal func-
tionality can use a variety of facilities to satisfy the DDBE Platform Requirements.
There are many decisions to make when designing a particular DDBE architecture and
additional decisions about the design, implementation, and deployment of each COS
in the environment.

In order to implement a DDBE, the underlying platform (the set of all hardware
platforms, operating systems, local database environment platforms, programming lan-
guages, networking technologies, and middleware) must provide us with some minimal
sets of functionality. We call this set of functionality the DDBE Platform Requirements.
The actual requirements for a given environment depend on the idiosyncratic details
of the DDBE we are trying to build and the constraints placed on us at that time.
For example, a read-only DDBE that does not support nonrelational LDBEs will have
different requirements than a DDBE that must support full replication, fragmentation,
and location transparency for both read and write operations across relational, network,
and hierarchical LDBEs.

In an effort to manage the complexity within this potentially large set of required
functionality, we can identify three categories of DDBE Platform Requirements: the
Fundamental Data Platform Requirements, the Distributed Process Data Platform
Requirements, and the Distributed Data Platform Requirements. These categories
build on one another with the first category focusing on the minimal requirements for
development, execution, and deployment of components or subsystems (COSs) in the
environment without any emphasis on distribution issues. The functionality contained
within the second category relies heavily on the first category, but considers the mini-
mal requirements for building an application that supports distributed processing—
while ignoring distributed data related issues. In particular, this second category
considers the minimal requirements necessary to enable local COS instances to locate
and communicate with remote COS instances. The final category relies heavily
on the previous two categories (building on them) but focuses on the minimal
requirements for building an application capable of supporting both distributed
processing and distributed data. These requirements include security considerations
for the environment as a whole, local database environment connectivity, and global
transaction processing across the whole environment. Within each category, there
are several smaller groupings to be considered. There are also several possible
implementation alternatives capable of satisfying many of these requirements. By
using middleware and frameworks to satisfy these requirements, we can maximize
reusability and provide loose coupling for the COS instances within the environment.

Any DDBE Platform used should provide some minimal services. In the very
least, a distributed environment must support some form of Remoteability—such
as a Remote-Code Execution facility or Remote Messaging facility. Often we will
use a Directory Service to encapsulate many of the communication details for our
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remote COS instances. We must also consider security issues from an architectural
standpoint—even if the actual enforcement is delegated to underlying facilities within
the operating system or network. Ideally, we should also have sophisticated facilities
for managing all the deployment details efficiently and effectively within the environ-
ment. These facilities should address issues such as pooling and versioning as well
as the actual installation and configuration of the COS instance itself. Depending on
how heterogeneous or homogeneous our environment is, we may need sophisticated
or more simplistic support for portability and interoperability with our architecture.
Because our environment is not only a distributed one but also a database environ-
ment, we also would expect to have some database-specific facilities available to us
such as some form of database connectivity and transaction management.

14.7 GLOSSARY

Application-Defined Protocol An application-specific definition of all the expected
sequences of messages used and the operations that we want to perform when those
messages are produced and consumed.

Architectural Security The overall plan for security within the DDBE—identifying
the important security functions and which COSs are responsible for implementing
them.

Authentication Any technique used to validate the identity of a source or destination
of messages or data.

Authorization Any technique used to determine whether a particular user,
component, or subsystem has sufficient access permissions to perform a desired
operation—this is usually checked after the identity has been authenticated.

Blocking A message transfer, method call, or procedure call that will not allow any
further communication until after the current operation completes.

Business Services Tier The middle tier in the three tier model (3TM).
Callee A piece of code that is called (invoked) by another piece of code—this can

refer to any level of scope within the code itself from the actual method (or function,
routine, procedure) being called, to any container of that method. For example, the
callee can refer to the method, the module (class), or the component or subsystem
containing the code being invoked.

Caller A piece of code that calls (invokes) another piece of code—this can refer to
any level of scope within the code itself from the actual method (or function, routine,
procedure) containing the call, to any container of that method. For example, the
caller can refer to the method, the module (class), or the component or subsystem
containing the code that invokes some callee.

Commercial Off-the-Shelf (COTS) Any piece of commercially available software.
Competitive Synchronization A situation where two or more threads compete over

a shared piece of data or a shared resource.
Component A deployable bundle that provides a reasonably cohesive set of func-

tionality.
Component or Subsystem (COS) A term that refers to a component or subsystem,

ignoring any differences between the two concepts.
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Cooperative Synchronization A situation where two or more threads are intention-
ally working together and therefore must find some way to communicate with each
other.

Data Services Tier The third tier in the three-tier model (3TM).
DDBE Platform A set of hardware systems, operating systems, local database envi-

ronments, programming languages, and other technologies used to implement a
distributed database environment (DDBE).

DDBE Platform Requirement A set of cohesive functionality provided by the
DDBE Platform in order to support the implementation of a DDBE.

Deployment Any features, issues, concepts, or considerations related to how a COS
instance is installed on a particular machine at a particular site.

Deregistration The act of removing information from a directory service listing,
typically done when a COS is no longer available within an environment—the
opposite of registration.

Distributed Data Platform Requirements The third grouping of DDBE Platform
Requirements that focus on Security, Database Connectivity, and Distributed Trans-
action activities.

Directory Service A service that provides several important functions such as nam-
ing, registration, lookup, and possibly security.

Distributed Process Platform Requirements The second grouping of DDBE Plat-
form Requirements that focus on Remoteability and Directory Services activities.

Encryption Any technique or operation that creates ciphertext, which is confidential
in the face of eavesdroppers, from plaintext, which is the underlying message/ data.

Extension The “less-reusable,” user-written code that extends a framework.

Framework The “more-reusable,” framework-author-written code on which an
extension is based.

Free or Open Source Software (FOSS) A category of software that is available
through a license that permits its use and redistribution without any additional cost
to the user.

Fundamental Platform Requirements The first grouping of DDBE Platform
Requirements that focus on Development, Deployment, and Execution activities.

Identity A user, group of users, user role, or COS that can be authenticated or
authorized.

Lookup Service A service that is used to locate a particular COS instance within an
environment.

Marshalling The collection of techniques capable of converting parameters into a
data stream, usually to support RMI, RPC, or Messaging—the opposite of Unmar-
shalling.

Message A data structure or textual stream representing content sent from one COS
instance to another.

Message Oriented Middleware (MOM) Any piece of middleware that uses mes-
saging for remote communication.

Middleware Any additional software used to “bridge the gap” (translate or hide
differences) between COSs.
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Multiprocessing System Any system that allows two or more processes to appear
to be running at the same time.

Multitasking System Any system that allows two or more tasks to appear to be
running at the same time.

Multithreaded Programming A programming technique that uses multiple threads
of control to give the illusion that multiple things are being done at the same time.

Multi-user System Any multiprocessing system that allows multiple users to be
logged in at the same time.

Naming Service A facility that is responsible for managing all naming issues and
providing all the necessary naming functions.

Nonblocking The opposite of blocking—it refers to a message transfer, method
call, or procedure call that allows other communications to occur while the current
operation is still executing.

Pooling A technique that groups multiple instances of the same COS to be reused
instead of being shutdown/unloaded and restarted/reloaded in between calls by dif-
ferent COSs.

Reentrant Code Any section of code that can be safely suspended and reentered by
multiple threads of control at the same time.

Registration The act of adding information to a directory service listing, typically
done when a COS becomes available within an environment—the opposite of dereg-
istration.

Registration Service The service responsible for registration and deregistration oper-
ations.

Remote Method Invocation (RMI) A remote execution technique based on object-
oriented method invocation (calls).

Remote Procedure Call (RPC) A remote execution technique based on traditional,
third generation (non-object-oriented) procedure calls (invocations).

Remoting The collection of techniques used to perform any remote functions includ-
ing remote execution and messaging.

Security Policy The collection containing all authorization definitions for an envi-
ronment.

Security Target The object being acted on by an authorized identity.
Semaphore A piece of atomic data (a variable) used analogous to a lock.
Service A logical collection (specification/design) of well-defined, cohesively related

functionality or a software instance (physical collection) that implements this func-
tionality.

Service Consumer A component or subsystem that uses a set of functionality imple-
mented by some other component or subsystem (consumes a service implemented
by some service provider).

Service Oriented Architecture (SOA) A specific architectural design technique that
is focused on interactions between services. It is especially useful for visualizing
and discussing distributed application architectures.

Service Provider A component or subsystem that implements a set of functionality
and makes it available to other components and subsystems (provides a service to
be used by some service consumer).
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Subsystem A collection of components and/or subsystems that is part of a larger
system but also a system in its own right.

Synchronization See competitive synchronization or cooperative synchronization.
Thread A “thread of control,” which is analogous to a separate execution of a pro-

gram.
Thread-Safe Any section of code that supports multithreading (multiple threads

within the same program) without data corruption or other issues.
Three-Tier Model (3TM) A technique for visualizing and discussing distributed

application architectures consisting of the user services tier, the business services
tier, and the data services tier.

Unmarshalling The collection of techniques capable of converting a data stream into
one or more parameters, usually to support RMI, RPC, or Messaging—the opposite
of Marshalling.

User Presentation Tier Another name for the user services tier in the three-tier
model (3TM).

User Services Tier The third tier in the three-tier model (3TM).
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EXERCISES

Provide short (but complete) answers to the following questions.

14.1 What is the fundamental principle used to determine in which tier of the three-
tier model a component or subsystem belongs?
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14.2 How is the service oriented architecture’s focus different from the three-tier
model’s focus?

14.3 How are Remote Messaging and Remote-Code Execution different?

14.4 How are the concepts of “thread safety” and “pooling” related to each other?

14.5 How are the concepts of thread safety and reentrancy related?



15
THE JMS STARTER KIT

We refer to the combination of a framework and a sample extension (of that frame-
work) as a starter kit (SKIT) because we intend to use this combination of software
as a toolkit that will help us to start developing software projects. SKITs are not
intended to be complete solutions, or production-ready code, but the starter kits pro-
vided with this book should be useful when learning about distributed database
environment (DDBE) concepts, and helpful when creating academic, research, proto-
type, or proof-of-concept projects. Starter kits like this one can also help us to improve
our understanding of the specific DDBE architecture that we are attempting to develop,
as well as the underlying technical facilities we can use, and the technical issues we
need to address.

In this chapter, we are considering the starter kit that we call the JMS-SKIT. The
JMS-SKIT is available for download via the official website for this book (see the
Preface for further details). We named the starter kit this way because both the frame-
work and the extension contained within it rely on the Java Message Service (JMS)
as defined by the Java Message Service Specification (JMS-SPEC) [Java02], which
is also available for download via http://java.sun.com/products/jms/.

This chapter is intended to be a high-level overview of the starter kit, but it is
not intended to be a detailed description of the implementation details. The bundle
downloaded from the website contains all the source code, Java documentation, and
example configuration files for the JMS-SKIT. It also contains a “cookbook” (a docu-
ment containing a collection of “recipes”) that describes how to use the starter kit in
some common JMS Provider implementation alternatives and offers hints for how to
customize the starter kit to work in other scenarios and implementation alternatives.

We intend this starter kit to be used primarily for component or subsystem
(COS) software development, and especially within the context of a distributed
database environment (DDBE). Before we can discuss the JMS-SKIT further,
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we need to understand more about the JMS, and the JMS-SPEC. The specification
defines a standard mechanism for implementing Remote Messaging (as we discussed
in Section 14.3.1.2). As the name implies, the specification defines the requirements
for a particular (remote) messaging service. Our goal in this chapter is to demonstrate
how we can use the JMS platform (the combination of the specification and a
particular implementation of it) to meet the DDBE Platform Requirements for Remote
Messaging. The JMS-SPEC primarily applies to code written in the Java programming
language. Although it is possible for programs written in other programming languages
to use the JMS facilities, we will focus on the Java programming language in this
chapter and, more particularly, the Java 2 Standard Edition (J2SE) platform. Aside
from being compatible with some non-Java languages, the JMS is also compatible
with other Java platforms, such as the Java 2 Enterprise Edition (J2EE) platform,
which we will discuss in Chapters 16 and 17. In addition to the Remote Messaging
facilities provided by the JMS, we can also use any of the facilities provided by
the J2SE Platform to satisfy our other DDBE Platform Requirements, which we
discussed in Chapter 14. For example, the J2SE platform has support for some
of the Fundamental Platform Requirements (for development and execution). It
also has support for many of the Distributed Processing Requirements and many
of the Distributed Data Requirements. Similarly, we are also able to include other
middleware in our DDBE Platform if we wish to do so (in fact, that is precisely what
J2EE is—a specific set of several, standardized specifications intended to provide the
facilities needed for enterprise applications). However, in this chapter, we are only
going to focus on the JMS facilities, and largely ignore those other possibilities.

If we were to implement our DDBE software without using the JMS or a similar
piece of middleware, such an implementation would need to implement all the required
communication details directly. While it is certainly possible to implement a DDBE
in this way, it is somewhat complicated and fraught with potential problems. This is
especially true when we consider the ambitious goals we discussed in Sections 14.2,
14.3, and 14.4 (including Extensibility, Pooling, Multitasking, Concurrent Execution,
etc.). Because these goals can be especially challenging to achieve when we design
and implement all of the code completely from scratch, it is reasonable to pursue
less challenging alternatives. Therefore, this chapter will demonstrate how we can use
the JMS middleware to help us manage the Remote Messaging Requirements much
more effectively. In Section 15.1 of this chapter, we will discuss the JMS concepts
defined by the specification that are relevant to our goals. Because we are focusing
on the specification rather than any particular implementation, we can choose from
several different implementation alternatives. In Section 15.2, we will highlight the
bare-minimum configuration details needed to deploy two specific JMS Provider imple-
mentation alternatives for the sake of supporting the code discussed in this chapter.
Even when we decide to use the JMS instead of directly implementing all of the code
ourselves, we have an additional layer of complexity in our code because of this deci-
sion. As designers and developers, we still have to consider all the JMS concepts and
issues. Luckily, we can create an extensible framework (as we discussed in Section
14.2.1.2) to encapsulate many of these concerns. We will present an overview of the
simple JMS-SKIT framework in Section 15.3. In Section 15.4, we look at several ways
we can use the JMS-SKIT. In Section 15.4.1, we will look at the sample extension
included in the JMS-SKIT. Next, we will discuss how we can use the framework to
create new extensions in Section 15.4.2, and, finally, in Section 15.4.3, we discuss
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how to enhance the JMS-SKIT framework and how to create other, new and different
frameworks on top of the Java Message Service.

15.1 JAVA MESSAGE SERVICE OVERVIEW

In this section, we will cover the concepts relevant to the implementation and use of
the JMS-SKIT framework. While the level of detail at which we consider the JMS
concepts in this section should be sufficient for most readers, anyone who wants to
create a more powerful JMS-based framework (or anyone who merely wants to under-
stand the JMS concepts and issues more completely) has a whole world of additional
resources to explore. In addition to reading the specification itself, we can choose to
read any of the numerous books, articles, forums, and websites that discuss the JMS
concepts and issues. If we want to find places like these on the Web, we can simply
enter “JMS specification” or “JMS” into our favorite Internet search engine—several
examples should usually appear. Similarly, most JMS Provider implementations (and
the JMS specification itself) have dedicated websites, mailing lists, web forums, or
Internet relay chat rooms filled with links to other sources in the JMS community. For
example, there are forums available via http://java.sun.com/javaee/community/forums/
index.jsp for the JMS specification itself, and other forums available via http://activemq.
apache.org/discussion-forums.html for the ActiveMQ JMS platform implementation.
All of these locations are potential sources of more detailed information about the
JMS. The best way to find information on the Web is to start from places like these.

In essence, the JMS specification defines an architectural point of view and set of
Java language constructs that provide the application–programming interface (API)
for the Java Message Service. Some parts of the specification and API are necessary
for the JMS platform vendors, some parts are necessary for the JMS application devel-
opers, and, of course, some parts are used by both. We will only focus on the concepts
relevant to the JMS application developers, because our framework will be implement-
ing JMS Clients—we are not creating our own implementation of the JMS platform
itself. Before we can discuss the actual JMS API constructs, we need to clarify some
messaging issues and discuss how the JMS specification addresses them. The JMS
platform can be implemented as a thin layer of middleware on top of existing (legacy)
messaging systems, or it can be implemented completely from scratch. Similarly, the
platform can be implemented in any programming language. Using Java certainly has
some distinct advantages, most notably the improved portability and interoperability
with other code written in Java. Ideally, the implementation and deployment details
should be mostly irrelevant to JMS application developers. More importantly, these
details should be almost completely irrelevant to the users of the applications running
on top of the JMS platform. There will always be some important and potentially vis-
ible, proprietary aspects that need to be managed, but if we plan the implementation
and deployment properly, many of these details can be handled behind the scenes.

15.1.1 Architectural Overview

Suppose we have created the simple JMS application depicted in Figure 15.1. In this
example, we have three top-level subsystems. We have one JMS Provider instance
(named “JMS Provider-A”) and two JMS Client instances (named “JMS Client-B”
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Figure 15.1 JMS Client-B produces a message for JMS Client-C to consume.

Figure 15.2 JMS Client-C produces a message for JMS Client-B to consume.

and “JMS Client-C”). The deployment details are not particularly relevant to this
discussion—but for the sake of completeness, we can consider each COS to be
deployed on a separate machine. It would be equally possible for us to deploy all
the COSs on the same machine, or any other possible variation. In this example, we
have configured a destination within the JMS Provider (named “Destination-D”), and
we can also see that JMS Client-B has produced a message (Msg-1), which JMS
Client-C will consume. Notice that the destination is both the target of the production
operation and the source of the consumption operation.

Presumably, the two clients are cooperating in some respect to fulfill a distributed
activity, and therefore we would expect some form of communication moving in the
other direction as some point in the future. This might look something like the situation
show in Figure 15.2. Notice that the two diagrams are very similar to each other.
We could have configured a new destination within JMS Provider-A, but this is not
necessary here. We could also have shown many more messages, destinations, and
clients (in a real environment there certainly would be more), but these simple scenarios
are sufficient for our discussion in the next section.

15.1.1.1 Service Terminology Review As we discussed in Chapter 1 (in Section
1.2.1), any piece of software implementing a service is called a service provider,
which is precisely why the JMS specification refers to such an implementation as the
JMS Provider (the Java Message Service Provider). The JMS Provider is implemented
by the JMS platform vendor. In Chapter 1, we also said that any piece of software
that uses a service is called a service consumer; however, the JMS specification will
use the term JMS Client for this purpose instead. Generically, each service has at
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least one “contractual agreement” that defines the inputs, outputs, and protocols used
by the service consumers and providers—in Section 1.2.1 we called this an interface.
Although the Java programming language also has a specific construct called an inter-
face, these are not equivalent terms. We should always be able to determine which type
ofinterface we mean (the “contract” or the “construct”) from the context in which it
is being discussed. The JMS specification defines this “contract” between service con-
sumers (JMS Client instances) and service providers (JMS Provider instances) for the
JMS platform, including the definition for many of the Java constructs (Java classes,
interfaces, etc.) being used. There is one more potentially confusing situation in the
JMS specification that we should point out. In the JMS specification, the terms “pro-
duce” and “producer” refer to the originator of a message, while the terms “consume”
and “consumer” refer to the recipient of a message. The specification uses these terms
to avoid the messaging-domain bias implied by other more common words like “send”
and “receive” (we will discuss messaging domains in Section 15.1.3). Therefore, it is
important to remember this: the JMS Provider is a service provider and the JMS Client
is a service consumer—but whenever the JMS specification mentions a “consumer” it
is not talking about a service consumer, it is talking about the recipient of a message.

The JMS Client instances produce and consume messages as part of the conver-
sations that they have with each other, while the JMS Provider merely acts as the
facilitator for these conversations. The JMS Provider does not directly participate
in the conversations. In this respect, the JMS Provider is analogous to many mes-
saging services used to facilitate communication between people in the real world.
For example, when we read email, we use an email client application to connect
to an email server, then send and receive email messages with other email clients.
Notice that even though our email client connects to an email server, we are really
(ultimately) communicating with the other email clients. Actually, we are really
communicating with the people who are running those other email clients. We do
not have a conversation with our email server or anyone else’s email server. The
email servers are merely facilitators (service providers) in the same way that the
JMS Provider is merely a service provider for the JMS Client instances.

15.1.1.2 Administered Objects The JMS platform contains some concepts (which
we will loosely refer to as objects) that the JMS API represents using Java interfaces
and classes. Although the specification completely defines the behavior for some of
these concepts, there are also some concepts mentioned in the specification that are not
completely controlled by it. Some of the details controlling these “partially defined”
objects are left as implementation-dependent and proprietary details. These objects are
called administered objects in the specification, because they refer to things that need
to be administered (defined, monitored, and managed) by the JMS Provider. Because
the specification does not define all the specific details for these administered objects,
each JMS Provider vendor can choose how to implement those “undefined” portions of
the objects without any restrictions. This enables a JMS Provider to be implemented
on top of an existing messaging system that does not directly conform to the JMS
specification. Some implementations provide (proprietary, nonstandard) programmatic
interfaces for administering these objects while others use (proprietary, nonstandard)
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Figure 15.3 Creating Connection objects.

configuration files or even separate administrative applications or facilities for this
purpose. We will discuss some of the relevant proprietary administration details for two
specific JMS Provider implementations in Section 15.2. The two types of administered
objects defined in the specification are called the Connection Factory object (which we
will discuss in the next section) and the Destination object (which we will discuss in
Section 15.1.1.5). The specification also defines many other nonadministered objects,
some of which we will discuss in the following sections as needed.

15.1.1.3 Connection Factories and Connections Each JMS Client instance uses a
Connection Factory object to create one or more Connection objects (each of which
represents an actual connection to a specific JMS Provider instance). While it is pos-
sible for a JMS Client to create several Connection objects to the same JMS Provider
instance by using the same Connection Factory object (as shown in Figure 15.3), this
is not necessary since the Connection object is thread-safe (as we discussed in Section
14.2.3). Because the Connection Factory object is also thread-safe, we are free to reuse
the same factory object or to create new Connection Factory objects as needed. If a
JMS Client instance wishes to connect to more than one JMS Provider instance, it will
usually create a separate Connection object for each connection. Once a Connection
Factory object has been created, we can configure it with the details necessary to
perform the lookup operation for a specific JMS Provider instance, and then connect
to the instance once it has been located. The JMS specification does include any
standard syntax or format definition for the name criteria used in the lookup operation.
Typically, this lookup will be performed with the Java Naming and Directory Interface
(JNDI) facilities. This is the standard mechanism for implementing the Directory
Service Requirements (as we discussed in Section 14.3.2) for a Java-based platform.

15.1.1.4 Thread-Safety Considerations Each Connection object is used to create one
or more Session objects within the JMS Client. Unlike the Connection Factory object
and Connection object, the Session object is not thread-safe. Therefore, each Session
object we create represents the connection between a single thread of control within
the JMS Client instance and the JMS Provider instance specified in the Connection
object. While it is possible for one thread of control to create several different Session
objects (see Figure 15.4), we can only use one session at a time within the same thread
(by definition, we can only do one thing at a time within a single thread). This also
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Figure 15.4 Creating several Session objects for the same JMS Provider instance.

means that it is not possible for the same Session object to be used by more than one
thread of control at the same time.

Session objects provide several crucial functions to our JMS Client. Most impor-
tantly, they perform the actual operations necessary to enable the JMS Client to produce
and consume messages via a particular JMS Provider instance. If we want to be more
specific, we should say that we use each Session object to create one or more Message
Producer objects, Message Consumer objects, and Message objects. The Message
Producer objects are used to produce (“send”) a Message object, while the Message
Consumer objects are used to consume (“receive”) a Message object. Like the Ses-
sion objects, both the Message Producer objects and Message Consumer objects are
not thread-safe. The Message objects represent the actual message content (including
some of the necessary technical details controlling how the messages are processed
and managed). JMS Client instances pass messages back and forth among themselves
by producing and consuming these Message objects. The specification does not require
many methods for the Message objects because these details are determined by the JMS
Client designers and developers. Therefore, the thread safety of the Message objects
depends on the methods we create within them. We will consider Message objects
again in Section 15.1.4.7.

15.1.1.5 Destination Objects The JMS specification defines one more important
concept that we need to consider in this architectural overview: namely, the sec-
ond administered object, which is called the Destination object. When a JMS Client
instance wants to send a message to another JMS Client instance, it follows the steps
we just outlined to create a Message Producer object and a Message object. The JMS
Client uses the Destination object to indicate the intended destination for the Message
object being produced. As we shall see in the next section, there are several different
destination flavors to choose from, but generically, we can consider each of these fla-
vors to be represented by different Destination objects. When clients communicate with
each other within the JMS platform, they always use the JMS Provider instance as an
intermediary—they never connect to each other directly. Therefore, each Destination
object actually represents the details needed by the JMS Provider to ensure message
delivery. Typically, these details will include some hints or configuration settings con-
cerning the message storage within the JMS Provider as well as the “proprietary address
details” needed to ensure that the intended recipient (or recipients) can consume the
messages. Because the Destination objects are merely the client’s representation of the
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actual destination details, and not the actual implementation used by the JMS Provider
instance for the destination itself, the Destination objects are thread-safe.

15.1.1.6 Architectural Summary A typical JMS conversation involves at least two
JMS Client instances and one JMS Provider instance. Before the start of the conver-
sation, we use whatever proprietary mechanisms the JMS Provider supplies to create
the necessary destinations (with the desired flavor and other characteristics) within the
JMS Provider instance. As we discussed in the previous sections, each JMS Client
instance uses a Connection Factory object to create a Connection object. Each client
instance then uses that Connection object to create a Session object to establish the link
between one thread of control in the client and the JMS Provider instance. After that,
each client uses a Destination object to specify the details necessary to identify the
destination within the JMS Provider instance. Next, each client uses its Session object
to create whatever Message Producer objects and Message Consumer objects it needs
in order to use that destination. When a client instance wants to produce a message,
it uses the same Session object that it used to create the Message Producer object to
create a new Message object. The client then uses the methods of its Message Producer
object to produce (actually “send”) the message. This passes the information contained
within the Message object to the destination defined within the JMS Provider instance.
At some point after the message has been produced (which can be almost immediately
after the message has been produced, or much later than that), the message is available
and can be consumed. Now, the JMS Client instance that we intended to receive the
message can use the methods of its Message Consumer object to consume (actually
“receive”) the Message object from the destination. Notice that the destination is both
the target of the produce operation and the source of the consume operation. In addi-
tion, it should be noted that the client instance producing the message needed to create
the Message object explicitly before performing the produce operation. However, the
client instance consuming the message did not need to explicitly create the message
before performing the consume operation. Instead, the Message object was implicitly
created by the underlying JMS middleware. Lastly, we should recognize that all JMS
Client instances involved must contain the same (application defined) definition for
the Message objects and the same (JMS specification defined) definition for the JMS
Provider supplied JMS objects involved.

15.1.2 Messaging Overview

Distributed communication is a complex concept. There are a number of situations to
be considered and there are often a number of alternative solutions to choose from
when issues arise. For our purposes here, we will try to consider some of the fun-
damental concepts involved, but we will certainly not attempt to address all possible
scenarios—even the JMS specification itself does not attempt to do that! To illustrate
the concepts and issues involved, we will look at a few more example scenarios.

In Figure 15.5, we see a simple, multimessage conversation between two JMS Client
instances. The two clients are named “JMS Client-B” and “JMS Client-C.” Even though
it is not shown in the diagram, suppose that each client instance has used a Connection
Factory object to create a Connection object. We can also assume that these Connection
objects have connected to the JMS Provider instance shown here (JMS Provider-A), and
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Figure 15.5 A simple, multimessage conversation between two JMS Client instances.

ultimately, each client instance has created a single Session object (named “Session-
B1” and “Session-C1,” respectively). Each client instance then used its Session object
to create its own Message Producer object (Pro-B1 and Pro-C1) and its own Mes-
sage Consumer object (Con-B1 and Con-C2). We can also see three Message objects
(shown as envelopes containing “Hello,” “How are you?,” and “Fine, thanks”) being
produced and consumed in this example. The arrows indicate production and consump-
tion operations, while the Message objects themselves are shown inside the destination
(Destination-D), which is itself contained within the JMS Provider-A instance.

It is important to notice that this example is not equivalent to a sequence diagram—it
does not tell us any details about the order in which the messages are produced or
consumed. Even though the deployment details are somewhat irrelevant to this example,
we can consider the client instances and the provider instance to be deployed on
separate sites. Each Message Producer object and Message Consumer object must be
deployed at the same site as the Session object that created it. Similarly, each Session
object is deployed at the same site as the JMS Client instance that created it. Meanwhile,
the destination can be deployed at the same site as the JMS Provider instance or
possibly at a different site if it is implemented using a database for the message storage.
Again, these deployment details do not have a big impact on our considerations in this
section—they are merely mentioned here for the sake of completeness.

15.1.2.1 Application-Defined Protocols If we want our JMS application (the collec-
tion of all the cooperating JMS Client instances) to accomplish any useful task, we
need to consider the types of conversations our JMS Client instances participate in
and the general rules (or grammar) that these conversations should follow. In other
words, we are defining the expected sequence of messages and the operations that we
want to perform when those messages are produced and consumed. We loosely refer
to these rules as a communication protocol, and since it is defined by our application,
we can call this an application-defined protocol. In Figure 15.5, we see a conversa-
tion, but unless we know the application-defined protocol for this situation, we cannot
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understand what is really happening. For example, suppose our protocol indicated that
every valid conversation must begin with the “first client” producing a greeting mes-
sage (“Hello”) that is then immediately followed by an inquiry message (“How are
you?”), both produced by the same client, and then followed by an answer message
(“Fine, thanks”) produced by the “second client” instance. If this was our application-
defined protocol, there could be variations within the content, such as other greeting
messages (“Good morning,” “Good afternoon,” etc.) and other answer messages (“Ter-
rific!,” “Not so good,” etc.). However, we would always know that the “second client”
would not produce an answer message until after it had consumed a greeting message
followed by an inquiry message, both sent from the same “first client” instance.

If we had considered a different application-defined protocol (and, in particular,
if we had considered a more meaningful and realistic one), we could understand
our JMS Client conversation example even more completely. Of course, to do this
properly, we would need to define all the possible variations in message content as
well as all the possible variations in conversation structure. In order to do this, we
would need to define a list of all the valid message types and another list of all the
possible conversations (all the valid and invalid sequences of message types). Each
conversation in this list might represent radically different underlying semantics and
expected consequences. For example, consider how our DDBE might implement an
application-defined protocol like the two-phase commit protocol or the three-phase
commit protocol (which we discussed in Sections 8.8.4 and 8.8.5 in Chapter 8).
Protocols like these are much more representative of the conversations we need
to implement in our DDBE; however, they are also very complicated to define
and understand. Luckily, we do not need to worry about complex or meaningful
protocols like these in order to understand the issues that are important to this
section. Therefore, we will use the simplistic examples presented here instead of
any real DDBE application-defined protocols.

15.1.2.2 Synchronous Versus Asynchronous Messaging Suppose we want to imple-
ment the conversation shown in Figure 15.5 using the simplistic “greeting, inquiry,
answer” application-defined protocol we discussed in the previous section. Also sup-
pose that Pro-B1 produces the greeting message and then, shortly afterward, produces
the inquiry message. When will these messages be consumed by Con-C1? Even though
we have an application-defined protocol, we cannot answer this question without first
considering two other messaging concepts known as synchronous messaging and
asynchronous messaging.

Synchronous messaging means that messages are only consumed when the con-
sumer explicitly requests the message. In other words, if Pro-B1 produces a message,
but JMS Client-C is busy doing other things, then the message will not be consumed
at that time. Asynchronous messaging is the name for the opposite situation. In asyn-
chronous messaging, some (short) time after Pro-B1 produces the message, the code in
JMS Client-C will attempt to consume the message—even if it was busy doing other
things. Of course, there will be a small latency time between the message production
and consumption, based on how busy the systems are, the speed of the network, and
so on—but the message consumption will essentially happen at the same time as the
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message production when the conditions are ideal. This is asynchronous messaging
because the message reception does not occur at fixed or specific times. Whenever
the message is produced, the consumer will be interrupted, and the message will be
consumed. By contrast, in synchronous messaging we consume messages at a fixed
place in the algorithm or based on a fixed time schedule—regardless of when the
messages were actually produced. Asynchronous messaging is similar to event-driven
programming, if we consider the sending of a message to be an event. Therefore, asyn-
chronous messaging is sometimes referred to as message-driven programming. In fact,
J2EE has a special type of Java Bean called a Message Driven Bean (MDB), which is
usually implemented using the JMS facilities (we will discuss MDBs in Chapter 16).
Generically, asynchronous messaging can be implemented using either multithreading
techniques or single-threaded techniques, but in both cases, we must process the mes-
sages carefully from a multitasking perspective. The multithreaded implementation is
the most common (and straightforward) way to implement asynchronous messaging.

The JMS provides support for both synchronous and asynchronous messaging. When
asynchronous messaging is used, it typically uses multithreading in the JMS Client
software, and therefore as application developers, we must be sure to use the JMS API
calls carefully—remember that the Session objects and all the other objects that are
ultimately created from them are not thread-safe! It is also important to recognize that
both synchronous and asynchronous messaging can use either blocking or nonblocking
calls—these concepts are not equivalent to each other. For example, suppose JMS
Client-C implements asynchronous messaging by using a separate thread of control to
consume the messages. If it is possible for this thread to be blocked while waiting for
the message, then we are using asynchronous, blocking messaging. However, if it is
not possible for this thread to be blocked while it is waiting to consume the messages,
then we are using asynchronous, nonblocking messaging. In the first case, the thread
executes and when the blocking call is reached, the thread is suspended until a message
is available for consumption and the call returns with the message. In the second case,
the thread executes and when the nonblocking call is reached, it will return regardless
of whether there is a message available for consumption or not. In both scenarios, if
there are many messages being produced and the consuming client needs to perform
some actions for each message it consumes, then it is possible that the messages will
start to “pile up”—similar to the way items can “pile up” in our in-box while we are
working on other things in the real world. This is one of the primary reasons for using
a JMS Provider, namely, its ability to manage these “piles” of messages. In the next
section, we will consider some alternatives for how the provider can manage these
messages that are waiting to be consumed.

15.1.2.3 Message Persistence Even in our simple messaging example, there are
many unexpected complex situations that could happen. What happens to the mes-
sages that “pile up” while JMS Client-C is busy processing other requests? What
happens if JMS Client-C never receives one of the messages that JMS Client-B sent
to it? What if JMS Client-C shuts down and exits before it consumes all the messages
that JMS Client-B produced for it? Recall that the JMS Client instances are actually
communicating directly with a JMS Provider instance, and not directly with each other.
This means that it is possible for JMS Client-B to produce its messages successfully,
without any errors or issues, even when it is not possible for JMS Client-C to consume
the messages.
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We can consider many scenarios in which the potential for lost messages is high.
For example, this can happen if the network is very congested, or the participants are
prone to network failures due to the time or distance between them on the network.
Similarly, if the participant machines or processes are very busy or working under
a heavy load, then the potential for lost messages increases. However, when we are
using a JMS Provider, we can also configure the JMS Provider instance to minimize
the potential communication losses. What happens if there is a network error between
JMS Client-C and JMS Provider-A that has no impact on the connection between the
JMS Provider-A and JMS Client-B? Suppose the machine on which the JMS Client-C
instance is running has some failure or the JMS Client-C application is not running
for some reason: What happens then?

Because messages are actually transferred through a destination contained within
the JMS Provider instance, we have several options available to us. After a Message
Producer object has produced a Message object, the Message object is placed inside
the destination, which is defined and administered within the JMS Provider instance.
The JMS Provider instance can “hold onto” several Message objects while waiting for
the Message Consumer object to consume them. It does not matter how the Message
objects are being held, unless there is a failure with the JMS Provider instance. For
example, the Message objects being held could be stored in memory, or some form of
secondary storage (e.g., a hard disk or database) could be used. The Message objects
can be stored within the JMS Provider while they “pile up,” and we can specify many
details controlling how the provider will administer the Message objects it is holding.

From the Message Producer object’s point of view, when we create the Message
objects and produce them, we can specify several details about how the messages
should be handled by the JMS Provider instance. In particular, we can specify a time-
to-live (TTL) value in each message that indicates how long the JMS Provider instance
must “hold onto” a message before discarding it (assuming that it has not been con-
sumed before the timeout has been reached). We can also specify whether a message
should use persistent delivery or nonpersistent delivery as part of the produce oper-
ation. Messages that are produced using nonpersistent delivery must be sent at-most-
once, which means that there will never be a duplicate message sent; but if there are
errors, then the message might (possibly) be lost and therefore never sent at all. Persis-
tent message delivery ensures that the message will be delivered once-and-only-once.
This not only prevents duplicate messages, but it also ensures that the messages will
not be lost once they have successfully been produced—even if there are JMS Provider
failures or failures in the JMS Client containing the intended JMS Consumer object.
Note that these considerations only affect the producer side of the conversation—it is
still possible for messages produced with either delivery mechanism to be lost on the
consumer side (not consumed) due to the TTL value timing out or other causes.

From the JMS Consumer object’s point of view, how can we ensure that mes-
sages are not lost when the JMS Consumer object is not actively connected to the
JMS Provider? Recall that this situation can be caused by a network error, system
error, or application error on the JMS Consumer object’s site. This situation, therefore,
cannot be addressed by merely specifying some detail in the JMS Consumer object’s
container-application. Instead, the JMS specification addresses this situation via the
Destination object. When we create a destination within the JMS Provider instance via
the proprietary mechanisms it supplies, we can specify whether the destination should
retain messages for inactive consumers or whether the messages should be thrown
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away when no active JMS Client instance consumes the message before the TTL
value expires. The specification refers to destinations in the former case as durable
destinations while the destinations in the latter case (“nondurable” destinations) are
called temporary destinations. We will consider how message persistence influences
our communication issues when we discuss message reliability in Section 15.1.2.5
and again when we discuss messaging domains in Section 15.1.3.

15.1.2.4 Message Acknowledgment In Section 14.3, we discussed how Remote Mes-
saging is different from Remote-Code Execution. In particular, we said that, unlike a
function call or method invocation that can immediately return a result, there is no
returned value when a message is sent. This is true even when we use blocking mes-
saging calls. Instead of relying on return values, an application-defined protocol (the
expected sequence of message types and operations) must be used to supply any desired
return values from the other participant in the conversation in the form of one or more
expected messages. In Figure 15.5, JMS Client-B sends two messages and then at some
point in the future it receives one message back. If JMS Client-C does not respond,
then JMS Client-B has no way of knowing whether the messages it produced (“Hello”
and “How are you?”) were consumed. If there is a failure when Pro-B1 attempts to
send the message, a special type of error used within the Java programming language
(an Exception) will be raised in JMS Client-B. Similarly, if Con-C1 is unable to con-
sume a message due to a JMS Provider or network failure, then an Exception will be
raised in JMS Client-C. However, when errors make communication between the two
clients impossible, there is no way for one JMS Client instance on the “successful”
side of the conversation to know about any Exceptions raised by any of the other JMS
Client instances on the “unsuccessful” side of the conversation.

In the previous section, we mentioned that a durable destination could be used
to ensure that the JMS Provider instance retains the Message objects when a JMS
Consumer object is not able to consume the messages. The JMS Consumer object
could be unavailable (inactive) for any reason, including a failure in the JMS Provider
instance itself at some point after the message has been produced. Assuming that
the JMS Client instance containing the “inactive” JMS Consumer object is able to
reconnect to the JMS Provider instance at some later point in time, how does the JMS
Consumer object know which Message objects it needs to process? Suppose that the
JMS Client-C instance in Figure 15.5 had failed and restarted at some point during
the conversation. What should it do if the first message (“Hello”) has been consumed
successfully, but the second message (“How are you?”) was not consumed prior to the
failure? What if the “Hello” message was consumed before the failure but the actions
necessary to process it completely within JMS Client-C had not completed before the
failure occurred? How would the JMS Client instances and JMS Provider instance
know the state of these messages?

The JMS specification uses a concept called message acknowledgment to control
the message state from the JMS Consumer object’s point of view. The JMS specifica-
tion can also use the concept of messaging transactions to control the acknowledgment
and recovery alternatives available for the consumer. The transactions involved here
are analogous to database transactions; in fact, they can be managed using the Java
Transaction Service (JTS) and Java Transaction Application Program Interface (JTA)
facilities. However, the JMS specification does not require the JMS Provider implemen-
tation to use database transactions to implement these messaging transactions, even if
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the JMS Provider uses a database for the message storage mechanism. When we use a
Connection object to create a Session object, we can specify the transaction details for
that session. The session’s transaction details are then used by the Message Producer
objects and Message Consumer objects created by that Session object. These details are
used to control the acknowledgment and recovery for all the messages produced and
consumed within the session. When messages are consumed within a transaction, the
acknowledgment is handled automatically by the transaction’s commit operation and
the recovery is handled automatically by the transaction’s rollback operation. When a
session does not have a transaction, all the recovery operations must be handled manu-
ally (programmatically in the JMS Client), while the acknowledgment can be handled
in one of three different mechanisms.

Acknowledgment is somewhat analogous to the way many email clients can be
configured to consider each email marked as “read” to be suitable for automatic
deletion. When such an email client instance connects to an email server, it can see
all the message headers and even download the message content, but none of the
messages are marked as read until after the user actually opens the message.

If we carry the analogy further, the first acknowledgment mechanism would
be similar to an email client that only deletes “read” email on logout. In this
scenario, if the email server or the email client crashed, or if the communication
link between them were lost for some other reason, then the messages marked as
“read” would not be deleted—the next time we log in, we might accidentally read
the same email again. The second acknowledgment mechanism would be similar
to an email client configured to delete each email message immediately after we
closed the message (immediately after we mark the message as being “read”). The
third acknowledgment mechanism would be similar to an email client that was not
configured to delete our email automatically for us. In this scenario, we would
need to delete the messages manually after we have read them in order to avoid
accidentally reading the same email more than once.

For the sake of completeness, we can consider the transaction mechanism to
be equivalent to the first or second email scenario we just mentioned, but with
a “trash can” or “recycling bin” that holds the deleted email message for us: the
email client automatically “empties the garbage” on successful exit (analogous to a
commit operation) and restores all items “still in the trash bin” on restart (analogous
to a rollback operation). Of course, JMS messages are not the same as emails, and
JMS Client instances are not the same as people or email client instances—but the
behavior is similar, nonetheless.

The first acknowledgment mechanism uses automatic, “lazy” acknowledgment. This
means that each message will automatically be acknowledged when it is consumed by
the JMS Message Consumer object, but this acknowledgment might not be reflected in
the JMS Provider instance immediately. Therefore, if a failure occurs, it is possible that
some messages will not to be acknowledged within the JMS Provider instance, even
though we have processed and acknowledged them within the JMS Client instance. This
mechanism has lower overhead because it can “group” the acknowledgments together
rather than updating the JMS Provider instance immediately, but it might result in
duplicate message processing when failures occur because the “restarted” consumer
will not see these messages as being acknowledged.
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The second mechanism uses automatic, “nonlazy” acknowledgment. With this mech-
anism, each message once again is automatically acknowledged when the message is
consumed, but unlike the first mechanism, this acknowledgment is immediately com-
municated to JMS Provider instance and the status is immediately reflected there. This
mechanism has greater overhead than the first mechanism, but it prevents duplicate
message processing.

The third mechanism uses manual acknowledgment, which means that the client
application must explicitly invoke an acknowledge method for each message it has
consumed. When this method is invoked, the acknowledgment is immediately com-
municated to JMS Provider instance and the status is immediately reflected there. The
application developer is responsible for ensuring that messages are acknowledged cor-
rectly and for controlling how often the JMS Provider instance’s “acknowledgment”
state is updated.

15.1.2.5 Message Reliability Most DDBE subsystems will have strict Remote Mes-
saging Requirements. Although there may be some scenarios where duplicate or lost
messages within our DDBE conversations are not a critical issue, there is never a
scenario where duplicate messages or lost messages would be considered desirable.
When our messaging middleware can prevent (or at least greatly minimize the chance
of) these undesirable message types, we call the mechanism being used an example of
reliable messaging. By using the appropriate JMS Provider configurations and pro-
gramming calls, we can use the JMS to fulfill these message reliability requirements.
In particular, we can use the combination of persistent delivery mechanisms in our
producers and durable destinations to handle a majority of the concerns from the
Message Producer object’s point of view. We can then choose our preferred acknowl-
edgment mechanism (transactions, automatic-lazy, automatic-nonlazy, or manual) and
implement the message consumer code to suit our needs from the Message Consumer’s
point of view. Of course, it is still possible through coding errors or poor design to
cause messaging issues, but from a DDBE Platform perspective, we have leveraged
as much functionality as we can by using the options we discussed in the previous
sections.

15.1.2.6 Message Errors and Exceptions In some respects, we can consider all fail-
ures within our JMS-based DDBE to belong to one of three categories. The first
category includes all the failures directly related to the JMS Provider instances, JMS
Client instances, or the JMS specification. When these types of failures occur, JMS
Exceptions will be thrown by the underlying JMS calls. The code that we write should
catch these exceptions and handle them as gracefully as possible. This usually involves
logging the Exception and its surrounding details or wrapping the Exception within
another Exception defined by us. The second category of failures would be those
Exceptions thrown by any non-JMS code we are using, but did not write ourselves.
For example, the Java runtime can throw Exceptions, as can any other middleware we
might be using. When these Exceptions are thrown, we should again catch the Excep-
tion, but now we might choose to ignore the Exception, to log the Exception, to wrap
the Exception, or perhaps even to send some messages to other JMS Client instances.
This last option would use special messages reflecting the application-specific inter-
pretation of the failure. For example, we might produce a message indicating that
there was a syntax error in an SQL statement or a semantic integrity violation in a
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distributed transaction-processing step. The last category of failures to consider would
be those based on the logic within the code we write. We might use Exceptions to
address these situations, we might use special return values, or we might use special
“Error” messages. We must remember that the only way to convey information across
COSs that are deployed on different sites is to use some form of Remoting, and in this
case, we are using Remote Messaging as the primary mechanism for that functionality.
However, whenever we use a message to convey other error information, it is impor-
tant to ensure that the code involving our JMS Producer objects and JMS Consumer
objects correctly handle both these new “Error” messages and the potential issues from
the other two categories of failures we just discussed.

15.1.2.7 Message Ordering Whenever we design an application that uses Remote
Messaging, we need to consider how to handle messages that arrive in an unintended or
inappropriate order. There is always potential for unexpected ordering behavior when
messages are sent from one COS instance to another COS instance. For example,
when there are several COS instances deployed across several sites, there is always
the likelihood that some conversations will become interleaved. Even when we only
have two COS instances in the environment, each message production and consumption
operation is a unique situation. For example, it is possible for messages to travel by
different paths due to the constantly changing network topography and routing details.
Perhaps some messages will have a longer path to travel due to routing decisions
and bandwidth usage. Perhaps other idiosyncratic details (such as the number of open
connections active on a particular machine, intermittent hardware failures, available
memory and resources, number of executing processes, and length of message content)
will effect the delivery time. Of course, the messaging mechanisms and configuration
details being used also have a great impact on the delivery and retrieval times. Even
when we attempt to use the same mechanism and configuration details, it is possible
for delivery and retrieval times to vary.

Using a JMS Provider can help to manage this situation but cannot completely
control all the message ordering issues. JMS Message objects can specify a prior-
ity, which will influence the order in which messages are produced and the order in
which they are consumed. Similarly, JMS Message Consumer objects can use sophis-
ticated mechanisms to delay the consumption for some messages or to select specific
messages for consumption sooner. The JMS specification will provide some delivery-
order guarantees if we use persistent messaging with durable destinations and send
messages with identical (and normal) priority levels. If we do not use any filtering
or selection criteria to alter the order, the JMS specification will also provide some
guarantees with respect to the order in which messages are consumed. However, these
guarantees only apply to a specific scenario. From the JMS Producer object’s point of
view, this only applies to messages that are sent from the same JMS Session object,
to the same JMS destination, using the same underlying communication mechanism.
From the JMS Consumer object’s point of view, we must again limit ourselves to a
single session and mechanism. Because a JMS Session is not thread-safe, neither it
nor the JMS Message Consumer objects it creates can be used for both synchronous
and asynchronous consumption at exactly the same time. Similarly, it is not possible
for a JMS Producer object to use both synchronous and asynchronous production at
exactly the same time. Therefore, it is possible to control message consumption order
to a reasonably high degree, but not completely. For example, suppose we are using
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persistent delivery, durable destinations, and normal priority for all the messages in
Figure 15.5. Furthermore, suppose that we are using synchronous messaging, and that
we are not using any sophisticated filtering or selection operations. Now we can say
that the JMS specification will ensure that the first message (“Hello”) will always be
consumed before the second message (“How are you?”), as long as the first message
is always produced before the second message.

Recall that when we used this example earlier, we said we would use the application-
defined protocol to prevent JMS Client-C from sending its message (“Fine, thanks”)
until after it had processed both of the messages from JMS Client-B—but this was only
enforced by the logic that we put into the code we wrote. If we were to implement
this logic differently, or if we were to fail to handle all of the possible situations
correctly, then we would have no control over the order of messages across these two
different conversation paths. It would be possible for the messages to be produced and
consumed in any order as long as the first message (“Hello”) was sent and consumed
before the second message (“How are you?”). This would mean that the production
and consumption operations for the third message (“Fine, thanks”) could occur before,
after, or in between the operations for the first two messages. This is analogous to the
way statements in different database transactions can interleave in any order as long
as they do not interfere with each other (see Figure 5.7 in Section 5.2.3 of Chapter 5).

By using the appropriate JMS constructs, configuration settings, and coding tech-
niques, we can reduce the chances of unexpected message ordering between the two
COSs in Figure 15.5. However, JMS has no mechanisms to control the delivery order
for messages produced across different JMS Session objects, even when the messages
are being consumed by the same JMS Message Consumer object. For example, sup-
pose some other JMS Client wanted to talk to JMS Client-C in the same way that
JMS Client-B does in Figure 15.5. In fact, we can even consider the situation where
JMS Client-B has another JMS Session object configured identical to Session-B1. In
both of these situations, we have more than one JMS Session object sending messages
to the same destination. JMS can only guarantee that the “Hello” message produced
by Session-B1 will be consumed before the “How are you?” message produced by
Session-B1 is consumed. It is possible for the greeting and inquiry messages pro-
duced by different sessions to be interleaved in several different ways. The answer
messages produced by JMS Client-C will be consumed in the order they were pro-
duced, but this is highly dependent on the order in which the first two messages were
consumed.

15.1.3 Messaging Domains

The JMS specification identifies two different messaging styles, which are sometimes
referred to as two different messaging domains. The first messaging domain is called
point-to-point (PTP) messaging. The second messaging domain is called publish-
and-subscribe (Pub/Sub) messaging. Both messaging domains provide sophisticated
operations for filtering and selecting messages, and both domains support both manual
and automatic acknowledgment mechanisms. The specification includes both a mes-
saging domain-specific interface and a messaging domain-independent version of the
interfaces we discussed in Section 15.1.1. We will identify the mapping from the mes-
saging domain-specific interface name to a messaging domain-independent interface
name in each of the sections that follow this one, but we will not describe all of
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the nuances necessary to use the messaging domain-independent interfaces correctly
within a specific domain. In other words, both messaging domains can use the same
Java interface, but it is possible for the program to attempt to perform some operations
that are defined in the interface, which are not appropriate for the specific messaging
domain currently being used at runtime. If this does occur, then an Exception will
be raised from the JMS middleware. Typically, our JMS Client instances will choose
one messaging domain or the other when the Connection Factory object is created,
and then all of the subsequently created JMS objects will conform to this decision.
As we mentioned earlier, we can use multiple Connection Factory objects, but this is
usually not necessary. Each JMS destination is created using one flavor or the other
(not both) via the proprietary JMS Provider supplied administration facilities. The mes-
saging domain decision made in the code must match the messaging domain flavor of
the JMS destination being used; for example, we would not try to use the Pub/Sub
messaging domain to connect to a JMS destination created using the PTP messaging
domain.

It is possible to use both of the JMS messaging domains within the same appli-
cation, and even within the same JMS Client. Because the JMS messaging domains
use different JMS Session objects and different JMS destinations, conversations that
attempt to use more than one messaging domain have very little control over the order
in which messages are consumed. Therefore, we should usually avoid using multiple
domains (or even multiple destinations) when the messages are intended to be part of a
single conversation. Although we can safely use both messaging domains in the same
application, it is not necessary for us to do so. It is possible, and not that difficult,
to write code that uses only one of the two messaging domains. We can even write
code using one messaging domain that “emulates” the default behavior for the other
messaging domain (albeit with processing that is probably less efficient than it would
be if it had been written to use the other messaging domain code directly). The JMS
specification does not require all JMS Provider implementations to support both JMS
messaging domains—it is permissible for the implementation to support PTP only,
Pub/Sub only, or both the PTP and Pub/Sub messaging domains.

15.1.3.1 Point-to-Point (PTP) Messaging When PTP messaging is used, each JMS
Message object is produced into a specific type of JMS Destination object, called
a Queue. The produce operation is often referred to as a “send” operation and the
consume operation is often referred to as either a “read” or “receive” operation when
this messaging domain is being used. The name “Queue” is appropriate for the JMS
Destination object using this messaging domain because the JMS destination essentially
behaves like a traditional queue. A queue is a double-ended list structure that supports
insertion operations at one end and removal operations at the other. When a message
is produced, it arrives at the rear of the queue. After the message has been consumed
and acknowledged, it is removed from the front of the queue. Messages are consumed
in the order in which they arrived with the caveats we discussed in the previous
section. The defining characteristic for a JMS Queue is the simple fact that only one
Message Consumer object is intended to consume each Message object in the Queue.
Once a Message object has been consumed and acknowledged, it is expected to be
removed from the Queue, and then to be no longer available. If we wanted to emulate
the behavior of the Pub/Sub messaging domain using a Queue, we would simply
produce multiple messages (one for each recipient) and use filtering to ensure that
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the messages are not consumed more than once by each message recipient. This is
somewhat analogous to the way messages and mailboxes work when we use email for
human-to-human communication.

Traditional queues are sometimes called FIFOs because of the order in which ele-
ments in the queue are processed (FIFO stands for first-in, first-out). This processing
is common in the real world and occurs whenever we wait in line for a single
resource, such as a single bank teller. A JMS Queue is not quite the same thing
as a traditional queue, however, because we can perform much more sophisticated
operations on a JMS Queue than we can on a traditional queue. For example, JMS
Client instances can use selection and filtering operations to skip over messages in
the queue, and they can also use other operations to “peek ahead” and see items
in the queue without removing them, or even push items back into the front of the
Queue as part of recovery operations. These operations are not usually allowed with
a traditional queue, but they are quite useful and necessary for a JMS Queue. This
is somewhat analogous to allowing the people waiting in line to “skip ahead” or
reorder themselves based on the preferences or whims of our solitary bank-teller—
not the sort of behavior that most bank customers waiting in line would appreciate!

The mapping between the JMS messaging domain-specific names and the indepen-
dent names is reasonably intuitive. The Connection Factory, Connection, and Session
objects are simply prefixed by the word “Queue” for the PTP messaging domain-
specific name. For the other three names, we simply replace the independent name
with the messaging domain-specific name: Destination is replaced by Queue, Message
Producer is replaced by Queue Sender, and Message Consumer is replaced by Queue
Receiver.

15.1.3.2 Publish-and-Subscribe (Pub/Sub) Messaging When Pub/Sub messaging is
used, each JMS Message object is produced into a specific type of JMS Destination
object, called a Topic. When this messaging domain is being used, the produce oper-
ation is often referred to as either a “publish” operation or a “publication” and the
consume operation is often referred to as either a “subscribe” operation or a “sub-
scription.” JMS Client instances publish Message objects to a specific Topic. Topics
have names (perhaps even hierarchies of names) used to organize the Message objects
that they contain. JMS Client instances can also subscribe to a specific Topic and then
consume all the Message objects contained within their subscription. When we pro-
duce JMS Message objects and place them in a Topic, it is because these messages are
intended to be consumed by at least one Message Consumer object. Unlike the mes-
sages in a Queue, these messages are intended to be available for multiple consumers.
Many aspects within this messaging domain are left as implementation-defined behav-
ior (such as the syntax for Topic names, and mechanisms for administering Topics).
The combination of these implementation-defined aspects and the possibility of having
multiple consumers can make the message acknowledgment, removal, and recovery
processing more complicated than the situation for JMS Queues. However, we will not
discuss those details further in this chapter. This is somewhat analogous to the way
newsgroups and web-forums work when we use them for human-to-human communi-
cation.
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In some respects, the messages produced in this messaging domain are similar
to those used in traditional broadcast messaging, but the two concepts are not quite
equivalent. In order to consume the messages contained within the Topic, each Topic
Subscriber must connect to the JMS Provider instance and to the JMS destination
representing the Topic itself. JMS Message objects within this messaging domain can
use all of the features we discussed previously (persistent delivery, durable subscrip-
tions, and all the acknowledgment alternatives). These features are not present for most
messages used within a traditional broadcast messaging technique.

Once again, the mapping between the JMS messaging domain-specific names and
the independent names is reasonably intuitive. The Connection Factory, Connection,
and Session objects are simply prefixed by the word “Topic” for the Pub/Sub messaging
domain-specific name, and for the other three names, we simply replace the independent
name with the messaging domain-specific name: Destination is replaced by Topic,
Message Producer is replaced by Topic Publisher, and Message Consumer is replaced
by Topic Subscriber.

15.1.4 JMS API Constructs

In this section, we will provide a brief summary of the high-level concepts defined
in the JMS specification that are represented in the JMS application–programming
interface (API). The information provided by the JMS specification and the Java doc-
umentation (Javadoc) included with the API is far more complete than the details
provided here—this section is merely intended to serve as a quick reference.

15.1.4.1 Connection Factory The Connection Factory objects are represented by the
“javax.jms.ConnectionFactory” Java interface. These objects are thread-safe and usu-
ally obtained by using Java Naming and Directory Interface (JNDI) calls. Numerous
mechanisms can be used to obtain the Connection Factory object. Figure 15.6 shows
two generic examples. The first method assumes that the system properties have been
configured to the correct default values, and that “ConnectionFactory” is the name to
lookup once the JNDI initial context has been obtained. The second method allows the
caller to specify the class name for the initial context factory, the Uniform Resource
Locator (URL) for the Naming Service provider, and the class name used to imple-
ment the connection factory. The details specified within the parameters (especially
the “url” parameter) are highly dependent on the JMS Provider implementation, but
the syntax of the call is reasonably portable and the parameter contents can be con-
figured via the Java Properties facilities (as opposed to being hard-coded). The JNDI
lookup call returns an object implementing the “javax.jms.ConnectionFactory” Java
interface, which means that the object itself might be implemented using any JMS
Provider supplied class as long as it implements this JMS specification-defined inter-
face. Actually, the object returned will also implement one of the two JMS messaging
domain-specific Java interfaces that extend the “javax.jms.ConnectionFactory” Java
interface. PTP messaging uses the “javax.jms.QueueConnectionFactory” Java interface
and Pub/Sub messaging uses the “javax.jms.TopicConnectionFactory” Java interface.

15.1.4.2 Connection Connection objects are represented by the “javax.jms.
Connection” Java interface. A Connection object is a thread-safe connection to
a particular JMS Provider instance. Even though “javax.jms.Connection” is the
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Figure 15.6 Generic code to lookup a Connection Factory object.

messaging domain-independent name, we will automatically obtain the correct
messaging domain-specific object based on the actual Connection Factory object
we obtained in the previous step. The Connection object is created using the
“createConnection” method defined in the “ConnectionFactory” interface. There are
two forms for this call: one with no parameters and one that specifies a username
and password value. Authentication and Authorization are considered JMS platform
implementation-dependent behavior, so the second form of the call is not always
supported. The generic-example code to create a Connection object is shown in
Figure 15.7.

15.1.4.3 Session Session objects are represented by the “javax.jms.Session” Java
interface. A Session object is not thread-safe, so we must be careful how we use
it. Once again, even though “javax.jms.Session” is the messaging domain-independent
name, we will automatically obtain the correct messaging domain-specific object based
on the actual Connection object we obtained in the previous step. The Session is cre-
ated using the “createSession” method defined in the “javax.jms.Connection” interface.
This method has two parameters. The first parameter is a Boolean value indicat-
ing the transactional state for the session. A “true” value means that the session
uses a transaction while a “false” value means that there is no transaction used
for the session. The second parameter can be set to one of three constants, rep-
resenting the acknowledgment mechanisms we discussed in Section 15.1.2.4. The
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Figure 15.7 Generic code to create a Connection object.

Figure 15.8 Generic code to create a Session object.

“Session.DUPS_OK_ACKNOWLEDGE” constant represents automatic-lazy acknowl-
edgment, the “Session.AUTO_ACKNOWLEDGE” constant represents the automatic-
nonlazy acknowledgment, and the “Session.CLIENT_ACKNOWLEDGE”constant rep-
resents manual acknowledgment. The generic-example code to create a Session object
is shown in Figure 15.8. Notice that we are not using transactions and we are using
the automatic-nonlazy acknowledgment mechanism.

15.1.4.4 Destination JMS Destination objects are represented by the
“javax.jms.Destination” Java interface. Each JMS messaging domain has two
Java interfaces that inherit from this independent interface (one for a “temporary”
destination and one for a “nontemporary” destination). A temporary destination only
exists for the lifetime of the session that creates it. Therefore, this package contains
four names, representing the four possible subtypes: Queue, TemporaryQueue,
Topic, and TemporaryTopic. Even though there are several methods for obtaining
a Destination object, we will only consider how we would lookup a nontemporary
Destination in Figure 15.9. This can essentially be done in the same way that we
obtained the Connection Factory object, except that in this code, we would specify the
destination (Topic or Queue) name using the proprietary JMS Provider defined syntax.
The generic-example code to create a Destination object is shown in Figure 15.9.
Note that this is not the proprietary mechanism for actually defining and creating
a destination within the JMS Provider instance. Instead, this is the mechanism we
use to specify the details for the administered object, so that we can create Message
Producer objects and Message Consumer objects that connect to the destination within
the JMS Provider instance.
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Figure 15.9 Generic example code to create a Destination object.

Figure 15.10 Generic code to create a Message Producer object.

15.1.4.5 Message Producer JMS Message Producer objects are represented by the
“javax.jms.MessageProducer” Java interface. Each JMS messaging domain has its own
Java interface (“javax.jms.QueueSender” or “javax.jms.TopicPublisher”) that inherits
from this independent interface. If we need to invoke any method calls that are specific
to one interface or the other, we need to downcast the object into the appropriate
interface before we invoke the method. We should always perform type checking
before downcasting, and include code to catch any Exceptions, just in case something
unexpected occurs. The generic-example code to create a Message Producer object is
shown in Figure 15.10.

15.1.4.6 Message Consumer JMS Message Consumer objects are represented
by the “javax.jms.MessageConsumer” Java interface. Once again, each JMS
messaging domain has its own Java interface (“javax.jms.QueueReceiver” or
“javax.jms.TopicSubscriber”) that inherits from this independent interface. Just like
the situation for the Message Provider object, if we need to invoke any method calls
that are specific to one interface or the other, then we need to downcast the object
into the appropriate interface before we invoke the method. There are several different
mechanisms for creating a Message Consumer object. This range of mechanisms
covers all the possible scenarios (there are several valid combinations of messaging
domain types, selectors, filters, and durability details to choose from). We will not
address all of those variations here. The generic-example code to create a Message
Consumer object is shown in Figure 15.11.

15.1.4.7 Message JMS Message objects are represented by the “javax.jms.Message”
Java interface. This interface contains the methods that apply to all JMS Message
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Figure 15.11 Generic code to create a Message Consumer object.

TABLE 15.1 The Five Java Interfaces Used to Represent JMS Message Objects

Interface Name Description

BytesMessage The message content is raw binary data (bytes).
MapMessage The message content uses name-value pairs (like a java.util.Map).
ObjectMessage The message content is an application-defined class.
StreamMessage The message content is Stream (like file input and output operations).
TextMessage The message content is a single text string (a java.lang.String).

objects. The JMS specification defines a JMS Message as an object that consists of
some “message header” information, a set of properties (some of which are defined
by the specification, some by the JMS Provider implementers, and some by the JMS
Application developers), and the actual message content itself. The JMS specification
also defines five specific types of JMS Message objects, each represented by a separate
Java interface within the “javax.jms” package. These JMS interfaces are summarized in
Table 15.1. There are methods on some of the other interfaces we mentioned in previous
sections that create and manipulate the JMS Message objects implementing these inter-
faces. Similarly, there are many important methods defined in these interfaces, but we
will not cover those details here. Instead, we recommend reading the JMS specification,
the JMS API Javadocs, and the JMS Provider-specific documentation for more details.

15.2 JMS PROVIDER IMPLEMENTATION ALTERNATIVES

If we decide to use a JMS Provider instance within our DDBE, we can choose from
several different JMS Provider vendor and implementation alternatives. Sometimes
the implementation is bundled as part of another software package (e.g., the JMS
platform is usually bundled within a J2EE platform), sometimes the JMS platform is
implemented as a thin layer on top of some existing messaging system, and sometimes
it is a separate stand-alone package. This section is not intended to provide a list of
the best implementations (although we like all the implementations discussed here),
and it is not intended to replace the detailed and useful documentation provided with
these implementations. Instead, this section is merely intended to provide a high-level
overview of the steps necessary to deploy these environments for experimenting with
the JMS starter kit we will be discussing for the rest of the chapter. Many JMS
implementations allow us to specify how we want the message data storage to be
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implemented. In particular, they often support using a relational database management
system (RDBMS) or proprietary flat files. The starter kit includes several command
scripts, configuration file excerpts, suggestions, and hints to make it easier to run the
sample extension in these environments with some common configurations.

15.2.1 Apache ActiveMQ

ActiveMQ (Apache Active Message Queue) is the name of the JMS Provider created
and maintained by the Apache Software Foundation. It is licensed under the standard
Apache License, which means that, for our purposes, we consider it an example of free
or open source software (FOSS). At this time, the current, stable release is Version
5.3.0. Because ActiveMQ is written in Java, it is very portable. It can be configured
to use either files or databases as the message data storage mechanism. If databases
are used, then the Java Database Connectivity (JDBC) facility is used as middleware
between the JMS Provider and the DBMS containing the message data store. ActiveMQ
can use several different underlying network communication mechanisms to connect
JMS Provider instances and JMS Client instances. The installation software and fur-
ther information about how to use it can be found at the Apache ActiveMQ website
(http://activemq.apache.org). Obviously, the installation instructions and release notes
provided by the website (as well as the license agreement and other details) should
be consulted before installing the software in any environment to ensure that it is the
appropriate implementation to be used.

15.2.1.1 Software Installation We can simply download the latest stable release
appropriate for the desired operating system (a zip file or a tar.gz file) and extract
the software to the installation directory. When we extract the files, we will create a
single directory named something like “apache-activemq-5.3.0” containing all the files
and subdirectories within it. We do not need to execute any separate installation script
or execute any separate “setup” application. After extracting the software, we should
now have several files and subdirectories (named “bin,” “conf,” “data,” etc.) within the
“single” installation directory. Within the starter kit files and documentation, we will
refer to this installation directory (i.e., the one named similar to “apache-activemq-
5.3.0”) as the ACTIVEMQ−HOME directory.

15.2.1.2 Configuration We can create destinations in the JMS Provider instance
by editing the ActiveMQ configuration file (named “activemq.xml” and located in the
“conf” subdirectory under the ACTIVEMQ−HOME directory). This file is read during
the startup processing for the service. We can also dynamically create destinations
by calling the “createTopic” and “createQueue” methods in the “Session” interface
once the JMS Provider instance has been started. Although both of these mechanisms
are possible, they are admittedly somewhat nontrivial. Therefore, we recommend
using one of the proprietary administration facilities for this task instead. At this
time, the default configuration does not require any additional database configuration;
it uses the “data” subdirectory to store messages. We can change this configuration
file to use a Java Database Connectivity (JDBC) connection to a database, but this
requires some additional configuration steps. Since this change is not crucial to the
starter kit, we will not discuss the details further here. There are comments in the
configuration files and the pages on the vendor website covering most of the popular
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JDBC configuration details, as well as further details described in the JMS-SKIT
files. If we want to make any changes to the default configuration that can survive
a JMS Provider instance shutdown/restart operation, then the configuration file is the
best approach for specifying those details; however, in a development and testing
environment it is actually quite useful to have an easy method for resetting the
JMS platform to a clean state. A simple compromise solution is to implement the
necessary configuration details first in a separate utility that is executed as needed
during development activities, and then later to deploy these details as configuration
file modifications for nondevelopment scenarios as needed.

15.2.1.3 Startup and Shutdown To start the JMS Provider instance, we simply
execute a command script that came bundled inside the bin subdirectory of the
ACTIVEMQ−HOME directory. Usually, we will want to open a command shell and
change directory into the bin directory before running the script (named “activemq.bat”
on Microsoft Windows platforms). We might also want to modify the properties for the
shell window to increase the screen buffer size (width and number of lines in the scroll
back buffer); while this is not necessary, it can be especially useful during software
development. Running the startup script will cause the provider instance to be executed
within the command shell. To shut down this instance, we can simply type control-c
(holding the “ctrl” key down while pressing the “c” key) in this shell window. We
can also open another command shell and use the “activemq-admin.bat” script from
the “bin” subdirectory, passing the word “stop” as the only parameter to the call.

15.2.1.4 Administration Facilities When we start the JMS Provider instance as we
discussed in the previous section, the command shell in which we ran the startup script
will become the output console for this execution. Depending on the configuration
details and the state of the system, there can be many different details displayed here.
When the default configuration is used, there are a few values of particular interest to us
in this section. There should be several output lines starting with the word “INFO,” and
one of them will indicate how to access the ActiveMQ Console. This line will include
text similar to “ActiveMQ Console at http://0.0.0.0:8161/admin.” This is one of the
proprietary administration facilities provided, and it is a web-based interface. In reality,
we usually do not connect to this URL as it is displayed in this line; we need to specify
the hostname or IP address of this machine instead of the “0.0.0.0” value in the URL.

If we open a web browser and type in the URL “http://localhost:8161/admin” (with-
out the quotes), we should see a web page with several details about ActiveMQ and
the instance running on this machine. If we type the IP address or hostname into the
URL instead of “localhost,” we should see the same web page as before—but now we
can do this from a web browser running on some other machine if we wish. At the top
of the page, there is a menu bar containing items named “Home,” “Queues,” “Topics,”
“Subscribers,” and “Send.” “Home” is the default page, and it shows Broker informa-
tion, including details about how much space is used/available in the data storage areas
used for messages. The “Queues” page lists management details (including the names)
for all the existing queue (PTP) destinations. It also provides facilities for creating
new queues and looking at the messages inside the queues (by simply clicking on the
name of the queue). The “Topics” page has similar details and facilities for managing
topic (Pub/Sub) destinations. The “Subscribers” page can be used to create (and delete)
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durable topic subscribers. The “Send” page is essentially a web-form interface to pro-
duce a message into a particular destination (queue or topic). There are also some
other facilities we can access (such as some web-application demonstrations, and a
Java Management Extensions (JMX) administration facility); see the documentation
and website for further details.

15.2.2 OpenJMS

OpenJMS is the name of another FOSS JMS Provider implementation. OpenJMS is
an open source implementation of the JMS 1.1 specification (hence its name). At this
time, the current, stable release is Version 0.7.6−rc3, but there is also a later ver-
sion (0.7.7-beta-1) available for download at the official website. The same portability
and interoperability benefits we discussed for ActiveMQ can be found with OpenJMS,
because it is also written in Java. Similarly, it can be configured to use JDBC databases
for its data storage mechanism. Although earlier releases supported nondatabase mes-
sage storage, all of the recent releases require a database for this purpose. The latest
version available at this time has the Derby database environment included with it and
it is configured to use this mechanism by default. Either way, the result is the same: we
can either alter the default configuration to use a different database or use the default
configuration without modification and without installing any additional database man-
agement software. The installation software and further information about how to use
it can be found at the OpenJMS website (http://openjms.sourceforge.net).

15.2.2.1 Software Installation Similar to ActiveMQ, we simply download the
desired release in the appropriate format and extract it into the installation location.
Once again, there is no separate install script or setup application to run, and once
again, all the files and subdirectories will be placed in a single directory (named
something like “openjms-0.7.6−rc3” or “openjms-0.7.7-beta-1”). We will refer to
this directory as the OPENJMS−HOME directory, and we recommend setting two
environment variables if this JMS provider is going to be used. The first environment
variable should be named “JAVA−HOME” and it should be set to the full pathname
of the directory containing the J2SE’s bin directory (this can be the parent directory
of the bin directory within either the JDK or the JRE, but we recommend using the
JDK directory if both are present on the system). The second environment variable
is named “OPENJMS−HOME,” and it should point to the OPENJMS−HOME
directory we just described (i.e., the one named similar to “openjms-0.7.6-rc3” or
“openjms-0.7.7-beta-1”).

15.2.2.2 Configuration Before we can use the software, we need to configure it. If
we are using the latest release with the default configuration and using Derby as the
database, then there is no real work to be done. If we are going to use a different
database for the backend, then we first need to edit the script file that sets up the class-
path used by the OpenJMS tools (“setenv.bat” or “setenv.sh” in the “bin” subdirectory
under the OPENJMS−HOME directory). Next, we need to edit the configuration file
(“openjms.xml” in the “config” subdirectory under the OPENJMS_HOME directory)
to include the JDBC connection details (user name, password, connection URL, etc.)

Before we can run the software, we need to create the database schema used for mes-
sage storage. Again, if we are using the Derby backend as it is configured by default,
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Figure 15.12 Command to recreate the OpenJMS schema for the Derby database.

we do not need to do anything. For other databases, we need to run the “dbtool” appli-
cation after we edit the other files. This tool can be used to set up the initial database
schema or to recreate the schema for an existing configuration (including the default
Derby scenario). We simply execute the “dbtool” script (“dbtool.bat” or “dbtool.sh”)
and pass arguments necessary for it to find the “openjms.xml” configuration file and
the desired operation. Figure 15.12 shows the command we would type on Microsoft
Windows-based platforms if we wanted to drop all the OpenJMS data and recreate the
Derby database (note that this would all be typed on a single line, and it assumes that
the OPENJMS−HOME environment variable is set correctly to a directory pathname
that does not contain any spaces).

15.2.2.3 Startup and Shutdown When we want to start the OpenJMS Provider
instance, we simply execute the script (“startup.bat” or “startup.sh”) that came bundled
within the bin subdirectory under the OPENJMS−HOME directory. This will cause
another shell window to open and the provider instance to be executed within the
new command shell. To shut down the instance, either we can type control-c in the
shell window where it is running, or we can execute another script (“shutdown.bat” or
“shutdown.sh”) from another command shell. We can also use the administration tool,
which we will discuss in the next section, to start and stop the JMS Provider instance.

15.2.2.4 Administration Facilities We can run the administration tool by executing
the appropriate script (“admin.bat” or “admin.sh”). The admin tool is a graphical user
interface (GUI) that can be used to start, stop, or connect to the OpenJMS Provider
instance. When we connect to an instance (by selecting the “Actions” menu, followed
by the “Connections” subwindow, and the “Online” menu item found there), we can
see the destinations (queues and topics) defined in the JMS Provider instance as well
as details about them. We can use this tool to do many things, aside from viewing the
various destinations and subscribers; we can right-click on the various items shown to
perform additional operations. For example, we can add topics, create consumers, and
perform other administration tasks. However, any changes made with the tool will not
be reflected in the configuration file. Some administrative changes might be “undone”
or “lost” when the JMS Provider instance is restarted and the configuration file is reread.
Other changes will survive the restart. For example, if the configuration file defined a
destination, but the admin tool dropped the destination, then it would be recreated on
the restart. However, if, instead, we had used the administration tool merely to delete
all the messages in the destination (but not to remove the destination itself), then the
message objects would still be deleted after a restart (they would not reappear).

15.3 JMS STARTER KIT (JMS-SKIT) FRAMEWORK OVERVIEW

In this section, we present a simple framework that we can use to satisfy the Remote
Messaging Requirements within a DDBE. All of the source code for the framework
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presented in this chapter (as well as the example code and some additional documen-
tation for using the framework and sample application) is available for download via
the official website for this book (see the Preface for further details). We do not bundle
any JMS Provider implementation software with the JMS-SKIT, because there is no
“official” JMS Provider for the starter kit. The SKIT will work with any JMS Provider
that complies with the JMS specification once the deployment details are configured
properly. Also, we should always go to the official homepage (like those we mentioned
in the previous section) for any piece of “third-party” software that we install so that
we can check for the latest updates. We should always remember that the official
homepage is not only the source for the software, but also the best source for impor-
tant support information, including known issues, available patches and work-around
advice, and other important details. As we mentioned earlier, the framework in the
JMS-SKIT is implemented on top of JMS, but it is not intended to provide all the
flexibility or functionality that JMS supplies. Our framework is not intended to replace
JMS! In order to understand how to use the framework and the other code found in
the starter kit, first we need to discuss the framework’s primary goals. Then, we will
examine how the framework is designed and implemented. Lastly, in Section 15.4, we
will explore how the starter kit can be used.

15.3.1 Framework Goals

The framework included in the JMS-SKIT has several primary goals. Ultimately, this
framework is intended to support the minimal Remote Messaging Requirements desired
to implement DDBE software for research and educational purposes. When we were
first designing the JMS-SKIT, after we decided to focus on Remote Messaging as the
underlying Remoting mechanism, we tried to identify the messaging aspects that we
felt were necessary for most scenarios (special scenarios usually require additional,
custom development, and so they were not the primary focus).

Although there are many lesser goals to be considered for a framework such as this,
we focused on four primary-goal areas:

• Message reliability
• Communication topography
• Deployment topography
• Software complexity

15.3.1.1 Message Reliability Goals Message reliability (which we discussed in
Section 15.1.2.5) is crucial when attempting to understand and implement a system
that has distributed data. When message reliability is not present, other issues and
concepts might be obscured. For example, it is very difficult to research, understand,
or merely implement complex distributed algorithms when the messages being
exchanged can be randomly lost, duplicated, and reordered. Therefore, we decided
that providing support for reliable messaging was one of the most important goals this
framework should have. In fact, this was one of the primary reasons for selecting the
JMS as the underlying middleware to be used. We also wanted this reliable messaging
mechanism to support several different possible applications easily. We recognized
the need to create an extensible framework that provided some level of reliable
messaging—our goal was not merely to implement reliable messaging directly
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for a specific distributed application. We needed reliable messaging that supported
extensible application code and extensible communication data (similar to SOA’s
goal of using message calls that were devoid of semantics and an extensible message
schema, as we discussed in Section 14.1.3.2). Leveraging the reliable messaging
abilities present in the underlying JMS middleware is therefore a primary goal for the
framework in this starter kit.

15.3.1.2 Communication Topography Goals When experimenting with distributed
algorithms, we must consider several different communication topographies. For
example, COSs developed using this starter kit should be able to communicate with
each other in any of the patterns required by the traditional algorithms commonly found
in DDBE research. Nevertheless, this starter kit must also have the potential to support
new algorithms. In particular, we identified three basic communication topographies:
Sequential Messaging, Broadcast Messaging, and Ad Hoc Messaging. Sequential
Messaging refers to messages that are passed from one node to another (like a daisy
chain) until the message reaches its ultimate destination. Broadcast Messaging refers to
messages that are sent from a single node to several other nodes at the same time. Ad
Hoc Messaging refers to messages that are sent to specific nodes on an idiosyncratic
basis. Therefore, we decided that the starter kit should be capable of supporting these
types of communication topographies in both a direct and extensible fashion.

15.3.1.3 Deployment Topography Goals Because students and researchers are a very
visible and important part of the intended audience for this starter kit, the framework
must be able to support software experiments for both new and existing architecture,
deployment, and algorithmic scenarios. Therefore, the framework needs to be very flex-
ible with respect to deployment details. In particular, we did not want to place too many
restrictions on the possible development environment. Because of this, we focused on
JMS platform implementations that supported multiple operating systems and multiple
message storage mechanisms. We also considered the JMS Provider instance deploy-
ment details—wanting to be able to support multiple provider instances in the same
conversation (assuming that the provider implementations support this).

15.3.1.4 Software Complexity Goals This framework is intended to aid students,
researchers, and first-time implementers. Members of this audience (like most readers of
this book) should be focused on understanding the distributed database algorithms and
concepts. Although the underlying technology used to implement a DDBE project is
important, the technology used is not the primary focus. In other words, we considered
users of this framework to be DDBE developers who happened to be using JMS rather
than JMS developers who happened to be working on a piece of DDBE software.
Therefore, we also had a goal of encapsulating the underlying messaging design and
implementation details as much as possible. This means that the framework should
prevent potential technical issues by using information-hiding techniques appropriately.
We believe that the framework should shield the developer from any details that are
not directly relevant to the DDBE areas being focused upon. Advanced developers
(and others who are interested in the underlying technology) are free to expand the
framework, to explore its inner workings, or to use the underlying JMS platform
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directly. We made a conscious decision to prefer external simplicity to many other
benefits that a less abstract, more implementation-dependent approach might obtain
(such as providing better performance or more advanced functionality).

15.3.2 Framework Package Overview

The JMS-SKIT framework consists of two packages. Each of these packages is a sub-
package within the same container-package namespace (“com.srdbsoft.ddbe.jms.skit”).
The first subpackage (“com.srdbsoft.ddbe.jms.skit.itf”) contains all the public classes
and interfaces defined for the framework—its parts make up the “official contract”
between the framework and any software that uses the framework. The second
subpackage (“com.srdbsoft.ddbe.jms.skit.imp”) contains a specific implementation for
the framework.

By separating the framework code in this way, we hope to achieve some of the
same separation that the JMS specification achieved with respect to the different JMS
Provider implementations. Even though we did not do this for the other platforms used
in this chapter and Chapters 16–19, it should be possible to reimplement this frame-
work, perhaps using some other Remote Messaging platform, with minimal impact to
any code written on top of the framework. This separation can also potentially reduce
the dependency requirements for applications written on top of the framework. For
example, applications written on top of the framework do not need to import the pro-
prietary JMS Provider classes or interfaces directly—as long as we keep those details
isolated in the second subpackage.

15.3.2.1 Framework Interface Package Overview The first subpackage (“com.
srdbsoft.ddbe.jms.skit.itf”) is our “interface package.” There are several Java Exception
classes in this package; they represent the errors that might be encountered when using
the framework (all of the Java class names defined in the framework for these Excep-
tions start with the prefix “Ex”). This package also contains some other Java constructs
that provide useful operations and default implementation details for these concepts.
The framework uses its own vocabulary terms to describe its solution for Remote
Messaging. These terms might sound similar to terms used in other Remote Messaging
environments, but any similarities are purely coincidental—these names were chosen
in an attempt to prevent unintentional biases toward one specific implementation
approach. There are six fundamental terms defined in this new vocabulary: Msg,
Node, NodeFactory, Hub, HubFactory, and ChatRoom. This package defines three
Java interface and two Java classes to represent the first five concepts—the ChatRoom
concept is so simplistic that it is not directly represented as a separate construct.

Msg All messages used by the framework are represented by the “com.srdbsoft.ddbe.
jms.skit.itf.Msg” interface—because all of the framework interfaces we will be dis-
cussing here are in this namespace, we will usually not mention the fully qualified name
for the rest of this section. The actual Java class used to implement the Msg interface
can contain any Serializable content (content conforming to the “java.io.Serializable”
Java interface) deemed necessary. This Java interface does not have any direct con-
nection to Java classes or interfaces used to represent a JMS Message object. Because
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the Msg interface does not depend on the JMS Message interfaces, there is no need
for other code using the framework to know about JMS Message objects directly.

A Msg in the framework must have one and only one Source (“From:”) and one
or more Destinations (“To:”). The term “Destination” in the framework has nothing to
do with the concept of a JMS Destination object; instead, it refers to the name of a
particular intended recipient. Although this is potentially confusing for anyone looking
at both the framework details and the JMS details, remember that framework users are
mostly shielded from those details. Each Msg object instance has one subject string and
one sequence number, both of which are used to help control message processing order
(implemented using JMS production and consumption calls). Each Msg instance also
has a message topography type that corresponds to one of the communication topogra-
phy types (Ad Hoc, Broadcast, or Sequential, as we discussed in Section 15.3.1.2). The
primary difference between these topography types is demonstrated when we consider
how they handle Msg object instances that specify more than one destination. If an
Ad Hoc Msg has multiple Destinations, then the framework will create a separate Ad
Hoc message for each destination and send each message as a separate operation. By
contrast, a Broadcast Msg that has multiple Destinations will send one message to each
“group” of Destinations that are capable of seeing the message (we will discuss this
further later).

We can consider sending Broadcast messages to be similar to sending a single
letter to each household in a family. For example, we might send one letter to the
house where our Aunt and Uncle live and another copy of the same letter to the
house where both our Grandparents live. Similarly, we can consider sending Ad
Hoc messages to be similar to sending a separate copy of the letter to each family
member (even when all the family members live in the same house). In this case,
we would send one copy of the letter to our Aunt, another copy of the letter to our
Uncle, another copy to our Grandmother, and yet another copy to our Grandfather,
even if we know that some of them live in the same house and most of them talk
to each other on a regular basis. Sending Sequential messages would be similar to
a single “chain letter” or a single memo with a “routing list” that we send to only
one person, who is then expected to forward the message to the next person on the
list.

There are two classes (AdHocMessage and BroadcastMessage) provided in the
framework, that we use (inherit from) to create specialized classes for a messaging
implementation. The SequentialMessage type is intended to behave as we discussed in
Section 15.3.1.2, but we have purposely not provided any design or implementation
details for its behavior in the framework (no interfaces are defined and no abstract or
concrete classes are implemented). This way, enhancing the framework can be assigned
as an exercise for students to consider.

Node In the framework, Node is the name of another Java interface. We use this
interface to represent each piece of software that can directly participate in a con-
versation. Although we should officially avoid using JMS terms to define framework
terms, we can consider the implementation details a useful example for explaining
the concept for us here—a Java class that implements the Node interface uses both
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a JMS Producer object and a JMS Consumer object. Java classes implementing this
Java interface are capable of communicating directly with other Node instances via
the framework’s Remote Messaging facilities. Each Node instance must have a unique,
logical, case-sensitive name (a “NodeName”) used to identify it inside the system (e.g.,
“AP−New−York,” “DP−MN,” and “Client-1” are all good choices for “NodeName”
values).

NodeFactory NodeFactory is the name of a Java class in the framework. A NodeFac-
tory is responsible for creating objects that support the Node interface. Once we have
created a NodeFactory object, it can choose one of two mechanisms for determining
the class names to use when creating Node instances. The NodeFactory object can
lookup a system property or it can use a hard-coded default class name. It is neces-
sary to have two mechanisms because some environments (e.g., Applets) cannot read
system properties without special security policy changes. When a NodeFactory object
is created, it defaults to using the hard-coded value. If the NodeFactory instance is
created with the “doLookupProperty” parameter set to true, then it will use the system
property approach.

Hub Hub is the name for the Java interface that represents a centralized communi-
cation point—a physical or virtual place where multiple pieces of software (Nodes)
connect to exchange messages (Msgs) with each other. We can think of a Hub as a vir-
tual building used for meetings, like a convention center, where the Node instances can
come to communicate with each other. Each Hub instance must have a unique, case-
sensitive, logical name (a “HubName”), which is used to identify it inside the system.
For example, “HUB−MN,” “Hub-1,” and “Primary−Hub” are good choices for “Hub-
Name” values. Each Hub instance must also specify some location information which
will be used to connect to the correct physical Hub deployment. This location informa-
tion is stored as a URL. The URL consists of a protocol, machine name (or IP address),
port number, and (optionally) the rest of the URL (the URL suffix). For example, we
would interpret a URL with the value “http://myHost:1234/SomeImplementationDetail”
to mean that we should use the “http” protocol to connect to a certain machine
(“myHost”) using a particular port (“1234”) with the specified suffix (“/SomeImple-
mentationDetail”). It is possible that some pieces within the URL will be missing (this
is implementation dependent).

HubFactory HubFactory is the name of a Java class in the framework. This is another
factory class (like the NodeFactory) but this class is responsible for creating objects
that support the Hub interface rather than the Node interface. Other than this difference,
it uses the same techniques as the NodeFactory—HubFactory can select either of the
two mechanisms we discussed for NodeFactory, and then proceed to use the class
name returned by the chosen mechanism to create a new Hub instance.

ChatRoom We said that a Hub instance could be thought of as a building containing
multiple meeting rooms where Nodes can come to communicate. The ChatRoom is
the name we use to represent this concept of a “meeting place.” Each Node instance
in the system can only be in one ChatRoom and each Node can only be on one Hub.
Each ChatRoom must have a case-sensitive, logical name (a “ChatRoomName”), used
to identify it inside a given Hub (unique within a particular Hub instance).
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We can think of the ChatRooms as being analogous to Video Conference rooms with
cameras, microphones, and video screens linking all ChatRooms that have the same
“ChatRoomName” together across all the different Hubs in the environment. Nodes
in the same ChatRoom can communicate with each other even if they are on different
Hubs; but they cannot communicate with Node instances in other ChatRooms,
regardless of which Hub they are on. Each DDBE COS instance can contain multiple
Node instances to communicate using different Hubs and different ChatRooms.
Similar to the way that a company can send multiple people to attend different
presentations in different conference rooms at the same time—regardless of whether
the presentations are being given at the same convention center or not.

15.3.2.2 Framework Implementation Package Overview The second subpackage
(“com.srdbsoft.ddbe.jms.skit.imp”) is our “implementation package.” At first glance,
the “implementation package” appears to be simpler than the “interface package,”
because the former contains fewer Java classes (and not all of them are public scope).
This first impression is somewhat misleading, however. The “interface package” had
more Java classes and interfaces, but most of these are very simplistic. The classes
in the “implementation package” are not as simplistic, but they are also not too
difficult to understand. There is a nonpublic class (“com.srdbsoft.ddbe.jms.skit.imp.
JMSConfiguration”), which is merely used to hold some default JMS configuration
values. Once again, since all the classes and interfaces we focus on in this section
are in the same package, we will not mention the fully qualified names for the rest
of this section. As we mentioned earlier, there are some environments where it is
not easy to read property files and therefore the “JMSConfiguration” class provides
a convenient mechanism to handle the situation. There are two public classes in
this package (“JmsHubImpl” and “JmsNodeImpl”) that provide the implementation
for the Hub and Node interfaces using a JMS Provider as the underlying messaging
middleware. The JmsHubImpl class is a very simple class; it merely represents the
“translation” between the abstract Hub concepts and the equivalent JMS Provider
concepts. In other words, it is primarily used to create the appropriate URL value
to send to the InitialContext lookup call prior to obtaining the Connection Factory
object, and to associate that URL value with the appropriate framework-defined Hub
concepts.

The JmsNodeImpl class is really the heart of this framework implementation. This
class represents the JMS implementation of a Node—an object that is capable of
communication within the environment (implemented using a JMS Producer object and
a JMS Consumer object). All of the JMS communication details are implemented inside
this class. The implementation provided in the starter kit uses the Pub/Sub messaging
domain to implement all of the message production and consumption activities. It also
uses persistent delivery and durable consumers to ensure reliable messaging.

Each Node instance has a unique logical node name and reads from a single chat
room name located on a single hub. Each Node instance can only read messages
that are sent to the node (by specifying the node name in the destination list for the
message), posted to that node’s “readFrom” hub, and posted to the chat room name
from which the node instance reads. When a message is posted by a Node, it is sent
to all the Nodes specified in the list of destination node-names for the Msg. This
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means that the Msg will be sent to one or more Hubs. The Msg is sent to a given
Hub only if that Hub is the one and only hub for one of the nodes in the list of
destination node-names. The code creates one JMS Producer object for each hub to
which the message is being sent. Each Msg posted by a Node is then implemented
by creating one or more JMS Message objects, which are produced using the JMS
Producer object for the appropriate hub. When a Node consumes a message, it is
implemented by using the one and only JMS Consumer object contained in the Node.
The JMS Consumer object uses a JMS selector to filter out any messages (permanently)
that the node should not see. This includes messages that are not sent to this node or
messages that are sent from this node itself. Note that a node cannot send messages
to itself. This filtering is permanent for all current or future instances of a given Node
(it is enforcing the definition of the Node concept). After a JMS Consumer object
acknowledges a particular JMS Message object, that JMS Message object becomes
invisible to that JMS Consumer object. Unfortunately, whenever a JMS Object message
is acknowledged, all the other JMS Message objects that were produced prior to this
acknowledgment are also acknowledged—whether those messages were processed or
not. This means that the acknowledge mechanism cannot be used to mark a message
as being “already processed” without causing some other complications. To handle this
situation, the class implementing the Node interface needs to keep a list of IDs that
track the messages that have been “returned” to the caller. We use this mechanism in
conjunction with the manual acknowledge mechanism to prevent processing the same
message more than once. This serves two purposes: it ensures that “already processed”
messages will not be re-read if the node is restarted, and it flushes the list of “already
processed” messages to improve performance.

15.4 USING THE JMS-SKIT FRAMEWORK

Three different scenarios represent the typical use cases for the JMS-SKIT. In the
first scenario, we are simply trying to run the sample extension (which is included
as part of the starter kit along with the framework). We will discuss this scenario in
Section 15.4.1. In the second scenario, which we will discuss in Section 15.4.2, we are
attempting to create a new extension (this is the primary purpose for the starter kit).
The last scenario is more advanced; in this scenario, we are attempting to improve the
framework. We will discuss this scenario in Section 15.4.3.

15.4.1 Sample Extension Overview

We will briefly discuss the starter kit’s sample extension in this section. This exten-
sion demonstrates how the framework can be used to create a simple DDBE. In
Section 15.4.1.1, we will consider the architectural view of the sample extension (ignor-
ing the framework and JMS platform details). In Section 15.4.1.2, we will consider the
overall design aspects demonstrated in the sample. Section 15.4.1.3 will discuss imple-
mentation aspects. Finally, in Section 15.4.1.4 we will look at some of the deployment
details. We will only discuss the sample extension briefly and at a high level, because
the starter kit includes a full set of documentation for all the code constructs (Javadocs)
and a “cookbook” document that describes (step-by-step) all the actions required to
compile, deploy, and execute the sample application.
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15.4.1.1 Sample Extension Architectural Overview The sample architecture defines
three subsystems: the client, the application processor, and the data processor. Although
the implementations for these subsystems in this example are far from complete, each
subsystem in this architecture is compatible with the subsystem of the same name that
we discussed in Chapter 1.

The client represents a DDBE client application. In this sample, it is a simple con-
sole application, with a very limited user interface. The client takes a command line
argument (either “-commit” or “-abort”) which it uses to run one of two simple test
scenarios. Each scenario sends messages to the other components to simulate a dis-
tributed transaction execution, followed by either a distributed commit or a distributed
rollback operation.

The application processor communicates with the client and the data processor. It
also communicates directly with a simple global data dictionary database via JDBC.
The application processor is a simple, single-threaded application that merely waits in a
loop for messages from the client or the data processor, and then processes the messages
appropriately, as they are consumed. Messages from the data processor represent the
results from operations requested by the application processor on behalf of the client.

The data processor application is an even simpler, single-threaded application that
merely waits in a loop for the messages it expects to receive from the application
processor. When a message arrives, the data processor performs a naive conversion
into a local database operation, which it then performs. Once the operation completes
(succeeds or fails) the data processor sends a message back to the sender. This message
contains the execution status and the results of the operation if there were any to be
returned.

15.4.1.2 Sample Extension Design Overview Even though there are only three sub-
systems, there are five packages in the sample extension. In addition to the three
subsystem-specific packages, there are two “shared” packages. These shared packages
are intended to be referenced and reused by more than one subsystem. These classes
perform common essential functions, such as JDBC database access, framework tasks,
and the application-specific message classes. These message classes are placed in a
separate package from the other shared classes. There are several reasons for sepa-
rating them this way. One reason is simply that the message classes might need to
be shared across many components that do not need the other functionality. Another
reason is that it provides a convenient grouping of the message class types, which is
useful from a deployment, maintenance, and documentation perspective. Even though
there are several other benefits, we will only mention one more advantage that this sep-
aration provides: namespace conflict resolution. In this example, the names for all of
the message classes begin with a prefix (“Msg”), but that is merely a convention—by
using a separate package we can ensure that the class names used for message classes
and the class names used for other classes do not conflict. For example, it is possible
that we will want to create a class called “MsgError” to represent an error message,
while some other package might create a class with the same name that is used for
a different purpose. We can always specify the fully qualified name, but the separate
package allows us to use Java import statements to control which name we mean when
it is not fully qualified.

The application processor contains several classes, with each one responsible for
a separate aspect of the distributed database operations being performed. The client
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only has two classes: one class encapsulating the communication to the application
processor, and the other representing the main class for the client. The data processor
consists of a single class. All of the other functionality is implemented by the shared
classes.

15.4.1.3 Sample Extension Implementation Overview The framework hides many
of the underlying details, including all the JMS details including message acknowledg-
ment. The shared package hides many of the framework usage details and provides
reusable implementations for commonly shared concepts such as transactions, requests,
and catalogs of the subject strings used by different messages. The catalogs are useful
when building filters to manage the message processing logic.

Each subsystem ultimately has a single framework Node, which it uses for all com-
munication. The JMS Message objects use the ObjectMessage message type to pass the
“application-defined” message classes (contained in the shared package) for all conver-
sations. There is only a single ChatRoom used for this DDBE. When each application
starts, it uses an application-defined protocol to control how conversations are pro-
cessed. In particular, the application processor fetches information about which nodes
are defined in the environment and the hubs that they are located at from the GDD. The
other applications wait for a special message (a node-directory-info message), which
broadcasts this information to all the nodes in the environment.

15.4.1.4 Sample Extension Deployment Overview Each application automatically
loads a properties file. This file contains the details necessary to locate the (one and
only) hub that “contains” the (one and only) node in the application. The application
processor uses a simple but effective global data dictionary, which is stored in a DBE
(RDBMS). The properties file for each application can contain many other details,
including the JDBC connection details and actual SQL statements used by a particular
deployed instance of an application.

The databases used by the application processor and each data processor need to be
created before these applications can be run. All of the runtime details can be speci-
fied in the properties files for each subsystem. The default deployment configuration
specifies that all of the subsystems be deployed on a single machine. If we want to
move a subsystem to a different machine, or deploy a new subsystem instance, we
simply need to update the table found in the GDD database. Similarly, if we want to
add another Hub to the environment, we simply deploy the JMS Provider instance and
update the data in the GDD database to reflect the nodes that are located in that Hub.

15.4.2 Creating New Extensions

The sample extension is a reasonably flexible application. Although it does not handle
all possible DDBE scenarios, it is not supposed to—it is merely an attempt to demon-
strate the potential that the framework and the JMS platform both have with respect to
DDBE development activities. Whenever we encounter some DDBE scenario that the
sample cannot address, we can use the sample as the basis for new software develop-
ment focused on that aspect. There are several techniques available for creating these
new extensions: we can copy the sample extension code and modify it to suit our
needs, we can start completely from scratch, or we can selectively copy portions of the
sample extension into a new software project. For example, we could consider whether



616 THE JMS STARTER KIT

the framework would be useful in implementing any of the services we discussed in
the other chapters. We cannot know if an extension would be useful for implementing
services like replication control, distributed query processing, or distributed query opti-
mization unless we perform some analysis and design activities. If we determine that
a new extension would still be insufficient for a particular scenario, we have one more
strategy we can try before we abandon the framework: we can attempt to improve the
framework itself.

15.4.3 Improving the JMS-Based Framework

Because we have the source code for the framework, we can also use the framework
as the basis for creating new frameworks. Once again, there are several approaches
we can take when attempting to improve the framework. We can attempt to add new
functionality to the existing framework, to modify the existing functionality, or simply
to use the framework as inspiration to create an entirely new framework for DDBE
development. The framework is flexible and reasonably powerful, but it also has several
areas that could be improved upon. This is especially true if we have different goals
or priorities for the new and improved framework. When we modify the framework,
we need to be careful not to break any existing code that uses the original frame-
work. Several software engineering practices can help us with this task, such as simple
version control, configuration management, issue tracking, and regression testing tech-
niques. At the very least, we can use a few simple techniques such as incrementing
the “serialVersionUID” value in the code or changing the name of the constructs when
behavior is radically different from previous versions.

15.5 SUMMARY

The JMS specification defines a powerful platform that supports many different mes-
saging scenarios. While the specification ensures a set of minimum requirements for
implementation behavior and a certain degree of portability and interoperability, ven-
dors are free to support a wide variety of situations effectively by creating as many
specific implementation alternatives as they need to. Similarly, we are free to pick the
best JMS platform vendor and implementation for the specific environment we are
trying to build. There are several important messaging issues to consider and address
in any distributed messaging platform, and a JMS Provider has several standard fea-
tures that we can use to address many of them (at least partially). Although there is no
single, simple approach or technique that can automatically address all the issues, we
can use a combination of features such as persistent messaging and durable messaging
to provide an adequate degree of message reliability.

The JMS specification defines many concepts that are directly applicable to imple-
menting code that satisfies the Remote Messaging DDBE Platform Requirements.
We can implement complex messaging scenarios by leveraging the JMS messaging
domains provided by a given JMS Provider implementation. We can also choose
from several different JMS Provider implementations—even running the same code
across different implementations with only minimal changes (if our code is careful
to avoid the proprietary facilities). We looked briefly at two different JMS Provider
implementations—but we certainly did not discuss all of the possible alternatives here!
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For these reasons (and those we discussed in this chapter), we can see that both the
JMS specification and the JMS platform have great potential for application develop-
ment in general and for DDBE software development in particular. However, we also
recognize the potential complexity inherent in any attempt to implement distributed
communication. This is especially true when complex application-defined protocols
(like those we discussed in Chapters 1–9) are required. Therefore, we discussed the
JMS Starter Kit (JMS-SKIT) that is available with this book—a simple framework
and an example extension of that framework focused on the distributed communica-
tion needs for a DDBE software development project. By leveraging the functionality
that the JMS specification and JMS Provider implementations supply (and hiding some
of the inherent complexities from the application developer), we can use the framework
to implement several important DDBE scenarios. The framework should be useful for
building new DDBE projects, while the example extension should help to demonstrate
how the framework could be used to improve DDBE development activities. There-
fore, we feel that the starter kit also provides us with a launch pad for building more
powerful extensions and frameworks in the future.

15.6 GLOSSARY

Administered Object A JMS specification concept representing both the specifica-
tion defined and the JMS Provider’s proprietary details necessary to administer a
deployed instance of a particular JMS Provider implementation.

Application-Defined Protocol An application-specific definition of all the expected
sequences of messages used and the operations that we want to perform when those
messages are produced and consumed.

Asynchronous Messaging A technique used for messaging that delivers the message
at the time it was sent rather than waiting for the consumer to explicitly request the
message retrieval.

Authentication Any technique used to validate the identity of a source or destination
of messages or data.

Authorization Any technique used to determine whether a particular user,
component, or subsystem has sufficient access permissions to perform a desired
operation—this is usually checked after the identity has been authenticated.

Blocking A message transfer, method call, or procedure call that will not allow any
further communication until after the current operation completes.

Component A deployable bundle that provides a reasonably cohesive set of func-
tionality.

Component or Subsystem (COS) A term that refers to a component or subsystem,
ignoring any differences between the two concepts.

Connection Object A JMS specification defined object representing a thread-safe
connection to a particular deployed JMS Provider instance.

Connection Factory Object A JMS specification defined administrated object capa-
ble of creating a Connection object.

DDBE Platform A set of hardware systems, operating systems, local database envi-
ronments, programming languages, and other technologies used to implement a
distributed database environment (DDBE).
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DDBE Platform Requirements A set of cohesive functionality provided by the
DDBE Platform in order to support the implementation of a DDBE.

Deployment Any features, issues, concepts, or considerations related to how a COS
instance is installed on a particular machine at a particular site.

Destination Object A JMS specification defined administrated object representing
the message storage area for a JMS messaging domain.

Directory Service A service that provides several important functions such as nam-
ing, registration, lookup, and possibly security.

Distributed Data Platform Requirements The third grouping of DDBE Platform
Requirements that focus on Security, Database Connectivity, and Distributed Trans-
action activities.

Distributed Process Platform Requirements The second grouping of DDBE Plat-
form Requirements that focus on Remoteability and Directory Services activities.

Durable Subscriber A JMS message consumer object used to retrieve messages
from a JMS destination using persistent messaging.

Extension The “less-reusable,” user-written code that extends a framework.
Framework The “more-reusable,” framework-author-written code on which an

extension is based.
Fundamental Platform Requirements The first grouping of DDBE Platform

Requirements that focus on Development, Deployment, and Execution activities.
JMS Message Consumer Object A JMS specification defined object representing

a specific connection between a particular thread of control within a particular
deployed instance of a JMS Client that is used to retrieve JMS Message objects from
a particular JMS destination contained within a particular deployed JMS Provider
instance.

JMS Message Object A JMS specification defined object representing a message.
JMS Message Producer Object A JMS specification defined object representing

a specific connection between a particular thread of control within a particular
deployed instance of a JMS Client that is used to send JMS Message objects through
a particular JMS destination contained within a particular deployed JMS Provider
instance.

Lookup Service A service that is used to locate a particular COS instance within an
environment.

Marshalling The collection of techniques capable of converting parameters into a
data stream, usually to support RMI, RPC, or Messaging—the opposite of Unmar-
shalling.

Message A data structure or textual stream representing content sent from one COS
instance to another.

Message Oriented Middleware (MOM) Any piece of middleware that uses mes-
saging for remote communication.

Middleware Any additional software used to “bridge the gap” (translate or hide
differences) between COSs.

Nonblocking The opposite of blocking—it refers to a message transfer, method
call, or procedure call that allows other communication to occur while the current
operation is still executing.
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Nonpersistent Messaging A messaging technique that does not ensure the messages
will survive the failure (shutdown and restart) of the JMS Provider.

Persistent Messaging A messaging technique used to ensure that messages survive
the failure (shutdown and restart) of the JMS Provider.

Queue A JMS destination that is used for the point-to-point messaging domain.
Remoting The collection of techniques used to perform any remote functions includ-

ing remote execution and messaging.
Service A logical collection (specification/design) of well-defined, cohesively related

functionality or a software instance (physical collection) that implements this func-
tionality.

Service Consumer A component or subsystem that uses a set of functionality imple-
mented by some other component or subsystem (consumes a service implemented
by some service provider).

Service Provider A component or subsystem that implements a set of functionality
and makes it available to other components and subsystems (provides a service to
be used by some service consumer).

Session Object A JMS specification defined object that represents a single-threaded
session between a JMS Client and a JMS Provider so that it can create JMS Message
Producer Objects, JMS Message Consumer Objects, and JMS Message Objects.

Subsystem A collection of components and/or subsystems that is part of a larger
system but also a system in its own right.

Synchronous Messaging A technique used for messaging that delivers the mes-
sage only when the consumer explicitly requests the message retrieval, rather than
delivering it at the time it was sent.

Temporary Queue A JMS Queue that is created, available, and then destroyed within
the scope of a session.

Temporary Topic A JMS Topic that is created, available, and then destroyed within
the scope of a session.

Thread A “thread of control,” which is analogous to a separate execution of a pro-
gram.

Thread-Safe Any section of code that supports multithreading (multiple threads
within the same program) without data corruption or other issues.

Time-to-Live (TTL) A field in a JMS message that controls the minimum duration
that an unconsumed message must remain available before it can be removed from
the destination.

Topic A JMS destination that is used for the publish-and-subscribe messaging
domain.
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EXERCISES

Provide short (but complete) answers to the following questions.
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15.1 Suppose we have implemented some DDBE service using the JMS-SKIT frame-
work and a new extension based on it. Now suppose that we need to add some
new functionality to our code.

(A) What are the ramifications for adding the functionality to the framework?
(B) What are the ramifications for adding the functionality to the extension?

15.2 Is it possible to implement/emulate point-to-point messaging using the publish-
and-subscribe messaging domain? If it is possible, how would we do it; if it is
not possible, why is it impossible?

15.3 Is it possible to implement/emulate publish-and-subscribe messaging using the
point-to-point messaging domain? If it is possible, how would we do it; if it is
not possible, why is it impossible?

15.4 Look at the source code for the JMS-SKIT (framework and sample). Does it
use the point-to-point messaging domain, the publish-and-subscribe messaging
domain, neither domain, or both domains? How can we tell?

15.5 Attempt to extend the framework to support the SequentialMessage type.
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THE J2EE PLATFORM

The Java 2 Enterprise Edition (J2EE) platform is a powerful platform for enter-
prise application development. In this context, enterprise applications are applications
intended to support the needs of a large organization. More specifically, each enter-
prise application consists of multiple components or subsystems (COSs), which are
deployed across several different sites. These COSs (and the enterprise application
itself) work toward a common goal and thereby integrate several different systems.
We can view this integration as a by-product of the platform (by definition we need to
integrate the COSs in our application in order to build the application). However, we
can also view this integration as a goal in and of itself. For example, integrating all of
the database systems within our environment is the primary goal behind a distributed
database environment (DDBE). The J2EE platform can be used to implement sev-
eral different enterprise applications at the same time. It effectively acts like a virtual
operating system for our distributed environment by leveraging the services provided
by each of the actual operating system platforms installed on the sites where the J2EE
platform is deployed within our environment. This is analogous to the way that a
DDBE is intended to act as a virtual database by leveraging the services provided by
the Sub-DBEs deployed within our environment.

While we cannot describe all the nuances of the J2EE platform completely in a
single chapter, we will attempt to provide the details necessary to enable us to use the
J2EE platform for DDBE software development activities. In Section 16.1, we will
provide a high-level overview of the J2EE platform. First, we will focus on some of
the prominent vocabulary terms. Next, we will discuss the overall J2EE architecture,
the relevant J2EE architectural concepts and deployment considerations, and a subset
of the many J2EE application–programming interface (API) constructs that we will
need to consider in order to discuss the J2EE Starter Kit (SKIT), which we will
present in Chapter 17. We have already discussed some of the supporting details for this
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material in earlier chapters. For example, we considered DDBE Platform Requirements
in Chapter 14. In Chapter 15, we discussed how some of these requirements might
be satisfied by the Java 2 Standard Edition (J2SE) platform when it is augmented
by the Java Message Service (JMS) platform. Because both of these platforms are
contained within the J2EE platform, we will not revisit those areas in this chapter.
Instead, we will focus on how the J2EE platform can fulfill our DDBE Platform
Requirements in three areas that we did not focus on in Chapter 15—namely, the
Remote-Code Execution Requirements, the Database Connectivity Requirements, and
the Transaction Management Requirements. Our primary purpose in this chapter is to
provide background details in support of the starter kit implemented using the J2EE
platform (J2EE-SKIT), which we will discuss in Chapter 17. In Section 16.4, we will
highlight some of the implementation alternatives available.

16.1 JAVA 2 ENTERPRISE EDITION (J2EE) OVERVIEW

Like the JMS platform, which we discussed in Chapter 15, the J2EE platform is more
than merely a single software implementation: the J2EE platform consists of a speci-
fication and an implementation. Actually, within the J2EE platform, we could say that
there are many smaller subplatforms. Each of these subplatforms is part of the J2EE
platform as a whole, but they are also potentially useful outside the J2EE platform as
independent platforms in their own right. This situation is analogous to the way that
we can divide a system into subsystems, and then choose to consider the subsystems
independently, or as pieces of the “big picture.” Here, the “big picture” specification
is called the J2EE specification (J2EE-SPEC). This specification defines the contract
between the J2EE platform and all the software that interacts with the platform (includ-
ing the subplatforms as well as all of the applications, components, and subsystems
found within our environment). Similar to the situation we discussed for the JMS plat-
form in Chapter 15, we can choose from several different alternatives that implement
the J2EE-SPEC and provide us with this “big picture” platform. In addition to defining
the platform as a whole, the J2EE-SPEC also references other specifications, each of
which, in turn, defines one or more of the subplatforms. These subplatform specifica-
tions can then be implemented by choosing from the different alternatives available
for each of them. After we have chosen a particular J2EE platform implementation
alternative, which we will discuss in Section 16.4, we can choose to alter our platform
by switching the implementation alternative for any of the subplatforms within our
chosen J2EE platform implementation. In fact, the JMS platform is an example of
one such subplatform. This means that we could (in theory at least) choose from any
of the alternatives we discussed in Section 15.2. In practice, some alternatives work
with each other better than others do. A specific J2EE platform implementation might
impose further restrictions or have additional requirements for its subplatforms that are
not defined by the specifications.

16.1.1 Fundamental J2EE Vocabulary Terms

In this section, we will briefly consider some of the vocabulary terms needed to discuss
the J2EE platform, the J2EE platform implementation alternatives, and the J2EE-SKIT.
In addition to the specification (http://java.sun.com/javaee/5/javatech.html), there are
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also several other good sources of information to which we can turn, such as the Java
blueprints [Singh02] and the J2EE tutorial [Bodoff02]. There are several books written
about the J2EE platform itself (see [Farley06] and [Roman04]) or about a particular
implementation alternative (see [Fleury03] and [Genender06]). We can also find entire
books focusing on a single subplatform or subplatform implementation alternative
[Java02] and [Singh04]. However, we are focusing at a very high level of abstraction
in this section, and we are narrowing our focus so that only a very small subset of
terms is considered here. We need to restrict our focus because the overall collection
of documentation, including all of the platform and subplatform specifications as well
as the documentation provided with each implementation alternative, is quite large,
and the total number of relevant terms is very daunting.

16.1.1.1 Java 2 Standard Edition Whenever we see the term “Java,” our first instinct
is to assume it means the Java 2 Standard Edition (J2SE) platform. Although we often
think of this platform as a common, ubiquitous, and relatively simple facility, it is
really much more than that. Aside from being an impressive tool for creating and
executing programs written in the Java programming language, this platform contains
many subplatforms, subsystems, and facilities. For example, it not only contains both
the J2SE Development Kit (JDK) and the Java Runtime Environment (JRE), which we
will discuss in the next two sections, but it also contains some of the subplatforms we
discussed in Chapter 15. There are also tools for compiling, archiving, documenting,
monitoring, securing, and troubleshooting our Java software projects.

16.1.1.2 J2SE Development Kit The J2SE Development Kit (JDK) contains devel-
opment tools such as the Java compiler, the Java archive (JAR) tool, and a large set
of library functions and documentation. There are many subsystems represented in the
standard JDK libraries, such as Remote Method Invocation (RMI) and Java Database
Connectivity (JDBC), as well as support for security, regular expressions, logging,
graphical user interface development, and different deployment mechanisms (such as
Java Web Start). The JDK is essentially the set of all programmatic interfaces (and
programmatic tools) necessary to access the underlying features of the J2SE platform.
Java source code can be compiled directly, but typically, it is byte-compiled into a tok-
enized format that is then processed (interpreted) by the Java Virtual Machine when the
code is actually executed. The tokenized format is portable to any operating system that
contains the same version of the J2SE on it. This means that Java code is very portable,
which is why Java code is sometimes said to be “write once, run anywhere” code.

16.1.1.3 Java Runtime Environment While the JDK contains the documentation
and programmatic access to the facilities and features of the J2SE platform, the Java
Runtime Environment (JRE) contains the actual code and underlying software that
implements those facilities and features. At its core, the JRE provides the Java Virtual
Machine (JVM), which acts as the host environment for all the code that executes within
the J2SE platform. There are two different flavors of JVM provided in the J2SE: one
for client systems and one for server systems. The primary distinction between them
involves how they choose to optimize and execute code. There can be several different
JVMs active on the same machine at the same time, and communication between
different JVM instances is treated somewhat more like Remote-Code Execution rather
than interprocess communication. The JRE and JVM are somewhat analogous to the
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Common Language Runtime (CLR) and Application Domains in .NET, which we will
discuss in Chapter 18.

16.1.1.4 Java 2 Enterprise Edition The J2EE platform is built on top of the J2SE
platform and therefore we can say that the J2SE is a subplatform of the J2EE platform.
We will be discussing the J2EE platform throughout the rest of this chapter, and in
fact, the J2EE platform contains all of the details we have discussed in the previous
sections as well as all of the details in the sections that follow this one.

16.1.1.5 J2EE Application Servers A particular installation of a particular J2EE
platform implementation alternative is referred to as a J2EE Application Server, or
simply an Application Server (AS). The term is somewhat misleading, in the sense
that it is possible for each of the subplatforms to be implemented as independent
programs, and these programs can be packaged and installed independently from each
other. Even though there is not necessarily a single process (instance of a software
program that is currently running) representing the J2EE platform implementation, we
can think of the collection of all these subplatform processes that are running as the AS.

16.1.1.6 Containers In Chapter 14, we developed a list of DDBE Platform Require-
ments in an attempt to categorize the operations, features, and facilities necessary to
implement a DDBE. This categorization was based on the DDBE COS developer’s
point of view. However, if we consider the operations, features, and facilities provided
by the J2EE platform from the J2EE platform’s point of view, we might create different
categories. We might use different criteria and focus on operations, features, and facil-
ities that do not pertain to DDBEs. This is essentially what the J2EE-SPEC does—it
considers COS deployment and development details and then focuses on identifying
the specific subsystems necessary to provide the specific subsets of functionality it has
identified as being important. The runtime environments implemented by these sys-
tems are called Containers. Because we consider the COS instances that we develop,
deploy, and execute to be contained by the subsystem providing this support, the COSs
contained within a particular Container can then be used by other COSs within the
environment, even if they are not within the same Container or within the same type
of Container. For example, we can say that web-based COSs are contained, deployed,
and executed within the Web Container.

16.1.1.7 Java Beans A Java Bean is a module (a Java class) written in the Java
programming language that conforms to a set of naming conventions and rules of
behavior in order to allow other tools to manipulate instances of the class visually.
These conventions and rules are not very difficult to follow—the class merely needs
to have a no argument constructor, use getter and setter methods for its properties,
and be Serializable (it must conform to the “java.io.Serializable” Jave interface). Java
Beans are used in many software development areas—not just J2EE applications.

16.1.1.8 Enterprise Java Beans The JMS-SPEC defines all of the necessary devel-
opment, deployment, and execution details for server-side components that implement
the business logic for a J2EE application. These components are called Enterprise Java
Beans (EJBs) because they are used by the enterprise application and implemented as
Java Beans with some very specific, additional requirements. EJBs are contained within
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the EJB Container, which provides all the necessary support facilities that the EJBs
require. The EJBs are bundled within EJB Archive (EJB-JAR) files that contain the
Java class files as well as the necessary resource files such as the deployment descrip-
tor. The descriptor allows the EJB to configure the EJB Container-supplied facilities at
deployment time rather than hard coding the details. For example, the EJB Container
can manage transactions for the EJB, provide security functions like Authentication
and Authorization (which we discussed in Chapter 9), and automatically provide the
Remote-Code Execution operations needed to connect EJBs to their clients and to each
other.

16.1.1.9 Application Clients Application Clients are stand-alone applications that
run on the client (not the server). They are essentially the same as their Java 2 Standard
Edition (J2SE) counterparts except that they are J2EE aware, and contained within the
Application Client Container. This means that they can use the J2EE facilities, including
the operations necessary to access remote EJBs. Application clients are bundled within
Enterprise Archive (EAR) files that contain all the client-side Java class files and
optionally resource files such as the Application Client deployment descriptor. This
is similar to the EJB deployment descriptor file, except that it allows the Application
Client to configure the Application Client Container-supplied facilities at deployment
time rather than hard coding the details in the Application Client.

16.1.2 Architectural Overview

The J2EE platform can be viewed as several Containers running on several sites
within the environment. Each client machine can host an Application Client Con-
tainer where the Application Clients are deployed and executed. The users of these
client machines might also be executing Web Browsers that contain J2EE thin-clients
such as dynamic web pages or Applets. Each server machine might include a Web
Container where Java Server Pages (JSPs) and Servlets can act as intermediaries
between the EJBs and clients that are web-aware but not J2EE-aware. The JSPs and
Servlets allow simple Web Browsers that do not contain any Applets or Dynamic
HTML to interface (indirectly) with the J2EE platform. Applets are defined as part
of the J2SE specification. Java Server Pages and Servlets are defined within a sepa-
rate specification and implemented as a subplatform within the J2EE platform. This
means that there are also several implementation alternatives for the Web Container.
Many J2EE implementations include the same Web Container implementation alterna-
tives. In particular, Apache Tomcat (http://tomcat.apache.org) and the open source Jetty
(http://www.mortbay.org/jetty/) are two popular alternatives. Both are freely available,
and both are licensed using the Apache License 2.0. Each server machine can also
optionally contain an EJB Container where the EJBs can be deployed and executed.

16.1.3 Development Overview

The J2EE-SPEC defines all of the application–programming interface (API) details
specific to each of the different types of clients and components discussed in the
previous section. In particular, the “javax.ejb” and “javax.persistence” packages contain
the necessary EJB API details. Java Message Service (JMS) details are contained
within the “javax.jms” packages. Java Web Services (JWS) use the API details within
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the “javax.jws” package as well as calls from the other Java packages (XML API
details, EJB details, etc.) as necessary, depending on functionality implemented by the
web services. The J2EE API details for database operations are primarily addressed
by the “javax.resource” package, the “javax.transaction” package and the “javax.sql”
package. Our COSs implement the interfaces and use the classes defined by these
packages to connect to the underlying J2EE platform services.

Both the J2SE and the J2EE platforms support the development construct known as
an Annotation. Annotations are a special syntax used to represent metadata within the
source code. These annotations can be accessed at runtime via a technique known as
reflection, as well as by the compiler when it translates source code into byte-compiled
code. This provides the Java development environment with the opportunity to inject
code. For example, we can use annotations to specify the type of Enterprise Java Bean
(EJB) that a particular class implements (which we will discuss in Section 16.2) or to
specify the desired Container Managed Transaction (CMT) attribute (which we will
discuss in Section 16.3.3) used by a given method. Annotations provide a simple mech-
anism for indicating places in the code where some relatively fixed strategy should be
automatically applied on our behalf by some tool or special facility, including the JVM.

16.1.4 Deployment Overview

Once we have developed our client, component, or subsystem code, we need to bundle
the class files into the appropriate Java Archive (JAR) file format. As we mentioned
earlier, there are special archive formats appropriate to the different Container types.
Code that is deployed within a Web Container uses a Java Web Archive (WAR) file
for the Servlets, Java Server Pages, HTML pages, and class files that implement the
COS, as well as the resource, configuration, and class files used by the implementation
code. Application Clients deployed within an Application Client Container are bundled
into EAR files. Similarly, our EJBs are bundled into EJB-JARs. These are not different
file formats (they are all JAR files after all), but each of these archive files contains
a set of files and a directory structure that is suited to (and defined by) the specific
Container in which the code will be deployed.

Strictly speaking, we can also deploy the same files and directory structure that
is normally found inside a JAR file by creating a directory image of the JAR and
referencing this directory image instead of the JAR. There are some minor differences
and some restrictions depending on the Container type and specific implementation
of the J2EE platform, but this is usually an option. This is quite often useful when
testing or developing software components. In order for this to work, we must pay
special attention to the “CLASSPATH” value used by the executing Container and the
directory details involved.

16.2 J2EE SUPPORT FOR DISTRIBUTED PROCESS PLATFORM
REQUIREMENTS

The J2EE platform includes several alternatives for implementing the Distributed Pro-
cess Platform Requirements we discussed in Chapter 14 (Section 14.3). In this section,
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we will provide an overview of the J2EE facilities provided. These facilities are part of
the J2EE specification and therefore we would expect to find them in any J2EE plat-
form implementation alternative. There might also be nonstandard facilities provided
by a particular implementation, or nonstandard extensions to the standard facilities
considered here. Similarly, we also have the ability to include other software packages
that are not defined in the J2EE-SPEC—including packages that are not part of any
J2EE platform implementation alternative. For example, we can always select addi-
tional middleware packages (our J2EE-SKIT is a simplistic example of this). However,
with the exception of the J2EE-SKIT, we will not discuss these “other” nonstandard
facilities further.

16.2.1 J2EE Remote-Code Execution

There are several facilities for Remote-Code Execution available to us within the J2EE
platform. In particular, we can choose from Java Remote Method Invocation (RMI),
XML Web Services implemented using the Simple Object Access Protocol (SOAP),
or Enterprise Java Beans (EJBS). EJBs are usually our preferred facility—but the other
approaches can be more appropriate for certain scenarios. We will briefly discuss each
of these facilities in the following sections.

16.2.1.1 Remote Method Invocation Because the J2EE platform is built on top of
the J2SE platform, we always have Java Remote Method Invocation (RMI) available
to us as an option for Remote-Code Execution. However, this is a relatively low-level
approach and therefore we have better options to choose from within the J2EE platform.
Because this facility is part of the underlying J2SE environment, it is often used by the
J2EE platform implementers to provide the higher-level facilities—in other words, this
facility is always present in a J2EE platform implementation for several fundamental
reasons. RMI uses a special piece of code (called a proxy) to represent the remote
code to the local code and to perform the necessary marshalling and unmarshalling
activities behind the scenes. Entity Java Beans are often implemented “behind-the-
scenes” using a special flavor of RMI called RMI-IIOP (which is short for “Remote
Method Invocation interface over Internet Inter-Orb Protocol”). EJBs often use RMI or
RMI-IIOP to marshall the parameters between two different J2EE Application Server
instances. Typically, our J2EE code will use EJBs rather than direct RMI calls for
Remote-Code Execution—but the RMI calls are often used indirectly when we use
EJBs.

16.2.1.2 XML Web Services and SOAP Unlike the EJBs that use RMI, Web Services
use another set of related standards, specifications, and facilities to implement Remote-
Code Execution. Sometimes, we will refer to Web Services more explicitly as XML
Web Services because they use the extensible markup language (XML) to encode
and decode the parameters and return values used for Remote-Code Execution. Web
Services implement the marshalling and unmarshalling operations that we discussed
in Section 14.3.1.1, by generating XML content representing the parameter and return
values. The XML content is then sent back and forth between the components. This
XML content is defined by the SOAP specification.
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Originally, “SOAP” was an acronym for “Simple Object Access Protocol,” but
strictly speaking, this is no longer true. Even though earlier versions of the specifi-
cation used the longer form of the name, the latest version uses “SOAP” without any
expansion or explanations for the letters. This change does not have any impact on
the way things actually work or on any of the technical details contained within the
specification. Therefore, this change is probably only relevant when we are using a
search engine or similar facility. If we search for the older name (“Simple Object
Access Protocol”), then it is likely that we will find older information—since the
newer information might not bother to contain this expanded text. On the other
hand, if we search for the newer name (“SOAP”), then we are more likely to
find the newer information—but we are also more likely to find information about
detergents or television melodramas.

16.2.1.3 Session Beans There are two “high-level” types of Enterprise Java Beans:
Session Beans and Message Driven Beans. A Session Bean is an EJB used to imple-
ment a special Remote-Code Execution scenario. In this scenario, the code being
executed (the callee) is implemented within the Session Bean while the code request-
ing the execution (the caller) might be located anywhere. The Session Bean acts as
an intermediary between the caller and the callee. From the caller’s point of view,
the Session Bean provides the interface to the operations we want to execute. For
example, we could use a Session Bean to contain the “interface/contract” for one of
our DDBE service providers. From the Application Server’s point of view, the Ses-
sion Bean represents a session between the caller’s code and the callee’s code that
is deployed within this Application Server instance. In other words, the caller’s code
wishes to invoke the methods contained within an EJB. The EJB is contained within
the EJB Container, which, in turn, is contained within the Application Server, but the
caller’s code can have several possible deployments. For example, the caller’s code
might be located inside a J2EE Client that is contained within the Application Client
Container. Similarly, the caller’s code could be deployed as another EJB within the
EJB Container. It is also possible for the caller’s code to be deployed inside any of the
other valid Container types, even within Containers and Application Servers that are
deployed on other sites. The deployment details needed to connect a caller to a par-
ticular Session Bean can be defined within the caller’s code, or within the appropriate
deployment descriptor for the caller’s Container type. The deployment details for the
Session Bean will be defined within the EJB deployment descriptor and deployed with
the Bean instance itself. There are two types of Session Beans: Stateful Session Beans
and Stateless Session Beans. We will briefly discuss each of these Session Bean types
in the following sections.

Stateless Session Beans Stateless Session Beans do not retain their conversation state
between method invocations. This is equivalent to saying that all of the instance vari-
ables defined within the Bean instance are zeroed out once the Bean method returns
its response details to the caller that invoked it. The term “conversation state” also
includes other details that are indirectly reflected inside the Bean instance’s variables.
For example, if all of the instance variables are zeroed out in between method invoca-
tions, then it is impossible for the Bean to have any unique files open or any unique
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database connections. This also means that it is possible for different instances of the
same type of Session Bean to be used for subsequent calls. It is very easy for an
EJB Container to pool Stateless Session Beans (as we discussed in Section 14.2.2.1)
because there is no difference between the Bean instances. We can still use database
connections, transactions, and so on within the Bean instance’s method, but the state
cannot be remembered by the Bean across different invocations of that method. Instead
of trying to remember the state for these things, we can use more sophisticated tech-
niques (such as connection pooling and managed transactions) to allow the Stateless
Session Beans to be pooled when database operations are being performed by the Bean.

Stateful Session Beans Stateful Session Beans are EJBs that remember the conver-
sation state across method invocations. This means that the Stateful Session Bean
represents a unique session between a particular caller instance and a particular callee
(Bean) instance. This does not mean that the Beans cannot be shared or pooled—it
merely means that the EJB Container must preserve the conversation state. For example,
perhaps the Container saves the conversation state before allowing a different client
to reuse the Bean and restores the conversation state afterwards. This technique works
well for simple instance variables, but does not work for things like file handles or
network connections. If we need to preserve these more complicated conversation state
details, then we need to consider implementing a more sophisticated mechanism within
the Bean itself to address the situation.

16.2.2 J2EE Remote Messaging

The Java Message Service is a subplatform within the J2EE platform, and therefore
we can use it to implement Remote Messaging within the J2EE platform. There are
two different approaches we can choose from when using this subplatform. In the first
approach, we use the second type of Enterprise Java Bean (the Message Driven Bean).
In the other approach, we write code that directly invokes the JMS operations (just as
the JMS-SKIT did in Chapter 15).

16.2.2.1 Message Driven Beans A Message Driven Bean (MDB) is an EJB that
listens for JMS Messages. Clients do not directly perform any Remote-Code Exe-
cution with this type of Bean. Instead, each Client instance communicates with the
MDB instance by sending messages to one or more destinations (Topics or Queues)
located within the JMS Provider instance. The MDB instance needs to listen to these
destinations and process the messages accordingly. Our MDB instances are always
invoked via asynchronous messaging. Like the Stateless Session Bean instances, our
MDB instances do NOT retain their conversation state between the messages that they
receive. Therefore, we can only use them in scenarios where this type of messaging is
appropriate.

16.2.2.2 Java Message Service We will not discuss using Java Message Service
(JMS) operations directly in detail here, because we would essentially use the same
techniques and encounter the same issues as those we considered in Chapter 15. In that
chapter, our goal was to implement a particular form of communication—building the
JMS-SKIT. Therefore, we rejected many of the messaging alternatives (such as Queues
or nondurable consumers) that were available to us within the JMS platform. We could
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choose to use any of those alternatives here if we wanted to, but we would still need to
consider whether a given alternative was appropriate for our particular implementation.

We need to use the JMS operations directly in any client (caller) code that wishes
to communicate with the MDB instances. Therefore, we will always use some JMS
operations directly whenever we choose to use the Remote Messaging facilities pro-
vided by the JMS platform. This is true regardless of whether we choose to use MDBs
or a more direct JMS implementation approach within the callee’s code. Although we
can choose to implement the listener code directly in the callee, it is not recommended
when the full J2EE platform is available for us to use. For this reason, our J2EE-
SKIT implementation (which we will discuss in Chapter 17) does not use JMS calls.
Also, because our JMS-SKIT does use the JMS operations, we choose to focus on
the Remote-Code Execution in the J2EE-SKIT—the J2EE-SKIT does not use MDBs.
However, using JMS operations or MDBs in future projects based on the J2EE-SKIT
is not forbidden or discouraged.

16.2.3 J2EE Directory Services

In Section 14.3.2, we discussed the Directory Service Requirements, which contained
three subrequirements inside of it. We mentioned that these subrequirements were based
on (and often fulfilled by) three subservices: the Naming, Registration, and Lookup
services. Within the J2EE platform, there are several implementation alternatives for
these services. Many of the operations defined in these services are performed auto-
matically for us by the various J2EE Containers within the Application Server. Each
Container provides these services for the COS instances it contains, using the details
specified within the deployment descriptors that we bundle with our J2EE code. We
will briefly mention three additional facilities available to us within the J2EE platform
that are capable of satisfying these requirements in the following sections.

The three J2EE platform supplied facilities we will consider are the following:

• The Java Naming and Directory Interface (JNDI) facility
• The RMI Registry facility
• The Universal Description, Discovery, and Integration (UDDI) facility

However, most of the time, we can simply use the automatic support provided by the
Container facilities. This is the preferred approach, especially when we can achieve the
desired deployment configuration by making minor modifications to the deployment
descriptor details.

16.2.3.1 The Java Naming and Directory Interface Facility The Java Naming and
Directory Interface (JNDI) facility is actually not a service itself. Instead, it is a general-
purpose interface to many different service implementation alternatives. We can use the
JNDI API to perform lookup and registration operations against the J2EE Containers or
against external services. For example, we can use JNDI to connect to the Lightweight
Directory Access Protocol (LDAP) service, which we discussed briefly in Chapter 9.
Of course, we must specify different details to the API calls when we use different
implementation alternatives for this service. For example, in Chapter 15, we mentioned
that we needed to use different classes for the InitialContext when we switched between
the OpenJMS Provider and the ActiveMQ provider. We might also need to use different
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lookup and registration naming conventions depending on the actual implementation
being used. However, most of these changes do not have any direct impact on our
code because they are specified within the deployment details rather than being hard
coded in the COS itself.

16.2.3.2 The RMI Registry Facility The RMI registry facility is used by the Remote
Method Invocation subsystem to keep track of the communication details for RMI
Servers. An RMI Server is any COS instance that contains the remote code. An
RMI Server is merely a COS instance that provides a callee that directly uses the
RMI mechanism for Remote-Code Execution. Similar to the situation for JMS, code
deployed within the J2EE platform can use RMI directly or indirectly. For example,
the J2EE platform implementation can use RMI to implement the connection between
EJB instances and their callers. Therefore, the RMI registry can be used by both
the Containers within the J2EE platform and the code we write. In some circum-
stances, this code can also be implemented directly or even indirectly via the JNDI
interface.

16.2.3.3 The Universal Description, Discovery, and Integration Facility The Uni-
versal Description, Discovery, and Integration (UDDI) facility essentially provides a
Directory Service for XML Web Services. It maintains a registry of Web Service
Description Language (WSDL) details for the Web Services that are currently active
within the environment. This service can be very useful wherever Web Services are
used. For example, in Chapter 13 we mentioned how useful this service could be when
implementing the two new DBE architectural alternatives (COOP and P2P) that we
presented in that chapter. The Cooperative DBE (COOP) recommended using UDDI
for managing its Distributed Query Service Provider COS instances, and likewise, the
Peer-to-Peer DBE (P2P) recommended using UDDI for managing its Query Service
Provider COS instances.

16.3 J2EE SUPPORT FOR DISTRIBUTED DATA PLATFORM
REQUIREMENTS

The J2EE platform also includes several alternatives for implementing the Distributed
Data Platform Requirements we discussed in Chapter 14 (Section 14.4). In this section,
we will briefly provide an overview of the facilities provided by the J2EE platform
that are capable of satisfying these requirements. These facilities are defined as part
of the J2EE specification and therefore we would expect to find them in any J2EE
platform implementation alternative. However, once again, a particular J2EE platform
implementation might provide some nonstandard facilities or some nonstandard exten-
sions to the standard facilities that we will consider here. We will not discuss any of
these facilities in detail here, because those details would vary depending on which
implementation alternative is used and how it is configured and deployed. It is more
important to recognize how well the J2EE platform provides us with an enormous
amount of freedom when choosing the implementation and configuration alternatives
for these facilities, than it is to discuss any implementation-specific or installation-
specific details.
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16.3.1 J2EE Security

The J2EE platform supports several different security-related APIs and services—we
discussed many of the underlying concepts used by these facilities in Chapter 9. We can
use the Java Authentication and Authorization Service (JAAS) to implement authen-
tication and authorization operations. The Java Generic Security Service (Java GSS)
provides the Java GSS-API, which allows us to implement a token-based approach for
secure messaging. The Java Cryptography Extension (JCE) provides us with a starter
kit for working with encryption, security key management, and Message Authentication
Code (MAC) algorithms. It also supports symmetric, asymmetric, block, and stream
ciphers. The Java Secure Sockets Extension (JSSE) is a starter kit for working with the
SSL and TLS protocols. The J2SE platform also provides support for security policy
definition and enforcement, while the J2EE platform allows us to configure security
details as part of the deployment process and within the deployment descriptor details
for each COS instance we deploy.

COS instances that are deployed within the J2EE platform specify their security
details in their deployment descriptor or leverage the security details configured within
the existing security functionality present in the J2SE Security Policy and Security
Management facilities. These (J2EE-defined and J2SE-defined) facilities allow us
to textually declare the permitted and disallowed actions we desire a given class,
package, or deployed bundle to possess. The fact that the policy is defined within the
deployment bundle allows us to modify the policy details without needing to recompile
the code. While it might seem risky to have this defined in a plaintext file, the file is
intended to be protected by the same security that protects the actual code. If the code
can be overwritten by those who should not have this type of access, then the policy
is already worthless—but if both the code and the policy are safe from this unwanted
access, then the fact that the policy is declared as plaintext is not really an issue.

We also have the option of using the cryptographic functions present in the J2EE
platform to sign or encrypt our files and communications if necessary. We will not
discuss the details further here, but these considerations become much more important
once we deploy our J2EE projects in a production environment. When our projects are
only deployed within simple academic or research environments, these facilities are
not necessarily as important.

16.3.2 Java Database Connectivity

The Java Database Connectivity (JDBC) API provides a single, uniform interface to
many different database management systems. From the database client’s perspective,
these details can also be specified as part of the deployment process and deployment
descriptor details. Different database vendors can provide JDBC Drivers that imple-
ment the database-specific operations necessary to perform the operations defined in
the JDBC API’s “official contract” with the database clients. Although the syntax of the
actual database statements will still be database dependent, it is possible to isolate or
even avoid many of these differences. For example, many relational databases support
ANSI Standard Structured Query Language (SQL) syntax for SQL queries and Data
Control Language (DCL), Data Definition Language (DDL), and Data Manipulation
Language (DML) commands. The J2EE platform also provides connection-pooling
capabilities for many of these database management systems by leveraging the func-
tionality accessible via the JDBC API and the JNDI API.
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16.3.3 J2EE Transactions

Transactions in the J2EE platform can be controlled in several different ways. The
Java Transaction API (JTA) provides several mechanisms for transaction demarcation.
Transaction demarcation refers to the act of specifying the beginning and end for a
transaction. Essentially, this means we are defining which operations are included in
the transaction, and which operations are not included. When we specify the end of a
transaction, we also specify how the transaction has ended. In other words, we indicate
whether the transaction is committed or rolled back. A JTA Transaction has one of two
distinct flavors, based on where the transaction demarcation is implemented—a JTA
transaction can be either a Container Managed Transaction (CMT) or a Bean Managed
Transaction.

Bean Managed Transactions implement the transaction demarcation within an EJB
itself. This means that the code for the EJB includes calls to the JTA that con-
nect to the Java Transaction Service (JTS) provided by the J2EE platform imple-
mentation. To implement a BMT flavored EJB, we simply add code to our EJB
method implementation that explicitly invokes the “begin()” method and either the
“commit()” method or the “rollback()” method, all of which are provided by the
“javax.transaction.UserTransaction” interface. Even though this flavor seems famil-
iar and comfortable for most database-application developers, we recommend using
the CMT flavored approach instead.

Container Managed Transactions implement the transaction demarcation using
declarative transaction demarcation. This means that the EJB Container will automati-
cally invoke the “begin()” method and either the “commit()” method or the “rollback()”
method (as appropriate) on behalf of the Bean instance. The EJB container will use
default policies and the transaction details declared in the EJB instance’s deployment
descriptor to decide when and how the transaction should be started and ended. These
details are controlled by specifying values to the Transaction Attributes for each method
exposed by the Bean to its clients. These attribute values specify the appropriate strat-
egy for various transaction scenarios. For example, what should the EJB Container do
if a CMT EJB method is invoked but no transaction has been begun yet? What should
the Container do if there is already an active transaction? Table 16.1 provides a sum-
mary of the possible JTA Transaction Attribute Values and the corresponding actions
that will automatically be performed by the EJB Container on behalf of the CMT EJB
for these two scenarios. By default, the Container will begin a transaction before the
method invocation has begun and commit the transaction immediately after a success-
ful return from the Bean’s method. Transactions will automatically be rolled back if
the Bean’s method raises an Exception, or if the code for the Bean’s method explicitly
invokes the “setRollBackOnly” method provided programmatically by the JTA.

16.4 J2EE PLATFORM IMPLEMENTATION ALTERNATIVES

There are several different J2EE platform implementation alternatives to choose from,
even when we limit our choices to those alternatives that supply a complete J2EE
Application Server and all of the possible J2EE Container types. In this section, we
provide a brief description for some of the popular J2EE vendors and implementations.
Even within the small list provided here, there are often several different editions and
versions to choose from within each alternative. Some alternatives are examples of
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TABLE 16.1 JTA Container Managed Transaction Attribute Summary

JTA Attribute
Value

Action Taken when There Is a
Preexisting Transaction

Action Taken when There Is No
Preexisting Transaction

NotSupported Suspend, Execute, Resume Execute

Required Join, Execute Start New, Execute, Commit, or
Rollback

Supports Join, Execute Execute

RequiresNew Suspend, Start New, Commit, or
Rollback, Resume

Start New, Execute, Commit, or
Rollback

Mandatory Join, Execute Throw Exception

Never Throw Exception Execute

commercial off-the-shelf (COTS) software packages while others are examples of
free or open-source software (FOSS) packages. In some cases, there are separate
editions for the same implementation, where one edition is a COTS product and the
other is a FOSS product.

16.4.1 JBoss

JBoss is the name of a J2EE platform implementation alternative and it is also the
name of the J2EE Application Server included in that implementation. JBoss has two
different technical support mechanisms, based on which edition we choose to use.
The community edition is found at one website (http://www.jboss.org/) and it is an
example of a FOSS product. There is also subscription-based support available via
another website (http://www.jboss.com/), which is provided by the JBoss Company, a
division of Red Hat. This other edition is essentially a COTS product.

JBoss provides several releases of its implementation on its website, including older
revisions, the current revision, and even releases that are new, experimental, or still in
the process of being developed and finalized. Because the software is “open,” we can
choose to download the source code or choose a binary release. Since the source code is
written in Java, the binary release means the JAR files, classes, configuration files, and
so on are arranged in the appropriate installation layout. With the binary release, we can
simply download and install the release, while the source release requires additional
building and installation activities. Some older releases of the software support older
editions of the J2EE specifications. Different releases may also include different JBoss-
proprietary facilities—the JBoss architecture evolves over time as new features and
facilities are added, modified, or phased out.

JBoss provides a web-based interface to administer and monitor the platform con-
figurations, execution, and deployment details. It also supports several different con-
figurations within a single installation, including five default installation types. Each
installation type is encapsulated within a separate subdirectory located within the
“server” subdirectory under the installation directory. Each installation type has a sep-
arate configuration, deployment, and work environment—all changes, including actual
software deployments, are unique to the installation type and not shared between them.
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16.4.2 Apache Geronimo

Apache Geronimo is the name of the J2EE platform implementation and Applica-
tion Server provided by the Apache Software Foundation. Its official website (http://
geronimo.apache.org/) has many details about it. This is a FOSS implementation, cov-
ered by the Apache License. Similar to JBoss, the official website contains several
different releases: past, present, and future. The configuration and deployment details
for the Apache implementation alternative are slightly different from those used by
JBoss, but there are some similarities between the two alternatives. Both support web-
based administration facilities (listening to port 8080 by default) and file-copy (“drag-
and-drop”) deployment mechanisms. Geronimo also provides command-line tools for
performing some common activities such as deployment, startup, and shutdown.

16.4.3 JOnAS

JOnAS is another FOSS (in this case open source) J2EE platform implementation
alternative and Application Server. It is provided by the OW2 Consortium. Like the
other alternatives, it also has an official website (http://wiki.jonas.objectweb.org/xwiki/
bin/view/Main/WebHome). There are several different releases, with different standard
and proprietary features—just like the previous implementation alternatives. There are
also multiple download editions available, each including a different set of subplatform
implementations within the same release. For example, we can choose to download an
edition containing the Apache Tomcat Web Container, the Jetty Web Container, or no
Web Container. Since this is an open source project, we can always download the source
and modify it to use these different subplatforms ourselves, but the different editions
provide a quick and easy mechanism for downloading a preconfigured installation.

The basic setup is trivial, but we should always check the release notes for further
details regardless of how simple it is, of course. To use this alternative, we simply
download the release, unbundle the files, set a single environment variable to the
location where we unbundled the files (the “JONAS−ROOT”), and add the “bin”
subdirectory found underneath this directory to the execution path for our operating
system. Similar to JBoss, JOnAS provides several standard configurations, but we can
also create our own. JOnAS also provides a web-based interface for administration
and monitoring, listening on port 9000, by default. This port is different from the port
used by default for the other alternatives, but it is also reconfigurable.

16.4.4 Other J2EE Platform Implementation Alternatives

There are many other J2EE platform implementation alternatives to choose from—far
too many for us to list exhaustively. Instead, we will merely mention two more alter-
natives here, along with their website information. Glassfish is an open source J2EE
implementation and Application Server provided by Sun Microsystems. Its main web-
site (https://glassfish.dev.java.net) has many details about it. IBM Websphere is a COTS
implementation alternative and Application Server provided by International Business
Machines (IBM). Once again, we can find many details about the various products, ser-
vices, and support options available for it at its main website (http://www-01.ibm.com
/software/websphere/).
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16.5 SUMMARY

The J2EE platform is a combination of many subplatforms. Each platform, including the
J2EE platform itself, is defined by a standard specification. There are several different
implementation alternatives to choose from for this platform. These alternatives include
several different possible installation packages that are implemented by several different
vendors, released as several different editions and, of course, with several different
versions. The specifications, and the fact that these platforms are all implemented
on top of the Java 2 Standard Edition (J2SE) platform and programming language,
provide an enormous degree of support for portability and interoperability. There are
also several alternatives available for many of the subplatforms defined within the J2EE
platform. These subplatforms can often be interchanged within a given J2EE platform
implementation. Also, the code developed for a particular platform implementation can
often be ported to another platform with minimal effort and minimal changes.

When considering how to provide the necessary or desired Distributed Database
Environment Platform Requirements (which we discussed in Chapter 14) using the
J2EE specification and a particular J2EE platform implementation alternative, there
are several paths we can take. Each of these paths has some trade-offs to consider,
but the flexibility offered by the platform is a far more important consideration. The
Java language and J2EE platform provide a rich set of facilities for providing the Fun-
damental Platform Requirements. Similarly, the J2EE platform offers several options
for each of the functional areas we considered for providing the Distributed Process
Platform Requirements. The J2EE specification can support multiple approaches and
implementations for Remote-Code Execution, Remote Messaging, and Directory Ser-
vices. The Distributed Data Platform Requirements are fulfilled by the J2EE platform
with an equal degree of support and flexibility. Security policy details are managed as
deployment considerations (with only minimal implementation impact). The level of
security complexity (and strength) can easily be controlled and configured for different
deployments of the same component or subsystem, even within the same environment.
Database access and Transaction operations are also largely addressed as deployment
considerations. Overall, the facilities used to implement all the Distributed Database
Environment Platform Requirements fit together in a loosely coupled but cohesive plat-
form. Often there are several different approaches, several different implementations,
and several different configurations available. These approaches and their implemen-
tations are very flexible because they are also defined by a standard specification and
implemented by several, different, mostly interchangeable software alternatives.

The J2EE-specific approaches for implementing our DDBE Platform Requirements
are all centered on the concept of Java Beans and, more specifically, centered on
the concept of Enterprise Java Beans. These concepts and the facilities that the J2EE
platform provides for their development, deployment, and execution enable the J2EE
developer to alter many of the necessary deployment and execution details with-
out resorting to any code changes or recompilation activities. These alterations are
handled by default policies, customized deployment descriptors, and declarative deploy-
ment attributes. This also improves the reusability of the components and subsystems
implemented on top of the J2EE platform. This provides us with a great potential for
simplicity in homogeneous environments and reuse in heterogeneous ones.
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16.6 GLOSSARY

Applet A web-based client that is downloaded into a web browser and executed on
the client.

Application Client A stand-alone, J2EE-aware application that runs on the client
and is contained, deployed, and executed within an Application Client Container.

Application Client Container A Container type that supplies all the J2EE platform-
defined operations, features, and facilities necessary to deploy and execute the
Application Clients contained within it.

Application Sever A particular installation of a particular J2EE platform implemen-
tation alternative.

Bean Managed Transaction (BMT) A flavor of EJB where the Bean’s implementa-
tion code must explicitly call the “begin()” method and either the “commit()” method
or the “rollback()” method (all of which are provided by the JTA and implemented
by the JTS) in order to manage the JTA Transaction actions for the Bean.

Callee A piece of code that is called (invoked) by another piece of code—this can
refer to any level of scope within the code itself from the actual method (or function,
routine, procedure) being called, to any container of that method. For example, the
callee can refer to the method, the module (class), or the component or subsystem
containing the code being invoked.

Caller A piece of code that calls (invoke) another piece of code—this can refer to
any level of scope within the code itself from the actual method (or function, routine,
procedure) containing the call, to any container of that method. For example, the
caller can refer to the method, the module (class), or the component or subsystem
containing the code that invokes some callee.

Component A deployable bundle that provides a reasonably cohesive set of func-
tionality.

Component or Subsystem (COS) A term that refers to a component or subsystem,
ignoring any differences between the two concepts.

Container Managed Transaction A flavor of EJB where the EJB Container man-
ages the JTA Transaction actions based on the current transactional state and the
Transaction attributes declared for the EJB.

Deployment Any features, issues, concepts, or considerations related to how a COS
instance is installed on a particular machine at a particular site.

Deployment Descriptor A file (usually an XML file that conforms to a particular
Document Type Definition format) that contains the deployment-specific details for
software deployed within the J2EE platform.

Directory Service A service that provides several important functions such as nam-
ing, registration, lookup, and possibly security.

Enterprise Archive File (EAR) A JAR file that contains the files needed for a J2EE
application that is contained, deployed, and executed within an Application Server.

Enterprise Java Bean A Java Bean implementing the business logic for a J2EE
application that is J2EE-aware and deployable within an EJB Container.

Enterprise Java Bean Archive File (EJB-JAR) A JAR file that contains the
files needed for an EJB that is contained, deployed, and executed within an EJB
Container.
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Enterprise Java Bean Container (EJB Container) A Container type that supplies
all the J2EE platform-defined operations, features, and facilities necessary to deploy
and execute the EJBs contained within it.

Extensible Markup Language See XML.

Java Archive File (JAR) A single file created using the JAR tool that contains one
or more other files and directories used by the Java Virtual Machine—this is a con-
venient mechanism for bundling several files together within the Java development
and execution runtime environments.

Java Bean A Java class that conforms to a set of naming conventions and rules of
behavior in order to allow other tools to manipulate instances of the class visually.

Java Server Page A special file, contained within a Web Container, that is used to
generate a servlet dynamically.

Lightweight Directory Access Protocol An architecture for a read-mostly database,
which can contain authentication and authorization data.

Marshalling The collection of techniques capable of converting parameters into a
data stream, usually to support RMI, RPC, or Messaging—the opposite of unmar-
shalling.

Message A data structure or textual stream representing content sent from one COS
instance to another.

Middleware Any additional software used to “bridge the gap” (translate or hide
differences) between COSs.

Platform A set of software that provides a well-defined set of operations, facilities,
and functionality that serves as the foundation for components, subsystems, and
other software that runs on top of the platform.

Remote Method Invocation (RMI) A remote execution technique based on object-
oriented method invocation (calls).

Remoting The collection of techniques used to perform any remote functions includ-
ing remote execution and messaging.

Servlet A piece of software contained, deployed, and executed within the Web
Container that can act as an intermediary between the EJBs and clients that are
web-aware but not J2EE-aware.

Session Bean An Enterprise Java Bean that represents a client within the Application
Server. Session Beans are useful because EJBs are contained within the EJB Con-
tainer, which, in turn, is contained within the Application Server. The actual client
itself is contained within the Application Client Container—not the Application
Server, and most likely not even on the same machine as the Application Server.

Simple Object Access Protocol (SOAP) A mechanism for implementing remote
method invocation using XML to marshal and unmarshall the parameters and return
values.

Stateful Session Bean A Session Bean that represents a unique conversation between
a particular client instance and a particular Session Bean instance. Stateful Session
Beans need to preserve the conversational state—the Bean’s instance variable values
must be remembered by the Bean after the Bean method invocation returns its results
to the caller.
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Stateless Session Bean A Session Bean that represents a conversation between a
particular client instance and a particular Session Bean instance. Stateless Session
Beans do not preserve the conversational state—the Bean’s instance variable values
are effectively zeroed out after the Bean method invocation returns its results to the
caller.

Subplatform A platform that is also a smaller piece of another platform.
Subsystem A collection of components and/or subsystems that is part of a larger

system but also a system in its own right.
Transaction Attribute A method of controlling the JTA Transaction actions for a

BMT EJB by specifying one of six possible values for the attribute using a Java
annotation or EJB deployment descriptor.

Universal Description, Discovery, and Integration (UDDI) A facility that imple-
ments Directory Services for web services, providing an XML-based registry service
suitable for finding web service instances deployed within the environment and
defined using WSDL.

Unmarshalling The collection of techniques capable of converting a data stream into
one or more parameters, usually to support RMI, RPC, or Messaging—the opposite
of marshalling.

Web Archive File (WAR) A JAR file that contains the files needed for a web-aware
application, component, or subsystem that is contained, deployed, and executed
within a Web Container.

Web Container A Container type that supplies all the J2EE platform defined opera-
tions, features, and facilities necessary to deploy and execute the web-based J2EE-
aware software contained within it.

Web Service A component or subsystem that provides some service that conforms to
the Web Services specification, usually implemented using SOAP, UDDI, WSDL,
and XML.

Web Services Description Language (WSDL) An XML-based description of the
services and service providers implemented as web services within an environment.

XML A markup language that uses tagging to indicate semantic details or logical
structure for a set of data content.
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EXERCISES

Provide short (but complete) answers to the following questions.

16.1 How are Stateful Session Beans and Stateless Session Beans different?

16.2 How are Stateful Session Beans and Stateless Session Beans alike?

16.3 How are Message Driven Beans and Stateless Session Beans different?

16.4 How are Message Driven Beans and Stateless Session Beans alike?

16.5 Which JTA Transaction Attribute Value (listed in Table 16.1) is equivalent to
the default behavior for the Container Managed Transactions flavor Enterprise
Java Beans?

16.6 Why would we ever use both the Required and NotSupported JTA Transaction
Attribute Values for different methods in the same Enterprise Java Bean?



17
THE J2EE STARTER KIT

We refer to the combination of a framework and a sample extension (of that frame-
work) as a starter kit (SKIT) because we intend to use this combination of software as
a toolkit that will help us to start developing software projects. SKITs are not intended
to be complete solutions, or production-ready code, but the starter kits provided with
this book should be useful when learning about distributed database environment
(DDBE) concepts, and helpful when creating academic, research, prototype, or proof-
of-concept projects. Starter kits like this one can also help us to improve our understand-
ing of the specific DDBE architecture that we are attempting to develop, as well as the
underlying technical facilities we can use, and the technical issues we need to address.

In this chapter, we are considering the starter kit that we call the J2EE-SKIT.
The J2EE-SKIT is available for download via the official website for this book (see
the Preface for further details). We named the starter kit this way because both the
framework and the extension contained within it rely on the Java 2 Enterprise Edition
(J2EE) platform. As we discussed in Chapter 16, the J2EE platform is defined by
the Java 2 Enterprise Edition Specification (J2EE-SPEC), which is available for
download via http://java.sun.com/javaee/technologies/javaee5.jsp.

This chapter is intended to be a high-level overview of the starter kit, but it is
not intended to be a detailed description of the implementation details. The bundle
downloaded from the website contains all the source code, Java documentation, and
example configuration files for the J2EE-SKIT. It also contains a “cookbook” (a doc-
ument containing a collection of “recipes”) that describes how to use the starter kit in
some common J2EE implementation alternatives and offers hints for how to customize
the starter kit to work in other scenarios and implementation alternatives.

In Section 17.1, we discuss the high-level considerations for the starter kit. First,
we will discuss the starter kit’s goals and its architecture. Next, we will provide
separate architectural overviews for the framework and extension, which are contained

Distributed Database Management Systems by Saeed K. Rahimi and Frank S. Haug
Copyright © 2010 the IEEE Computer Society

641



642 THE J2EE STARTER KIT

within the starter kit. In Section 17.2, we will focus first on the design details for the
starter kit as a whole, and then on the design details for the framework and extension
individually. In Section 17.3, we will summarize how the starter kit can be used to
create DDBE projects that reuse, modify, extend, or replace the code provided by the
J2EE-SKIT, and provide a description of how to use the J2EE specification, J2EE
vendor-specific documentation, and J2EE-SKIT documentation to successfully build
and deploy a DDBE project.

17.1 JAVA 2 ENTERPRISE EDITION STARTER KIT (J2EE-SKIT)
OVERVIEW

The primary purpose of this starter kit is component or subsystem (COS) software
development, especially within the context of a distributed database environment
(DDBE). There is quite a broad range of topics that we need to have some knowledge
about before we can use this starter kit effectively. First, we need to have a good
understanding of distributed database concepts and issues: in other words, all of the
things we need to know about in order to design or implement a DDBE architecture.
This book helps to address some of those topics. Next, we need to have a basic
understanding of the Java programming language. Obviously, this is necessary since
this is the implementation language for our project. Lastly, we must have at least some
familiarity with the concepts and issues related to the J2EE platform. However, most
of the gory details are hidden behind the starter kit and underneath the J2EE platform
itself. Because of this, we should be able to use this starter kit effectively even if
we only have a minimal understanding of the J2EE concepts. See Chapter 16 for a
high-level summary of the J2EE concepts involved.

There are several different J2EE platform implementation alternatives to choose
from, but we should try to use the same alternative for all our development, deployment,
and execution activities within a DDBE project. The files included with this starter kit
are designed to work with almost any implementation alternative that is compliant
with the current specification (Version 5.0). The starter kit has been tested with the
JBoss platform implementation alternative and, more specifically, with the 5.1.0.GA
(General Availability) release. It should be relatively simple to use this starter kit with
other implementation alternatives (only minor modifications should be required). This
is especially true for new, “stable” JBoss releases once they become officially avail-
able, but it is also true for non-JBoss implementations. For example, when a new “GA”
release or new “Milestone” release (like the current JBoss 6.0.0.M2 release) is officially
listed as available for download and then installed locally, the Java classpath values and
Java Archive (JAR) file names probably need to be modified in order to match the spe-
cific configuration in our J2EE platform installation. In some cases, the steps necessary
to compile, deploy, or execute the code might be slightly different across these different
alternatives. The current version of the starter kit bundle will contain details for using
the SKIT with some of the different alternatives, and the documentation files included
with the bundle also contain further hints on modifying these setting appropriately.

17.1.1 J2EE-SKIT Goals

If we were to implement our DDBE software project without using the J2EE platform,
our project would need to implement all the required communication, coordination,
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execution, and deployment details directly. While it is certainly possible to implement
a DDBE in this way, it is somewhat complicated and fraught with potential problems. If
we decided, instead, to use multiple pieces of middleware to implement these operations
and facilities, it is possible that the integration effort would be almost as bad as the
decision to implement everything from scratch. The J2EE platform provides us with a
convenient, standards-based, bundling of services that can easily supply the Distributed
Database Environment Platform Requirements we identified in Chapter 14. Even when
we develop our DDBE project on top of the J2EE platform, there are many concepts
and issues for us to consider if we want to implement our code successfully, some of
which we discussed in Chapter 16. In addition to these considerations, we also have
to think about how we will design our project. This is especially true if we want to be
able to reuse some of the software that we develop in future DDBE projects.

All of these things can distract us from our primary focus—namely, the distributed
database environment we are trying to develop! Therefore, our starter kit, which is
also built on top of the J2EE platform, provides us with a better starting point. From
here, we can concentrate more on the DDBE-specific concerns and less on the DDBE
Platform Requirements. Both the framework and extension contained within the starter
kit can be used, modified, and extended as necessary to suit our new DDBE software
development projects. This means that we can choose how to use the starter kit based on
our specific goals, experience, and DDBE project details. For example, we might choose
to expand the starter kit to focus on leveraging as much functionality as possible from
the underlying J2EE platform. Alternatively, we might choose simply to use the existing
starter kit implementation and ignore as many of the underlying platform details as
possible. Obviously, we can choose to apply any other degree of J2EE-awareness and
J2EE-obliviousness we desire for our particular DDBE project development activities.

We intend the framework and extension bundled within the J2EE-SKIT to be used
as the basis for building the skeleton of one or more DDBE architectures. For example,
we want the starter kit to be useful for implementing distributed database environments
compatible with architectures we discussed in Chapter 12. We should also find it useful
when implementing new architectures such as the cooperative DDBE (COOP) and peer-
to-peer DDBE (P2P) architectures that we discussed in Chapter 13. We chose the J2EE
platform as the underlying DDBE Platform for this starter kit because of its abilities
to provide both powerful facilities and multiple implementation alternatives across a
wide range of hardware and software platforms.

17.1.2 J2EE-SKIT Architectural Overview

The J2EE starter kit represents the fundamental infrastructure of a generic DDBE.
We use a separate Java package for each subsystem in this infrastructure. This
makes it easier to isolate those portions of the architecture and code that we need
to modify or extend. The main component in each subsystem is implemented using
a Stateful Session Bean (see Section 16.2.1.3). While these components could
also be implemented using other types of Enterprise Java Beans (EJBs), Stateful
Session Beans have fewer restrictions from an interface (the “contract” they support)
standpoint. For example, with a Stateful Bean, we do not need to pass all of the
“conversation state” details as parameters to all of the methods. We also chose to
use Declarative Transaction Demarcation and Container Managed Transactions (see
Section 16.3.3) for all the subsystems that directly connect to real databases (i.e.,
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the Dem and Lem subsystems). We chose this approach because these components
need to manage the underlying database transaction operations appropriately for
distributed query and distributed execution. This is true even when our DDBE project
is not focusing on distributed transaction management topics. The subsystems that
do not directly access any databases (the Parser and Qualifier) are also implemented
using these techniques, but since they do not actually use any database (or JMS)
transactions, this has only a limited impact on them. We include the Parser and
Qualifier in this decision merely to enable the transaction semantics to be implemented
as simply as possible for future modifications and extensions. This is done to provide
support for most of the potential implementation and design scenarios we can easily
anticipate. Perhaps there is a new implementation or architecture where it would be
useful or necessary for these components to use distributed transactions.

There are seven subsystems included in the starter kit. Each is classified as being
part of the framework or part of the extension. This distinction is based on the location
of the implementation within the starter kit. Because we have access to the source code
for both of these packages, it is not too difficult to refractor the code and relocate these
subsystems if desired. However, these locations were chosen in an attempt to anticipate
the structure of most typical academic projects, such as those assigned within a course
in distributed database management systems. The extension portion of the starter kit
can easily be modified, extended, or replaced based on the actual scenario in which the
starter kit is being used. Although we can also do these things within the framework
code, it is not always as simple or straightforward, and therefore it might not be a
suitable task for beginners.

17.1.2.1 J2EE-SKIT Subsystem Identification Table 17.1 contains a brief overview
of each of the seven major subsystems defined within the starter kit. The starter kit pro-
vides a simple implementation for each of these subsystems. This table lists the name,
the implementation location, and a brief description for each subsystem. Regardless of
where they are implemented, each of these subsystems (except for the DdbmsClient)
is represented by interfaces defined within the framework. These interfaces and imple-
mentations are merely starting points for the final implementations in a particular
DDBE project. This way, on a project-by-project basis, we can choose to reuse the
simple implementations for those areas that we are not focused on in the project and
choose to create our own more detailed designs and implementations for those areas
that we are focused on in the project. These implementations also allow us to develop
simple prototypes and proof-of-concept projects quickly.

The subsystems in the starter kit provide a minimal implementation for the funda-
mental operations necessary in a generic DDBE architecture. In particular, as a whole,
they act as a design pattern—namely, a Template Method [Gamma95]. We use this
pattern to connect the subsystems together in a reasonable (but modifiable and exten-
sible) configuration. For example, suppose we wanted to focus on query optimization.
Using the starter kit, we have a sufficient implementation for the Parser and Qualifier
subsystems. Now, we can focus on the Planner subsystem, and perhaps the Dem and
Lem subsystems as well. However, what would we do if we wanted to focus on some
other aspect of a DDBE in some other project instead? In this scenario, we can reuse
the original Planner subsystem, which was implemented in the starter kit, as the Planner
for our new project. In the very least, we can use it as the starting point. Assuming that
our focus is on some other DDBE area, many of the starter kit implementations should
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TABLE 17.1 Summary of the Primary Subsystems Defined Within the SKIT

Subsystem Name Implementation Location Subsystem Description

DdbmsClient Extension This subsystem represents the client application
or user interface to the DDBE that we are
implementing. Because it is not invoked by
the other subsystems, it does not have an
interface, only an implementation.

Ddbms Framework This subsystem is the facade to the DDBE
project that we are implementing.

Parser Framework This subsystem is a simple SQL parser
implementing a subset of ANSI SQL. It also
provides a simplistic interface inspired by
relational algebra.

Qualifier Extension This subsystem ensures that all the table names
and column names identified by the Parser
are fully qualified.

Planner Extension This subsystem builds the distributed execution
plan for the DdbmsClient request being
processed.

Dem Extension This subsystem acts as a Distributed Execution
Manager and executes the plan generated by
the Planner subsystem.

Lem Extension This subsystem acts as a Local Execution
Manager, executing the localized portions of
the plan on behalf of the Dem subsystem.

be sufficient for our new project’s purposes. If any of them are not, we can always
choose to use the implementations from one of our other projects instead. Similarly,
we can always create a new implementation within the new project itself. If our focus
is narrow enough, we might simply modify a small portion of the code within the
starter kit-supplied subsystem implementations rather than replacing them completely.
Moving forward, we can also choose to use any of these new implementations as well
as the original starter kit versions as a starting point for new projects. Perhaps we
might use them in new projects that focus on the applications and clients that use a
DDBE rather than projects that focus on the back-end subsystems.

In Figure 17.1, we illustrate a “reasonable configuration” for some hypothetical, new
project. Here, we see that the subsystems are implemented in different places. Some
subsystems are implemented in the SKIT framework. Others are implemented in the
SKIT extension. There are also two other subsystems that are implemented in a new,
custom extension. In this example, we have created our own new Planner and Lem
subsystems; perhaps we are focusing on query optimization in this project. We have
reused the other subsystem implementations from the SKIT framework and extension.

17.1.2.2 J2EE-SKIT Subsystem Interaction Overview We will largely ignore the
DdbmsClient subsystem, because it is not really part of the back-end implementation.
The Ddbms subsystem acts as a facade. This is another design pattern, namely, the
Facade [Gamma95]. A Facade acts as the public interface—in this case the public
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Figure 17.1 Example usage of the J2EE-SKIT.

interface to the whole DDBE project. Ideally, our DDBE project will provide one or
more of the various types of transparencies we discussed in Chapters 1–9. If the Ddbms
subsystem’s programmatic interface looks as close to a traditional DBMS interface as
possible (in form if not in scope), this would help to achieve that goal. The Ddbms
subsystem fulfills client requests by delegating them to the other subsystems. It does
not actually do any of the real work itself. The DdbmsClient can connect to the Ddbms
subsystem and pass a request as an SQL string, or use a parameterized call representing
the statement type and major operands. If an SQL string is passed from the client, then
the Parser is used to parse the SQL and capture the appropriate information about the
SQL request. If the parameterized call is passed from the client instead, then a different
method within the Parser is called to capture the appropriate information.

The best way to understand how the subsystems interact with each other is to con-
sider a typical scenario. For example, suppose some client application (the DdbmsClient
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or an equivalent application) has connected to our Ddbms subsystem and asked it to
process an SQL SELECT query against the DDBE project that we have implemented.

Our DDBE project will perform the following steps, in the order listed here.

1. The DdbmsClient (or equivalent COS) makes a query request of the Ddbms
subsystem by sending it an SQL string or the equivalent set of relational algebra-
based details. In the steps that follow, the Ddbms subsystem will call the other
subsystems to satisfy this client’s request. First, the Ddbms calls the Parser. Next,
it calls the Qualifier. Then, it calls the Planner. Finally, it calls the Dem, which
will presumably call the Lem subsystems. However, since the Dem and Lem sub-
systems are implemented within an extension (outside the framework, but perhaps
still inside the SKIT), those details are likely to be more project dependent.

2. Once the Ddbms has received the request, it passes the request to the Parser.
The Parser takes the request as an SQL string or as a set of lists representing
the operands for the clauses normally seen in an SQL query. The Parser then
checks that the request is supported. When the SQL string parameter is used, the
Parser will verify that the syntax is valid with respect to the grammar that the
Parser implementation understands. If the syntax is valid, the Parser transforms
the request into a structure that is represented by an interface defined within the
framework (named “ParsedSQL”). When the “set of lists” form of the request is
used, the same result is obtained, but no actual parsing is required—the Parser
only performs minimal parameter validation. In either scenario, the interface rep-
resenting the parsed form of the request (“ParsedSQL”) provides implementation-
independent access to the semantic information determined by the Parser imple-
mentation. The parsed form of the request (the ParsedSQL) is then returned to
the Ddbms.

3. The Ddbms passes the ParsedSQL, which it just obtained from the Parser,
to the Qualifier. The Qualifier then uses this information in combination with
other information to transform the request further. Presumably, the other
necessary details are contained in a global data dictionary (GDD) or obtained
using some similar mechanism. The “transformed” request is stored in another
class/structure, which is represented by another framework-defined interface
(named “QualifiedSQL”). Now, we can use this interface to access the physical
data-mapping information outside of the Qualifier implementation. The qualified
form of the request (the QualifiedSQL) is then returned to the Ddbms.

4. Next, the Ddbms passes the QualifiedSQL to the Planner. QualifiedSQL provides
access to the type of request it represents, as well as identity and location details
for all physical constructs into which all of the global constructs mentioned in the
original SQL request were mapped. The Planner uses QualifiedSQL to satisfy all
of its information needs. It then uses its own algorithms to create the execution
plan. This plan is stored as a third class/structure and represented by another
framework-defined interface (named “DET”). The interface name (an acronym
for “Distributed Execution Tree”), reflects the external view of the execution
plan, but not necessarily its implementation. The distributed execution plan (the
DET) is then returned to the Ddbms.

5. Lastly, the Ddbms passes the DET to the Dem, which is responsible for oversee-
ing the execution of the request. Actually, the SKIT implementation for the Dem
merely reads the subrequests from the DET and delegates most of the work to the
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Lems. If the request was a query, the Dem collects and formats the results (if any)
before returning the results to the Ddbms. These results are stored using a fourth
class/structure and represented by another framework-defined interface (named
“QueryResultSet”). Finally, the Ddbms returns the results (the QueryResultSet,
the request’s execution status, or any Java Exceptions raised) to the DdbmsClient
(or equivalent COS) that invoked the Ddbms method for the original request.

These steps describe how the example implementation provided with the starter kit
would satisfy a query request. We can modify the example to do any or all of these
things differently if we choose. For example, we could implement triangular control or
other alternatives within the Dem. However, this example illustrates the fundamental
interactions between the subsystems that are likely to be used for most DDBE projects.

17.1.3 J2EE-SKIT Framework Architectural Overview

In this section, we will briefly discuss the subsystems implemented within the SKIT
framework. These implementations should be reusable by most new projects with little
or no modifications. Typically, the only modifications required are limited to editing
the deployment descriptors, which are simple XML files. In fact, most of these edits
will primarily be cutting and pasting different deployment details.

17.1.3.1 The Ddbms Subsystem This is the external application–programming inter-
face (API) for our DDBE project. As we mentioned earlier, it acts as a Facade
[Gamma95] for the DDBE as a whole. It provides the end user applications with
the publicly available methods for using the DDBE and acts as a single access point
for the end user applications. By using this subsystem, we can simplify our client
Remote-Code Execution operations. The clients connect to this subsystem rather than
connecting to each of the other subsystems directly. This subsystem is responsible for
communicating most of the information used in the DDBE processing of requests and
provides most of the coordination details used by the other subsystems. Each DDBE
project implementation will most likely edit the deployment details for this subsystem
to ensure that each subsystem being used is the correct instance. We need to ensure that
the new project is using the expected implementation for each subsystem, rather than
accidentally using some other (older) implementation that was also deployed within the
same J2EE environment. Aside from these changes, this subsystem should be reusable
by most new projects without any modification or recompilation required.

17.1.3.2 The Parser Subsystem The Parser subsystem is responsible for recogniz-
ing valid SQL statements, rejecting malformed or unsupported SQL statements, and
producing a data structure that captures the semantic information for the valid SQL
statements it can recognize. Since this subsystem is only invoked by the Ddbms sub-
system, and only communicates to the other subsystems indirectly, it is also probably
reusable for many new projects without any code modifications. It returns an object to
the calling subsystem (Ddbms) that is accessed via a framework-defined Java interface.
This object is then used to pass this semantic information to the other subsystems as
needed. Therefore, we usually will not need to perform any deployment edits, code
modification, or recompilation for this subsystem. If there is a need to change the
supported syntax for a specific project, then this subsystem will need to be modified.
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However, if this is not the case, then the same subsystem instance can often be reused
in many DDBE projects without any additional deployment or configuration required.

17.1.4 J2EE-SKIT Extension Architectural Overview

The remaining subsystems are all implemented in the extensions rather than in the
framework. These subsystems will always be implemented outside the framework.
Either these subsystems are implemented in the SKIT-provided extension or they
are implemented in a new extension that we create for a new project. To a certain
extent, we are free to make design/implementation decisions that differ from the
SKIT implementation, as long as the implementation still fulfills the requirements set
forth by the framework-defined interfaces. Actually, we always have the option of
modifying the framework-defined interfaces too, but that decision should not be made
too hastily. Usually we will not need (or want) to modify the framework. Even when
we do need to modify the framework, we will usually be making a change to the
existing implementation or creating a new framework-defined interface. Hopefully,
we will rarely need to modify one of the existing framework-defined interfaces. The
SKIT-provided extension contains a reasonable implementation for each subsystem,
but these implementations are not necessarily the best possible implementation with
respect to features, performance, or flexibility. The goal of the SKIT extension is
merely to provide a sufficiently complex example implementation that verifies the
operation of the framework as a whole, demonstrates the feasibility of a typical DDBE
project implementation, and provides a quick start for new DDBE project development.

17.1.4.1 The Qualifier Subsystem The Qualifier subsystem is responsible for
translating the Tokenized Statement (produced by the Parser) into a format suitable
for use by the Planner subsystem. In other words, after the Qualifier examines the
Tokenized Statement, it determines the mapping information needed to translate the
global constructs into the physical constructs. This is done for each Global Conceptual
Table and each Global Conceptual Column contained within the Tokenized Statement.
These activities include determining the necessary information to support Location
Transparency and Distribution Transparency. This means we first need to determine
which physical database tables and columns are needed for our global constructs.
Later, we must determine which Local Execution Managers are capable of accessing
those physical constructs. Ultimately, we should try to determine the information
necessary to support other transparency types. For example, we should try to support
Fragmentation Transparency and Replication Transparency in our DDBE project. We
can also choose to implement (full or partial) support for these transparency types in
the other subsystems.

We suggest that the Qualifier should execute queries against a global data dictionary
(or use a similar technique) to determine qualification details it needs. However, since
this subsystem is part of the extension, we are always free to implement this subsys-
tem differently for different projects. For example, we might choose to use the Java
Database Connectivity (JDBC) API to access a relational database containing these
GDD details. Alternatively, we might use some other mechanism to access a nonrela-
tional database. Perhaps we might even access an object-oriented database or use an
object persistence engine. We could even implement these details by developing new
Entity Java Beans that use either Bean Managed Persistence or Container Managed
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Persistence—using the J2EE platform and EJBs to store the transparency-mapping
details directly.

17.1.4.2 The Planner Subsystem The Planner subsystem uses the information pro-
duced by the Qualifier to build a Distributed Execution Tree (DET). The DET represents
the physical operations and statements required in order to carry out the Global State-
ment. The DET is based on a tree structure where each node represents a Union, Join,
or Concatenation operator or a leaf node. Typically, this tree represents the request
as a set of relational algebra Project, Join, and Select operations, along with the Lem
identification information for each node. In other words, the DET provides an inter-
face to a tree-like structure that is compatible with the representations we discussed
for query optimization in Chapter 4—for example, the DET could represent the plans
for Figures 4.21 and 4.22 among many other possible plans. The Planner is respon-
sible for describing what commands are to be executed and which Lem instances are
responsible for executing them. Typically, the leaf-node commands will be performed
at specific Lem sites, while the interior-node commands (Union, Join, and Concatena-
tion) are most likely performed in some Dem instance at some Dem site. We are free
to experiment with different techniques for execution control, such as those shown in
Chapter 4, Figure 4.18. The Planner does not perform any of these operations itself,
however; it merely creates the execution plan and stores it as a DET. We can choose
to implement simple query optimization, advanced query optimization, or no query
optimization in this subsystem. Regardless of which optimization strategy and control
strategy we choose to implement, we should try to ensure that this subsystem always
creates a correct plan. This is true even when the plan is not optimized.

17.1.4.3 The Dem Subsystem The Dem subsystem is responsible for reading the
plan created by the Planner. The DET is a parameter passed to one or more methods
in the Dem. Typically, the Dem executes the plan by delegating the operations to one
or more Lem subsystem instances as needed. In the SKIT-provided implementation,
the DET will conform to one of two general plan categories based on the shapes of
the tree that the DET represents. Here, the DET will conform to either a Concatenated
Tree or a Query Tree.

The Concatenated Tree is used to represent Data Manipulation Language (DML)
statements. A Concatenated tree is used to represent a global INSERT, global UPDATE,
or global DELETE statement. The node operator will always be set to “Concatenate”
for DETs whose trees conform to a Concatenated Tree shape. Each “Concatenate”
node can be interpreted as saying, “First process the left leaf, and then process the
right leaf.” The leaf nodes in this type of tree will all contain commands that are of
the same type. For example, every leaf node in the tree might represent an INSERT
operation. Alternatively, every leaf node could represent an UPDATE operation. The
only other possibility would be a tree where every leaf node represents a DELETE
operation. Presumably, these operations would usually be executed at different Lem
sites. In the degenerate case where a single Lem can perform the entire statement, the
tree will contain a single “Concatenate” node and a single (left) leaf node.

The Query Tree will never contain a “Concatenate” node. The node operator will
always be either “Join” or “Union” for this type of tree. Union is used primarily when
working with horizontal fragmentation, while Join is used for most other situations.
In the degenerate case where a single Lem can perform the entire statement, the tree
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will use a “Union” node operator with a single (left) leaf node. Query results must be
returned to the Ddbms and ultimately its client. Therefore, we must use another data
structure to return these results. This structure must be able to store the number of
columns and the number of rows in the result. It must also be able to store details for
each column, such as the column name, and details for each row, such as the value for
each column in that row. This will be accomplished by using a class that implements
an interface with the needed functionality (called “QueryResults”). When we create
new projects, we are free to implement the QueryResults interface any way that we
want to, or to use the implementation provided within the starter kit.

17.1.4.4 The Lem Subsystem The Lem subsystem is responsible for carrying out
the pieces of the global statement at a particular Lem instance. Each Lem instance
executes part of the global plan for a local database at a particular site. The global
statement will be broken into pieces by the Planner subsystem and delegated to a
particular Lem instance by the Dem subsystem. The pieces of this global statement
will typically be of the same type. A global query will usually result in one or more
local queries; a global INSERT will usually result in one or more local INSERTS; and
so on. The Lem subsystem can implement its operations in any way that it needs to,
but typically, we would expect the Lem to leverage the facilities implemented by a
local database management system (LDBMS). When this is the case, we would also
expect the Lem to access the LDBMS via the Java Database Connectivity (JDBC)
API. Although this is the technique used within the SKIT-provided implementation,
new projects can also choose to implement the operations in radically different ways.
The Lem is essentially a data processor (DP), which means we can implement it in any
of the ways we discussed in Chapter 1. In particular, we can use any of the alternatives
we discussed in Section 1.3 and summarized in Figure 1.6.

17.2 J2EE-SKIT DESIGN OVERVIEW

In this section, we will highlight some of the design details for each subsystem, and, in
particular, we will identify the primary interfaces being used. This section will serve as
a high-level roadmap for the code contained in the starter kit. The low-level documen-
tation is provided with the code and generated from it using Javadocs. From this high-
level vantage point, we can consider the code to be divided into four separate areas:
the framework, the extension, the parameter types, and the Exception types. In some
respects, the last two areas span the framework and the extension. The parameter types
are the interfaces used to send information between the subsystems while the Exception
types are used to send error information between the subsystems. Most of the interface
and superclass code for these last two areas is actually implemented within the frame-
work, but these interfaces and classes are used by both the framework and the extension.
We also can define subtypes of the interfaces and classes within the extension code.
Therefore, these areas are not strictly contained within the framework or the extension.

17.2.1 J2EE-SKIT Framework Design Overview

Each SKIT subsystem in the framework is implemented using a separate EJB. Each of
these EJBs follows the Business Methods Interface Design Pattern [Johnson02]. This
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pattern is also loosely referred to as the “business interface” design pattern. Essentially,
this means that there are three Java interfaces and one Java class defined for each of
our subsystem EJBs. We use the term, “Bean Class” to refer to the class in this pattern.
Similarly, we use a separate term for each of the three interfaces in the pattern.

The first interface (the “Home Interface”) extends the “javax.ejb.EJBHome” inter-
face, which is defined in the J2EE-SPEC. The Home Interface is used to represent
how the EJB Container should initialize our EJB instance whenever it is created. The
second interface in the pattern (the “Business Methods Interface” or “Business Inter-
face”) is used to define all the methods that we want our EJB’s callers to be able
to use. In other words, it contains the methods that perform our Bean-specific busi-
ness logic and operations. The last interface in the pattern (the “Remote Interface”)
extends the “java.ejb.EJBObject” interface, which is defined in the J2EE-SPEC. The
Remote Interface also extends the Business Methods Interface. The Remote Inter-
face is used by the EJB Container to implement Remote-Code Execution for our EJB
instances—supplying all the necessary generic EJBObject functionality and all the
necessary Bean-specific functionality. The Bean Class is the implementation class for
the EJB—it implements the “javax.ejb.SessionBean” interface, which is defined in the
J2EE-SPEC. It also implements the Business Methods Interface. It does not imple-
ment the Remote Interface or the Home Interface—the EJB Container will use these
interfaces behind the scenes to connect the remote callers and the local callee instance.

In the following sections, we will briefly consider the design details for each sub-
system implemented as an EJB. For each subsystem, we will provide a short design
overview followed by a table that summarizes the design using the design pattern details
we just discussed. In these tables, we will identify the design pattern-based type names
(the name of the Bean Class and the names of each of the three interfaces). The tables
will also provide a brief summary of the general purpose for each of these types.

Many J2EE implementation alternatives support the latest J2EE specification, which
allows us to use annotations (see Section 16.1.3) in our EJB source code as hints for
generating the Home Interface and Remote Interface automatically. Because annotation
support is a newer feature of the J2EE-SPEC, some implementation alternatives might
not support these annotations yet. Regardless of whether the annotation support is
present, the functionality represented by the design pattern and these interfaces is still
present—even if the details are hidden by automatic generation facilities. Therefore,
we have listed all three interfaces as well as the Bean Class for each subsystem.

17.2.1.1 The Ddbms Subsystem In Table 17.2, we list the type names used by this
subsystem. The code written in the SKIT-provided extension (or in the new extensions
we create for new projects) will use these interfaces whenever a client application
needs to connect to the DDBE. New projects can directly use the DdbmsBean class and
these interfaces. The DdbmsHome interface most likely contains a single create method

TABLE 17.2 Type Names for Ddbms Subsystem

Type Name

Bean Class com.srdbsoft.ddbe.j2ee.skit.framework.ddbms.imp.DdbmsBean
Home Interface com.srdbsoft.ddbe.j2ee.skit.framework.itf.ejb.DdbmsHome
Remote Interface com.srdbsoft.ddbe.j2ee.skit.framework.itf.ejb.Ddbms
Business Methods Interface com.srdbsoft.ddbe.j2ee.skit.framework.itf.ejb.DdbmsBmi
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with no parameters, while the DdbmsBmi contains one or more simple methods for
performing distributed queries (SELECT) and distributed DML commands (INSERT,
UPDATE, DELETE).

The packages used within the SKITs are named using the typical package naming
convention, which is designed to avoid naming conflicts. In particular, the class,
interface, enumeration, and subpackage names only need to be unique within the
scope of their immediate parent package (the name that is immediately in front
of the rightmost period in the name). This is analogous to the way Internet host,
domain, and subdomain names work. For example, suppose we had two fully qual-
ified hostnames representing our sales (“www.sales.srdbsoft.com”) and marketing
(“www.marketing.srdbsoft.com”) departments. On the World Wide Web, it is OK
to reuse the host name “www” across the two different subdomains. It is even OK
for some other company to reuse the subdomain names (“sales” and “marketing”),
but no other site under the “.com” root domain can use the same name as we
did for the last part (“srdbsoft”). If such duplication were allowed, it would cause
problems for our domain name servers! For the Web, the individual pieces within a
fully qualified domain name move from the most-specific name to the most-generic
name. However, in Java, package names work in the opposite direction. Therefore,
this naming convention uses the same technique but after the initial two name parts
(“com.srdbsoft”) we use package names that represent architecture, deployment, or
other software development concepts. Even though the package names used in our
SKITS are similar to DNS names, the Java package names do not necessarily cor-
respond to any network-specific or network-based details—using the inverted DNS
name for the first two parts of the package name is merely a convenient naming
convention used by many organizations.

17.2.1.2 The Parser Subsystem In Table 17.3, we list the type names for the Parser
subsystem. While it is possible that some other subsystems will use some of these
types, the DdbmsBean is the only subsystem that is explicitly intended to use this
subsystem directly. Most new projects will only use this subsystem indirectly—we
must specify the type names in the deployment descriptor. The ParserHome interface
will usually remain as it is defined in the framework—simply containing a single
create method with no parameters. The ParserBmi interface will contain methods for
parsing an SQL statement, most likely just a single method. It will also contain a
few methods for the commands based on relational algebra. The Ddbms subsystem
will use this Bean to validate an SQL statement and add semantic information. The
Parser only needs to handle a single SQL statement at a time. The syntax supported

TABLE 17.3 Type Names for Parser Subsystem

Type Name

Bean Class com.srdbsoft.ddbe.j2ee.skit.framework.parser.imp.ParserBean
Home Interface com.srdbsoft.ddbe.j2ee.skit.framework.itf.ejb.ParserHome
Remote Interface com.srdbsoft.ddbe.j2ee.skit.framework.itf.ejb.Parser
Business Methods Interface com.srdbsoft.ddbe.j2ee.skit.framework.itf.ejb.ParserBmi
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is a subset of the ANSI-92 syntax for SELECT, INSERT, UPDATE, and DELETE.
There is not much (if any) support for functions or complex subclauses (subqueries,
aggregate queries, order by clauses, having clauses, etc.), and there is no support for
vendor-specific syntax or features. Of course, we can always modify or expand this in
the new DDBE projects we create using this SKIT.

17.2.2 J2EE-SKIT Extension Design Overview

Most of the interfaces that are implemented in an extension specify the contract between
the facade (Ddbms) and these other subsystems. In order for the Ddbms subsystem,
which is implemented in the framework, to use any subsystem that is implemented in
an extension, the Ddbms subsystem must know how to create and use these extension-
defined implementations. These interfaces form the “contract” between our subsystems
and, in particular, the “contract” between our framework and our extensions. Therefore,
these interfaces must be defined in the framework—even though the extension-defined
implementation classes must be defined in the extension. The loose coupling between
implementation classes is accomplished by specifying the implementation class names
within the appropriate deployment descriptors. This enables the implementation details
to be changed (replaced by different implementations) at deployment time. By contrast,
the interfaces must be referenced directly in the framework and extension implemen-
tation code—in addition to being specified in the deployment descriptors.

The starter kit provides implementations that use a simple “subsystem interaction
strategy” (as we discussed in Section 17.1). In this strategy, most of the subsystems are
service providers to the other subsystems in the framework—but the Ddbms subsystem
is the primary service consumer for these services. The Ddbms is the only subsystem
that needs to connect to the Parser, Qualifier, Planner, and Dem subsystems. Although
this strategy is somewhat simplistic, it should be useful for many typical DDBE project
scenarios. The Lem subsystem is a special case—the Lem subsystem is only used
directly by the Dem subsystem and both of these subsystems are actually implemented
completely within an extension. Because of this, the interfaces for the Lem subsystem
are directly used by the Dem subsystem. Therefore, all the type name details and other
restrictions mentioned for the Lem subsystem in this chapter and in the documentation
provided with the starter kit should be considered to be more of a suggestion than
a firm requirement. We assume that many DDBE projects will choose to use these
suggestions, and be similar to the implementation provided in the SKIT, but that is not
necessarily true for all DDBE projects.

Aside from the caveat we just mentioned for the Lem, almost all extension imple-
mentations will implement the same interfaces—namely, the interfaces defined in the
framework and identified in this chapter. Even when our DDBE project chooses to
implement the code behind one of these interfaces using a different class name, a differ-
ent package name, or different implementation details—these interfaces will probably
not change. The Bean Class name will usually be different for each particular DBE
project implementation but the interface names will usually be the same as those listed
here. Therefore, the rest of this section will list the type names for each of the subsys-
tems that are implemented in an extension and identify the Bean Class names defined
by the SKIT-provided extension implementation.

It is important to recognize that we can choose to modify the framework, if we
need to. In general, we can add, modify, or delete any of the interfaces, classes, or
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TABLE 17.4 Type Names for Qualifier Subsystem

Type Name

Bean Class com.srdbsoft.ddbe.j2ee.skit.extension.qualifier.QualifierBean
Home Interface com.srdbsoft.ddbe.j2ee.skit.framework.itf.ejb.QualifierHome
Remote Interface com.srdbsoft.ddbe.j2ee.skit.framework.itf.ejb.Qualifier
Business Methods Interface com.srdbsoft.ddbe.j2ee.skit.framework.itf.ejb.QualifierBmi

TABLE 17.5 Type Names for Planner Subsystem

Type Name

Bean Class com.srdbsoft.ddbe.j2ee.skit.extension.planner.PlannerBean
Home Interface com.srdbsoft.ddbe.j2ee.skit.framework.itf.ejb.PlannerHome
Remote Interface com.srdbsoft.ddbe.j2ee.skit.framework.itf.ejb.Planner
Business Methods Interface com.srdbsoft.ddbe.j2ee.skit.framework.itf.ejb.PlannerBmi

methods defined within the framework. This is not usually necessary or recommended,
however, because the other code (framework and extensions) must also be modified to
reflect these changes. For the remainder of this chapter, we will assume that no changes
to the framework are required. Obviously, changing the framework might potentially
change some of the restrictions and suggestions described in this chapter and in the
documentation provided with the starter kit files.

17.2.2.1 The Qualifier Subsystem The Home Interface for the Qualifier will (most
likely) always have a single create method that takes no parameters. The QualifierBmi
interface will probably have a single method that takes the output of the Parser as an
argument and returns a qualified structure as the result. (See Table 17.4.)

17.2.2.2 The Planner Subsystem The Home Interface for the Planner will most
likely have a single create method that takes no parameters. The PlannerBmi interface
will probably have a single method that takes the output of the Qualifier as an argument
and returns a DET as the result. (See Table 17.5.)

17.2.2.3 The Dem Subsystem The Home Interface for the Dem will most likely have
a single create method that takes no parameters. The DemBmi interface will have two
methods: one method for query and one for executing a distributed DML statement
(INSERT, UPDATE, or DELETE). Both methods will take an object implementing the
DET interface as an argument. The query method will return a type storing the query
results. The DML method will most likely return nothing. It will throw Exceptions for
errors rather than using a return value. It is possible that a DDBE project will choose
to redefine this interface to include the number of rows affected or similar status
information. However, we think that this is probably project-dependent behavior with
no applicable, universal semantics. For example, if there are three replicas for a given
row and we modify this “global row,” did we modify one row or three? Therefore,
we have left method signatures representing this type of status information out of the
SKIT (for now). (See Table 17.6.)
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TABLE 17.6 Type Names for Dem Subsystem

Type Name

Bean Class com.srdbsoft.ddbe.j2ee.skit.extension.dem.DemBean
Home Interface com.srdbsoft.ddbe.j2ee.skit.framework.itf.ejb.DemHome
Remote Interface com.srdbsoft.ddbe.j2ee.skit.framework.itf.ejb.Dem
Business Methods Interface com.srdbsoft.ddbe.j2ee.skit.framework.itf.ejb.DemBmi

17.2.2.4 The Lem Subsystem The Lem subsystem is implemented entirely inside
an extension, so the details listed here are merely suggestions. However, we should
usually follow this restriction—the Home Interface should only define a single method
for creation. The LemBmi interface can have a greater degree of freedom with respect
to the methods it defines. Typically, it should have one method for executing queries,
and one or more methods for executing DML statements.

We can choose to implement separate methods for each type of DML, or we can
choose to implement a single method that handles all DML statement execution. We
can also implement other methods for working with connection information for our
data sources. These details are better handled by the EJB Container—provided we
are using container managed data sources or connection pooling. We can also choose
to define other methods that are specific to our DDBE project here. For example,
we might define different methods for different Lem implementations when they use
different execution control strategies. Consider how the interface might need to be
different when implementing a “master–slave” control strategy versus a “triangular”
control strategy—see Section 1.7 of Chapter 1 for an example of these strategies.

We can also choose to define our methods differently depending on the types of
parameters we want to use. If we want to pass the local SQL commands and queries
into the Lem subsystem as strings, then our method would need to have a String (the
SQL statement) as a parameter. Suppose we decided to use a more relational algebra-
flavored approach instead. What types should we use for the parameters now? We
could still use a String parameter here, but now it would contain a relational algebra
statement instead of an SQL statement. This is not the only possible implementa-
tion for this approach, however, and therefore other method signatures might be more
appropriate. For example, we might use several parameters representing the individual
“pieces” required for the specific relational algebra operation. We typically translate an
SQL SELECT statement into a relational algebra command that uses several specific
arguments. In this scenario, we might define our method parameters to represent a list
of columns to be projected, a list of tables to be joined, a list of the join conditions
to be applied, and a list of non-join conditions to be selected. We might choose from
several other approaches as well: we could use a tree structure containing those oper-
ators and operations. Supporting this kind of flexibility is precisely why the Business
Methods Interface for this subsystem is defined within an extension rather than inside
the framework. (See Table 17.7.)

17.2.3 Parameter Type Interfaces

We define a separate package (and namespace) for all the Java interfaces used to
represent the parameter types in the SKIT framework. These interfaces are used to
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TABLE 17.7 Suggested Type Names for Lem Subsystem

Type Name

Bean Class com.srdbsoft.ddbe.j2ee.skit.extension.lem.LemBean
Home Interface com.srdbsoft.ddbe.j2ee.skit.extension.itf.ejb.LemHome
Remote Interface com.srdbsoft.ddbe.j2ee.skit.extension.itf.ejb.Lem
Business Methods Interface com.srdbsoft.ddbe.j2ee.skit.extension.itf.ejb.LemBmi

represent the parameters that we pass between the subsystems in the framework.
We can also use them in an extension. Most of these interfaces are actually
implemented by classes that we define within an extension. This package is named
“com.srdbsoft.ddbe.j2ee.skit.framework.itf.parameters” and the interfaces it contains
are designed as generically as possible. We have done this in an attempt to balance
the required functionality with the ability to implement innovative approaches in our
new DDBE projects and in our new extension implementations. This section lists the
(unqualified) names for the interfaces contained in this framework-defined package.

17.2.3.1 ParsedSQL The class that implements this interface is part of the Parser
subsystem. This interface is used as output by the Parser subsystem and as input by the
Qualifier subsystem. This interface provides access to the Parser output for the rest of
the DDBE in general and especially the Qualifier subsystem, but we must be careful
when we modify or extend this interface. In particular, we should never expose any
of the implementation details and therefore should ensure that this interface provides
read-only access to the contents. Otherwise, we might introduce implementation depen-
dencies that make it very difficult to use a different implementation for the subsystems
in other projects. In other words, if we are not careful we can damage our reusability.

17.2.3.2 QualifiedSQL The class that implements this interface is part of the Quali-
fier subsystem. This interface is used as output by the Qualifier subsystem and as input
by the Planner subsystem. Like the previous example, this interface should be used
to provide one subsystem with read-only access to the output generated by another
subsystem. Once again, we are concerned about implementation details and read-only
access. We are also a little more concerned about supporting multiple implementation
alternatives for this interface because the Qualifier subsystem is implemented in an
extension.

17.2.3.3 DET The class that implements this interface is part of the Planner sub-
system. This interface is used as output by the Planner subsystem and as input by the
Dem subsystem. Although this is also a read-only, implementation-independent inter-
face, we do have some design details exposed though this interface—namely, the fact
that this interface is intended to represent a tree. This will place some limitations and
restrictions on the implementation alternatives for the Planner subsystem, but we can
always modify the framework if necessary.

17.2.3.4 QueryResultSet The class that implements this interface is part of the Dem
subsystems. This interface is used as output by the Dem subsystem, and as input by
the Ddbms subsystem. In the SKIT-provided extension, this same interface is used
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to represent the output of the Lem subsystem. Therefore, the implementation can be
thought of as a shared implementation in this case. In a given DDBE project, we might
choose to implement this interface using several different classes or we might choose
to use a different interface (and therefore a different class) for the Lem subsystem’s
output. We can also choose to implement different classes supporting this interface
across different Lem implementations within the same project. For example, this might
be necessary or at least recommended when we are using heterogeneous DBMSs for
our local database management systems in our DBE project.

17.2.4 Exception Type Classes

Even though we should always try to use meaningful Exception classes to represent all
the possible, expected problems that our DDBE project might encounter, we also want
to be able to create reusable code that is easy to use for prototype and proof-of-concept
implementation projects. One way to achieve this is to use a common superclass for our
Exceptions. This makes it easier to wrap the derived classes and handle the Exceptions
by sacrificing some of the ability to ensure more detailed exception handling within
the code. This section briefly identifies the base classes provided within the starter kit
for this purpose.

17.2.4.1 Framework and Extension Exception Base Classes All Exceptions thrown
from the framework, or thrown from any extension of the framework, should be one
of the following: an EJB expected Exception, a System Exception, or a subclass of
the ExFramework class defined in the framework. The EJB expected Exceptions are
the Exceptions defined as part of the J2EE specification, such as CreateException,
EJBException, or RemoteException. The System Exceptions are those Exceptions that
are defined by the J2SE runtime, or the J2EE platform and subplatforms. Obviously,
the last category (the Exceptions based on ExFramework) covers all other scenarios.
In an effort to enable better exception handling, we actually provide some standard
subclasses of this Exception that should be used to form a hierarchy of Exceptions.
This allows the developer of the calling code to choose whether the code should react
to the specific type of Exception involved or if the calling code should create a “catch
all” situation that handles it in a relatively safe manner (making it easier to prototype
things rapidly).

Framework Exception Base Classes All generic framework Extensions and exten-
sion Exceptions should inherit from the “com.srdbsoft.ddbe.j2ee.skit.framework.itf.
exceptions.ExFramework” class. Although Hungarian notation has somewhat fallen
out of favor, we use a simple form of it in the starter kit. All our Exception classes
in the framework are named with a prefix (“Ex”). We feel this does not damage read-
ability, and actually has some nice benefits with respect to the understandability of the
code. We would not recommend taking this technique further than this, however.

Extension Exception Base Classes The “com.srdbsoft.ddbe.j2ee.skit.framework.itf.
exceptions.ExExtension” class is a subclass of the “com.srdbsoft.ddbe.j2ee.skit.
framework.itf.exceptions.ExFramework” class. All extension Exceptions should inherit
from this class to make it easier to distinguish between extension and framework
Exceptions. We think this is potentially useful when debugging and testing, even
though the former is a subset of the latter.
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TABLE 17.8 Subsystem-Specific Exception Base-Class Summary

Subsystem Unqualified Exception Base-Class Name

Ddbms ExDdbms
Parser ExParser
Qualifier ExQualifier
Planner ExPlanner
Dem ExDem
Lem ExLem

17.2.4.2 Subsystem-Specific Exception Base Classes Each subsystem can also
have an Exception base class: this is the technique used in the SKIT framework and
extension. If these base classes are used, they do not necessarily need to inherit from
the previous classes. It is more important to identify the subsystem than it is to identify
the implementation location for that subsystem. Table 17.8 identifies the Exception
base classes provided with the starter kit. All of these Exceptions are contained within
a framework package (named “com.srdbsoft.ddbe.j2ee.skit.framework.itf.exceptions”).
The Business Methods Interface for each subsystem, which we discussed in
Section 17.2.1, uses the appropriate Exception base class for the throws clause on the
methods it defines. Table 17.8 provides a summary of these classes for each subsystem.
It lists the name of each subsystem and the unqualified class name for the Exception
class that acts as the base class, or perhaps the actual implementation class for all the
subsystem Exceptions. The Business Method Interface for the Ddbms subsystem is
slightly different from the others because it is the Facade. Therefore, it also declares
the appropriate subsystem-specific Exception base class as being potentially thrown
from its methods. This is useful, because it enables client applications to react to
subsystem-specific Exceptions. For example, a client can catch the ExParser Exception
and then attempt to handle or at least report it more appropriately because it knows
where the Exception occurred. It might even use the instanceof operator to downcast
the Exception into an even more specific exception handling strategy.

17.3 SUMMARY

Our J2EE-SKIT consists of many classes and interfaces, which are in turn factored
into several different packages. These packages can be compiled and bundled into Java
Archive (JAR) files and then reused within the J2EE development and deployment
environments. A subset of the packages (meaning the classes and interfaces that they
contain) form a framework representing the fundamental subsystems within a typical
DDBE project. The framework provides an overall infrastructure and implements some
of the foundations for building a DDBE project. Although the framework can also be
directly modified, we intend the framework to be extended through inheritance rather
than reimplemented whenever it is not able to satisfy the needs of a particular set
of project requirements. The other packages (that are not part of the framework) are
part of an example extension that is also included within the starter kit. We would
expect these interfaces and classes to be usable as they are, or to be extended through
inheritance to satisfy the requirements for some projects. We would also expect some
projects to completely ignore the extension packages and directly implement all of
the code necessary for their extension. The SKIT extension and any other extensions
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implemented in new DDBE projects can then serve as a basis for new implementations,
or merely as examples, in addition to fulfilling their own project requirements.

In general, all executable content deployed within the J2EE platform has a physical
directory structure and associated set of configuration details, which are bundled
together into a specific type of Java Archive file based on the type of deployment
container (see Section 16.1.4) being used. All of the subsystems defined within the
SKIT framework are implemented as Enterprise Java Beans (EJBs) and deployed
as EJB JAR files. Similarly, the subsystems implemented in the SKIT-provided
extension are also deployed as EJB JAR files. Clients connecting to any DDBE project
implementation that is based on the J2EE-SKIT (including the SKIT-provided example
extension) can choose the deployment format that they need from any of the available
options provided by the J2EE platform implementation being used. This includes
Java Server Pages (JSPs), Servlets, Applets, or J2EE Applications. Each of these
deployment types has a specific set of deployment requirements, which are defined by
the J2EE Specification and documented by the J2EE platform implementation vendor.
Many development environments also provide support for building and maintaining
these various deployment files and their associated requirements. Ultimately, all
deployment mechanisms use some form of directory structure or JAR file with special
deployment descriptor or configuration file.

We should always consult the vendor-specific documentation for the J2EE platform
installation we are using for our DDBE project’s development and deployment activ-
ities. This documentation should always be consulted first, because it is always the
most relevant to the activities we are attempting. The J2EE specification should be
consulted whenever we require a better understanding of the concepts, issues, or other
details surrounding the vendor-specific or J2EE-SKIT provided information. The J2EE
specification should also be consulted to clarify any concepts presented in this book
about the J2EE platform.

The J2EE-SKIT includes further details, recipes, and suggestions for building,
deploying, and executing our DDBE projects based on the framework provided.
However, these details cannot cover all the specific details for all possible J2EE
platform installations. Instead, these documents provide an example of how we can
compile, deploy, and execute the SKIT extension in a typical installation. There are
also recipes for modifying the deployment details once we have successfully built and
deployed the example extension within an environment. Although these recipes might
not be identical to the steps required for a particular installation, they should provide
sufficient details to enable us to translate the steps into the appropriate actions based
on the vendor-specific documentation and installation-specific configuration details.
Once we have succeeded in deploying the example, it should be reasonably simple to
create a new project that modifies or extends the starter kit, and then to redeploy the
resulting code.

17.4 GLOSSARY

Application Client A stand-alone, J2EE-aware application that runs on the client
and is contained, deployed, and executed within an Application Client Container.

Application Client Container A Container type that supplies all the J2EE platform-
defined operations, features, and facilities necessary to deploy and execute the
Application Clients contained within it.
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Application Sever A particular installation of a particular J2EE platform implemen-
tation alternative.

Bean Managed Transaction (BMT) A flavor of EJB where the Bean’s implementa-
tion code must explicitly call the “begin()” method and either the “commit()” method
or the “rollback” method (all of which are provided by the JTA and implemented
by the JTS) in order to manage the JTA Transaction actions for the Bean.

Component A deployable bundle that provides a reasonably cohesive set of func-
tionality.

Component or Subsystem (COS) A term that refers to a component or subsystem,
ignoring any differences between the two concepts.

Container Managed Transactions A flavor of EJB where the EJB Container man-
ages the JTA Transaction actions based on the current transactional state and the
Transaction attributes declared for the EJB.

Deployment Any features, issues, concepts, or considerations related to how a COS
instance is installed on a particular machine at a particular site.

Deployment Descriptor A file (usually an XML file that conforms to a particular
Document Type Definition format) that contains the deployment-specific details for
software deployed within the J2EE platform.

Enterprise Archive File (EAR) A JAR file that contains the files needed for a J2EE
application that is contained, deployed, and executed within an Application Server.

Enterprise Java Bean A Java Bean implementing the business logic for a J2EE
application that is J2EE-aware and deployable within an EJB Container.

Enterprise Java Bean Archive File (EJB-JAR) A JAR file that contains the files
needed for an EJB that is contained, deployed, and executed within an EJB Con-
tainer.

Enterprise Java Bean Container (EJB Container) A Container type that supplies
all the J2EE platform-defined operations, features, and facilities necessary to deploy
and execute the EJBs contained within it.

Extensible Markup Language See XML.
Java Archive File (JAR) A single file created using the JAR tool that contains one

or more other files and directories used by the Java Virtual Machine—this is a con-
venient mechanism for bundling several files together within the Java development
and execution runtime environments.

Platform A set of software that provides a well-defined set of operations, facilities,
and functionality that serves as the foundation for components, subsystems, and
other software that runs on top of the platform.

Session Bean An Enterprise Java Bean that represents a client within the Application
Server. Session Beans are useful because EJBs are contained within the EJB con-
tainer, which, in turn, is contained within the Application Server. The actual client
itself is contained within the Application Client Container—not the Application
Server, and most likely not even on the same machine as the Application Server.

Stateful Session Bean A Session Bean that represents a unique conversation between
a particular client instance and a particular Session Bean instance. Stateful Session
Beans need to preserve the conversational state—the Bean’s instance variable values
must be remembered by the Bean after the Bean method invocation returns its results
to the caller.
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Stateless Session Bean A Session Bean that represents a conversation between a
particular client instance and a particular Session Bean instance. Stateless Session
Beans do not preserve the conversational state—the Bean’s instance variable values
are effectively zeroed out after the Bean method invocation returns its results to the
caller.

Subsystem A collection of components and/or subsystems that is part of a larger
system but also a system in its own right.

Transaction Attribute A method of controlling the JTA Transaction actions for a
BMT EJB by specifying one of six possible values for the attribute using a Java
annotation or EJB deployment descriptor.

XML A markup language that uses tagging to indicate semantic details or logical
structure for a set of data content.

REFERENCES

[Bodoff02] Bodoff, S., Green, D., Haase, K., Jendrock, E., Pawlan, M., and Stearns, B., The
J2EE Tutorial , Addison-Wesley, Reading, MA, 2002.

[Gamma95] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns Elements of
Reusable Object-Oriented Software, Addison-Wesley, Reading, MA, 1995.

[Johnson02] Johnson, R., Expert One-on-One J2EE Design and Development: J2EE Design and
Development , John Wiley & Sons, Hoboken, NJ, 2002.

EXERCISES

Complete the following programming exercises.

17.1 Download the J2EE-SKIT and compile, deploy, and execute the example exten-
sion.

17.2 After consulting the vendor-specific documentation and the recipes supplied
with the J2EE-SKIT, modify the deployment details for the example extension
to use different database vendors for each of the Lem databases.

17.3 After consulting the vendor-specific documentation and the recipes supplied
with the J2EE-SKIT, modify the example extension, and deploy the Ddbms
subsystem on a different J2EE platform installation (preferably on a different
machine). Next, move one of the Lem subsystems to another machine.

17.4 Section 4.5.1 discussed query execution strategies, including a triangular control
strategy, as shown in Figures 4.18 (b) and (c). Create a new DDBE project
based on the J2EE-SKIT that implements this triangular strategy for query
execution—this does not need to be based on query optimization details, but
can be either hard-coded to use a particular pattern or controlled by deployment-
specific settings (settings specified in the GDD or in the deployment descriptors).
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Microsoft .NET is software for connecting people, information, systems, and devices.
The Microsoft .NET (“Dot Net”) Framework is an application development,
deployment, and execution environment that is useful for building distributed database
environment projects—that is, a powerful DDBE Platform. Although its official name
uses the term “Framework,” we will usually refer to it as a “platform.” In part, we
do this to avoid confusion with the framework we include inside the Microsoft .NET
Framework-based starter kit (the DNET-SKIT), which we will discuss in Chapter 19.
Also, calling the Microsoft .NET Framework a platform is simply more appropriate
for our purposes—after all, it is a DDBE Platform. Using this nomenclature will
make it easier to compare and contrast Chapters 15–19 with each other and to apply
the concepts from Chapter 14 to this environment.

We will not be making any “blow-by-blow” comparisons between the JMS platform,
the J2EE platform, and the Microsoft .NET Framework-based platform—but we will
mention that these three platforms do share some common aspects. For example, this
DDBE Platform is also defined by specification. Like the other two platforms we just
mentioned, this platform also has multiple implementations including some that are not
implemented by Microsoft. We can even run these platform implementation alternatives
on several different operating systems, including some operating systems that are not
implemented by Microsoft. Our focus here, however, will be limited to the Microsoft
implementations for both this platform and the operating systems on which it runs.

We should also mention that all three DDBE Platforms (including this one) support
messaging services. Of course, even if we did not read Chapter 15, we would suspect
that the JMS platform supported messaging, simply because of how it is named. If
we recognize that the JMS platform is a subplatform of the J2EE platform, then we
should also realize that the J2EE platform supports messaging services—this would be
obvious even if we had not read about Message Driven Beans in the previous chapters.
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Like the J2EE platform, the Microsoft .NET Framework-based platform can be viewed
as having subplatforms contained within it—including one subplatform that supports
Remote Messaging. However, since our purpose in this chapter is to highlight how
this Microsoft .NET Framework-based DDBE Platform can support the DNET-SKIT,
which we will present in Chapter 19, we will not focus on any facilities that are not
directly related to our starter kit. Because this starter kit is similar to the J2EE-SKIT
we discussed in the previous chapter, we will be focusing on Remote-Code Execution
more than Remote Messaging. Similarly, there are many other facilities provided by
this DDBE Platform that we will not address here.

Even with this narrow view of the facilities provided by this platform, the plat-
form is quite impressive. Perhaps the most impressive aspect of this platform is its
simple ubiquitous nature. The Microsoft .NET Framework and its supporting runtime
environment are present (at least in one form or another) on most systems running a
reasonably recent Microsoft Windows-based operating system. Of course, it is possible
that some of the more advanced platform facilities will not be present or configured for
all these deployed environments. Nevertheless, this fact does not diminish the potential
opportunities that this “preexisting” DDBE Platform deployment brings us.

In spite of the near-universal availability that this platform has, there are many
reasons why two different deployments (machines) might have different platform facil-
ities and services available on them—even when they both have the Microsoft .NET
Framework installed. For example, there might be differences in the operating sys-
tems deployed on the two machines in question. Even when both operating systems
are Microsoft Windows-based operating systems, they might not be identical operating
systems. We must remember that there are many different variations within the set of
all available Microsoft Windows-based operating systems. For example, we could be
running operating systems from different product families, such as the Windows NT
operating system, the Windows 2000 operating system, the Windows XP operating sys-
tem, the Windows Vista operating system, or the Windows 7 operating system. Within
each family, there are also different editions from which to choose. For example, the
Windows NT operating system had both “Server” and “Workstation” editions and the
Widows 2000 operating system had separate editions as well (the Windows 2000 Pro-
fessional operating system, the Windows 2000 Advanced Server operating system, and
the Windows 2000 Datacenter Server operating system). It is also possible for the
operating systems to be from different generations, which is only natural as operating
systems evolve and change to meet new consumer demands. These systems are always
changing over time, but not all systems are updated at the same time. Therefore, we
might need to consider the differences between the latest Windows-based operating
system and the previous one (e.g., the differences between the Windows 7 operat-
ing system and the Windows Vista operating system, or the differences between the
Windows XP operating system and the Windows 2000 operating system). It is even
possible for the systems to have different hardware-targeted flavors for some of these
operating systems, including any differences from the CPU manufacturer to hardware
details such as the difference between 32-bit and 64-bit operating systems. Even when
we consider machines that are running the exact same operating system, there might be
differences between the machines due to the specific deployment details for each. For
example, they may have different service pack levels installed or perhaps they have dif-
ferent additional third-party software installed. It is even possible that these machines
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have simply been configured differently—having different services installed, enabled,
or disabled and different options chosen within their system configuration details.

Because the Microsoft .NET Framework is useful and powerful, it is often required
by other, third-party software products. Therefore, our DDBE Platform is often auto-
matically installed as part of the deployment process for those third-party packages. In
spite of this, we might still encounter systems that do not have the platform installed, or
systems where the version of the desired platform facility is not as current as we need it
to be. In these scenarios, we can always connect to Microsoft’s website and download
the latest version that is supported by our Microsoft operating system. We can also
connect to this website and find the latest service packs and hot fixes for the platform.

We cannot possibly cover all the variations and nuances for all the alternative
environments that the previous paragraphs describe. Instead, in this chapter, we will
start our platform discussion by providing a brief overview of the Microsoft .NET
Framework-based DDBE Platform in isolation from most of these considerations.
This overview will focus on the platform architecture and its primary uses rather than
any actual deployment or configuration details. For our purposes, this description will
be sufficient to get the starter kit that we introduce in Chapter 19 to work in our envi-
ronment. After the overview, we will consider how this “vanilla” view of the platform
can be used to fulfill the DDBE Platform Requirements we identified in Chapter 14.

18.1 PLATFORM OVERVIEW

There are several different releases of our DDBE Platform (the Microsoft .NET Frame-
work) currently available and actively being used, just like there are several different
releases of the Windows-based operating systems available and in use. Not all Microsoft
.NET Framework releases will work on all versions of the operating system, however.
The latest release of the platform at this time is Version 3.5, with Service Pack 1 (3.5
SP1), but Version 4.0 is already in the Release Candidate stage, and will soon become
the latest offical release. Version 3.5 (and Version 4.0) will work on the Windows XP
operating system and the Windows Vista operating system, but it will not work on
any older-generation operating systems (such as the Windows 2000 operating system).
The latest release that works on the Windows 2000 operating system is Microsoft
.NET Framework 2.0, which is still available. There is also another release of this
platform available (Microsoft .NET Framework 1.1), but this is a very old version of
the platform.

These different platform releases share a somewhat complicated deployment
relationship with each other. The earlier releases (1.0, 1.1, and 2.0) were separate
bundles that could be installed side-by-side, independently from each other. For
example, it was possible to have both release 1.0 and release 1.1 deployed on the
same system at the same time without any conflicts. This also meant that removing
one release would not affect the other. The later releases are related as subsets and
supersets of each other. For example, the 3.0 release includes the 2.0 release inside
it and the 3.5 release includes both the 3.0 and the 2.0 releases inside of it. For our
purposes, we will mainly be leveraging the functionality and facilities that were first
provided by the 2.0 platform, which are also still supported by later releases of this
platform. We recommend using the latest release available for the operating systems
deployed within our environment. The fact that we mainly use features provided in
the 2.0 release of the platform does not mean that we cannot benefit from the most
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current implementation of those features. These facilities were defined in earlier
versions of the platform because they are so fundamentally useful—often used to
support the newer facilities included in later generations of the platform.

Each new release of the platform is, in many respects, an evolutionary change, rather
than a complete replacement. After all, both portability and interoperability are two
important features of this platform. It would be extremely shortsighted to break back-
ward compatibility completely with each new release! Often, there are minor releases
within the major releases. These are typically “hidden” improvements—improvements
that, for the most part, do not affect the existing development, deployment, or exe-
cution environment in any visible way. The major releases have historically involved
highly visible changes, as well as new and improved facilities and features (i.e., new
or improved “subplatforms” for our purposes). We should always check the documen-
tation provided with each new release for the actual details about what has changed,
what is new, and what might no longer work the same as before.

Our DDBE Platform consists of several different services, subsystems, and facilities.
This is a logical view of the platform—not a physical one. We will not focus on
enumerating or examining all the logical or physical platform details here. Instead,
we will only focus on those logical subplatforms related to the DNET-SKIT and the
custom development that we might do within our DDBE projects deployed on this
platform. Before we can discuss these details further, however, we need to define
some new (and important) terms. Therefore, in Section 18.1.1, we will look at some
of the vocabulary necessary to understand this platform better. Next, in Section 18.1.2,
we will look at the architectural view of the platform. In Section 18.1.3, we will focus
on the development view of this platform. We will finish our platform overview in
Section 18.1.4 when we discuss the deployment details for this platform.

18.1.1 Fundamental Platform-Specific Vocabulary Terms

There are many new terms used in this platform that we have not discussed elsewhere
in the book. However, we will focus on only a small subset of these terms, which
are relevant to our other discussions in Chapters 15–19. In particular, before we can
discuss the architecture in Section 18.1.2, we need to understand some of the terms
that describe the fundamental subplatforms, subsystems, and components within the
architecture. Note that we will ignore the distinctions between these three different
architectural categorizations. Although there are many other terms we need to learn
and understand when working in this platform on a day-to-day basis, we will restrict
ourselves to nine fundamental vocabulary terms (with a few additional terms included
as part of the discussion for each). We strongly recommend reading the online help
for further clarification of these terms and concepts.

The nine fundamental terms we will consider are the following:

• Common Language Runtime (CLR)
• Base Class Library (BCL)
• Common Language Specification (CLS)
• Common Type System (CTS)
• Intermediate Language (IL)
• Managed/Unmanaged Components
• Assemblies
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• Global Assembly Cache
• Application Domains

18.1.1.1 Common Language Runtime The Common Language Runtime (CLR)
is really the heart of the platform in many respects. The CLR manages the runtime
aspects for all software running on top of the platform. In comparison to the other
two platforms we considered, the CLR is analogous to the Java Virtual Machine or
one of the various J2EE Containers in the J2EE platform. When Microsoft .NET
Framework-based code executes, the CLR can manage many important aspects for it,
such as memory management, resource management, and security management. In a
nutshell, the CLR provides deployment and execution services to the components and
subsystems we develop.

18.1.1.2 Base Class Library The Base Class Library (BCL) is a set of
application–programming interfaces (APIs) used to connect the programs that we
develop to the underlying services and subsystems contained in the platform. The
classes and interfaces defined within the BCL can be used to create service providers
as well as service consumers. Note that when we use these terms here, they are
compatible with the concepts of the same name that we reviewed in Section 14.1.2,
and originally introduced in Chapter 1. The BCL provides access to the Common
Language Runtime (CLR), uses the Common Type System (CTS), which we will
discuss in Section 18.1.1.4, and is often used by many of the other subplatforms that
we will not discuss here. In general, the BCL is a set of programmatic constructs
that are bundled into different namespaces (analogous to packages in the Java world).
These constructs conform to the CTS, and the Common Language Specification
(CLS), which we will discuss next. The namespaces used by the BCL all follow an
easy to understand naming convention—we can be confident that any construct in the
“System” namespace (or one of its sub-namespaces) is part of the BCL, or at least
similar to the BCL with respect to its purpose and role within our DDBE projects.

18.1.1.3 Common Language Specification The Common Language Specification
(CLS) is a set of programming language features and rules designed to ensure cross-
language (and, to a certain extent, cross-platform) interoperability. This means that
the code we develop on top of this platform can be implemented in any of several
different CLS-compliant programming languages. For example, we can choose to use
Visual C++, Visual C#, Visual Basic, or any of several other languages—as long
as the language conforms to the CLS. Visual C# is a relatively new language, which
is somewhat similar to C++ and somewhat similar to Java, but different from both
[Chandra05]. Most of the time, we will use a language that is supported by Microsoft
Visual Studio. Microsoft Visual Studio is an integrated development environment (IDE)
that can be used for software development, deployment, testing, and debugging activ-
ities. Many of the details defined for the CLS are important to programming language
implementers and designers. However, many of these details can be safely ignored by
those of us who are mere users of the programming languages. In other words, as we
simply write a program in one of these languages for this platform, there are sophisti-
cated techniques being used and important actions being performed on our behalf by
the platform and our development tools. Even though these things are all necessary
and vital to the programs we are developing and the particular programming language
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we are using, many of them occur “behind the scenes” and “under the covers” from
our perspective.

18.1.1.4 Common Type System The Common Type System (CTS) is vital to the
interoperability between the programming languages that conform to the Common
Language Specification (CLS). In essence, the CTS eliminates many of the data type
representation and implementation differences that normally exist between different
programming languages. There are two different general categories for data types in
the Microsoft .NET Framework: the value types and the reference types. Value types
include the “simple” data types that directly contain their values—such as integers,
characters, bytes, and floating-point numbers. Reference types are data types that store
a reference to the memory location where the value is ultimately stored. References are
similar to pointers, but the concepts are not equivalent. While pointers are essentially
mere-memory addresses, references are a much more sophisticated concept in any
language, and in the CTS. Reference types include self-describing types, pointer types,
and interface types. Self-describing types are types that can be used to determine their
own reference type information (e.g., both arrays and classes are self-describing types).

The primary distinction between value types and reference types is demonstrated by
considering how we compare the two different variables defined using these types.
Suppose we have two variables (A and B) that are defined using a value type. If
we compare these variables and find that they both contain an integer value of zero
(A = 0 and B = 0), then we consider the variables to be equal and interpret this by
saying that we have one value (the same value) stored in two different variables.
Now, suppose we have two more variables (C and D) that are defined using a refer-
ence type. We can compare these variables using one of two different mechanisms.
The first mechanism considers the location that each variables references. If this
location is the same for both variables, then the variables are both referring to the
same thing and the variables are therefore identical. For example, if both C and D
referred to our variable A, then they would both refer to the same location (our A
variable). The second mechanism considers the content stored at the location that
each variable references. Obviously, if both variables refer to the same location,
then the content stored there will once again be equal. For example, if both C and
D referred to our variable A, then the content they both refer to would be the value
stored in the A variable. Since the content stored in the A variable is equal to the
content stored in the A variable, this second mechanism would consider C and D to
be identical for both the first mechanism and the second mechanism in this scenario.
What happens if our reference type variables refer to different locations? Suppose C
referred to the A variable but D referred to the B variable. Now, when we perform
the first comparison mechanism, because the variables refer to different locations,
the first comparison mechanism considers them to be different from each other. If
our A and B variables both contain the same value (e.g., if A = 0 and B = 0),
then the second comparison mechanism will consider the two variables (C and D)
to be identical to each other because their contents are identical. This is far more
complicated than the simple value type scenario—depending on which mechanism
we are using, we can consider two reference type variables to be identical to each
other and different from each other at the same time!
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The CTS specifies many other details that ultimately enable powerful interoperability
for the data types defined in different programming languages. For example, a class
implemented in Visual Basic can inherit from another class that was implemented in
Visual C#. All types in the CTS inherit from (extend) the “System.Object” class. The
CTS also provides a programming language independent understanding of namespaces.
This is not necessarily the same as the programming language’s understanding of the
namespace concept, but is implemented in such a way that each programming language
vendor can translate between the native programming language namespace concept and
the CLS/CTS understanding of namespaces. Implicitly, because the types in the CTS
are programming language neutral and programming language independent, they cannot
be stored in a programming language specific format. Instead, we use a new format,
called the Intermediate Language to represent these types, which is the vocabulary
term we will consider next.

18.1.1.5 Intermediate Language The source code we write for this platform must be
written using a programming language that conforms to the Common Language Spec-
ification (CLS) and Common Type System (CTS). This source code is not compiled
directly into machine code the way our “traditional” programs are usually compiled
on other platforms. Instead, the code is compiled into a special format called the
Microsoft Intermediate Language (MSIL), the Common Intermediate Language
(CIL), or simply the Intermediate Language (IL) [Costa05]. Regardless of which
name we choose to use for this format, it is the final format generated during our
development activities. Just before the Common Language Runtime (CLR) is ready to
execute our code, it uses another subplatform, the Just-in-Time (JIT) compiler. The JIT
compiler translates the IL format into a natively executable format. Figure 18.1 depicts
how the IL code uses the CLS/CTS to interface with the Base Class Library (BCL) and
access the functionality contained within the platform. The outer layer shown in this
diagram represents our code that is written in a programming language and compiled
into the Intermediate Language. The IL sits on top of/works through the CLS and CTS
to access the BCL. The BCL, in turn, wraps the CLR services and facilities, effectively
wrapping access to all the underlying services provided by this DDBE Platform inside
the BCL.

18.1.1.6 Managed/Unmanaged Components Once our source code has been com-
piled, we can refer to it as a module. A collection of one or more modules can be
considered as a single unit, and referred to as a component. This term is compatible
with our definition of a component or subsystem (COS) from Chapter 1, but it also
contains some platform-specific details. In particular, the Microsoft .NET Framework
considers all components to be managed components or unmanaged components.
Managed components are compiled into the Intermediate Language (IL) format and
execute within the Common Language Runtime (CLR) using the Common Language
Specification (CLS), Common Type System (CTS), and Base Class Library (BCL) as
we discussed in the previous sections. Unmanaged components are not compiled into
the IL format. Each of the “traditional” programs we alluded to in Section 18.1.1.5 is
considered as an unmanaged component. All code that is not based on the Microsoft
.NET Framework is considered “traditional” in this respect. It is also possible to cre-
ate unmanaged components that are based on the Microsoft .NET Framework—even
though they are not managed themselves, they can optionally load the CLR and
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Figure 18.1 The IL, CLS/CTS, BCL, and CLR

use it to execute managed components on their behalf. This technique provides us
with a useful bridging mechanism that has many practical applications within the
platform.

Version 6.0 of the Microsoft Internet Explorer is an example of an unmanaged
component that uses the bridging mechanism we just discussed. Even though this
component is not compiled into the IL format, it can host the Common Language
Runtime (CLR). This hosted instance of the CLR can then execute Microsoft .NET
Framework-based components on behalf of Microsoft Internet Explorer. This is
very useful when connecting to web pages that contain or use managed compo-
nents. Other versions of Microsoft Internet Explorer might be implemented as a
managed component (rather than as an unmanaged component)—which is why we
explicitly mentioned Version 6.0 here. We knew that this version was not imple-
mented as a managed component, and think that this version will probably never
be reimplemented as a managed component in the future, since it is no longer the
most recent version commonly in use.

It is also possible to use a technique known as a wrapper to allow managed com-
ponents to invoke unmanaged components, and vice versa. This is different from
the CLR-hosting option we discuss in the box. We mention this detail here for the
sake of completeness, as well as in recognition of the fact that wrappers might be
employed within our DDBE projects even when we do not use them directly ourselves.
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For example, if we needed to connect to a database environment that did not have a
Microsoft .NET Framework-based database driver available for it, we might employ a
wrapper to enable our managed components to use an unmanaged database connectivity
component. Similarly, the database vendor might choose to implement their “official”
Microsoft .NET Framework-based connectivity component by using a wrapper “behind
the scenes.” Having said that, we think that most of the DDBE projects we will
develop have very little need for explicitly avoiding managed components. Even if
some component in our DDBE project did not need to be implemented as a managed
component, there are very few circumstances in which such a component could not
be implemented that way.

18.1.1.7 Assemblies When a file containing some of the source code for a managed
component is compiled into the Intermediate Language and saved into a new file, we
call this new file a module. However, this is not the primary deployment bundle within
the platform. That deployment bundle is called an assembly, and it is written in a file
format called the Portable Executable (PE) format. Although there are a few different
deployment alternatives available for us to choose from, an assembly is usually created
as a single file that contains several important things. Obviously, it contains all the
Intermediate Language modules compiled from the source code for the component or
subsystem that this assembly is supposed to deploy. The assembly also contains the
necessary metadata (including version, security, and deployment details) for the code.
In addition to the resource details for the assembly (such as database connectivity
details and application-specific properties), this metadata includes the assembly’s name
(different from its file name) and the version information for the “assembly as a whole.”

Optionally, we can assign a “strong name” to the assembly. The strong name for
an assembly consists of the textual name and version number we just mentioned, com-
bined with optional culture information, a required public key, and a required digital
signature. The strong name serves two fundamental purposes within the platform. First,
the Common Language Runtime (CLR) can use the strong name to uniquely identify
the assembly, and even use it to compare two assemblies claiming to be the same
thing. Second, the strong name provides the CLR with a mechanism for verifying the
assembly contents and identifying if/when the assembly has been tampered with. The
underlying techniques used by the platform to implement this concept are largely hidden
from us developers, aside from a few addition development activities that we must per-
form and a few restrictions we must obey when strongly named, managed components
are used in our projects. Even though the developer must consider the ramifications of
using assemblies with strong names (and act accordingly), the developer does not need
to know any public key implementation details. Similarly, these implementation details
are largely unnoticed by the average (computer/application/component/subsystem) user.

Although strong names are useful with respect to the identification and integrity
issues concerning an assembly, strong names do not include details necessary to ensure
trust. We can address this issue by signing our strongly named assemblies using a
Digital Certificate. By signing an assembly that has a strong name, we can leverage
the Authentication and Nonrepudiation cryptographic functions that the underlying
public-key-based platform facilities implement on our behalf. Although we do not
have access to the implementation details for these facilities, we can be certain that
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they are implemented using mechanisms and techniques similar to those we discussed
(Digital Certificates, Digital Signatures, etc.) in Section 9.1 of Chapter 9.

18.1.1.8 Global Assembly Cache The Global Assembly Cache (GAC) acts as a
machinewide container for shared assemblies. There is only one GAC on each com-
puter where the CLR is installed. Usually the GAC is located in a directory that is
contained within the “Windows directory.” The “Windows directory” is often reflected
in the “WinDir” and “SystemRoot” environment variables. Its precise location is a
deployment-dependent value that can vary based on the specific Microsoft Windows-
based operating system that is installed and the details that were specified when the
operating system was installed. Usually, we can determine this location in the com-
mand shell, by simply typing “echo %SystemRoot%” or “echo %WinDir%” without
the quotes. This command will print the name of the “Windows directory.” Under the
“Windows directory,” we should find a subdirectory named “assembly”; this is the GAC
directory. The GAC directory and the assemblies it contains are subject to the access
control list (ACL) restrictions implemented by the operating system (file permissions).
There are also security metadata details deployed within each assembly and Microsoft
.NET Framework security settings for the whole machine that control the access to
the assemblies deployed via the GAC. The GAC provides a convenient location for
deploying assemblies that are used systemwide or at least shared by many different
programs, components, and subsystems.

This is somewhat analogous to the way dynamic link libraries (DLLs) and
executables (EXEs) are deployed in the “system” and “system32” directories,
which are also found under the Windows directory—but the GAC is a much
more sophisticated and powerful deployment mechanism than that scenario. As we
mentioned before, assemblies can optionally have a strong name—those in the GAC
are required to have a strong name. We also mentioned that the metadata contained
within an assembly includes many important deployment details, including the
assembly name and version details.

The combination of the strong name and these deployment details can prevent many
of the headaches that the older mechanism caused. In the old technique, if a shared
DLL or EXE was updated by some new application installation/deployment, there was
a potential risk that other existing applications might be broken by the act of replacing
the old, shared files. With the GAC, however, we do not need to replace the old files;
instead, we install a new assembly “side-by-side” with the old one. The decision to
continue using the old assembly or to switch to the new assembly is controlled by the
deployment and configuration details for each application, as well as the machinewide
defaults for these settings. The traditional approach did not offer such flexibility.

18.1.1.9 Application Domains Whenever a managed component is executed, the
component runs inside a logical process called an Application Domain. This is
true regardless of the specific deployment alternative we choose when we deploy
the managed assembly (GAC versus non-GAC deployment, signed versus unsigned
assemblies, assemblies with or without strong names). Each Application Domain
acts like a virtual machine, allowing the components inside the Application Domain
to interact directly with each other but preventing unwanted interaction between
the components that are inside different Application Domains. Within the same
Application Domain, components and assemblies can incur less overhead when they
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interact with each other, but they can also potentially have a direct impact on each
other. For example, if one component fails (crashes) it can cause the other components
within the same domain to fail as well. Components that are in separate Application
Domains can also interact; however, they might incur more overhead when they do.
This overhead should be less than the overhead we encounter when remote execution
is used. The lowest overhead possible occurs whenever the components are in the
same Application Domain. Separate Application Domains can be started and stopped
independently from each other—provided we write our code correctly. This also
means that a failure in one Application Domain does not necessarily cause a crash in
the other Application Domain, or a crash at the system level. Each assembly must be
loaded into an Application Domain before it can be executed. If the caller code does
not do this before the call is made, then the Common Language Runtime (CLR) will
load the other assembly into the caller’s Application Domain by default. When an
assembly is used by more than one other Application Domain, the assembly’s code
(but not its data) can be shared by all the other Application Domains.

18.1.2 Architectural Overview

Within the architecture for this DDBE Platform, there are several subsystems, which
we have already briefly discussed in the process of defining the necessary vocabulary
terms. At the core of the platform’s architecture, the Common Language Runtime
(CLR) manages the execution for all the managed components. These components are
deployed within assemblies, which are stored as files implementing the PE format.
These PE files are located either in the GAC or in any of the normal locations we
would expect to find executables on the computer—in other words, they can also be
stored in any folder/directory, just like the “traditional” applications and DLLs.

We can categorize Microsoft .NET Framework-based applications as being either
client applications or server applications. Client applications are similar to “traditional”
applications and can use any of the normal user interface mechanisms, including
graphical user interface (GUI) techniques or console interfaces (using command-line
arguments and output to a command shell). Client applications can also include ActiveX
controls (or their Microsoft .NET Framework-based replacements, which are called
Windows Form Controls). In addition to the “traditional” deployment and execution
mechanisms available on the client machine, client applications can be deployed on
a web page. Server applications can be accessed as XML web services, ASP.NET
services, or using any of the other “traditional” execution mechanisms available on the
server machine.

There are several facilities (some of which could be considered subplatforms for
our purposes at least) that are used by the Microsoft .NET Framework behind the
scenes. As we already discussed, the CLR manages the execution for all managed
components. We also mentioned another facility, the JIT compiler, which converts
Intermediate Language (IL) into native code prior to execution. Similarly, we discussed
how the Base Class Library (BCL) is essentially the API for the CLR and the platform
as a whole. There are also some additional facilities, which we can consider to be
sitting on top of the BCL. These facilities can optionally be used by the components
deployed on this platform, depending on their specific purpose and deployment details.
For example, the Winforms, ASP.NET, and ADO.NET facilities provide APIs to GUI
controls, web-related controls, and database controls, respectively.
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Additional services can optionally be present in our DDBE Platform depending on
the requirements for the machine within our environment. For example, most client
machines will not need many additional services, but a web server will most likely have
the Internet Information Services (IIS) installed. It is also possible that one or more
machines in our environment will have the Exchange Mail Service installed. Obvi-
ously, our database servers would have some form of database management system
(DBMS) installed—Microsoft SQL Server is an example of one type of DBMS com-
monly found in such an environment. Such a machine might also include several other
services such as the database engine service, analytical processing service, reporting
service, integration service, and other related facilities. Another service that is com-
monly found on machines that act as database servers is the COM+ subplatform. Such
a machine would probably have the Microsoft .NET Framework-based components
for COM+ access (found in the “System.EnterpriseServices” namespace) installed as
well. By using the BCL supplied “System.EnterpriseServices” namespace and more
specifically the “ServicedComponent” class, we can use the COM+ subplatform to
create components that access the distributed transaction processing facilities available
within the platform.

All of these services and subplatforms are either accessible through native interfaces
and through the basic Microsoft .NET Framework-based BCL facilities, or through
some other higher-level facilities/subplatforms. There are several such higher-level
facilities included in the later versions of the platform that were not present in ear-
lier releases. For example, Version 3.0 of the Microsoft .NET Framework includes
three “foundations” that were not present in Version 2.0. These “foundations” are
the Windows Presentation Foundation (WPF), the Windows Communications Foun-
dation (WCF), and the Windows Workflow Foundation (WF). Similarly, Version 3.5
of the platform includes two new subplatforms that were not present in Version 3.0:
namely, the ASP.NET AJAX subplatform and the Language Integrated Query (LINQ)
subplatform.

18.1.3 Development Overview

When we develop Microsoft .NET Framework-based components and applications,
we can choose any programming language that conforms to the Common Language
Specification (CLS) and Common Type System (CTS). The Intermediate Language
(IL), Common Language Runtime (CLR), Base Class Library (BCL), CLS, and CTS
even allow us to mix and match different programming languages within the same
subsystem or component. Having said that, we think it best not to make the code
development process more complicated than necessary. While certain components,
applications, or developers might have a clear preference for one language or another,
we should consider the software maintenance issues carefully before we introduce new
languages into our projects. While it is true that the platform and the development
environment can easily handle multilanguage development, deployment, and execution
scenarios, it can be confusing and frustrating for the people involved. This is especially
true when we are debugging our DDBE project code.

There are several rules and suggestions to consider when developing code for this
multilanguage environment. Although we will not attempt to present any such details
here, we will say that the online documentation, dedicated websites, user forums, and
books should be consulted before we embark on any serious development project.
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Many of the guidelines are really common sense—except that we normally would not
consider them necessary in a mixed-language environment. For example, because we
now have to consider how other components will interact with our component even
when they are developed in different languages, we should try to avoid using more
global/publicly visible constructs than necessary. Similarly, we should place even more
emphasis on “programming to interface,” which is the informal name for the general
technique of exporting public interfaces and using them rather than directly referencing
the class that implements a particular publicly accessible method. In this case, using the
interface makes it easier to reimplement the code later on using a different programming
language or to support multiple implementations at the same time. Although both of
these examples are good practices to follow in any environment, we would usually not
apply them across code written in different programming languages because different
programming languages do not typically interoperate this way outside this platform.

When we create our Microsoft .NET Framework-based components, we should be
aware of the execution issues we discussed in Section 14.2.3, particularly the multi-
tasking considerations. Earlier, we mentioned that the Application Domain acts like a
virtual machine for the components executing within it; now we can also emphasize
that a given thread of control is active within only one Application Domain at a time.
As a component executes, a given thread of control can “travel” across domains, and a
given domain can have multiple threads. While those details sound like they should be
discussed in the next section, which considers deployment details, we mention these
facts here to emphasize that the threading model is somewhat different from most “tra-
ditional” scenarios, and therefore must be addressed very carefully during the software
design and implementation processes.

18.1.4 Assembly Deployment Overview

An assembly is somewhat similar to a dynamic link library (DLL) or executable (EXE)
file used by the older, “traditional” applications that are not based on the Microsoft
.NET Framework. In many respects, the assembly represents the “unit of work” for
deployment considerations in this platform. For example, security permissions are
defined for an assembly (applicable to all modules contained within it as a whole).
Similarly, the assembly acts as the boundary between these security settings—we
can consider different assemblies to represent deployments with potentially different
“security clearance levels” within our environment. Assemblies also act as a scop-
ing mechanism, allowing us to reuse the same type names for different types across
different assemblies—if we want to, we can also share types across them.

Assemblies can be private or shared, and the shared assemblies can be deployed
using several different alternatives. It is beyond the scope of this section (and this
chapter) to discuss all the alternatives or all the deployment issues and settings neces-
sary to implement them. Instead, we will merely provide a brief overview here. Shared
components can be pooled, deployed “side-by-side” with other versions of themselves,
and involved in transactions (either manually or automatically). They can be referenced
by both local and remote callers (in various ways) and can be configured either to use
the default deployment behaviors for the machine or to use deployment behaviors that
are specific to a particular deployment of a particular instance of the assembly. For
example, by default, each of our assemblies will be deployed with a versioning policy
that only allows them to use a specific version of another assembly (as configured
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within its metadata). By altering the appropriate configuration details, we can change
or override this default versioning policy to allow the assembly to use a newer version,
an older version, or simply a different, specific version of another assembly.

Each assembly deployed within the platform can specify a version identifier as
part of its deployment. This version identifier can be thought of as a string of the
form “<major>.<minor>.<build>.<revision>”; for example, we can release an
assembly as version “1.0.0.0,” “1.1.0.0,” or even “1.2.345.6789.” The values stored
for each placeholder in this version “string” are under our complete control.

Often, the changes in the value of “<major>” are used to indicate a visible
(and perhaps incompatible) change in the assembly. Changes in “<minor>” typ-
ically represent a visible change that is not radically different from (or breaking
compatibility with) the existing behavior of a previous version sharing the same
“<major>” version. These are merely conventions, however, not strictly enforced
rules. The “<build>” and “<revision>” places are often used to represent new
releases or updates that may or may not contain any visible changes at all. These
last two places can even be managed automatically within the development pro-
cess by specifying the “AssemblyVersion” value as “<major>.<minor>.*”; for
example, using a value of “1.0.*” will automatically use the default build and
revision numbers.

18.1.4.1 Configuration We can control many deployment details using the Microsoft
.NET Framework configuration facilities. For example, as we discussed earlier, we
consider versioning to occur at the assembly level of detail. This enables the “side-by-
side” execution of different versions of the same assembly on the same computer at the
same time. This is very different from the deployment and execution scenarios that we
used for “traditional” applications in a Windows-based operating system environment.
When our managed components are deployed, they can specify rules controlling which
version of an assembly should be used. In fact, we can also specify which version of
the Common Language Runtime (CLR) should be used. These details are not hard-
coded into the application, and they are not stored systemwide in the window registry.
Instead, these details are specified within one of the standard configuration files.

For our purposes here, we are focusing on three standard types of configuration files
used within the platform:

• Machine configuration file
• Application configuration file
• Security configuration

The machine configuration file is named “machine.config” (not the machine’s host-
name but the literal word “machine”). It is deployed within the “config” subdirectory
of the CLR installation path. Typically, the installation path points to a subdirectory
under the “%SystemRoot%” directory we mentioned earlier, that is, inside the “Win-
dows directory.” Within the “Windows directory,” we will see another directory named
“Microsoft.NET,” which in turn will contain a directory named “Framework.” In this
“Framework” directory, we will possibly see several subdirectories for the various ver-
sions of the platform that we have installed on this machine (each subdirectory is named
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something like “v2.x.y,” where the “2” reflects the major release number of the platform
and the “x” and “y” reflect the minor release numbers). Finally, within this version-
specific directory, we will find the machine configuration file (“machine.config”). This
file specifies details for machinewide assembly building, “builtin” remoting channels,
and ASP.NET. When an assembly is run, this file is consulted first, looking for the
appropriate “<appSettings>” section; then any user-defined locations are consulted;
and lastly, the application configuration file (if there is one) is consulted.

The application configuration file is named differently depending on the host type
where the application is deployed. If the assembly is hosted within an executable pro-
gram (a file with the “.exe” extension), then assembly is “exe hosted,” and the applica-
tion configuration file is named the same as the executable file but with the “.exe.config”
extension. If the application is hosted by ASP.NET, then the application configuration
file is named “web.config” and its location is inherited from the URL for the web
application (analogous to being in the same directory as the assembly, it is in the same
“URL directory”). If the assembly is hosted within a browser (like Microsoft Internet
Explorer), then a special element within the file launching the assembly will point to the
configuration file. Once again, this file must be in the same location as the assembly.

The security configuration details are controlled at the machine, user, and enterprise
levels by using the “Code Access Security Policy Tool” (implemented in an executable
named “caspol.exe”). The directory containing this tool is not necessarily found within
our “PATH” environmental variable. This tool is located within the same subdirectory as
the “machine.config” file we discussed earlier. We can also use the “.NET Framework
Configuration Tool” (found in the same directory as “caspol.exe”), but this tool is
usually accessed via the icon in the “Administrative Tools” area found underneath the
“Control Panel” (or similar facility). While the security settings (and other configuration
details) are very important to a real-world deployment, we will not discuss any of the
security or other configuration specifics here. Instead, we recommend using the online
help as a primary source for further details.

18.1.4.2 Assembly Deployment Alternatives There are many deployment alternatives
available to us within the platform—far too many for us to cover completely here.
In the previous section, we mentioned that an assembly can be “hosted” within the
Common Language Runtime (CLR). We also said that an assembly could be hosted
within an instance of the CLR that is itself being “hosted” by another application such
as a web browser. An assembly can also be hosted by ASP.NET. In Section 18.1.1.1,
we mentioned that the CLR acts as the ultimate container for our deployed assemblies,
even when the CLR is hosted by another application, such as the web browser scenario
we just considered. Aside from the container alternatives we just mentioned, there are
also many different configuration options that can control our assembly’s deployment
and execution. Because the issues, details, and trade-offs for these considerations are
beyond our scope here, we will focus on only one important aspect, which we first
mentioned in Section 18.1.1.7—namely, strong names.

As we discussed earlier, an assembly with a strong name has many desirable
qualities: it can be uniquely identified by the CLR, it can be deployed side-by-side with
different versions of the same component without any unpredictable side effects, it can
be verified (checked for tampering), and optionally it can even be signed. However,
there are some drawbacks to consider before we decide to use a strong name for all
our assemblies. We will look at three different aspects of these considerations in this
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section. In particular, we will focus on these considerations, based on three different
deployment alternatives. Although this does not encompass all possible scenarios or
all possible issues, it serves as a good introduction to the concepts and covers many of
the situations we are likely to encounter in a typical academic research DDBE project.

The three deployment alternatives we will consider in the subsequent sections
are the following:

• Deploying a GAC, strongly named assembly
• Deploying a COM+, strongly named assembly
• Deploying a private, strongly named assembly

18.1.4.3 Deploying Shared Assembly Shared assemblies must have strong names.
Shared assemblies cannot load types from private assemblies—this would cause a
shared construct to depend on a private construct. This is forbidden because it would
also potentially circumvent the verification (and optional signing) by essentially inject-
ing private code into the shared code. Shared assemblies can be deployed in the same
manner as a private assembly. Although the Microsoft .NET Framework does not pre-
vent this, the normal deployment mechanism for a shared assembly is different from
the mechanism used for a private assembly. In particular, shared assemblies are typi-
cally deployed using the GAC. If the shared assembly contains a class inheriting from
(extending) the “ServicedComponent” class, as we discussed in Section 18.1.2, then
it is deployed differently because it is a component leveraging functionality from the
COM+ subplatform. We will briefly consider these two alternatives in the next two
subsections.

Deploying a GAC, Strongly Named Assembly In general, most of our assemblies will
not be deployed in the GAC. The GAC should be used only for those components
that are truly shared by many different projects. We should not deploy assemblies in
the GAC when they are merely used by multiple components within the same project.
Assemblies can be installed into the GAC via custom installation or setup programs,
using the “Global Assembly Cache Tool” (gacutil.exe) or by simple file copy/drag and
drop actions where the GAC directory is the destination directory/folder.

Deploying a COM+, Strongly Named Assembly Serviced Components (the classes in
assemblies that inherit from the “ServicedComponent” class) can leverage the COM+
facilities like object pooling and distributed transaction management. These assemblies
are shared assemblies, but they are not always deployed in the GAC. When the assem-
bly is hosted by the Enterprise Services facility (DLLhost.exe), it can be deployed in
the GAC, and usually should be. If the assembly is actually a server application, then
it should be installed into the COM+ applications. This means that it can be managed
via the “ComponentServices” icon inside the “Administrative Tools” area underneath
the “Control Panel.” If the assembly acts as a “Library Application,” then it does not
need to be deployed using either the COM+ applications area or the GAC.

18.1.4.4 Deploying a Private Assembly The term “private assembly” is used to refer
to any assembly that is not deployed in any of the “special” ways we just discussed.
In other words, a private assembly is deployed in a manner that is similar to the more
“traditional” deployment mechanisms used on the Microsoft Windows-based operating
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systems, but it is not quite the same deployment mechanism. In particular, since we
are still working with an assembly, and we are still deploying the assembly within
the Microsoft .NET Framework, there is no need for the registry activities that usually
accompany “traditional” deployments. These assemblies can be deployed as DLLs or
EXEs and copied into application-specific directories. The term “private” does not
mean that the assembly cannot be referenced and used by other assemblies (a DLL
that could not be referenced by any other assembly would be completely worthless).
Instead, the term “private” refers to the fact that the assembly is not deployed using
any deployment mechanism that explicitly allows other projects to easily share it. In
other words, it is used privately by the application (typically an EXE) with which it
was deployed, but easily not used by any other applications. Private assemblies can
optionally have a strong name, but they do not need to have one. We will consider
both of these cases in the next two sections.

Deploying a Private Assembly with a Strong Name There are several reasons why we
would choose to use a strong name with our private assembly. For example, we might
use a strong name for our private assembly if we think that the assembly might be
used as a shared assembly at some point in the future. However, the real reason for
using a strong name with a private assembly is to take advantage of the benefits that
can only be provided by a strongly named assembly. In particular, we would want to
use a strong name with our private assembly to make the assembly more tamperproof
and to establish trust with the assembly. Using a strong name will enable verification,
which essentially depends on the notion of identity. If we also want to establish trust
and nonrepudiation for this assembly, we must also use signing, and we cannot sign
an assembly unless the assembly already has a strong name. Therefore, using a strong
name is the first step toward a more secure assembly.

Deploying a Private Assembly Without a Strong Name Private assemblies can also
choose not to have a strong name, in which case they do not have the benefits we have
already discussed. When our private assemblies do not have a strong name, they do not
require additional development and deployment steps (such as generating the strong
name). If the assembly will never be shared and does not need the added security
we mentioned in the previous section, then we can forgo the strong name option.
Arguably, even though working with strong names is not that difficult or cumbersome,
it would be somewhat foolish (and certainly unnecessary) to require strong names
for all our assemblies. This is precisely why we might choose to use this option for
at least some (if not all) of our DDBE project assemblies. This deployment option is
certainly acceptable for those assemblies that we intend to use only in proof-of-concept,
prototype, academic, research-only, or simply “nonproduction” projects.

18.2 SUPPORT FOR DISTRIBUTED PROCESS PLATFORM
REQUIREMENTS

The Microsoft .NET Framework-based DDBE Platform includes several alternatives
for implementing the Distributed Process Platform Requirements we discussed in
Chapter 14 (Section 14.3). In this section, we will provide a brief overview of the
facilities it provides. Because we can also use third-party middleware, as well as



680 THE MICROSOFT .NET PLATFORM

“traditional” facilities, the actual alternatives for each of these requirements includes
many options that we do not even mention here. Recall that the requirements in this
category are focused on distributed processing, and, in particular, we will consider
the platform options for satisfying the Remote-Code Execution Requirements, Remote
Messaging Requirements, and Directory Services Requirements.

18.2.1 Remote-Code Execution Requirements

Recall that Remote-Code Execution is a set of features and functionalities that enable
one component or subsystem (COS) instance (the caller) to call procedures or invoke
methods that are implemented within another COS instance that is deployed on a
different machine (the callee). We refer to the COS making the calls as the Local
COS. We refer to the COS that is being called as the Remote COS. The relationship
is not necessarily symmetrical. Although our Local COS can call methods within our
Remote COS, the Remote COS does not necessarily have the ability to invoke methods
within our Local COS. This means that the caller can always invoke messages in the
callee, but the callee usually does not invoke methods in the caller.

In this platform, there are several implementation alternatives to choose from
for satisfying the Remote-Code Execution Requirements. In particular, we can use
ASP.NET (for web-based components) or a particular flavor of “.NET Remoting”
such as HTTP, or TCP. The term “.NET Remoting” is the official term for these
protocol-flavored approaches. We can also implement Remote-Code Execution within
this platform via XML web services using SOAP. Since our starter kit will not be
implemented as web-based components, and since we have already discussed SOAP,
in Section 16.2.1.2, we will only consider .NET Remoting in this section.

18.2.1.1 .NET Remoting When we use .NET Remoting, the caller (Local COS) is
usually referred to as a client, while the callee (Remote COS) is referred to as the
server. When the caller requests a remote object, the platform provides two different
mechanisms for satisfying the request. The object returned to the request can be a copy
of the server object or it can be a reference to the server object. If a copy of the server
object is used, then the server object is merely sent to the caller (marshalled by value),
which means that the methods invoked on the callee are actually executed on the client
machine (the machine where the Local COS is deployed). If a reference to the server
object is returned (marshalled by reference), then the methods invoked on the callee
will be executed on the server object’s machine (the machine where the Remote COS
is deployed). We discussed marshalling and unmarshalling in Section 14.3.1.1, and we
discussed reference types within the Common Type System (CTS) in Section 18.1.1.4.
The two scenarios we just discussed are essentially the combination of those two con-
cepts with additional functionality being provided by the .NET Remoting subplatform
facilities. The second scenario is the situation we are most interested in for DDBE
development, at least most of the time. There are many options to choose from and
restrictions to follow when creating a Remote COS using .NET Remoting.

While the detailed discussion is beyond the scope of this chapter, many of the
relevant details are described very clearly in the online documentation for the Microsoft
.NET Framework-based platform. We will briefly summarize the basic concepts here.
We say that a server (remote) object is “consumed” by a client and “exposed” by a
server. The server object can be client activated (referred to as activated) or server
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activated (referred to as wellknown). The lifetime of an activated server object is
determined by the client. The lifetime of a wellknown server object is classified as
being either a singleton or singlecall. A singleton server object will use a single
instance for all client requests, while a singlecall server object will use a separate
instance for each request.

18.2.2 Remote Messaging Requirements

As we mentioned earlier, the platform provides several facilities and subplatforms. One
of these facilities is the Microsoft Message Queuing (MSMQ) service. This facility can
be used for Remote Messaging and in many respects is similar to the Java Message
Service (JMS), which we discussed in Chapter 15. The platform also provides access
to lower-level networking constructs and facilities, including sockets and channels. We
can also use the .NET Remoting and marshalled by value server objects we discussed
in the previous section to implement Remote Messaging. However, since the DNET-
SKIT (like the J2EE-SKIT) is not focused on Remote Messaging, we will not discuss
any of these facilities further.

18.2.3 Directory Services Requirements

As we discussed in Section 14.3.2, the Directory Services Requirements encompass
three important subservice-based requirements: the Naming Service Requirements, the
Registration Service Requirements, and the Lookup Service Requirements. The plat-
form provides all of these services, although they are not necessarily referred to in
this manner. For example, the Global Assembly Cache (GAC) provides a convenient
container for shared assemblies, and the assemblies within the GAC must have strong
names. Recall that strong names uniquely identify an assembly to the Common Lan-
guage Runtime (CLR). Therefore, these two subplatforms are one example of how the
platform provides Naming, Registration, and Lookup services to local components or
subsystems. Similarly, the .NET Remoting facilities we discussed in Section 18.2.1
can use Uniform Resource Locators (URLs) to connect client objects to server objects
deployed on other machines. When the server objects are implemented to allow this
access, the platform can use these three concepts together to provide a powerful imple-
mentation that satisfies the Directory Service Requirements, including the support for
remote components and subsystems.

There are other subplatforms and facilities available that can satisfy this DDBE Plat-
form Requirement. We will not discuss them in detail here, but we will mention some of
them briefly. The web services support within the platform includes support for Univer-
sal Description, Discovery, and Integration (UDDI) and Web Services Description
Language (WSDL), both of which we have discussed previously. Other examples of
facilities that satisfy these requirements include the Enterprise Services facility we men-
tioned in Section 18.1.2 and the Service Components (leveraging COM+ functionality)
facility, which we mentioned in Section 18.1.4.3.

18.3 DISTRIBUTED DATA PLATFORM REQUIREMENTS

The platform also includes several alternatives for implementing the Distributed Data
Platform Requirements we discussed in Chapter 14 (Section 14.4). In this section,
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we will briefly provide an overview of the platform provided facilities. The platform
can leverage functionality from “external” environments and facilities that are not part
of the Microsoft .NET Framework-based platform per se, including the underlying
Microsoft Windows-based operating system facilities and other, nonoperating system
facilities as well as other sophisticated systems. For example, the platform can leverage
external systems such as those compatible with the Lightweight Directory Access
Protocol (LDAP) service, which we have briefly mentioned before in both Chapters 9
and 16. We will not discuss any of these “external” facilities in detail here because
those details would vary depending on which implementation alternative was used as
well as how it was configured and deployed. Nevertheless, it is important to recognize
that the platform can be integrated into these environments in addition to the facilities
it natively provides.

18.3.1 .NET Security

We have already mentioned security concepts both implicitly and explicitly through-
out this chapter. For example, we discussed the security configuration facilities in
Section 18.1.4.1. We also implied that there were powerful cryptography, authentica-
tion, and authorization facilities being used through the combination of the configu-
ration tools and the underlying support for strong names and certificates within the
platform. At several points, we discussed some aspect of the platform that relied on
underlying security facilities, such as the existing operating system security facilities
for logins and account management. We also mentioned how other operating system
facilities, such as access control lists (ACLs), interact with platform facilities such
as the GAC, to provide security to the platform. Although we will not discuss the
security details further, there is also support for other security constructs found in the
“System.Security” namespace of the Base Class Library (BCL).

18.3.2 ADO.NET Database Connectivity

In addition to the “traditional” database connectivity options usually found within
a Microsoft Windows-based operating system, the platform also provides its own
database connectivity subplatform. The Active Data Objects .NET (ADO.NET) sub-
platform provides database connectivity to managed components. Strictly speaking,
the actual database access might be implemented using unmanaged components that
are wrapped inside a managed component, or they could be implemented directly as
true managed components. From our perspective, these differences are not particularly
relevant most of the time. The more important consideration is the simple ease with
which we can access databases from different vendors through a common interface,
namely, the ADO.NET types and methods exposed via the Base Class Library (BCL).

18.3.3 .NET Transactions

Database transactions within the platform can be implemented using several different
alternatives. The transactions can be managed manually or automatically. Here, manual
means via explicit calls to the ADO.NET transaction methods, or to a special class
called the “ContextUtil” class. Automatic transactions are controlled via transaction
attributes defined within the metadata for a class. The automatic transaction attribute
values and their interpretation are summarized in Table 18.1.



SUMMARY 683

TABLE 18.1 Enterprise Services Transaction Attribute Summary

Attribute Action Taken when There Action Taken when There
Value Is a Preexisting Transaction Is No Preexisting Transaction

Disabled Ignore the transaction Ignore the lack of a transaction

NotSupported Create a new context without a
transaction

Create a new context without a
transaction

Required Share the current transaction Create a new transaction

RequiresNew Create a new transaction Create a new transaction

Supported Share the current transaction Ignore the lack of a transaction

If we compare this table to Table 16.1, there are some striking similarities, but
the values and their interpretations are not identical across these two platforms. In
particular, the J2EE platform includes situations where exceptions are thrown due
to a mismatch between the code’s transaction expectations and the actual environ-
ment’s transaction status. The Microsoft .NET Framework-based platform does not
have this behavior. There are also subtle differences between the behaviors in these
two environments for seemingly similar transaction attribute names. There is, how-
ever, one more similarity between this platform’s transaction management and the
J2EE platform’s transaction management—they both manage transactions differently
based on the deployment type for the COS and the subplatform responsible for manag-
ing that deployment container. Although this platform does not refer to the automatic
transactions as being container managed, they are handled differently for web-based
deployments, Enterprise Service-based deployments, and basic deployments. Similarly,
although the J2EE platform does not call the Bean Managed Transactions “manual”
or the Container Managed Transactions “automatic,” both of these terms are appropri-
ate in these situations (respectively). However, one major difference is the restrictions
placed on the transaction attributes in this platform—a single attribute applies to an
entire class, and that class must inherit from the “ServicedComponent” class that we
mentioned earlier.

18.4 SUMMARY

The Microsoft .NET Framework is a powerful, ubiquitous platform consisting of many
subplatforms. There are several different versions of the platform, with additional
facilities and subplatforms being added to the later releases. The variety of facilities
supplied directly by this platform combined with this platform’s ability to leverage the
existing operating system and third-party facilities make this a very powerful platform
with a large number of potential deployment targets.

The Microsoft .NET Framework provides an architectural solution to many of the
issues we need to resolve when considering the development of a DDBE project.
The platform contains several subplatforms, such as the Common Language Run-
time (CLR), Base Class Library (BCL), Common Language Specification (CLS), and
Common Type System (CTS). The platform and its subplatforms provide several alter-
natives for satisfying the Distributed Database Environment Platform Requirements
(as discussed in Chapter 14). The architecture addresses many of the Fundamental
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Platform Requirements directly, while the subplatforms offer several options for each
of the function areas we considered for providing the Distributed Process Platform
Requirements and the Distributed Data Platform Requirements. Overall, the facilities
used to implement all the Distributed Database Environment Platform Requirements
fit together in a single, consistent platform, with a uniform interface and philosophy.

The platform-specific approaches for implementing our DDBE project requirements
are all centered on the concepts of assemblies, the underlying CLR subplatform, and
the other areas of the platform that support the CLR. These concepts and the facilities
within the platform provide the DDBE developer with a powerful set of tools for
component and subsystem development, deployment, and execution. The developer
can configure the deployment details flexibly and pick the best implementation from
several different alternatives within the same environment, including the ability to
deploy multiple versions of a COS at the same time without conflict, and to use
different programming languages with almost no interoperability concerns.

18.5 GLOSSARY

Application Domain The logical process that contains a managed component when-
ever it is being executed.

Assembly The fundamental unit of work for any deployment considerations in the
Microsoft .NET Framework. Although assemblies can consist of multiple files, we
usually bundle all the modules into a single file written in the Portable Executable
(PE) format and save it as either a DLL or an EXE.

Base Class Library (BCL) The set of application–programming interfaces (APIs)
used to connect managed components to the underlying services and subsystems
provided by the Microsoft .NET Framework-based platform.

Client Activated Server Object A remote object whose lifetime is controlled by
the client. This means that it is created and destroyed on the server by the code
executing on the client in order to support .NET Remoting.

Common Intermediate Language (CIL) See Intermediate Language.
Common Language Runtime (CLR) The core subplatform within the Microsoft

.NET Framework-based platform that manages all runtime aspects for managed
components executing within the platform.

Common Language Specification (CLS) A set of programming language features
and rules designed to ensure cross-language interoperability among managed com-
ponents.

Common Type System (CTS) A subset of the CLS that defines data/class/interface
types in a programming language independent way. This can also refer to the subset
of the CLR/Microsoft .NET Framework-based platform that implements the CTS.

Component A deployable bundle that provides a reasonably cohesive set of func-
tionality.

Component or Subsystem (COS) A term that refers to a component or subsystem,
ignoring any differences between the two concepts.

Deployment Any features, issues, concepts, or considerations related to how a COS
instance is installed on a particular machine at a particular site.
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Digital Certificate A public key and other identifying information, usually in X.509
format, signed with a certificate authority’s private key after the certificate authority
verifies the public key identity.

Digital Signature A cryptographic technique that uses a source private key to sign
data such that a destination can use the source public key to authenticate the source
with the strength of nonrepudiation.

Directory Service A service that provides several important functions such as nam-
ing, registration, lookup, and possibly security.

Global Assembly Cache (GAC) The machinewide container for shared assemblies.
Intermediate Language (IL) A file format used to represent compiled modules in a

programming language independent way.
Managed Component A piece of software that is designed, implemented,

and deployed in such a way that it can execute inside the Microsoft .NET
Framework-based platform, with the CLR managing its runtime environment.

Marshalling The collection of techniques capable of converting parameters into a
data stream, usually to support RMI, RPC, or Messaging—the opposite of unmar-
shalling.

Message A data structure or textual stream representing content sent from one COS
instance to another.

Microsoft Intermediate Language (MSIL) See Intermediate Language.

Middleware Any additional software used to “bridge the gap” (translate or hide
differences) between COSs.

Nonrepudiation The inability to deny being the source of a message or data.
Platform A set of software that provides a well-defined set of operations, facilities,

and functionality that serves as the foundation for components, subsystems, and
other software that runs on top of the platform.

Portable Executable (PE) Format The programming language independent and plat-
form independent file format in which assemblies are written.

Private Key The key from the public key cryptography key pair used for decryption
and signing that must be kept secret.

Public Key The key from the public key cryptography key pair used for encryption
and signature verification that can be revealed to the public.

Public Key Cryptography A cipher that uses a public/private key pair for encryption
or digital signature. For encryption, a source uses the destination public key to
encrypt data that the destination can decrypt using its private key.

Remoting The collection of techniques used to perform any remote functions includ-
ing remote execution and messaging.

Simple Object Access Protocol See SOAP.
Singlecall A mode used for wellknown server activated objects, indicating that each

method call will receive a new instance of the server object. This also implies that
the server object is Stateless since it is recreated (without any parameters passed to
its constructor) just before each method invocation.

Singleton A mode used for wellknown server activated objects, indicating that all
clients and all method calls will share a single instance of the server object. This
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also implies that the server object is Stateful since it is not disposed of or recreated
in between method invocations.

SOAP A mechanism for implementing remote method invocation using XML to mar-
shall and unmarshall the parameters and return values. Previous releases considered
this an acronym but now it is the official name of the specification itself rather than
an acronym or abbreviation.

Subsystem A collection of components and/or subsystems that is part of a larger
system but also a system in its own right.

Transaction Attribute A method of controlling the JTA Transaction actions for BMT
EJB by specifying one of six possible values for the attribute using a Java annotation
or EJB deployment descriptor.

Universal Description, Discovery, and Integration (UDDI) A facility that imple-
ments Directory Services for web services, providing an XML-based registry service
suitable for finding web service instances deployed within the environment and
defined using WSDL.

Unmanaged Component The opposite of a managed component, a piece of software
that does not use the CLR to manage its runtime environment, and therefore does
not run inside the Microsoft .NET Framework-based platform—although it can still
coexist and interact with managed components that do run that way.

Unmarshalling The collection of techniques capable of converting a data stream into
one or more parameters, usually to support RMI, RPC, or Messaging—the opposite
of marshalling.

Web Service A component or subsystem that provides some service that conforms
to the web services specification, usually implemented using SOAP, UDDI, WSDL,
and XML.

Web Services Description Language (WSDL) An XML-based description of the
services and service providers implemented as web services within an environment.

Wellknown Server Activated Object A remote object whose lifetime is controlled
by the server. This means that it is created and destroyed on the server (by the code
that is also executing on the server) in order to support .NET Remoting. It can have
one of two possible modes: singleton or singlecall.

XML A markup language that uses tagging to indicate semantic details or logical
structure for a set of data content.
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EXERCISES

Provide short (but complete) answers to the following questions.

18.1 What is the difference between managed and unmanaged components?

18.2 What is the difference between an assembly and a module?

18.3 What is the difference between an Application Domain and the CLR?

18.4 Why do signed assemblies need to have a strong name?

18.5 Since the Global Assembly Cache (GAC) is such a powerful deployment facility,
should we use it to deploy all of our assemblies? Why or why not?

18.6 Suppose we have two variables containing two different instances of the same
class type, but one was marshalled by value and the other was marshalled by
reference (let’s call them “objByVal” and “objByRef,” respectively). Name three
ways in which these two variables might behave differently in the same piece
of code, based solely on their marshalling differences. (Hint : Consider both the
local and remote object scenarios for these objects.)
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THE DNET STARTER KIT

We refer to the combination of a framework and a sample extension (of that frame-
work) as a starter kit (SKIT) because we intend to use this combination of software
as a toolkit that will help us to start developing software projects. SKITs are not
intended to be complete solutions, or production-ready code, but the starter kits pro-
vided with this book should be useful when learning about distributed database
environment (DDBE) concepts, and helpful when creating academic, research, proto-
type, or proof-of-concept projects. Starter kits like this one can also help us to improve
our understanding of the specific DDBE architecture that we are attempting to develop,
as well as the underlying technical facilities we can use, and the technical issues we
need to address.

In this chapter, we are considering the starter kit that we call the DNET-SKIT.
The DNET-SKIT is available for download via the official website for this book (see
the Preface for further details). We named the starter kit this way because both the
framework and the extension contained within it rely on the Microsoft .NET (“Dot
Net”) Framework, which is a platform provided by Microsoft (and others) for several
flavors of operating systems, especially Microsoft Windows-based operating systems.

This chapter is intended to be a high-level overview of the starter kit, but it is not
intended to be a detailed description of the implementation details. The bundle down-
loaded from the website contains all the source code, documentation, and example
configuration files for the DNET-SKIT. It also contains a “cookbook” (a document con-
taining a collection of “recipes”) that describes how to use the starter kit in some com-
mon Microsoft Windows-based operating systems and offers hints for how to customize
the starter kit to work in other scenarios and platform implementation alternatives.

In Section 19.1, we will discuss the high-level considerations for the DNET-SKIT,
beginning with a description of the starter kit’s goals and its architecture. Next, we
will provide separate architectural overviews for the starter kit as a whole and the
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subsystems that are all implemented within the extension. In Section 19.2, we will
focus on the design details for the starter kit as a whole, and then focus on the design
details for the framework and extension individually. Lastly, in Section 19.3, we will
summarize how the starter kit can be used to create DDBE projects that reuse, modify,
extend, or replace the code provided by the DNET-SKIT.

19.1 DNET-SKIT OVERVIEW

The primary purpose of this starter kit is component or subsystem (COS) software
development, especially within the context of a distributed database environment. Obvi-
ously, if we want to do this sort of development, we need to understand distributed
database concepts and issues. This book helps to address some of those topics. In addi-
tion to understanding what a distributed database environment is, we need to have a
basic understanding of at least one of the many programming languages supported in the
Microsoft .NET Framework-based environment. After all, we cannot write DDBE pro-
grams without a programming language! Lastly, we must have at least some familiarity
with the fundamental concepts and issues related to the Microsoft .NET Framework-
based platform and its underlying subplatforms, features, and facilities. Ideally, many
of the underlying details and issues should be hidden behind (and handled by) the
starter kit. Because of this, we should be able to use this starter kit effectively even if
we only have a minimal understanding of the platform concepts (see Chapter 18 for a
high-level summary of the platform concepts involved).

When considering which release of the Microsoft .NET Framework-based platform
we should choose as the target for all our development, deployment, and execution
activities within a DDBE project, there are several different implementation alterna-
tives available. The files included with this starter kit are designed to work with the
Microsoft .NET Framework release 2.0 or later, and they have been configured for this
implementation alternative by default. It should be possible (and relatively simple) to
use the files contained within this starter kit with any of the later releases, provided
we follow the instructions in the release notes appropriately. Most of the time, the new
releases of the Microsoft .NET Framework platform should maintain backwards com-
patibility. As we mentioned in Chapter 18, the newer releases of the platform should
also always contain the older releases as a subset. This combined with the ability to
configure the precise version of the CLR used by each assembly we deploy should
cover most cases. Now that we have considered all these caveats, we can also recog-
nize the fact that the code we are implementing for the DNET-SKIT and our custom
DDBE project extensions will typically be using only the fundamental services that
should have no update issues. Therefore, our code should be able to port to multiple
releases with little or no issues—except for those DDBE projects where we used more
complex, sophisticated, or release-dependent functionality.

Once we have developed and/or deployed some of our DDBE projects, we need
to consider the act of applying new updates to our systems carefully. Whenever we
update the operating system or platform software installed on the machines within our
environment, we should choose a single test machine before we update all of our other
machines. Using this test machine, we should try to recompile the existing code, deploy
it locally, and perform regression tests. Ideally, if this first test succeeds, we should
test the newly compiled code across at least two test machines, before we officially
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change the configuration for all the machines we use to develop, deploy, and execute
our DDBE projects.

19.1.1 DNET-SKIT Goals

If we decided to implement a new DDBE project directly on top of the Microsoft
.NET Framework-based platform, it would certainly be doable. As we discussed in
Chapter 18, the platform provides several alternatives for many of our DDBE Platform
Requirements. Therefore, we could certainly start a project this way. At some later
point, we could then move on to another project, and perhaps later still we would
move on to yet another project after that, and so on. However, if we want to reuse
our code between multiple projects, we need to take some steps to ensure that we
plan for this reuse. We are not referring to the concept of a shared assembly (see
Section 18.1.4)—that is a deployment consideration while this is a design consider-
ation. Instead, we are referring to the more general concept of purposely designing
code for reusability. Similarly, if we wanted to implement some portion of an existing
project differently, or if we wanted to try some new technique for an existing subsys-
tem, we would need to refactor our code if we had not planned for this ahead of time.
In essence, using the DDBE Platform directly is not our ideal solution—our ideal
solution in these scenarios involves creating DDBE components and subsystems that
are reusable and extensible, which just happen to use the DDBE Platform directly.

We intend the framework and extension bundled within the DNET-SKIT to be used
as the basis for building the skeleton of one or more DDBE architectures, precisely so
that we can create projects in the manner we just identified as our ideal solution. Our
goals with this starter kit are similar to the goals we identified for the J2EE-SKIT:
namely, we wish to encapsulate and leverage the underlying DDBE Platform
capabilities with only a minimal amount of implementation-specific (Microsoft .NET
Framework-specific) concepts being visible or required in the extension code. If our
DDBE developers are Microsoft .NET Framework experts, our starter kit will not pre-
vent them from using advanced concepts—in fact, they should be able to do this more
easily than nonexperts could. Contrariwise, if our DDBE developers are not Microsoft
.NET Framework experts, then our starter kit should help get things started much more
quickly than they would if we were using the platform directly without the starter kit.

The example extension included within the SKIT is intended to be usable for the
widest set of DDBE projects, rather than the most powerful or sophisticated subset of
DDBE projects. This should enable novices to implement simple projects easily. At
the same time, advanced users should not find it too difficult to extend the example
or the framework to address the more complicated distributed database environment
scenarios. Because we have the source code for all framework and extension code,
we can even selectively choose which portions to reuse and which portions to replace
within a given project.

19.1.2 DNET-SKIT Architectural Overview

At first glance, the DNET-SKIT looks very similar to the J2EE-SKIT. This should not
be surprising, since they are both attempts to implement an extensible framework for
distributed database environment component and subsystem development! However,
even at the architectural level, there are some subtle differences—we will not perform
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a “blow-by-blow” comparison of the two starter kits because that would not serve
any purpose, but we will highlight some differences throughout our discussion in both
chapters. The DNET-SKIT represents the fundamental infrastructure of a generic dis-
tributed database environment, using the same essential subsystem names and functions
as the J2EE-SKIT did in Chapter 17. We use a separate Microsoft .NET Framework
namespace for each subsystem in this infrastructure to make it easier to isolate those
portions of the architecture and code, which we need to modify or extend. The main
component in each subsystem is represented by two interfaces. There are also several
other interfaces used within each subsystem, since each of them shares information
with at least one other subsystem.

There are two interfaces for each service-provider subsystem in the starter kit. This is
because we are using a special design pattern, the Abstract Factory [Gamma95]. In this
pattern, the term “abstract” refers to the technique of “programming to interface.” When
a caller needs to reference an object or invoke a method, it uses the interface rather
than the class. Because interfaces do not contain any implementation details, they are
“abstract.” Here, we have two interfaces: one for a factory and one for a product. This
means that the caller uses an abstract factory to create an abstract product. In our case,
each factory will create one of our service-provider subsystems. We will use an interface
to access the factory and an interface to access the subsystem instance it returns. The
caller obtains the factory object through other means, in this case .NET Remoting. As
shown in Figure 19.1, the caller uses the factory interface (IDdbmsFactory) to access
the factory object. The caller invokes a method defined within the factory interface to
create the product, which is then returned using the product’s interface (IDdbms).

This has several important advantages, especially within our distributed database
environment and starter kit. In particular, the caller code does not need to have access
to the implementation classes for the factory or the product—only the interfaces are
required. Since we are using .NET Remoting, this is an ideal design pattern for us.
Without this pattern, our caller would be tightly coupled to the concrete implementation

Figure 19.1 Example usage the IDdbmsFactory.
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of the factory and/or product. In other words, without this pattern, it would be very
difficult to redefine or replace the “Concrete Factory” or “Concrete Ddbms” shown in
Figure 19.1 without recompiling our caller. With the pattern, we have no such issue.
By using this pattern, we do not need to deploy the assembly containing the “Concrete
Factory” or “Concrete Ddbms” on the caller machine. The caller can also be locally
deployed or remotely deployed.

Since we are usually using remote callers and .NET Remoting, the two solid arrows
in the diagram are actually the marshalling and unmarshalling of parameters and results
for Remote-Code Execution. This means that another design pattern is being used, the
Proxy [Gamma95]. The objects used by the caller are not merely a different interface
to the real implementation—they are proxies. They simply forward the requests to
the real object, and similarly forward real object’s responses back to the caller. See
Figure 19.2. This means that none of the implementation-specific code (and none of

Figure 19.2 The IDdbmsFactory showing proxies.
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the other code that it needs to reference) needs to be sent back and forth. When we
execute a method in the Ddbms object, we want that method to execute remotely (not
on the caller’s machine) and therefore the proxy is crucial to this process.

In this starter kit, the framework provides implementation classes for very few
constructs—the framework portion is mostly interfaces. However, the example exten-
sion bundled with the starter kit includes implementations for the subsystems. These
classes can be modified directly, or extended via inheritance within new DDBE projects,
but they are not the only possible implementation. There are seven subsystems included
in the starter kit, and each one is represented by two interfaces (one abstract factory
and one abstract product) in the framework. There are also two classes in the extension
for each (the concrete factory and concrete product). The interfaces are defined in the
framework, while the classes are implemented in the extension.

Because we have access to the source code for both the framework and the extension,
we could refactor the code and relocate these subsystems if desired. However, we
purposely chose these locations. In our DDBE project implementation, we can choose
from several different mechanisms for DDBE Platform Requirements implementation.
In particular, we can choose several different flavors of Remote-Code Execution. We
can use ASP .NET, .NET Remoting, COM+, web services, or DCOM, just to name
a few examples. We chose to use .NET Remoting for the example extension provided
with the starter kit, but that is not the only possible choice. Because the interfaces
can be reused for many of these other alternatives, it makes sense to define them in
the framework. However, because the .NET Remoting implementation for the service
providers is only one possible implementation, it makes sense to define these classes
within the extension.

Recall from Section 18.2.1.1 that, within this implementation alternative, there are
three different options available. In .NET Remoting, we can choose from two forms of
server activated objects or one form of client-activated objects. In all three cases, we are
working with a remote object—the distinction focuses on the activation and lifetime
controls for the object. Server activated objects are called “wellknown” server activated
objects, and they can be either singleton or singlecall. The singleton approach creates
a single instance that serves all possible clients. The singlecall approach creates a new
object every time a method is invoked via the proxy—regardless of how many or few
callers are present. In effect, this also means that the singleton is Stateful, while the sin-
glecall is Stateless. Client-activated server objects are simply called “activated.” They
are created by the caller using the normal constructor and disposed of by the caller.
Even though the caller uses the constructor, the object is created remotely and its meth-
ods are executed on the remote machine. However, using a client-activated server object
forces the caller to have access to the implementation classes (assemblies) locally on
the same machine as the caller, and to be tightly coupled with the implementation class.

Therefore, we did not want to use the client-activated server objects alternative.
However, the wellknown objects are also somewhat inappropriate for our purpose.
Since the instance of the “Concrete Ddbms” object represents a single connection,
or session within our DDBE project, we do not want to share a single object (sin-
gleton) among all DdbmsClients! Similarly, even if we do not implement distributed
transactions, we do not want our session with the distributed database environment to
be completely Stateless (singlecall). This would mean that all session-specific details
(including the DDBE username and password) would need to be passed as parameters
to each DDBE method call!
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Using the Abstract Factory and Proxy design patterns together allows us to avoid
many of these potential issues. Therefore, we can use either the singleton or singlecall
to create our concrete factory and return the abstract factory interface to the concrete
factory’s proxy object. We then use the create product method defined in the abstract
factory to connect to the remote concrete factory and create the concrete product on
the remote machine. The abstract product interface representing the concrete product’s
proxy object is then returned to the caller. Since the factory is only used to create the
product, it can be either Stateful or Stateless—once the product has been returned,
we do not use the factory again until we need another product. Because the concrete
factory is created by the client, it is like the client-activated server object, except that
we do not have the tight coupling or the need to deploy the implementation assembly
on the caller’s machine.

The other .NET Remote-Code Execution alternatives we mentioned have more
complex deployment and development considerations than the .NET Remoting
approach. Therefore, we did not choose to implement the example with any of those
approaches. However, by implementing the subsystems in the extension, rather than
in the framework, we have made it easier to change these alternatives on a per-project
basis, or even a per-subsystem basis. The alternative we chose as our default (.NET
Remoting) should be suitable for most typical academic projects for a course in
distributed database management systems. It should also be appropriate for most
DDBE projects that are not primarily focused on deployment and remote execution
considerations.

19.1.2.1 DNET-SKIT Component Identification Table 19.1 contains a brief sum-
mary for each of the seven major subsystems defined within the starter kit. The starter
kit provides a simple implementation for each of these subsystems in the extension.
However, as we discussed in the previous section, each service-provider subsystem is
accessed via two interfaces, which are defined in the framework. Table 19.1 lists the
subsystem name, abstract factory interface name, abstract product interface name, and
a brief description of the subsystem.

Although the implementations are not intended to be complete, they do illus-
trate some of the common mechanisms available for configuration, deployment, and
execution. We should recognize that these are merely starting points for the final imple-
mentations. This way, on a project-by-project basis, we can chose to reuse the simple
implementations for those areas that we are not focused on in the project and create
our own more detailed designs and implementations for those areas that we are focused
on. These example implementations also allow us to develop simple prototypes and
proof-of-concept projects quickly.

The subsystems in the extension provided with the starter kit provide a minimal
implementation for the fundamental operations necessary in a generic DDBE architec-
ture. In particular, they act as yet another design pattern, namely, the Template Method
[Gamma95], connecting the subsystems together in a reasonable (but modifiable and
extensible) configuration. This is almost identical to the way the subsystems in the
J2EE-SKITs work. However, here the design pattern is implemented in the extension
instead of the framework. We will not repeat the discussion from Chapter 17 here, but
if we consider the DNET-SKIT extension code as well as the framework code, then
the points raised in Section 17.1.2.1 are equally relevant here.
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TABLE 19.1 Summary of the Primary Subsystems Defined Within the SKIT

Subsystem Abstract Factory Abstract Product Subsystem
Name Interface Name Interface Name Description

DdbmsClient N/A N/A This subsystem represents the client
application or user interface to the
distributed database environment we are
implementing. Because it is not a service
provider, it does not have any Abstract
Factory pattern interfaces, only an
implementation.

Ddbms IDdbmsFactory IDdbms This is the “facade” to the distributed
database environment that we create.

Parser IParserFactory IParser This subsystem is a simple SQL parser
implementing a subset of the ANSI
standard SQL language. It also provides a
simplistic interface inspired by relational
algebra.

Qualifier IQualifierFactory IQualifier This subsystem ensures that all the table
names and column names identified by the
parser are fully qualified.

Planner IPlannerFactory IPlanner This subsystem builds the distributed
execution plan for the statement being
processed.

Dem IDemFactory IDem This subsystem acts as a Distributed
Execution Manager and executes the plan
generated by the Planner subsystem.

Lem ILemFactory ILem This subsystem acts as a Local Execution
Manager executing the localized portions
of the plan on behalf of the Dem
subsystem.

19.1.2.2 DNET-SKIT Subsystem Interaction Overview The Ddbms subsystem acts
as a “facade,” the public interface, to the whole DDBE project. The various types of
transparencies implemented in the project are achieved by ensuring that this subsys-
tem’s interface looks as close to a traditional DBMS interface as possible (in form if
not in scope). The Ddbms subsystem fulfills client requests by delegating the requests
to the other subsystems. The Ddbms subsystem does not actually do any of the real
work itself. The client can connect to the distributed database environment and pass a
request as an SQL string, or use a parameterized call representing the statement type
and major operands. If an SQL string is passed from the client, then the parser is used
to parse the SQL. If the parameterized call is used instead, then a different method
within the Parser is called to load the appropriate information.

Let’s consider a typical scenario, where some client application has connected to the
Ddbms subsystem and asked it to process an SQL SELECT query against the distributed
database environment. Suppose that the abstract factories have already been set up and
the abstract products and proxies are already created and returned to the caller before
we begin our scenario.
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Our DDBE project will perform the following steps, in the order listed here:

1. The DdbmsClient (or a similar component or subsystem) makes a query request
of the Ddbms subsystem sending it an SQL string or the equivalent set of rela-
tional algebra-based details. This is done via a method invocation through the
abstract product interface (IDdbms) for the Ddbms subsystem. Within the next
steps, the Ddbms subsystem will call the other subsystems to satisfy the client’s
request. First, it calls the Parser, using its abstract product interface (IParser).
Next, it calls the Qualifier (using IQualifier). Then, it calls the Planner (using
IPlanner). Finally, it calls the Dem (using IDem), which presumably calls the
Lem subsystems, but those details are probably project dependent.

2. The Parser (like all the subsystems in this SKIT) is an extension subsystem. We
emphasize the point here because this is in contrast to the Parser subsystem for the
J2EE-SKIT. If the call accepting an SQL string is implemented, it takes a request
as an SQL string and checks that the request is supported and that the syntax is
valid with respect to the grammar that the parser implementation understands. If
the syntax is valid, the Parser transforms the request into a structure containing
the necessary details before returning it to the caller. If the other methods are
called, then the same result is obtained, but no actual parsing is required.

3. The Ddbms passes the information, which it just obtained from the Parser, to
the Qualifier via the IQualifier interface. The Qualifier then uses this information
in combination with other information (presumably described within a global
data dictionary or obtained using some similar mechanism) to further transform
the request. It augments the parser information with the physical data-mapping
details it has been able to determine.

4. Next, the Ddbms passes the information returned by the Qualifier to the Planner
via the IPlanner interface. The Planner uses this information to satisfy all of its
information needs, and then uses its own algorithms to create the execution plan.

5. Lastly, the Ddbms passes the Planner’s results to the Dem, which is responsible
for overseeing the execution of the request. The starter kit implementation for
the Dem is invoked via the IDem interface. Once it has been invoked, it merely
reads the plan information and uses the ILem interface to pass most of the work
details to the Lems. If the request was a query, the Dem collects and formats
the results (if any) before returning the results to the Ddbms. Finally, the Ddbms
returns the results, execution status, or exceptions to the client application that
invoked the original request.

19.1.3 DNET-SKIT Extension Architectural Overview

All of the subsystems are implemented in the extensions, either in the starter-
kit-supplied extension or in a new extension that we create for our new DDBE
project implementation. In some respects, we are free to make design/implementation
decisions that differ from the starter kit implementation, as long as the implementation
still fulfills the requirements set forth by the framework-defined interfaces. The starter
kit extension provides a reasonable implementation for each subsystem, but these
are not necessarily the best implementation alternatives with respect to features,
performance, or flexibility. The goal of the starter kit extensions is merely to support
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sufficient complexity to verify the operation of the framework or DDBE project as a
whole and to demonstrate the feasibility of a typical DDBE project implementation.

As part of the deployment process for each subsystem, we must edit the deployment
details. This is necessary to ensure that our newly deployed subsystem instance is
connecting to the correct platform services (databases, etc.) and the correct instances
for the other subsystems in the project. In particular, the remoting details need to be
changed to ensure that the channels, ports, and Uniform Resource Locators (URLs)
used to connect the proxy objects to the abstract factory interfaces and concrete factory
objects are not in conflict with other subsystems deployed within our environment.
When multiple subsystems are deployed on the same machine, we must ensure that
the configuration details for the wellknown and activated server objects match the
configuration details used by each client attempting to connect to them. In a typical
DNET-SKIT deployment, the server details need to be checked for all subsystems,
but the client details only need to be checked for the DdbmsClient, Ddbms, and Dem
subsystems.

19.1.3.1 The Ddbms Subsystem This is the external application–programming
interface (API) for our DDBE project. As we mentioned earlier it acts as a “facade” to
the DDBE project. More precisely, it acts as a Facade design pattern [Gamma95] for
the distributed database environment as a whole. It provides the end-user applications
with the publicly available methods for using the distributed database environment and
acts as a single access point for the end-user applications. By using this subsystem,
we can simplify our client Remote-Code Execution operations. Our clients connect
to this subsystem rather than connecting to each of the other subsystems directly.
Since this subsystem provides most of the communication to the other subsystems,
it must be deployed as a separate instance for each new DDBE project. However,
aside from the configuration file changes needed in redeployment, this subsystem
should be reusable by most new projects with minimal (if any) code modification or
recompilation required.

19.1.3.2 The Parser Subsystem The Parser subsystem is responsible for recognizing
valid SQL statements, rejecting malformed or unsupported SQL statements, and
producing a data structure that captures the semantic information for the valid SQL
statements it can recognize. Since this subsystem is only invoked by the Ddbms
subsystem, and only communicates to the other subsystems indirectly, it is probably
reusable for many new projects without any code modifications. It returns an object that
is accessed via an interface to the calling subsystem (Ddbms), which then passes the
information to the other subsystems as needed. Therefore, we usually will not need to
perform any deployment edits, code modification, or recompilation for this subsystem.

We can even use the same deployed instance of this subsystem across several
different DDBE projects that are deployed within the same environment. Alterna-
tively, we can replace or modify this subsystem as necessary to add support for new
commands or to support new syntax. If we need to support more complex clauses but
are not very proficient with respect to parsing techniques, we can simply implement
traditional method calls instead. For example, we can include special methods to
implement explicit transaction control, locking requests, or whatever functionality we
need to add to our project. We can also choose to add methods such as these to the
IDdbms interface instead, or to add them in both places.
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19.1.3.3 The Qualifier Subsystem The Qualifier subsystem is responsible for
translating the information produced by the Parser subsystem into a format suitable for
use by the Planner subsystem. Because the Qualifier identifies the Global Conceptual
Tables and Global Conceptual Columns referenced in a distributed command request, it
is a project-dependent subsystem. Like the DDbms subsystem, the deployment-specific
details are probably relegated to the database containing the GDD and the configuration
file that points this subsystem at the right GDD. However, this does make the subsystem
instance somewhat less reusable. This means that we will probably need to redeploy
the subsystem for new projects in order to change the configuration details—even
though the code can be reused in most cases. Of course, if a DDBE project requires a
different degree of transparency, or supports more sophisticated transparency alterna-
tives (fragmentation, replication, or location details), then we may need to implement
custom code for this subsystem in addition to deploying a project-specific GDD.

19.1.3.4 The Planner Subsystem The Planner subsystem uses the information
produced by the Qualifier subsystem to build a distributed plan. This subsystem shares
a strong dependency relationship with the Qualifier and the Dem subsystems. Because
the Qualifier details depend on the transparency design and implementation details
for the project, and the Planner subsystem shares this dependency as well, these
subsystems seem to be coupled more tightly than the others we have discussed so far.
For example, if the Qualifier supports replication, then the Planner needs to support it
as well. However, if the Qualifier has any restrictions or limitations then this can also
affect the Planner. For example, what if the Qualifier supports table replication but
does not support fragment replication? Because the Planner must read and interpret the
Qualifier’s output, the Planner is necessarily affected by the Qualifier. Therefore, the
reusability of this component will depend on the modifications made to the Qualifier.

19.1.3.5 The Dem Subsystem This subsystem is responsible for reading the plan
created by the Planner and carrying it out. Although the Dem is dependent on the
Planner for reasons similar to those we discussed in the previous section, it is not
coupled too tightly to the Planner or the Lem—in part, because the plan is merely read
(followed) and the example Dem implementation does not perform any optimization
activities. Similarly, although the Dem tells the Lem subsystems what to do, the
coupling is loose in the extension implementation. Obviously, this situation can change
drastically in a DDBE project where we focus on optimization or execution control.

19.1.3.6 The Lem Subsystem The Lem is responsible for carrying out the pieces of
the global statement at a particular Lem instance (a local database at a particular site).
The global statement will be broken into pieces by the Planner subsystem and delegated
to the Lem by the Dem subsystem. The pieces of this global statement will typically be
of the same type. In other words, a global query will usually result in one or more local
queries; a global INSERT will usually result in one or more local INSERTS; and so
on. The Lem can implement these operations in any way that it needs to, but typically,
we would expect the Lem to leverage the facilities implemented by a local database
management system (LDBMS) and accessed via the ADO.NET, OLEDB, and ODBC
facilities. Although this is the technique used within the starter kit implementation,
new projects can also choose to implement the operations in radically different ways.
The Lem is essentially a data processor (DP), which means we can implement it in any
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of the ways we discussed in Chapter 1. In particular, we can use any of the alternatives
we discussed in Section 1.3 and summarized in Figure 1.6.

19.2 DNET-SKIT DESIGN OVERVIEW

In this section, we will highlight some of the design details for each subsystem, and,
in particular, we will identify the primary interfaces being used. This section will
serve as a high-level roadmap for the code contained in the starter kit—the low-
level documentation is provided with the code (and generated from it using XML
Documentation Comments). From this high-level vantage point, we can consider the
code to be divided into two major categories: the framework and the extension. Within
the framework, we will look at three subareas, while the extension will contain seven
subareas. Although namespaces within the Microsoft .NET Framework-based platform
do not need to be tied to assemblies in a one-to-one fashion, we chose to do so for
the starter kit. Even though the platform allows multiple namespaces within the same
assembly and multiple assemblies within the same namespace, we did not do this in
the starter kit. Instead, we have a separate namespace for each of the ten subareas, and
each namespace corresponds to a single assembly within the starter kit.

19.2.1 DNET-SKIT Framework Design Overview

The framework contains no subsystems, but it does contain the assemblies that are used
by one or more of the subsystems in the starter kit. In particular, there are three subareas
within the framework, each of which is implemented using a separate namespace. The
assembly name for each of these subareas is named using the namespace value.

The three subareas in the framework are the following:

• The framework interfaces area
• The framework exceptions area
• The framework parameters area

19.2.1.1 The Framework Interfaces Area The framework interfaces area defines
the abstract factory interface and abstract product interface for each of the six
subsystems in the starter kit. There are no interfaces defined for the Ddbms Client
subsystem, because it is not a service provider. The namespace for this area
(“Srdbsoft.Ddbe.DnetSkit.Framework.Interface”) which is also the name of the
assembly that contains the compiled code for these interfaces. The interfaces are listed
in Table 19.1, without the namespace details. All of these interfaces are in the same
namespace.

If changes need to be made to the interfaces in this area, we have two options. We
can choose to modify this assembly directly or we can choose to use a new assem-
bly instead. If we choose to modify the assembly, we can either modify the existing
interfaces or create new ones. Similarly, if we choose to modify the existing interfaces
we can choose to modify the existing methods or we can create new ones. Obviously,
whenever we change things directly, there is a potential for breaking other code. There-
fore, we should take great care when modifying things in this area. Whenever possible,
we should consider augmenting rather than modifying (adding but not modifying or
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deleting) these interfaces. We can also use inheritance to extend the interfaces in a
more portable fashion. Ultimately, we can even choose to abandon the interfaces here
completely. All of these choices are valid, but they have very different maintenance
and reusability impacts.

19.2.1.2 The Framework Exceptions Area Even though we should always try to
use meaningful exception classes to represent all the possible, expected problems that
our DDBE project might encounter, we also want to be able to create reusable code
that is easy to use for prototype and proof-of-concept implementation projects. One
way to achieve this is to use a common superclass for our exceptions. This makes it
easier to wrap the derived classes and handle the exceptions by sacrificing some of
the ability to ensure more detailed exception handling within the code. Because we
can use different programming languages in this platform, the restrictions and rules
for exception handling can vary somewhat. However, as a rule, exceptions in this
platform are not the same as exceptions in Java. In particular, Java requires exceptions
to be declared as “throws” clauses while this is not required for many Microsoft
.NET Framework-compatible languages. Regardless, we like the idea of using clear
exception class names in the starter kit. Because the naming convention in the popular
programming languages for this platform (and, in particular, in Visual C#) is to avoid
Hungarian notation, we did not use the same naming convention that we used for the
J2EE SKIT. Instead, each class representing an exception has a name that ends with a
common suffix (the word “Extension”). The classes in this area use a shared namespace
(“Srdbsoft.Ddbe.DnetSkit.Framework.Interface.Exceptions”), which is also used as the
assembly name. Note that the name looks like it is a subset of the previous namespace.
This is intentional but somewhat misleading. From a development and deployment
perspective, these assemblies and namespaces are independent of each other. However,
they are, of course, conceptually connected to each other and therefore we feel that
the naming is appropriate. Table 19.2 lists the unqualified names for all the base-class
names for the exceptions in this area.

19.2.1.3 The Framework Parameters Area We define a separate namespace and
assembly for all the interfaces and classes used to represent the parameter types in
the starter kit. These interfaces are used to represent the parameters that we pass
between the subsystems in the starter kit extension. Most of these interfaces are actu-
ally implemented by classes within specific subsystems. The namespace for this area

TABLE 19.2 Subsystem-Specific Exception
Base-Class Summary

Unqualified Exception
Subsystem Base-Class Name

DdbmsClient DdbmsClientException
Ddbms DdbmsException
Parser ParserException
Qualifier QualifierException
Planner PlannerException
Dem DemException
Lem LemException
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(“Srdbsoft.Ddbe.DnetSkit.Framework.Interface.Parameters.”) is obvious and intuitive.
Once again, this is also the name for the assembly that contains the compiled code for
these interfaces and classes. While we will not list all the interface and class names
here, we will highlight the names of the most visible interfaces. This is done in part
for parallelism with the J2EE-SKIT, and also to demonstrate the naming convention
followed for the DNET-SKIT. Interface names begin with an uppercase “I” and another
uppercase letter. After that, the names use mixed case (not camel case), with common
acronyms listed in Pascal case. For example, an acronym like “SQL” is written as
“Sql” in the construct name.

IParsedSql This interface is used as output by the Parser subsystem and as input by the
Qualifier subsystem. It provides access to the Parser output for the rest of the distributed
database environment in general and especially the Qualifier subsystem. We must be
careful when we modify or extend this interface. In particular, we should never expose
any of the implementation details. Therefore, we should ensure that this interface only
provides read-only access to the contents. Otherwise, we introduce implementation
dependencies that make it very difficult to use a different implementation for the
subsystems in other projects. In other words, if we are not careful we can damage our
reusability.

IQualifiedSql This interface is used as output by the Qualifier subsystem and as input
by the Planner subsystem. Like the previous example, this interface should be used
to provide one subsystem with read-only access to the output generated by another
subsystem. Once again, we are concerned about hiding implementation details and
providing read-only access. We are also a little more concerned about supporting mul-
tiple implementation alternatives for this interface because the Qualifier subsystem is
often modified or reimplemented for different projects.

IDet This interface is used as output by the Planner subsystem and as input by
the Dem subsystem. Although this is also a read-only, implementation-independent
interface, we do have some design details exposed though this interface—namely, the
fact that this interface is intended to represent a tree. This will place some limitations
and restrictions on the implementation alternatives for the Planner subsystem, but we
can always modify the framework if necessary.

IQueryResults This interface is used as output by Dem subsystem, and as input by
the Ddbms subsystem. This same interface is also used to represent the output of
the Lem subsystem—therefore, the interface is not read-only. It includes methods for
population (but not modification) to make it easier to share a common interface (and
perhaps implementation) between the different subsystems. There are also .NET classes
and interfaces that we could use to either replace this interface or implement the class
that supports this interface, for example, the “System.Data.DataSet” class.

19.2.2 DNET-SKIT Extension Design Overview

As we discussed in Section 19.1.2, the starter kit implementations use a simple subsys-
tem interaction strategy. In this strategy, most of the subsystems are service providers to
the other subsystems in the framework but the Ddbms subsystem is the primary service
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consumer for these services. The Ddbms is the only subsystem that needs to connect to
the Parser, Qualifier, Planner, and Dem subsystems. Although this strategy is somewhat
simplistic, it should be useful for many typical DDBE project scenarios. The Lem sub-
system is a special case. It is not directly called from the Ddbms subsystem; the Dem
subsystem is its primary service consumer in most DDBE projects. However, it is also
the subsystem most likely to change its interaction between projects. Suppose we are
experimenting with different execution control strategies in a new DDBE project. Com-
pare this with another DDBE project that focuses on query optimization. When we com-
pare these two DDBE project scenarios with the interactions outlined in Section 19.2.1,
it is easy to see that the Lem communication and interaction can vary greatly.

Even though these new interactions are not necessarily represented in the framework,
they are also not forbidden by the framework. We can simply create new interfaces
and use them in the specific subsystem implementations as necessary. Since all of
these details are contained within the extension, they have little or no impact on any
other projects based on the framework and original starter kit extension. Aside from
the caveat we just mentioned for the Lem, almost all extension implementations will
implement the same interfaces—namely, the interfaces defined in the framework and
identified in this chapter. Even when our DDBE project chooses to implement the code
behind one of these interfaces using a different class name, a different namespace, or
different implementation details, the interfaces will not necessarily need to change.
In particular, the abstract factory interface should only need to change in rare cases
where we implement a radically different server object or Remote-Code Execution
strategy.

In the starter kit extension, each subsystem is implemented as a separate assembly
and deployed as a managed component stored as an EXE file. This deployment
includes a simple graphical user interface (GUI), with minimal status reporting and
user interaction. While this is not the recommended deployment or implementation
for a production level distributed database environment, we feel that this approach
is useful for the types of DDBE projects we want to create. We would never
implement services in a real, production-level distributed database environment using
GUI applications that require user interaction to begin their interactions with other
subsystems. However, in prototype, experimental, and academic projects, it is useful
to be able to control the components, perhaps even setting break points within the
code to study how certain algorithms are processing things.

For each of the service-provider subsystems, we provide a brief summary, listing
the fully qualified names for the abstract factory interface, the concrete factory class,
the abstract product interface, the concrete class, and the name of the assembly used
to deploy this subsystem.

19.2.2.1 The Ddbms Subsystem In Table 19.3, we list the type names used by the
Ddbms subsystem. This subsystem is implemented using “wellknown” server object
activation for the concrete factory object, which is accessed via the abstract factory
interface. This interface has a single method defined within it (“CreateDdbms()”).
This method creates a concrete product instance and returns it to the caller via the
abstract product interface. Because both the concrete factory and the concrete product
extend (inherit from) the “MarshalByRefObject” class, they actually return a proxy
object and execute their methods on the server rather than in the caller’s Application
Domain (and physical machine in the case of a remote client and server). The abstract
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TABLE 19.3 Type Names for Ddbms Subsystem

Type Name

Abstract Factory Srdbsoft.Ddbe.DnetSkit.Framework.Interface.IDdbmsFactory
Concrete Factory Srdbsoft.Ddbe.DnetSkit.Framework.Extension.DdbmsServer.DdbmsFactory
Abstract Product Srdbsoft.Ddbe.DnetSkit.Framework.Interface.IDdbms
Concrete Product Srdbsoft.Ddbe.DnetSkit.Framework.Extension.DdbmsServer.Ddbms
Assembly Name Srdbsoft.Ddbe.DnetSkit.Framework.Extension.DdbmsServer.exe

product interface contains methods for executing SQL query and SQL DML opera-
tions against the distributed database environment that the project using this subsystem
implements.

Namespaces and assemblies in this platform follow an informal set of naming
conventions. While these are more suggestions or conventions than strict rules,
we tried to adhere to them within the starter kit. For further details, search for
“Guidelines for Names” in the online help within Visual Studio or on the Web. We
can add the text, “.NET Framework Developer’s Guide” to narrow our search if
we are using the Web rather than the online help. Notice that this convention is
somewhat similar, but actually quite different from the naming convention used by
packages in Java.

19.2.2.2 The Parser Subsystem In Table 19.4, we list the type names used by the
Parser subsystem. This subsystem is implemented using “wellknown” server object
activation for the concrete factory object, which is accessed via the abstract factory
interface. This interface has a single method defined within it (“CreateParser()”). This
method creates a concrete product instance and returns it to the caller via the abstract
product interface. Because both the concrete factory and the concrete product extend
(inherit from) the “MarshalByRefObject” class, they actually return a proxy object and
execute their methods on the server rather than in the caller’s Application Domain
(and physical machine in the case of a remote client and server). The abstract product
interface contains methods for parsing an SQL statement. The Ddbms subsystem will
use this subsystem to validate an SQL statement and add semantic information. The
Parser only needs to handle a single SQL statement at a time. The syntax supported will
be a subset of the ANSI-92 syntax for SELECT, INSERT, UPDATE, and DELETE.

TABLE 19.4 Type Names for Parser Subsystem

Type Name

Abstract Factory Srdbsoft.Ddbe.DnetSkit.Framework.Interface.IParserFactory
Concrete Factory Srdbsoft.Ddbe.DnetSkit.Framework.Extension.ParserServer.ParserFactory
Abstract Product Srdbsoft.Ddbe.DnetSkit.Framework.Interface.IParser
Concrete Product Srdbsoft.Ddbe.DnetSkit.Framework.Extension.ParserServer.Parser
Assembly Name Srdbsoft.Ddbe.DnetSkit.Framework.Extension.ParserServer.exe
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There will not be much, if any, support for functions or complex subclauses (subqueries,
aggregate queries, order by clauses, having clauses, etc.), and there is no support for
vendor-specific syntax or features. Arguably, this subsystem could also be deployed as
a simple “wellknown” object because it is Stateless, but the abstract factory method
pattern was used for architectural consistency also to help minimize the threading
issues from multiple clients.

19.2.2.3 The Qualifier Subsystem In Table 19.5, we list the type names used by the
Qualifier subsystem. This subsystem is implemented using “wellknown” server object
activation for the concrete factory object, which is accessed via the abstract factory
interface. This interface has a single method defined within it (“CreateQualifier()”). This
method creates a concrete product instance and returns it to the caller via the abstract
product interface. Because both the concrete factory and the concrete product extend
(inherit from) the “MarshalByRefObject” class, they actually return a proxy object and
execute their methods on the server rather than in the caller’s Application Domain (and
physical machine in the case of a remote client and server). The abstract product inter-
face contains methods for qualifying the results returned from the Parser subsystem.
Because this subsystem will often be implemented using a GDD, it makes sense to
leave this as a factory method implementation—this way we can deploy it wherever
the qualification database is stored (regardless of whether the GDD is implemented
traditionally or actually using some other alternative such as a GCS or GIS).

19.2.2.4 The Planner Subsystem In Table 19.6, we list the type names used by the
Planner subsystem. This subsystem is implemented using “wellknown” server object
activation for the concrete factory object, which is accessed via the abstract factory
interface. This interface has a single method defined within it (“CreatePlanner()”).
This method creates a concrete product instance and returns it to the caller via the

TABLE 19.5 Type Names for Qualifier Subsystem

Type Name

Abstract Factory Srdbsoft.Ddbe.DnetSkit.Framework.Interface.IQualifierFactory
Concrete Factory Srdbsoft.Ddbe.DnetSkit.Framework.Extension.QualifierServer.

QualifierFactory
Abstract Product Srdbsoft.Ddbe.DnetSkit.Framework.Interface.IQualifier
Concrete Product Srdbsoft.Ddbe.DnetSkit.Framework.Extension.QualifierServer.Qualifier
Assembly Name Srdbsoft.Ddbe.DnetSkit.Framework.Extension.QualifierServer.exe

TABLE 19.6 Type Names for Planner Subsystem

Type Name

Abstract Factory Srdbsoft.Ddbe.DnetSkit.Framework.Interface.IPlannerFactory
Concrete Factory Srdbsoft.Ddbe.DnetSkit.Framework.Extension.PlannerServer.PlannerFactory
Abstract Product Srdbsoft.Ddbe.DnetSkit.Framework.Interface.IPlanner
Concrete Product Srdbsoft.Ddbe.DnetSkit.Framework.Extension.PlannerServer.Planner
Assembly Name Srdbsoft.Ddbe.DnetSkit.Framework.Extension.PlannerServer.exe
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abstract product interface. Because both the concrete factory and the concrete product
extend (inherit from) the “MarshalByRefObject” class, they actually return a proxy
object and execute their methods on the server rather than in the caller’s Application
Domain (and physical machine in the case of a remote client and server). The abstract
product interface contains methods for creating an execution plan based on the results
returned from the Qualifier subsystem. This subsystem is probably shared across several
projects, unless they happen to focus on a specific planning area such as execution
control or optimization. Therefore, the standard deployment strategy is appropriate for
most projects.

19.2.2.5 The Dem Subsystem In Table 19.7, we list the type names used by the Dem
subsystem. This subsystem is implemented using “wellknown” server object activation
for the concrete factory object, which is accessed via the abstract factory interface. This
interface has a single method defined within it (“CreateDem()”). This method creates a
concrete product instance and returns it to the caller via the abstract product interface.
Because both the concrete factory and the concrete product extend (inherit from) the
“MarshalByRefObject” class, they actually return a proxy object and execute their
methods on the server rather than in the caller’s Application Domain (and physical
machine in the case of a remote client and server). The abstract product interface
contains methods for executing the execution plan returned from the Planner subsystem.
There are probably several methods in this interface, at least to support the separation
of queries from commands. This subsystem is highly dependent on the Planner and
Lem subsystems. It can be reused or reimplemented on a per-project basis.

19.2.2.6 The Lem Subsystem In Table 19.8, we list the type names used by the Lem
subsystem. This subsystem is implemented using “wellknown” server object activation
for the concrete factory object, which is accessed via the abstract factory interface. This
interface has a single method defined within it (“CreateLem()”) This method creates a

TABLE 19.7 Type Names for Dem Subsystem

Type Name

Abstract Factory Srdbsoft.Ddbe.DnetSkit.Framework.Interface.IDemFactory
Concrete Factory Srdbsoft.Ddbe.DnetSkit.Framework.Extension.DemServer.DemFactory
Abstract Product Srdbsoft.Ddbe.DnetSkit.Framework.Interface.IDem
Concrete Product Srdbsoft.Ddbe.DnetSkit.Framework.Extension.DemServer.Dem
Assembly Name Srdbsoft.Ddbe.DnetSkit.Framework.Extension.DemServer.exe

TABLE 19.8 Suggested Type Names for Lem Subsystem

Type Name

Abstract Factory Srdbsoft.Ddbe.DnetSkit.Framework.Interface.ILemFactory
Concrete Factory Srdbsoft.Ddbe.DnetSkit.Framework.Extension.LemServer.LemFactory
Abstract Product Srdbsoft.Ddbe.DnetSkit.Framework.Interface.ILem
Concrete Product Srdbsoft.Ddbe.DnetSkit.Framework.Extension.LemServer.Lem
Assembly Name Srdbsoft.Ddbe.DnetSkit.Framework.Extension.LemServer.exe



SUMMARY 707

concrete product instance and returns it to the caller via the abstract product interface.
Because both the concrete factory and the concrete product extend (inherit from) the
“MarshalByRefObject” class, they actually return a proxy object and execute their
methods on the server rather than in the caller’s Application Domain (and physical
machine in the case of a remote client and server). The abstract product interface
contains methods for executing the pieces of the execution plan as determined by the
Dem subsystem. Typically, it should have one method for executing queries and one
or more methods for executing DML statements. We can choose to implement separate
methods for each type of DML, or we can choose to implement a single method to
handle all DML statement execution.

We can define other methods that are specific to our DDBE project as well. For
example, we might define different methods for different Lem implementations when
they use different execution control strategies. Consider how the interface might need
to be different when implementing a “master–slave” control strategy versus a “triangu-
lar” control strategy (see Section 1.7 of Chapter 1 for an example of these strategies).
We can also choose to define our methods differently depending on the types of param-
eters we want to use. Suppose we choose to pass the local SQL commands and queries
into the Lem subsystem as strings. If this were the case, then our method would have a
String (the SQL statement) as a parameter. Similarly, if we decided to use a more rela-
tional algebra-flavored approach, we could still use a String parameter (here it would
contain a relational algebra statement instead of an SQL statement). This is not the
only possible approach, however. For example, we might choose to use several param-
eters representing the individual “pieces” required for the specific relational algebra
operation, instead of a single String parameter. This would mean that an SQL SELECT
statement would be translated into a relational algebra command using several specific
arguments. In this scenario, we might define our method parameters to represent a list
of columns to be projected, a list of tables to be joined, a list of the join conditions
to be applied, and a list of non-join conditions to be selected. We might choose from
several other approaches as well (perhaps a tree structure containing those operators
and operations, etc.).

Therefore, it is likely that this subsystem will be redesigned and reimplemented
in many DDBE projects. In those cases, we might use a completely different
abstract product interface. However, this should really only affect the Dem subsystem
implementation in most scenarios—the Dem abstract interfaces are probably
not affected.

19.3 SUMMARY

Our DNET-SKIT consists of many classes and interfaces, which are in turn factored
into several different assemblies. A subset of these classes and interfaces form a frame-
work representing the fundamental subsystems within a typical DDBE project. The
framework provides an overall infrastructure and implements some of the foundations
for building a DDBE project. Although the framework can also be directly modified,
we intend the framework to be extended through inheritance rather than reimplemented
whenever it is not able to satisfy the needs of a particular set of project requirements.
The other assemblies that are not part of the framework are part of an example extension
that is also included within the starter kit. While we would expect these interfaces and
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classes to be usable as they are or extended through inheritance to satisfy the require-
ments for some projects, this will not be true for all projects. We would expect some
projects to completely ignore the extension and simply implement all of their subsystem
code directly when this is the case. The code implemented within the SKIT extension or
any other project-specific extensions can then serve as a basis for new implementations,
or merely as examples, in addition to fulfilling their own project-specific requirements.

In general, all executable content deployed within the platform is based on assem-
blies. In our starter kit, we chose to bundle the assemblies as separate EXE and DLL
files. These files, combined with the configuration file for each subsystem, are then
ready to be installed on a new system. As we discussed in Chapter 18, there are several
options for deployment within the platform. The starter kit is compatible with most
of these approaches, albeit with some additional steps required in some cases. All of
the subsystems implemented in the starter kit use the Abstract Factory design pattern.
The starter kit as a whole makes use of a few other design patterns as well in order
to deploy the subsystems using “wellknown” server activation and .NET Remoting
for our Remote-Code Execution Requirements. There are other deployment alterna-
tives possible, as well as other Remote-Code Execution alternatives available within
the platform, but these are not implemented within the starter kit. That said, many of
these alternatives are compatible with the starter kit and can be used with only minor
modifications. We feel that the other alternatives are more complicated and require
more substantial implementation or design changes as well as additional deployment
configuration. Because the starter kit is extendable, and because we have all the source
code for it, we can always attempt to expand the framework or one of its extensions
to address these other alternatives. That, however, is left as an exercise for the reader.

The DNET-SKIT includes further details, recipes, and suggestions for building,
deploying, and executing our DDBE projects based on the framework provided—but
these details cannot cover all the specific details for all possible platform installations.
Instead, these documents provide an example of how we can compile, deploy, and
execute the SKIT extension in a typical installation. There are also recipes for modify-
ing the deployment details once we have successfully built and deployed the example
extension within an environment. Although these recipes might not be identical to
the steps required for a particular installation, they should provide sufficient details to
enable us to translate the steps into the appropriate actions based on the installation-
specific configuration details. Once we have succeeded in deploying the example, it
should be reasonably simple to create a new project that modifies or extends the starter
kit, and then to redeploy the resulting code.

19.4 GLOSSARY

Assembly The fundament unit of work for any deployment considerations in the
Microsoft .NET Framework. Although assemblies can consist of multiple files, we
usually bundle all the modules into a single file written in the Portable Executable
(PE) format and save it as either a DLL or an EXE.

Base Class Library (BCL) The set of application–programming interfaces (APIs)
used to connect managed components to the underlying services and subsystems
provided by the Microsoft .NET Framework-based platform.
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Client-Activated Server Object A remote object whose lifetime is controlled by
the client. This means that it is created and destroyed on the server by the code
executing on the client in order to support .NET Remoting.

Component A deployable bundle that provides a reasonably cohesive set of
functionality.

Component or Subsystem (COS) A term that refers to a component or subsystem,
ignoring any differences between the two concepts.

Deployment Any features, issues, concepts, or considerations related to how a COS
instance is installed on a particular machine at a particular site.

Global Assembly Cache (GAC) The machinewide container for shared assemblies.

Managed Component A piece of software that is designed, implemented,
and deployed in such a way that it can execute inside the Microsoft .NET
Framework-based platform, with the CLR managing its runtime environment.

Marshalling The collection of techniques capable of converting parameters into a
data stream, usually to support RMI, RPC, or Messaging—the opposite of unmar-
shalling.

Platform A set of software that provides a well-defined set of operations, facilities,
and functionality that serves as the foundation for components, subsystems, and
other software that runs on top of the platform.

Remoting The collection of techniques used to perform any remote functions
including remote execution and messaging.

Service A logical collection (specification/design) of well-defined, cohesively
related functionality or a software instance (physical collection) that implements
this functionality.

Service Consumer A component or subsystem that uses a set of functionality imple-
mented by some other component or subsystem (consumes a service implemented
by some service provider).

Service Provider A component or subsystem that implements a set of functionality
and makes it available to other components and subsystems (provides a service to
be used by some service consumer).

Singlecall A mode used for wellknown server activated objects, indicating that each
method call will receive a new instance of the server object. This also implies that
the server object is Stateless since it is recreated (without any parameters passed to
its constructor) just before each method invocation.

Singleton A mode used for wellknown server activated objects, indicating that all
clients and all method calls will share a single instance of the server object. This
also implies that the server object is Stateful since it is not disposed of or recreated
in between method invocations.

Subsystem A collection of components and/or subsystems that is part of a larger
system but also a system in its own right.

Unmanaged Component The opposite of a managed component—a piece of
software that does not use the CLR to manage its runtime environment and therefore
does not run inside the Microsoft .NET Framework-based platform, although it can
still coexist and interact with managed components that do run that way.
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Unmarshalling The collection of techniques capable of converting a data stream into
one or more parameters, usually to support RMI, RPC, or Messaging—the opposite
of marshalling.

Wellknown Server Activated Object A remote object whose lifetime is controlled
by the server. This means that it is created and destroyed on the server (by the code
that is also executing on the server) in order to support .NET Remoting. It can have
one of two possible modes: singleton or singlecall.

XML A markup language that uses tagging to indicate semantic details or logical
structure for a set of data content.
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EXERCISES

Complete the following programming exercises.

19.1 Download the DNET-SKIT and compile, deploy, and execute the example
extension.

19.2 After consulting the vendor-specific documentation and the recipes supplied with
the DNET-SKIT, modify the deployment details for the example extension to
use a different database vendor for the Lem databases.

19.3 After consulting the vendor-specific documentation and the recipes supplied
with the DNET-SKIT, modify the example extension and deploy the Ddbms
subsystem on a different machine. Next, move one of the Lem subsystems to
another machine.

19.4 Section 4.5.1 discussed query execution strategies, including a triangular control
strategy, as shown in Figures 4.18 (b) and (c). Create a new DDBE project
based on the DNET-SKIT that implements this triangular strategy for query
execution—this does not need to be based on query optimization details, but
can be either hard-coded to use a particular pattern or controlled by deployment-
specific settings (settings specified in the GDD or in the deployment descriptors).
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‘Abort ACK’ message, 329–330
‘Aborted’ transaction state, 302
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Access frequency, 78
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Acknowledgment, message, 591–593
Active transaction, 351
‘Active’ transaction state, 302
Administered objects, 583–584, 617
ADO.NET database connectivity, 682
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Affinity Matrix, 78
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After trigger, 106
Aggressive TO algorithm, 238
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Arbitrated digital signatures, 365, 378
Archetypical DBE architectures, 6–13

application processor (AP), 9
basic services, 7–8
command processor (CP), 9
data accessor (DA), 9
data getter (DG), 7
data read service (Drd-S), 7
data write service (Dwr-S), 7
expected services, 8–9
expected subsystems, 9–10
query processor (QP), 9
required services, 6–7
summary level diagrams, 11–13
typical DBMS services, 10–11

Architectural concepts, DBE, 4–6
components, 4
services, 4
subsystems, 4

Architectural security issues, 375–376
Architectural security requirements, 567–569,

574
architectural security, 568
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Architectural security requirements (contd.)
authentication, 568
authorization, 568
encryption, 568–569
identity, 567
security policies, 567
security target, 567

Architectural vocabulary, DDBE, 537–544
architectural visualizations, 538–542
business services tier, 538–540
components, 537
Data Services Tier, 540–542
middleware, 537, 542–544
service consumers, 537–538
service providers, 537–538
service-oriented architecture (SOA), 538, 540–542

descriptive requests, 541
prescriptive requests, 541

subsystems, 537
three-tier model (3TM), 538–540
user presentation tier, 538–540
User Services Tier, 538–540

Assemblies, 666, 671–672, 684, 708
deployment alternatives, 677–678

Assertions, 106
Asynchronous messaging, 588–589, 617
Asynchronous replication control, 276, 278–279,

292
Atomic AT, 397, 419
Atomicity property, 186, 238
Atomicity, consistency, isolation, and durability

(ACID), 184, 238
Attribute Type (AT), 397–398, 419
Authentication, 84–85, 106, 358, 368–369, 378,

568, 574, 617
database, 84
operating system, 84

Authorization, 368–369, 378, 568, 574, 617
Auxiliary database, 509
Avoidance, deadlock, 249–252, 271
Awaits, 271

B
Bachman diagram (BD), 437, 446
Backup types, 311–313

cold, 312
complete, 311
full-image, 312
hot, 312
incremental, 311–312
rolling a database back, 313
rolling a database forward, 313

Backward recovery, 198, 238
Base Class Library (BCL), 666–674, 684, 708
Basic operators in RA, 113
Bean Managed Transaction (BMT), 633, 637, 661
Before commit state, 351
‘Before Commit’ transaction state, 302

Before trigger, 106
Binary relationship types, 400
Bit vectors, 165, 173
Blind write, 192, 238
Block ciphers, 359, 378
Blocking calls, 560
Blocking messaging, 563
Blocking, 617
Bloom vectors, 165, 173
Bond Contribution Calculation, 54–62

for (C0, C3, C1) ordering, 55
clustered affinity matrix, 57
partial clustered affinity matrix, 56

Bond Energy Algorithm (BEA), 53, 78
Bottom–up design approach, 35, 37, 78
Bottom–up methodology, 459–461, 509
Boyce–Codd normal form (BCNF), 446
Broadcast approach, 283, 292
Brute force attack, 359, 378
Business Services Tier, 538–540, 574

C
Callee, 557–560, 574, 637
Caller, 557–560, 574, 637
Candidate keys (CKs), 429
Can-wait-for, 271
Cardinality (of an RT), 399–400, 419
Cartesian product (CP) operator, 116
Cascadeless schedules, 197, 239
Cascading rollback, 197, 239
Catalog, 173
Centralized 2PL, 229–230, 239
Centralized database environment (CDBE), 13, 18,

173, 386
Centralized DBE concurrency control, 200–222

concurrency control in Oracle, 214–222
growing phase, 202
locking-based concurrency control algorithms,

201–208
locking in relational databases, 204–206
one-phase locking, 201
optimistic concurrency control algorithms, 201
pessimistic concurrency control algorithms, 201
phantom issue, 206–208
shrinking phase, 202
strict two-phase locking, 203
timestamping, 201
two-phase locking, 201

Centralized deadlock detectors, 262
Centralized systems

deadlocks in, 248–258, See also under Deadlock
handling

serializability in, 194
Centralized systems, query processing in, 126–145

code generation, 144–145
dynamic programming (DP), 135–141
query optimization, 128–144

cost estimation, 129–133
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plan generation, 133–135
query tree, 130

query parsing, 127–128
translation, 127–128

Centralized Transaction Acceptance/Rejection Phase,
281

Certificate authority, 366, 378
Certificate revocation list (CRL), 366, 378
Certification authorities (CA), 365–366
Checkpointing, 318–319, 351

consistent, 318
fuzzy, 318

Child record type, 441, 446
Child transaction, 200, 239
Cipher block chaining (CBC), 360, 378–379
Ciphers, 357, 378
Ciphertext, 358, 378
Circulating token algorithm, 284–287, 292
Class, 444, 446
Class inheritance, 444, 446
Clients, 3–4, 533

client activated server object, 684, 709
CLP taxonomy, 384

conceptual-level issues, 390–394
abstraction issues, 392–393
DBE design and implementation independence

issues, 390–392
emphasis issues, 393–394

Clustered affinity matrix, 53, 78
after rearranging rows and columns, 57
after rearranging the columns, 57
partial, 56

Clustered index, 173
CODASYL, 436, 509
Code generation, centralized systems, 144–145
Codes, 357, 378
Cold backup, 312, 351
Command, 3
Commercial DDBES, 483–489

InfoSphere Federation Server, 488–489
Microsoft Access, 487–488
schema integration in, 485–486
software integration in, 486–487

Commercial off-the-shelf (COTS) components,
14–15, 509, 516, 533, 574

Commit point, 352
Commit protocols, 298–300, 324–351, 352

architectural requirements, 325–326
distributed commit protocols (DCPs), 326–327
network partitioning, 348–351
one-phase commit (1PC), 326–329
quorum-based commit (QBC), 326, 348–351
three-phase commit (3PC), 326, 345–349
two-phase commit (2PC), 326, 329–345, See also

individual entry
‘Committed’ transaction state, 302
Common Intermediate Language (CIL), 666, 669,

684

Common Language Runtime (CLR), 666–671, 684
Common Language Specification (CLS), 666–671,

684
Common Object Resource Broker Architecture

(CORBA), 521, 572
Common Type System (CTS), 666, 668–669, 674,

684
reference types, 668
value types, 668

Communication link failures, 298
Communication protocol, 587
Compensating transaction, 239
Compete backup, 352
Competitive synchronization, 554, 574
Compile time validation, 97, 106
Complex predicates, 121
Components/COS (component or subsystem), 5, 537,

574, 617, 637, 661, 684, 709
Computing RA operators, 119–126

computing join, 123–126
external sort, 124
hash-join, 126
nested-loop joins with indexes, 124
nested-loop joins, 123–124
sort–merge join, 124–126

computing selection, 120–122
B+tree index, 120–122
complex predicates, 121
hash Index, 122
no index, 120
nonunique index, 121
simple predicates, 121
unique index, 121

Concepts, database, 2–4
Conceptual data model (CDM), 386, 411–413, 419,

425
Conceptual modeling language (CML), 386
Conceptual schema, 388, 392
Concurrency, controlling, 183–242, 239, See also

Centralized DBE concurrency control;
Timestamp

Concurrency control algorithms
in distributed database systems, 222–237
distributed optimistic concurrency control,

236–237
distributed timestamp concurrency control,

232–236
federated/multidatabase concurrency control, 237
optimistic concurrency control algorithm,

213–214
terminology, 183–189

database consistency, 184
database, 183–184

two-phase locking in distributed systems, 229–232
Concurrent access, 3
Conditional join, 173
Confidentiality, 358, 378
Conflict Graphs, 235–236, 239
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Conflict matrix, 239
Conflict serializability, 239
Conflict serializable schedules, 196, 239
Conflicting operations, 3
Conflicts, 191–192, 239

overwriting uncommitted data, 191
reading uncommitted data, 191
unrepeatable reads, 191

Connection Factories and Connections, 584
Connection Factory object, 584, 617
Connection object, 584, 617
Consensus, 292
Conservative TO algorithm, 210–212, 239
Consistency property, 186, 239
Consistent checkpointing, 318, 352
Constraints, 106
Container Managed Transaction, 633, 637, 661
Content, data, 2
ConTracts, 199
Controlling concurrency, See Concurrency,

controlling
Conventional cryptography, 3, 358–362, 378

block ciphers, 359
brute force attack, 359
cipher block chaining (CBC), 360
Data Encryption Standard (DES), 360
decrypt, 358
electronic code book (ECB) mode, 360
encrypt, 358
initialization vector (IV), 360
key, 358
modes, 359
padding, 360
public key cryptography, 359, 363
RC4, 361–362
stream ciphers, 359

Cooperative DDBEs, 513–527, 533
implementation specifics, 523–527

DQSP/LQSP registration and deregistration, 523
election process, 526–527
query to DDSP, 524–526
query to DQSP, 523–524

subsystems, 515–523
client, 517
DDSP, 515, 518–519
DQSP, 515, 517
GIS, 515, 519–521
LDS, 515, 521–522
LQSP, 515, 522–523

Cooperative synchronization, 554, 575
Coordinator, 325
COS closedness or openness (COS-COO), 14–15
COS distribution and deployment (COS-DAD),

13–14
Cost-based optimization (CBO), 135, 173
Create, retrieve, update, and delete (CRUD), 3
Crow’s feet notation (CFN), 390, 407–408, 419
Cryptanalysis, 357, 378

Cryptography, 357–366, 378
arbitrated digital signatures, 365
authentication, 358
certification authorities, 365–366
ciphertext, 358
confidentiality, 358
conventional cryptography, 358
digital certificates, 358, 365–366
digital signature (DS), 358, 364–365
hash message authentication code (HMAC), 362
message authentication code (MAC), 358, 362
message digest (MD), 358, 362
nonrepudiation, 358
plaintext, 358
public key cryptography, 358, 361–364

Cyclic redundancy codes (CRCs), 362

D
Daisy chaining, 283, 292
Data Accessor (DA), 8, 509
Data Content, 32
Data dictionary service provider (DDSP), 515,

518–519, 533
query to DDSP, 524–525

Data dictionary, 20, 173
Data distribution alternatives, 35–79
Data Encryption Standard (DES), 360, 378
Data Getter (DG), 7, 509
Data inference, 374–375
Data item, 437, 446
Data Model (DM), 2, 32
Data Modeling Language (ML), 32, 383–390
Data modeling overview, 383–421

CLP taxonomy, 384
conceptual-level goals, 394–396
forward engineering, 417–418
3LM taxonomy, 388–389
multiple models, conversion to, 417
reverse engineering, 418
using multiple types of modeling, 416–418

Data models (DMs), working with, 383–390,
411–416

CDMs, 411–413
capture the requirements, 411–412
group concepts together, 412
identify concepts in the requirements, 412
remove ambiguities, 412–413
steps to create, 411

Data processor (DP), 20
Data Read Service (Drd-S), 7, 32
Data Schema, 32
Data Services Tier, 538–540, 575
Data shipping, 152, 173
Data Source Name (DSN), 509
Data type constraints, in semantic integrity control,

88, 106
Data Write Service (Dwr-S), 7, 32
Database (DB), 1, 32, 239
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Database Administrator (DBA), 83, 106
Database backups, 311
Database buffers, 309–311
Database Client (DB-Client), 32
Database consistency, 239
Database control, 83–107, See also Semantic

integrity control
Database Environment (DBE), 4, 32, 510
Database management system (DBMS), 3, 32
Database recovery, 314–319, 352

logging process, 314–316
recovery process, 316–319

Database roll forward, 352
Database rollback, 352
Database Server (DB-Server), 3, 32
Database Update Modes, 302

deferred update mode, 302
immediate update mode, 302

DDBE security, 357–380, See also Cryptography
architectural issues, 375–376
deployment, 376–377

Ddbms subsystem, 648, 698, 703–704
Deadlock Handling Service (Dead-S), 10, 32,

247–272
in centralized systems, 248–258

deadlock avoidance, 249–252
deadlock prevention, 248–249
detection, 252
preacquisition of all locks algorithm, 248
removal, 252
wait–die, 249–250
wound–wait, 249, 251

definition, 247–248
Deadlocks in distributed systems, 252–270

distributed deadlock avoidance, 255–260
distributed deadlock detection, 260–270
distributed deadlock prevention, 254–255
distributed wait–die algorithm, 254
transaction control issue, 253–254
transaction location issue, 253

Deadly embrace, 271
Decision support system (DSS), 189, 239
Decryption, 358, 378
Deferred update mode, 302

log records, 304–306
Deferred update, 313–314, 352
Degree (of a relation), 427, 447
Degree (of an RT), 400, 419
Degrees of integration, 464–465
Dem subsystem, 650–651, 706
Deployment descriptor, 637, 661
Deployment, 548–551, 575, 618, 637, 661, 684, 709
Deregistration, 523, 567, 575
Derived horizontal fragmentation (DHF), 42, 44–47,

78
Derived operators in RA, 113
Design alternatives, 38–39

distributed data, 38–39

localized data, 38
Destination object, 584–586, 618
Detection, deadlock, 252, 271
Diffie–Hellman algorithm, 363–364, 378
Digital certificates, 358, 365–366, 378, 685
Digital signature (DS), 358, 364–365, 378, 685
Directory Service Requirements, 564–567, 575, 618,

637, 681, 685
J2EE, 630–631
lookup service, 565–567
naming, 564–565
registration, 565–566

Dirty read, 239
Disjoint participation, 399, 420
Disk failures, 298
Disk I/O, 173
Distributed 2PL, 230, 239
Distributed commit protocols (DCPs), 326–327
Distributed Database (DDB), definition, 1, 32
Distributed data platform requirements, 575, 618
Distributed data, design alternatives, 38–39

fragmented or partitioned, 39
horizontal fragmentation, 39
hybrid fragmentation, 39
vertical fragmentation, 39

fully replicated, 38–39
mixed distribution, 39
nonfragmented, 38
nonreplicated, 38
partially replicated, 39

Distributed deadlock avoidance, 255–260
distributed wound–wait algorithm, 256–257
distributed wound–wait control alternatives,

257–260
Distributed deadlock detection, 260–270

centralized, 262
detectors, 262–270
graph sending rule, 267
hierarchical, 262
potential for global deadlock, 264, 266

Distributed deadlock prevention, 254–255
Distributed execution manager (DEM), 21
Distributed fund transfer transaction, 24
Distributed optimistic concurrency control,

236–237
Distributed process platform requirements, 575,

618
Distributed query optimization, 150–170, See also

under Query optimization
Distributed query service provider (DQSP), 515,

517, 533
query to, 523–526
registration and deregistration, 523

Distributed systems
serializability in, 195–196
splitting in, 50
two-phase locking in, 229–232

centralized 2PL, 229–230
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Distributed systems (contd.)
distributed 2PL, 230
primary copy 2PL, 230

Distributed tables, 36
Distributed timestamp concurrency control, 232–236

conflict graphs, 235–236
transaction classes, 235–236

Distributed transaction, 253, 271
Distributed voting algorithm, 282–283
Distributed wait–die, 254, 271
Distributed wait-for-graph, 271
Distributed wound–wait, 271
Distribution transparency, 68–69, 78

fragmentation, 68
location, 68
replication, 69

Divide operator in RA, 118
DNET starter kit, 689–710

architectural overview, 691–697
Abstract Factory, 692
component identification, 695–696
extension architectural overview, 697–700
Proxy, 693
subsystem interaction overview, 696–697

Ddbms Subsystem, 698
Dem subsystem, 699
design overview, 700–707

framework exceptions area, 701
framework interfaces area, 700–701
framework parameters area, 701–702
IDet, 702
IParsedSql, 702
IQualifiedSql, 702
IQueryResults, 702

extension design overview, 702–707
Ddbms subsystem, 703–704
Dem subsystem, 706
Lem subsystem, 706–707
Parser subsystem, 704–705
Planner subsystem, 705–706
Qualifier subsystem, 705

goals, 691
Lem subsystem, 699–700
Parser subsystem, 698
Planner subsystem, 699
Qualifier subsystem, 699

Domains (in RDM), 426, 447
‘Done’ message, 329
Dummy member, 439, 447
Durability property, 187, 239
Durable Subscriber, 591, 593–595, 598, 605, 612,

618
Dynamic programming (DP), 135–141, 173

in distributed systems, 152–156
1-relation plans, 153
2-relation plans, 154–155
3-relation plans, 155
4-relation plans, 156

iterative dynamic programming (IDP), 142–143
subsequent steps, 136

E
Electronic code book (ECB) mode, 360, 378
Encrypted file systems (EFSs), 369, 378
Encryption, 358, 369–370, 379, 568–569, 575
Enterprise Archive (EAR) files, 625–626, 661
Enterprise Java Beans (EJBs), 625, 643–644, 661
Entity Relationship Diagram (ERD), 420
Entity relationship model (ERM), 396–411, 420

attribute type (AT), 396–397
construct review, 396–402
Crow’s foot notation or crow’s feet notation

(CFN), 407–408
disjoint participation, 399
entity type (ET), 396, 398
inheritance type (IT), 397–399
mutually exclusive participation, 399
overlapping participation, 399
relationship type (RT), 396, 399–400
rules and guidelines, 402–405

naming convention guidelines, 403
naming rules, 402

traditional Chen ERD notation, 405–407
unified modeling language (UML), 408–411

Entity Type (ET), 398, 420
Entropy, 379
Environments, DB, 3–4
Equi-join, 173
Equivalence, 192–193
Exclusive lock mode (ELM), 216, 239
Exclusive row-level lock, 217
Execution manager (EM), 144
Execution Optimization Service (Eopt-S), 8, 32
Execution Service (Exec-S), 8, 32
Exhaustive Search Optimization, 134
Explicit constraints, in semantic integrity control, 88
Export shema, 510
Extensible Markup Language (XML), 638, 661
Extension, 546–547, 575, 613–616, 618, 649–651,

697–700, 702–707
Extent, 447
External port, 271

F
‘Failed’ transaction state, 302
Failures, 297–324

commit point, 299
database update modes, 302
DBMS storage types, 303–304

nonvolatile storage (disk, tape), 304
stable storage, 304
volatile storage (memory), 303

hard failure, 298
communication link failures, 298
disk failures, 298
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system failures, 298
transaction failures, 298

log contents, 304–308
soft failure, 297–298
system crash, 297
terminology, 297–308
transaction log, 302–303
Transaction Roll Forward (Redo), 300
Transaction Rollback (Undo), 299–300
transaction states, 300–302
UNDO/REDO and database recovery, 308–313

Fallback and Recovery Service (Rec-S), 10, 32
Federated databases (FDB), 239, 510
Federated/Multidatabase Concurrency Control, 237
Field, 447
Firewalls, 369, 379
First normal form (1NF), 436, 447
Followers, 325
Foreign key (FK), 429, 447
Forward engineering (FE), 387, 417–418, 425

ETs, 433–434
of ITs, 434–435
of RTs, 433
rules for, 429–435

forward generation of ATs, 429–433
Forward recovery, 198, 239
Fragment, 79
Fragmentation Directory (FD), 20
Fragmentation transparency, 68, 79
Fragmentation, design alternative, 39–68, See also

Horizontal fragmentation (HF); Hybrid
fragmentation (HyF); Vertical fragmentation
(VF)

replication, 68
Framework, 546–547, 575, 606–613, 648–649,

700–702
Free or open-source software (FOSS), 535–536, 575
Full-image backup, 312
Fully replicated database, 292
Fully replicated, design alternative, 38–39
Functional Dependency (FD), 436, 447
Fundamental Platform Requirements, 544–555, 618
Fuzzy checkpointing, 318, 352

G
Generalized Voting Algorithm for Replication

Control, 287–290, 292
‘Global Abort’ message, 329–330
Global Assembly Cache (GAC), 667, 672, 685, 709
Global conceptual model (GCM), 35, 79
Global conceptual schema (GCS), 19–20
Global data dictionary (GDD), 20–21, 79, 146, 510

data directory (DD), 20
fragmentation directory (FD), 20
global conceptual schema (GCS), 20
network directory (ND), 20
replication directory (RD), 20

Global interface schema (GIS), 515, 519–521, 533

P2P DDBEs, 529
Global query, 173
Global timestamp, 271
Global Transaction Manager (GTM), 21, 510
Global transaction, 199, 239, 253, 271, 352
Global wait-forgraph (GWFG), 262, 271
Globally unique identifiers (GUIDs), 520–521, 533
Graph Sending Rule, 267
Greedy algorithm, 143, 173
Group, 437, 447
Grouping AT, 397, 420
Grouping, in vertical fragmentation, 49
Growing phase, 240

H
Hard failure, 298, 352
Hash index on R, 122
Hash-join, 126, 173
Hash message authentication code (HMAC), 362,

379
Heterogeneous DDBE, 174

architecture, 170–171
query optimization, 170–172

Heuristics-based optimization, 134, 174
Hierarchical data model (HDM), 386, 425, 440–443,

447
fields, 441
forward engineering, rules for, 442
nomenclature, 441
parent–child record types, 441
record types, 441
records, 441
reverse engineering, rules for, 442–443
virtual link types, 441
virtual record types, 441

Hierarchical Deadlock Detectors, 262
History, 240
Homogeneous DDBE, 174
Horizontal fragmentation (HF), 39, 42–47, 79

completeness of, 63–66
correctness rules, 66–67

completeness, 66
disjointness, 66
reconstruction, 66

derived horizontal fragmentation (DHF), 42,
44–47

design alternative, 39
generation guidelines, 62–66
minimality of, 63–66
primary horizontal fragmentation (PHF), 42–43

Hot backup, 312, 352
Hybrid fragmentation (HyF), 39, 47–49, 79
Hybrid shipping, 152, 174

I
Identifying AT, 397, 420
Identifying RT, 398, 401, 420
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Identity, 575
IDet, 702
Immediate update mode, 302

log records, 306–308
Immediate update transaction steps, 314, 352
Inactive Transactions, 352
Incremental backup, 313, 352
Index page locking, 207–208, 240
InfoSphere Federation Server, 488–489
Inheritance Type (IT), 398–399, 420
Initialization vector (IV), 360, 379
Input port, 271
Integrity, 362, 379

constraints, 106
Intention lock modes, 205
Intention locking, 204–205, 240
Intentional model, 384, 420
Intermediate Language (IL), 666, 669, 674, 685
Interprocess communication (IPC), 555
Intrusion detection systems (IDSs), 369, 379
IParsedSql, 702
IQualifiedSql, 702
IQueryResults, 702
Isolation property, 187, 240
Iterative dynamic programming (IDP), 142–143, 174

greedy algorithms, 143
Iterator concept, 131

J
Java 2 Enterprise Edition (J2EE) platform, 571–572,

621–639
application clients, 625
application servers, 624
container managed transactions, 633
containers, 624
deployment descriptor, 625
directory services, J2EE, 630–631
distributed data platform requirements, 631–633

J2EE Security, 632
Java Database Connectivity (JDBC), 632

Enterprise Java Beans (EJBs), 624–625
fundamental J2EE vocabulary terms, 622–625
implementation alternatives, 633–635

Apache Geronimo, 635
JBoss, 634
JonAS, 635

J2EE Remote-Code Execution, 627–629
J2EE remote messaging, 629–630
J2EE support for platform requirements, 626–631
J2EE transactions, 633
J2SE Development Kit (JDK), 623
Java 2 Standard Edition (J2SE) platform, 623
Java beans, 624
Java Message Service (JMS), 629–630
Java Naming and Directory Interface (JNDI),

630–631
Java Runtime Environment (JRE), 623–624

Lightweight Directory Access Protocol (LDAP)
service, 630

Message Driven Bean (MDB), 629
overview, 622–626
Remote Method Invocation, 627
Session Beans, 628–629
Stateful Session Beans, 629
Stateless Session Beans, 628
Universal Description, Discovery, and Integration

(UDDI), 631
XML Web Services and SOAP, 627–628

Java 2 Enterprise Edition starter kit (J2EE-SKIT),
641–662

architectural overview, 643–648
Ddbms Subsystem, 648
design overview, 651–659

Ddbms Subsystem, 652–653
Dem subsystem, 655–656
extension design, 654–656
framework design, 651–654
Lem subsystem, 656
Parser Subsystem, 653–654
Planner subsystem, 655
Qualifier subsystem, 655

exception type classes, 658–659
extension exception base classes, 658
framework exception base classes, 658
subsystem-specific exception base classes, 659

extension architectural overview, 649–651
Dem subsystem, 650–651
Lem subsystem, 651
Planner subsystem, 650
Qualifier subsystem, 649–650

goals, 642–643
parameter type interfaces, 656–658

DET, 657
ParsedSQL, 657
QualifiedSQL, 657
QueryResultSet, 657–658

Parser Subsystem, 648–649
subsystem identification, 644–645
subsystem interaction overview, 645–648

Java Archive (JAR) files, 551, 638, 661
Java Bean, 638
Java Message Service (JMS) starter kit, 579–619

administered objects, 583–584
connection factories and connections, 584
connection factory object, 584
destination object, 584–586

application–programming interface (API), 581
architecture, 581–586
creating new extensions, 615–616
framework goals, 607–609

communication topography, 607–608
deployment topography, 607–608
message reliability, 607–608
software complexity, 607–609
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framework implementation package overview,
612–613

framework interface package overview, 609–612
ChatRoom, 611
Hub, 611
HubFactory, 611
Msg, 609
Node, 610–611
NodeFactory, 611

Java 2 Enterprise Edition (J2EE), 580
Java 2 Standard Edition (J2SE), 580
JMS API constructs, 598–602

connection factory, 598
connection, 598–599
destination, 600–601
message consumer, 601
message producer, 601
session, 599–600

JMS provider implementation alternatives,
602–606

administration facilities, 604–605
Apache ActiveMQ, 603–605

configuration, 603–604
software installation, 603
startup and shutdown, 604

OpenJMS, 605–606
administration facilities, 606
configuration, 605–606
software installation, 605
startup and shutdown, 606

sample extension architectural overview, 614
sample extension deployment overview, 615
sample extension design overview, 614–615
sample extension implementation overview, 615
sample extension overview, 613–615
service terminology, 582–583
thread-safety considerations, 584–585

message consumer objects, 585
message objects, 585
message producer objects, 585
not thread-safe, 584
session objects, 584

Java Message Service (JMS), 629–630
Java Naming and Directory Interface (JNDI), 598,

630–631
Java Server Pages (JSPs), 625, 638
Java Virtual Machine (JVM), 547
JBoss, 634
Join operator in Relational Algebra, 117

conditional joins, 117
equi-joins, 117
natural join, 117

JonAS, 635

K
Key, 358, 379

L
Late transaction rule, 209
Lem subsystem, 699–700, 706–707
Lightweight Directory Access Protocol (LDAP)

service, 369, 379, 630, 638
Link type (LT), 437, 447
Linked table, 510
Linking member, 439, 447
Local conceptual model (LCM), 35, 79
Local conceptual schema, 510
Local COSs, 556
Local database environment (LDBE), 515, 533
Local databases (LDBs), 515, 533
Local deployment schema (LDS), 515, 521–522, 533

P2P DDBEs, 529
Local execution managers (LEMs), 22
Local query service provider (LQSP), 515, 522–523,

533
registration and deregistration, 523

Local query, 174
Local recovery manager (LRM), 308–313
Local timestamp, 271
Local transaction, 53, 199, 240, 271, 326, 352
Local transaction monitor (LTM), 308, 510
Local Wait-For-Graph (LWFG), 262, 271
Localized data, design alternatives, 38
Location transparency, 68, 79
Lock conversion, 205, 240
Lock downgrade, 205, 240
Lock escalation, 205, 240
Lock matrix, 201, 240

growing phase, 202
one-phase locking(1PL), 201–202
shrinking phase, 202
strict two-phase locking, 203
two-phase locking (2PL), 201–204

Lock upgrade, 205, 240
Locking-based concurrency control algorithms,

201–208
Locking in relational databases, 204–206

index page locking, 207
intention lock modes, 205
intention locking, 204–205
lock conversion, 205
lock downgrade, 205
lock escalation, 205
lock upgrade, 205
multiple-granularity locking (MGL), 204–205
predicate locking, 207

Locking Service (Lock-S), 10, 32
Log Archival, 311, 352
Log buffers, 309–311, 352
Log contents, 304–308

deferred update mode log records, 304–306
immediate update mode log records, 306–308

Log information analysis, 316
Logging process, 314–316

transaction abort, 315
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Logging process (contd.)
transaction commit, 315
transaction read, 315
transaction start, 314
transaction write, 315

Logical clock reading, 209, 240
Logical data models (LDMs), 386, 413–415, 420,

425–449, 447
purpose, 413–414
steps to create, 414–415

Logical level modeling language (LLML), 527
Logical modeling language (LML), 386
Long-lived transactions (LLTs), 197, 240
Lookup service, 566–567, 575, 618

M
Majority Consensus Algorithm, 283–284
Majority voting, 292
Managed component, 669–671, 685, 709
Managed/Unmanaged Components, 666, 669–671
Management, database, 3
Man-in-the-middle attack, 365, 379
Marshalling, 558, 575, 618, 638, 685, 709
Master–slave distributed transaction control, 27
Master–slave replication control algorithm,

280–282, 292
centralized transaction acceptance/rejection phase,

281
evaluation net [Nutt72], 280
Petri net, 280

Materialization, 133, 174
Maximum cardinality, 400
Meet-in-the-middle attack, 360, 379
Memory frame, 174
Memory page, 174
Message authentication code (MAC), 358, 362, 379
Message Consumer objects, 585
Message digest (MD), 358, 362, 379
Message Driven Bean (MDB), 629
Message objects, 585
Message Oriented Middleware (MOM), 562, 575,

618
Message passing, 553, 555, 575
Message Producer objects, 585
Messaging, 586–595, 618, 638, 685

acknowledgment, 591–593
application-defined protocols, 587–588
durable destinations, 591
errors and exceptions, 593–594
message persistence, 589–591
message reliability, 591
ordering, 594–595
reliability, 593
synchronous versus asynchronous messaging,

588–589
temporary destinations, 591
time-to-live (TTL) value, 590

Messaging domains, 595–598

point-to-point (PTP) messaging, 595–597
publish-and-subscribe (Pub/Sub) messaging, 595,

597–598
Metadata, 32, 392
Microsoft .NET platform, 572, 663–686

assembly deployment overview, 675–679
application configuration file, 676
assembly deployment alternatives, 677–678
configuration, 676–677
deploying a private assembly, 678–679
deploying shared assembly, 678
machine configuration file, 676
security configuration, 676

development overview, 674–675
directory services requirements, 681
distributed data platform requirements, 681–683

ADO.NET database connectivity, 682
.NET security, 682
.NET transactions, 682–683

fundamental vocabulary terms, 666–673
Application Domains, 667, 672–673
Assemblies, 666, 671–672
Base Class Library (BCL), 666–667
Common Language Runtime (CLR), 666
Common Language Specification (CLS),

666–668
Common Type System (CTS), 666, 668–669
Global Assembly Cache (GAC), 667, 672
Intermediate Language (IL), 666, 669
Managed/Unmanaged Components, 666,

669–671
.NET Remoting, 680–681
remote messaging requirements, 681
remote-code execution requirements, 680–681

Microsoft Intermediate Language (MSIL), 685
Middleware, 537, 542–544, 575, 618, 638, 685
Minimum cardinality, 400
Minterm predicate, 79
Mixed distribution, design alternative, 39
Modeling language (ML), data, 2, 32, 420, 425, 447
Modes, 359, 379
Modulus (MOD) function, 174
Multidatabase system (MDBS), 240, 458, 510

architecture classifications, 457–458
Multidatabase, 240
Multimember set type, 438
Multiple-granularity locking (MGL), 204–205, 240
Multiple site failures in 2PC, 342
Multiple site failures in 3PC, 349
Multiprocessing System, 552–553, 576
Multitasking System, 551–553, 576
Multithreaded Programming, 552, 576
Multitransaction processing systems, 189–200

conflicts, 191–192
equivalence, 192–193
schedule, 189–191

parallel schedule, 189, See also Serializable
schedules
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serial schedule, 189
Multi-user System, 553, 576
Multiversion (MV) concurrency control algorithm,

212–213, 240
Mutual consistency, 292
Mutually exclusive participation, 399, 420

N
Naming Service, 576
Navigation, 448
Nested-loop joins, 123–124
.NET Remoting, 680–681
Network Data Language (NDL), 436
Network data model (NDM), 425, 436–440, 448

data items, 437
data storage, 438
forward engineering, rules for, 438–440
multimember set type, 438
navigation, 438
records, 437
reverse engineering, rules for, 440
set types, 437–438
system-owned set type, 438

Network Directory (ND), 20
Network partitioning, 348–351
New coordinator election in 2PC, 342
New DDBE architectures, 513–532, See also

Cooperative DDBEs; Peer-to-peer (P2P)
DDBEs

New taxonomy, 13–17
Nickname, 510
Nonblocking, 560, 563, 576, 618
Nonclustered Index, 174
Nonfederated database (NFDB), 510
Nonfragmented, design alternative, 38
Nonidentifying AT, 397, 420
Nonidentifying RT, 401, 420
Nonpersistent messaging, 590, 619
Nonprocedural language, 174
Nonreplicated, design alternative, 38
Nonrepudiation, 358, 379, 685
Nonunique index, 121, 174
Nonvolatile storage (disk, tape), 304, 352
Normal conjunctive form, 174
Normal disjunctive form, 174
Normalization, 435–436, 448
‘Not Ready’ message, 329

O
Object-oriented data model (OODM), 425, 443–446,

448
class inheritance, 444
classes, 444
forward engineering, rules for, 444–445
methods, 443
nomenclature, 443–444
object identifier (OID), 444

properties, 443
reverse engineering, rules for, 445

One time pad (OTP), 362, 379
One-phase commit (1PC), 326–329, 352
One-phase locking(1PL), 201–202, 240
On-line analytical processing (OLAP), 189, 240
On-line transaction processing (OLTP) systems, 183,

240
On-the-fly, 174
Operating system authentication, 84
Operation shipping, 151, 174
Operations, database, 2–3
Optimistic concurrency control algorithm, 201,

213–214, 240
commit phase (CP), 213
execution phase (EP), 213
validation phase (VP), 213

Oracle Lock Compatibility Matrix, 220
Oracle Lock Duration, 216
Oracle Lock Escalation, 220
Oracle row-level Locks, 216

exclusive row-level lock, 217
row exclusive (RX) table lock, 217–218
row share (RS) table lock, 217–218
shared row-level lock, 216
table-level locks, 217

Ordering, message, 594–595
Output port, 271
Overlapping participation, 399, 420
Overwriting uncommitted data, 240

P
Padding, 360, 380
Parallel schedule, 189, 240
Parent–child record type, 441, 448
Parent record type, 441, 448
Parent transaction, 200
Parser subsystem, 648, 653–654, 698, 704–705
Partial commitment order (PCO), 194, 240
Partial data visibility (PDV), 16
Partial participation, 399, 420
Partial schema visibility (PSV), 16
Partial visibility (PV), 16
Partially replicated database, 292

design alternative, 39
Partitioning, 174
Partitions, 79
Peer-to-peer (P2P) DDBEs, 528–530, 533

client, 529
COOP versus, 530–532
COOP/P2P versus traditional DDBEs, 531
GIS, 529
implementation specifics, 530
LDS, 529
QSP, 528–530

Persistent data, 2, 32
Persistent messaging, 619
Pessimistic concurrency control algorithms, 201, 241
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Petri net, 280
Phantom issue, 206–208, 241
Physical data models (PDMs), 386, 415–416, 420,

425
Physical level modeling language (PLML), 527
Physical modeling language (PML), 386
Ping, 326
Pipelining, 133
Plaintext, 358, 380
Plan generation, centralized systems, 133–135

access paths, 133
exhaustive search algorithm, 134
heuristics-based algorithm, 134
materializing, 133
pipelining, 133
query plan, 133

Planner subsystem, 650, 655, 699, 705–706
Platform requirements, DDBE, 535–577, 638, 661,

685, 709
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distributed data, 537, 567–570
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distributed process, 555–567
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binding requirements, 546
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cooperative synchronization, 554
COS configuration requirements, 548, 550
COS deployment requirements, 548, 550–551
COS pooling requirements, 548–549
COS versioning requirements, 548–550
deployment requirements, 548–551
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execution requirements, 551–555
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multitasking requirements, 551–553
multitasking via multiple threads, 552
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reentrancy, 553
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semaphores, 553–555
synchronization, 553–554
thread safety, 553, 554
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Plural AT, 397–398, 421
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Plural Identifying Grouping (PIG), 397–398, 429

Plural Nonidentifying Atomic (PNA), 397–398, 430
Plural Nonidentifying Grouping, 397–398, 432
Point-in-time (PIT) recovery, 197, 241, 352
Point-to-point (PTP) messaging, 595–597
Pooling, 576
Portable Executable (PE) Format, 671, 685
Posted update approach (PUA), 290–291, 292
Postexecution time validation, 97, 106
Potential for a global deadlock, 272
Preacquisition of all locks, 248,272
Predicate locking, 207, 241
‘Prepare’ message, 329
Pre-write, 241
Primary copy 2PL, 230, 241
Primary copy approach, 278, 292
Primary horizontal fragmentation (PHF), 42–43, 79
Primary key (PK), 428–429, 448
Primary site, 278
Private key, 380, 685
Probing, 174
Procedural languages, 174
Project operator in RA, 114
Property, 443–444, 448
Public key cryptography, 358, 359, 361–364, 380,

685
Diffie–Hellman algorithm, 363
RSA algorithm, 363

Publish-and-subscribe (Pub/Sub) messaging, 595,
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Publisher, 292
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Qualifier subsystem, 649–650, 655, 699, 705
Quel, 112, 174
Query, 3, 32
Query optimization, 8, 32, 111–175, 174, See also

Centralized systems, query processing in
distributed, 150–170

data shipping, 152
distributed resources, utilization, 151–152
dynamic programming in, 152–156
hybrid shipping, 152
operation shipping, 151
query trading in, 156–157

distributed query solution space reduction,
157–170

apply select and project as soon as possible, 157
Bit Vectors Use, 165
materialize common subexpressions once, 161
perform operations where most of the data is,

158–159
simplify join operations, 159
simplify operations on horizontal fragments,

158
use semi-join to reduce communication cost,

162
heterogeneous database systems, 170–172
multiphase approach, space reduction, 166
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data localization (Phase 2), 167
data shipping for binary operations (Phase 4),

168
function shipping (Phase 3), 168
tree selection (Phase 1), 167

sample database, 112
Query Optimization Service (Qopt-S), 32
Query parsing in centralized systems, 127–128
Query plan, 174
Query processing in distributed systems, 145–172,

174
architecture, 146
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Query Request Service (Qreq-S), 8, 33
Query service provider (QSP), P2P DDBEs,

529–530
Query trading, 174, 532
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Quorum-based commit (QBC) protocol, 348–351,
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Read quorum, 292
Reading uncommitted data, 191, 241
Read-only transaction, 241
Real DBMS (Oracle), concurrency control in,

214–222
enforcing serializability in Oracle, 216–222
Oracle lock compatibility matrix, 220
oracle lock duration, 216
Oracle lock escalation, 220
oracle lock types, 216
Oracle row-level locks, 216
read committed level, 216
serializable level, 216
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Record, 437, 448
Recoverable schedules, 197, 241
Recovery process, 316–319, See also Transaction

recovery
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deferred update, 317
from disk failure, 317–318
immediate update, 317
log information analysis, 316
from a power failure, 317
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recovery to current, 319

Recovery protocol, 332, 340–341, 352
Recovery to current, 353
Recursive relationship type, 400–401, 404, 438–440
Redo scripts, 353
Redundant array of independent disks (RAID), 303
Reentrancy, 553–554, 558

Reentrant Code, 576
Reference DDBE architecture, 18–24
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Relation, 426–428, 448
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88, 107
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individual entry
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individual entry
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Relational data model (RDM), 386, 426–436, 448,
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foreign key (FK), 429
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keys, 426
nomenclature, 426–429
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Relational data model (RDM) (contd.)
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tuples, 426

primary key (PK), 428
Relational schema, 449
Relationship type (RT), 399–401, 421
Reliability, message, 571, 593, 607–608
Remote COS, 556
Remote Messaging, 560–564

blocking, 563
communication errors and exceptions, 564
durability, 562
J2EE, 629–630
message oriented programming, 562
messages, 561
nonblocking, 563
ordering, 562
requirements, 681
timeouts, 562

Remote Method Invocation (RMI), 576, 627, 638
Remote Procedure Call (RPC), 558, 576
Remoteability requirements, 556–564

general-purpose mechanisms, 557
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Remoteability requirements (contd.)
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Remote-Code Execution, 557–560
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remote messaging, 557, 560–564
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Remote Procedure Calls (RPC), 558
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RPC versus RMI, 558
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algorithms, 279–291
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