
The C Programming Language
The Ultimate Beginner’s Guide

By: EasyProgramming Publisher

Table of Contents

Introduction 4
Chapter 1: Introduction to C Programming Language 5

History of C Programming Language 5
What is Programming? 6
What is a Source code? 6
What is an IDE? 6
Running Code Blocks 9

Chapter 2: Staring Your First C Project 14
Keywords 14
Functions 15
Operators 15
Structure 16

Chapter 3: The Old I/O 19
Puts Function 19
Printf Function 22
Escape Characters 23

Chapter 4: The C Language Variables 30
Chapter 5: Character I/O Functions in C 35

The String 39
The scanf() Function 40

Chapter 6: Math Operators 44
Math Library functions 48

Chapter 7: C Language Comparisons 53
If Statements 53
Else Statements 56
Else if Statements 57
Switch/Else Statements 59
The While Loop 63
Do/While Loop 68
The For keyword 71
The Nested Loop 72

Chapter 8: Anatomy of a Function 76
Character Manipulation Functions 88
Logical Operators 91

Chapter 9: Working with Strings 94
Strlen 94
Strcat / Concatenation 95
Strcmp / String compare 98
Strstr/ String String 99

Chapter 10: C Language Constants 100
Chapter 11: C language Arrays 106

Anatomy of an Array 107
Multi-dimensional Arrays 111

Chapter 12: C Language Structures 114
Chapter 13: C Language Time Functions 120
Chapter 14: C Language Variables 124

Chapter 15: C Language Pointers 128
Dual Nature of Pointers 129
Array Manipulation Using Pointers 130
Pointer Functions 136
Pointer Arrays 142

Conclusion 146

Introduction

Thank you for buying this book: The C Programming Language – The Ultimate Beginner’s Guide. In
this book, we are going to give you an overview of the concepts that you have to understand before you
actually start programming in the C language. We will explain to you the different elements that you ought
to know about before you go and delve into developing more complex programs for different operating
systems.

The C programming language has many benefits. However, it also has numerous little aspects that can
leave you perplexed. Not being able to understand these aspects can definitely cause you problems in the
future.

In this book, we're going to talk about what those elements are. We are also going to talk about what C is,
where it came from, and all of the fundamental concepts that you have to understand before you actually
start programming. In addition, we'll also teach you how to setup and use the Code Blocks IDE, which
will help you greatly when programming in the C language.

We hope you enjoy this book.

Chapter 1: Introduction to C Programming
Language

Like anything new when you set out to do programming, you find yourself surrounded with strange and
potentially weird terms, and fancied jargon. In this book, we’ll review those terms as well as present an
overview of the entire programming process. It is very likely that you’re eager to get started with writing
codes, and you may have already viewed a later chapter in this book. It is important to know a few key
terms and programming concepts.

History of C Programming Language

Back in 1972, a computer scientist at AT&T’s Bell Laboratories started to develop some programs he
needed for his own use. What Dennis Ritchie started developing then has evolved into the C programming
language, which by now is widely used around the world.

He was trying to make computing as simple as possible. Dennis Ritchie realized that the then-current
assembly language were much too complex. They attempted to reverse this trend by building a small,
simple programming language on a minicomputer.

What Dennis Ritchie wanted to maintain was not only an efficient computer programming language
in which to create programs, but also a computer programming language around which programming
community could form—fellowship. They knew based from previous experiences that the real nature of
joint computing as provided by time-shared, remote accessed systems is not just to enter computer code
into a terminal, but to motivate post programming communication.

The C programming language is a general purpose and structured programming language. It is also called
a procedural oriented programming language.

C is not specifically designed for specific application areas. However, it was well suited for business
and scientific applications. It has various features like control structures, looping statements, and micros
required for applications. The C language has the following features:

• Portability
• Flexibility
• Effectiveness and Efficiency
• Reliability
• Interactivity

What is Programming?

Programming is where you create software. Software controls hardware, which is the physical part of
an electronic device such as a computer, phone, tablet, gaming console, micro-controller or some other
gizmo. Those instructions take the form of a programming language. For this book, that language is the
C programming language, which was developed back in the early 1970s.

It is very old. In fact, over time the C programming language has been considered the Latin of
programming languages. Unlike Latin, C is not dead. Lots of C programming still goes on despite of
newer and fancier programming languages coming along. But like Latin, C is the foundation upon which
many other programming languages are built. If you know C, you can more easily learn those other
languages.

In a later chapter, we will talk about the programming language’s syntax and other rules. But for now,
know that the code you write is called a source code.

What is a Source code?

A source code is a plain text file that contains the programming language, all formatted and pretty and
written properly. In C, the file is saved with a .c filename extension. To create a source code, you use
a text editor. Any text editor can do, although some editors offer helpful features like color coding, line
numbers, syntax checking and other tools.

The source code is then compiled into object code. The program that creates the object code is called
a compiler. The traditional name of the C language compiler is CC, which stands for C compiler. The
compiler reads the source code file and generates an object code file.

Object code files have a .o filename extension, and they use the same filename as the original source code
file. The next step is called Linking. It is often forgotten because modern compilers both compile and
link, but linking is really a separate step.

The linker takes the object code file and combines it with C language libraries. The libraries are the
workhorse of the language. They contain routines and functions that control whatever device you are
programming. If all goes well, the end result is a program file. You can then test run the program to make
sure that it works the way you want it to. And if not, you start the cycle all over again: edit, compile and
link, or “build,” and test run.

All of these tools—the editor, compiler, linker—all originated at the command prompt or terminal. You
can still find them there too. Programmers do a lot of coding at the command prompt because it is quick.
More common, however, is to use an IDE, or Integrated Development Environment.

What is an IDE?

An IDE, or Integrated Development Environment, combines the tools for editing, compiling, linking, and
running. It also adds tools for debugging, creating complex programs, graphical tools and other features.

Beneath it all, however, is the humble command line compiler and linker. The process is the same: edit,
compile and link, run. You are going to do a lot of repeating and re-working before you get things right.

The good news is that all the tools you need to begin your programming journey are found free on the
internet. The bad news being that you have to find the right tools and install them properly. This is not an
issue for you here because in this book, we’ll show you how it is done.

You will see how to find a good IDE, or Integrated Development Environment, a C language compiler,
and get everything setup and configured. You will find a horde of IDEs on the Internet. Microsoft offers
the Visual Studio as its IDE, and Apple has Xcode.

You are welcome to use those tools, especially if you are comfortable with them. But for this book, we
have chosen the Code Blocks IDE. The great thing about Code Blocks is that it comes with everything
you need. Unlike other IDEs, you don’t have to hunt for this or that after the IDE is installed. You only
have to download, configures, and you are ready to go. Obtain Code Blocks by visiting the developer’s
website: http://www.codeblocks.org.

Point your favorite browser—Chrome, Firefox, Internet Explorer—to that website. On that page, look for
the download link. Remember, the page you see below may look different, as web pages do change from
time to time.

Click on the download link. Choose to download the binary release. On the next page, click the link
that represents your computer operating system: Windows, Linux, or Mac OSX. For Windows, look
for the setup.exe file that includes the MinGW compiler. For example, on the screen below, it says
“codeblocks-16.01mingw-setup.exe.” The numbers may change, but that is the link you need.

http://www.codeblocks.org/

For Linux, choose your 32-bit or 64-bit distro. Select a version of Code Blocks that is not testing or
debuginfo. Try to match your specific Linux distro by choosing a link to download.

For the MAC, only one option is shown. Click the link to the right of your choice. We recommend that
you use sourceforge.net as the download link. The download starts immediately. Wait until it is complete.

The next step is to find the downloaded file and install Code Blocks. Open the folder containing that file,
which is usually the Downloads folder. You might also be able to access that folder from the web browser.

In Windows, double-click the file to open it and begin installation. Work through the installation wizard.
Don’t worry about any of the options. They are all okay. Eventually, Code Blocks will be installed with
a shortcut icon on the desktop. Click the Yes button to start Code Blocks if you like, although it is not
necessary to do so right away.

On the MAC and Linux, you need to unpack the archive you downloaded. Double-click the icon in a
folder window to unpack the archive. On the MAC, you will end up with a Code Blocks app file, which
is secretly a folder. We recommend moving that icon to the application’s folder.

With Linux, double-click to open the archive. At that point, you will have to run the install program
depending on how your Linux distro deals with whatever is in the archive. For example, if it is an RPM
file, open it to begin package installation. After Code Blocks is installed, you need to get it configured.
That topic is covered in another chapter.

Running Code Blocks

The main window will look like the illustration below:

This is known as the workspace. To the left, you will see the management panel. This lists the projects that
you are working on in Code Blocks. The center is where you will find the editor where you will write the
code. At the bottom, you will see a host of tabs. These can display messages or other useful information.

You should take a moment now to configure a few Code Blocks settings that will help you use the IDE
in this book. First, choose settings editor. Ensure that there is a check-mark by the option “show line
numbers.” All the other options shown below should be set, which is the default.

Click the choose button in the font area to set the font. It is recommended that you use a mono-spaced
font for clarity. Set your editor to a 12-point font so that it shows better on your screen. Click OK to close
the general settings window.

Second, adjust the build messages text size. Choose Settings > Environment. Next, click the view icon.
Set the message logs font size value to 10 or 12, which is better to see. Once you’re done, click OK.
Congratulations. Code Blocks is now configured for use together with this book.

You can quit Code Blocks now if you want. If you quit, you may be notified that the perspective has
changed. Go ahead and save the perspective, and click on the little box so that you are not bothered with
the message again.

Creating programs, or "Programming," usually involves typing the program's source code--instructions-
-using a programming language, and then compiles and links the source code together to create the
program. The created program usually comes in the form of an .exe file if it is for the Windows operating
system, or a .sh file if it is a UNIX based operating system like Linux or MAC.

You then test run the program to see if the program does what it's intended to do. In other words, run it to
see if it is working. In the next chapter, we will show you a demonstration of how this process works in
Code Blocks. We will talk about how to create and execute a sample computer program written in the C
programming language. In addition, we will also teach you how to root out and fix bugs in your program
using the IDE.

Once you've finished installing Code Blocks in your PC, start it up. You'll be presented with the Code
Blocks start page. If by chance you're working on a computer that has Code Blocks already installed, and
has been used to create programs previously, click on View > Start page on the Code Blocks menu to see
the start page.

Majority of the work done on the Code Blocks IDE are project-oriented. Code Blocks C language projects
can be a small and simple program, or a huge and complicated online computer game. Typically, Code
Blocks projects are created by clicking the Create New Project link on the start page. Do note that this
particular step is not required whenever you are viewing and working on C language project files that are
taken from a different source other than your own computer.

But if you need to make a new C language project in the Code Blocks IDE, particularly the console
programs/applications that we will be using in this book, then select the Console Application option when
starting a brand new project.

After choosing Console Application, select the C language option. Type in a name for the project and
choose a folder where you will be saving the project file. On the Mac, ensure that the names don’t have
any spaces, or else the program can’t be run from within Code Blocks. Choose “Release” only, and click
Finish.

To open a pre-written source code file in Code Blocks, click the Open button on the toolbar. Browse to
the folder containing the pre-written source code file. Choose the pre-written C file that you want to open
and then click “Open.” Then, you will see the source code that’s written in that file in the Code Blocks
editor window.

C code does not include line numbers, but the Code Block editor will show line numbers in the left most
column. Line numbers are not only handy for reference in this book, but also great for tracking down
errors. The source code itself appears on the right hand side of the line numbers. The Text is color-coded,
which helps you recognize the different parts of C, as well as spot errors when things aren’t colored
correctly.

The next step after writing the source code is to compile and link. In Code Blocks, that step is combined
into a single action called Build. To build your project, click the Build icon here:

The action takes place at the bottom of the screen in the Build log, and then Build messages tab. If there
are errors in your source code, Code Blocks will display a small red box right beside the line number
where the error resides. Click the Build log tab to review the specific messages related to the error.

The error messages will also indicate which line the error resides. If you spot an error in your code, rectify
them and then click the Build button again. Once there are no more errors, save the file and re-build the
project to make sure everything is okay.

Now, on the Macintosh, you may see a warning about option -s. That’s a linker error and you can ignore
it. Click the Run button to witness the program’s brilliance. In Windows, the program runs in a command
prompt window. On the Mac and Linux, a terminal window appears. In that window, you may also see
any startup scripts you’ve written. Ignore that part of the output. Otherwise, what you see is the program’s
output.

Close the output window and return to Code Blocks. In Windows, press the Enter key. If the terminal
window does not close in UNIX, just type “Exit” and then press the Enter key. It is recommended that
you do this. Otherwise, the terminal windows will stack up. You’re now ready to create your first project.
If you shutdown Code Blocks, it will ask you whether or not you want to save the perspective. Go ahead
and click Yes.

Chapter 2: Staring Your First C Project

The normal human language has two major parts: syntax and speech. Likewise, the C programming
language also has its own syntax and speech. If a person who has no background in computer
programming looks at a computer source code, it is likely that they won't be able to make heads or tails
out of it. However, once they learn the syntax and the figures of speech of the programming language, it
will all begin to make sense.

In this book, we will introduce you to syntax and figures of speech of the C programming language. We
will teach you how it is structured, what the main function actually does, and also familiarize yourself
with its various functions, keywords, values, variables, and operators.

In the Code Blocks IDE, go ahead and click the "New" button, and then click "Empty file." At this point,
you're now going to type a C programming language code in the editor window pane of the Code Blocks
IDE. Don't be afraid. You're going to type only one line.

Go ahead and type the word "main," followed by a pair of parenthesis and a space, and then lastly,
followed by a pair of curly braces or brackets. Once you finish typing that in, press Enter on the keyboard.
Your Code Blocks editor should now look like this:

1 main() {}
2

Now, save the source code file by clicking the Save button. If you need to, choose the specific folder
where you want to save your C programming language source code files. Type the filename “dummy.c”
for the file. The source code file is now created and saved. Next, click the Build button.

The code does compile. What you see is the absolute minimum C program known as “The dummy.” All
C source code must have the main function. This is where the program execution starts. The contents of
the main function are enclosed in curly brackets.

In our dummy source code, everything is empty, which is okay. However, you might see a compiler
warning, which isn’t critical. A program was created. Click the Run button to run the dummy program.
You will notice that there is no output. That is to be expected because the program code does nothing.

Like any language, the C programming language has several parts:

• Keywords
• Functions
• Operators
• Values and Variables
• Structure

Keywords

The keywords are the language part of the C language. They accomplish very basic tasks. The good news
is that, unlike English which has tens of thousands of words, there are only 44 words in the C language.
In practice, you may only use about half of these keywords.

_Alignas break float signed

_Alignof case for sizeof

_Atomic char goto static

_Bool const if struct

_Complex continue inline switch

_Generic default int typedef

_Imaginary do long union

_Noreturn double register unsigned

_Static_assert else restrict void

_Thread_local enum return volatile

auto extern short WHILE

Functions

The real workhorses of the C language are functions. What the keywords do is really basic. To do more in
C, you rely upon a function. The functions are held in libraries. The linker’s job is to combine the library
with your program’s object code; knitting the two together to make a program.

To use a function in a program, you must incorporate a header file, which defines the function. You will
see how that’s done in the later chapters.

Operators

Operators are symbols used to manipulate data in the program. These include the traditional math
operators, as well as a host of other special symbols.

• Mathematical: +-/*%++--

• Comparison: == != > <

• Assignment: = += -+ *= /=

• Logical: && || !

• Bitwise: & | ^ << >>

• Unary + - ~ ! *

Values and Variables

Values and variables are similar. Values include characters and numeric values. The numeric values are
divided between integers or whole numbers, and floating-point values which contain a decimal part or
fraction. All of them can be very, very large values, or very, very small values.

A variable, on the other hand, is a container for a value. Its contents can change or vary, which is why they
are called variables. The values that go into the variables are the same types of values you use directly in
a program.

Structure

Every piece of the C programming language must be utilized in a particular order or manner. This is
what's called as the C programming language structure. To assist in controlling the program flow, the C
programming language makes use of preprocessor directives. The first function that is run in every C
language program is the main function. The main function is a major requirement in every C language
program. Without it, the program will not compile, much less run.

Curly braces/brackets are utilized to enclose the contents of the function. What amounts to sentences in
the C programming language area are what we call "Statements". Statements include but are not limited
to C language functions, keywords, logical comparisons, math, and so on.

Finally, we have the "comments." Comments are notes for other programmers, or yourself, who will be
looking at the source code. Comments serve as general information or reminders and are not compiled as
part of the source code by the compiler. Now since you now have a little background, let us put it to use
by completing the dummy C language program that we wrote previously.

Return to the dummy.c program’s source code in the IDE’s editor. The main function is defined as an
integer function. That means it returns an integer value to the operating system. Therefore, some editing
is necessary. In your editor, type the C language keyword “int” before the word “main” and ensure that a
space separates both like so:

1 int main() {}
2

Next, clean up the curly brackets, which most veteran programmers prefer to put each on a line by itself.

1 int main()
2 {
3 }

Now, let’s add a statement to the main function. Note how the editor automatically indents the line. That’s
the traditional way C code is formatted. Next, type the word “return” and a number. Go ahead and pick
any number, although it must be an integer. In our example, we’ll type the number 3.

1 int main()
2 {
3 return(3);
4 }
5

You can type the number in parenthesis, as what we’ve done in the example shown above, or you can just
specify the value. If so, you need to put a space between return and the value like so:

1 int main()
2 {
3 return 3;
4 }
5

Don’t forget to type a semi-colon to end the statement. Save the file and then click Build. As long as your
code looks like the example shown above, no errors or warnings will appear. Go ahead and click Run.

On the Mac or Linux, you may see no output other than the build log, and it says the program terminated
with status zero. On the PC, the terminal window shows you the return value as 3, which is the integer
value specified in the return statement.

To add output to the dummy program, you need to use an output function. C language keywords don’t
output anything. They are just basic vocabulary, words like return and int. As an example of an output
function, you can use puts, which sends text to the standard output device. In this case, it is the terminal
window.

Program code in the C language is read top-down because the return statement ends the main function.
Add the puts function at line 3 of our dummy program by inserting a new line into the editor.

In the puts function’s parenthesis, you place a string of text, which consist of characters snuggled between
double quotes. Go ahead and type any string of text that you want.

1 int main()

2 {
3 puts(“I am the King of the C programming world”);
4 return 3;
5 }
6

Again, don’t forget to put a semi-colon at the end of the puts function’s line. Save the source code and then
click Build. At this point, you may or may not see a warning. Even if you don’t, you need to know that
the puts function requires a definition before it can be used. Otherwise, the compiler becomes confused.

The definition is held in the standard I/O header file. You must include that header file in your source
code by using the include preprocessor directive. To do that, first you must insert a line at the top of the
source code. Then, type “#,” the word “include”, a left angled bracket, the word “stdio.h,” and a right
angled bracket. Put another line for readability. Your code should now look like the one below:

1 #include <stdio.h>
2
3 int main()
4 {
5 puts(“I am the King of the C Programming world”);
6 return 3;
7 }
8

This preprocessor directive includes the definition for the puts function. Save the file, but this time, click
the Build and Run button near the top right of the editor, which is two steps in one. If you type everything
correctly, there will be no warnings or errors. On the output terminal window, you’ll see the string that
you specified for the puts function and the return value 3.

Chapter 3: The Old I/O

The best way to get started on your programming journey is to write some simple programs that are easy
to understand and change. To handle that task, it helps to know the basics of input and output, or I/O.

In this chapter, we introduce you to the concept of I/O, and how that plays into programming. You will
get to explore some basic I/O functions, and use one of those functions to create tiny programs that output
interesting text.

A program has to do something. That something involves taking input and generating output. This is how
a typical C program works: it’s a machine that does something to input, and then generates output.

If the program does not do anything, then it is basically plumbing; what comes in, goes out. The C library
offers a host of output functions. Of the lot, these three are the most popular. They are:

• printf()
• putchar()
• puts()

Puts Function

Each function is designed to send one or more characters to the standard output device, which is the
screen or terminal window. The puts function puts, or sends a string of text to standard output. “Puts” is
put string, and a string is a collection of characters enclosed in double quotes. This function is defined in
the STDIO.IO header file, which is included at line one of your dummy program.

In the source code below, we’ve specified the puts function, but omitted the string. Your job is to type this
source code in your editor, and supply the string.

1 #include <stdio.h>
2
3 int main()
4 {
5 puts();
6
7 return(0);
8 }
9
10

Click inside side the parenthesis and type the string argument for the “puts” function. Type a double quote.
The editor automatically supplies the closing quote. Type the text of your choice. If the editor does not
supply the closing quote, you must type it. Otherwise, the compiler will not see the end of the string, and
an ugly error will be generated.

1 #include <stdio.h>
2
3 int main()
4 {
5 puts(“This is just an example”);
6
7 return(0);
8 }
9
10

You can also type the quote even if it is supplied. The Code Block editor is smart enough not to double
up. The string that you type will be highlighted in blue. Click save, build, and run. As you can see in the
output, it displays the string exactly as you typed.

Adding multiple stdio.h header files when using multiple puts functions in your source code is not
required. One is all you need. Also, you can type a single quote within a pair of double quotes. That’s not
a problem. Again, remember to end the statement with a semi-colon.

Next, let’s try adding comments to the previous source code example. As what we’ve mentioned
previously, comments are text that doesn’t compile. Instead, it is intended for the programmer as a
reminder, or just general information.

First, insert a new line at the top of your source code file. Type a slash “/”, and then an asterisk “*”
symbol. Traditional C comments start with a slash-asterisk character combination, and end with the
asterisk and slash characters.

1 /*

2 #include <stdio.h>
3
4 int main()
5 {
6 puts(“Hello Mr. Programmer”);
7 puts(“I’m thrilled to meet you”);
8
9 return(0);
10 }
11

At this point, the editor highlights all the text in the code, which is not effectively one long comment
because no ending comment characters have been written in our sample code above. Next, type your
name and the date like so:

1 /* Charles Xavier October 10, 2016 */
2 #include <stdio.h>
3
4 int main()
5 {
6 puts(“Hello Mr. Programmer”);
7 puts(“I’m thrilled to meet you”);
8
9 return(0);
10 }
11

After typing your name and date, type an asterisk and a slash to end the comment. As we’ve mentioned
earlier, comments aren’t compiled, and you can prove it. Go ahead and save the changes to the source
code, click Build and Run, and you will see that the output only displays the string arguments you
specified for the puts functions.

A second type of comment uses two slash symbols “//” at the start of the line. You can use this comment
to disable a statement in the code, which happens a lot when you are hunting down bugs or trying to fix
something. Let’s try it out in line 6 of our previous example:

1 /* Charles Xavier October 10 , 2016 */
2 #include <stdio.h>
3
4 int main()
5 {
6 // puts(“Hello Mr. Programmer”);
7 puts(“I’m thrilled to meet you”);
8
9 return(0);

10 }
11

Save the code, and then click Build and Run. See how the output doesn’t appear? That’s because the
compiler treated it like a comment. If you’d like to restore the line, remove the // comment, then save,
and then build and run your code again. Before ending this section, we would like you to view the files
created when you build a program in C.

Open the folder where you saved your C language source code files. For each source code file, you find
an object code file. It has the same name as the source code file, but with a .o filename extension. That’s
the file created by the compiler. The object code file contains both the compiled source code, as well as
information from the header file.

The linker takes that object code file and mixes in the C library file. The result is a program file, which
also has the same name as the source code file. In Windows, you may see the filename extension .exe,
which means executable. In other operating systems, no extension is necessary.

The program file might also be given the name a.exe or a.out. That’s the linker’s default name. Although
in Code Blocks, the program name is the same as the source code file’s name.

Printf Function

If there's one favorite C programming language function programmers love to use, it is the printf function.
The printf function is the first function every novice programmer learns because it is part of the traditional
"Hello World" computer program. However, the printf function can do more than just display or output
text in the screen. In this section, we will talk about the printf function.

As most of you already know, the printf function is one of the C programming language's many text
output functions. However, it is much more powerful than the puts function. Also, we will talk about how
to use various escape sequences in your code. Sending an array of characters--strings--to standard output
is the printf function's most basic form. In other words, it shows the user/programmer a bunch of text on
the computer screen.

Just like the puts function, the printf function is defined within the header file stdio.h. If you look at the
code below, you'll see that the printf function is utilized twice, specifically at lines 5 and 6:

1 #include <stdio.h>
2
3 int main()
4 {
5 printf(“This the way the world ends”);
6 printf(“Not with a bang but a whimper”);
7

8 return(0);
9 }
10
11

In this mode, printf works a lot like the puts function. The argument for printf is a single string held
between the function’s parentheses. The string is enclosed in double quotes. If you’re following along,
save and run this code. As you can see, the program doesn’t air the output as it should be. This is because
unlike the puts function, the printf function does not add a new line character at the end of the string.

Yes, even though two statements are used on two lines of code, the output is one long string. To add the
new line, which is like pressing the Enter key at the end of a line, you must specify an escape character.

Edit line 5 of our previous code above to insert a backslash and a small letter ‘n’ before the ending double
quote. In some editors, the backslash ‘n’ appears in a different color, showing that it is special. Save your
changes and then build and run the code. Now, you will see two lines of output.

1 #include <stdio.h>
2
3 int main()
4 {
5 printf(“This the way the world ends\n”);
6 printf(“Not with a bang but a whimper”);
7
8 return(0);
9 }
10
11

Escape Characters

There are some characters you just can’t put into a string. To sneak around this limitation, you use
Escape characters. In the C language, a string is a bunch of characters held between two double quotes.
Everything between the double quotes counts. But sometimes you can’t type a character such as the Enter
key.

For example, if you wanted to put the Enter key press between two words in a string and create a new
line of text, the result would be two lines in the editor, not on the output. The solution is to use the ‘\n’
character in the string. It is an Escape character, which means it starts with a backslash, and then followed
by the letter ‘n’ for newline. Take a look at the example below:

“Behold! \n I am a string of text.”

Together, the ‘\n’ is interpreted as one character—a new line—and it is generated when the string is
output. The C language uses about a dozen of Escape characters also known as escape sequences. The
most common are:

• \n – new line, to start a new line of text
• \t – tab, to hop over so many spaces
• \’ - escaped single quote
• \” - escaped double quote
• \\ - display backspace characters

Now, let’s say that you want to print a string in two lines, and indicates your name in double quotes. How
would you do it? How would you ensure that the double quotes that will be enclosing your name would
be displayed as a string and not as part of the source code? Well, here’s how:

1 #include <stdio.h>
2
3 int main()
4 {
5 printf(“Hello!\nMy name is \”Hector.\””);
6
7 return(0);
8 }

10

As you can see from our sample code above, we’ve inserted a ‘\n’ character immediately after “Hello!” so
as to put the succeeding strings on a new line, and then enclose the name ‘Hector’ between two escaped
double quotes, so that the double quotes will be treated as a string.

You can also choose to remove the escaped double quotes and replace them with single quotes. Why?
Because single quotes in a string do not need to be escaped. Many programmers find this method easier
to use.

On the other hand, a value is typically numeric, although it doesn’t have to be. In your code, you can
specify values such as three, five, or even 100,000,000. You can make use of the printf function to
output those values providing you know about something called a placeholder. In the next section, we’ll
continue exploring the printf function. We’ll show you how placeholders can be used to display values,
not only number, but strings and individual characters as well.

To view values in action, you can use the printf function. But you have to take that function up a notch.
Take a look at your sample code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 printf(“Here is a value: 27\n”);

6
7 return(0);
8 }
9
10

The printf function in line 5 of our sample code above generates an output that would have you believe
that the number 27 was a value, but it is not. It is part of a string—just the characters 2 and 7. To specify
a value, you need to do two things. First, you must place a value into the code—in this case the number
27. Second, you must direct the printf function to display that value.

Edit line five to replace the characters 2 and 7 with ‘%d.’ In some editors, you may see the %d
highlighted. That is because it is a special symbol for the printf function. It is a placeholder. In this case,
it is a placeholder for an integer value—a whole number. Place a comma after the string and add a second
argument to the printf function: the value 27.

Note how a value is shown in its own color in the Code Blocks editor. The printf function now has two
arguments. The first is called the formatting string. It contains one placeholder, which is %d. Matching
that placeholder is the second argument: the integer value 27. Your code should now look like this:

1 #include <stdio.h>
2
3 int main()
4 {
5 printf(“Here is a value: %d\n”, 27);
6
7 return(0);
8 }
9
10

Now save, build and run the code. In the output, 27 represent the value 27. Its output is text, of course.
But inside the program, it is a number and not text. Now, copy line five of our sample code in line 6 and
then change the number to 29. Save, build and run your code.

1 #include <stdio.h>
2
3 int main()
4 {
5 printf(“Here is a value: %d\n”, 27);
6 printf(“Here is a value: %d\n”, 29);
7
8 return(0);
9 }
10
11

As you can see, two lines are output. The same placeholder is used in both printf functions. However,
because a different value is specified, the new value is output for the second statement. The %d
placeholder is just that—it holds the place of another argument. In fact, you can specify multiple
placeholders providing that you have arguments to match, just like in line 7 of the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 printf(“Here is a value: %d\n”, 27);
6 printf(“Here is a value: %d\n”, 29);
7 printf(“Here are the values %d, %d, and %d\n”, 51,52,53);
7
8 return(0);
9 }

You can even do math in a printf function. Although, it is the C language that does the math, not the printf
function. Take a look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 printf(“Everyone knows that 2+2=%d\n”, 4);
6
7 return(0);
8 }
9
10

Here you see an immediate value specified in the printf statement. However, math isn’t always going to
be that simple. Replace the four with the equation two plus two like so:

1 #include <stdio.h>
2
3 int main()
4 {
5 printf(“Everyone knows that 2+2=%d\n”, 2+2);
6
7 return(0);
8 }
9
10

Now save, build and run. In this instance, the program makes the calculation for you. It adds two and
two, and the result is fetched from the %d placeholder in the printf statement. Now, replace the equation
in line five with this: 278*956. On the computer, the asterisk is used as the multiplication operator. We’ll
officially discuss that, as well as other math concepts in the later chapters.

Moving forward, change the format string as well, replacing two plus two with 278 x 956. Now save,
build and run. Apparently the result is 265,768.

1 #include <stdio.h>
2
3 int main()
4 {
5 printf(“Everyone knows that 278 x 956=%d\n”, 278*956);
6
7 return(0);
8 }
9
10

The printf statement employs a swath of placeholders, each for a specific type of value. Below is a partial
list showing some of the more common placeholders:

• %d Integer (whole number) values
• %s Strings
• %f Floating-point values or fractions
• %c Single characters
• %% The percent sign

It helps to know about the different types of values in the C language before you can use each of these,
as well as understand the whole lot of them that are not shown. Also, the placeholders have options that
we’ll get into in the later chapters.

The %s placeholder is used to display strings. It may look a little odd. However it does come in handy.
Take a look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 printf(“You are a %s\n”, “programmer”);
6
7 return(0);
8 }
9
10

In this code, the %s placeholder represents the string “programmer,” which is the second argument of the
printf function. If you are following along, build and run the code above. Now, modify line five of the
code above to add another placeholder and another argument to the printf function. Place %c before %s
and squeeze a space between the two like so:

1 #include <stdio.h>
2
3 int main()
4 {
5 printf(“You are a %s\n”, “programmer”);
6
7 return(0);
8 }
9
10

Now you have to add an argument for the %c. After the comma, type a single quote, followed by a big
C, another singe quote, and then a comma. Many editors will assign the single character value to its own
color, as you will see when you type the code in Code Blocks.

1 #include <stdio.h>
2
3 int main()
4 {
5 printf(“You are a %c %s\n”, ‘C’, “programmer”);
6
7 return(0);
8 }
9
10

In the C language, single characters are specified by single quotes. If you use double quotes, you create
a one character string. That’s not what you need to match the %c placeholder. Save your code, build, and
run. As you can see from the output, it’ll output the string “You are a C programmer.”

One final thing, because the percent character is used as a placeholder, you must specify two of them
when you use a percent symbol in the printf statement’s formatting string. Take a look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 printf(“I got %d% on my C exam!\n”, 98);
6
7 return(0);
8 }

9
10

Read the printf statement in the code above. The %d placeholder should match up with the second
argument, which is 98. It is followed by a percent sign, which indicates actual percentage, not a
placeholder. Build and run this code. Now, if you don’t see any warnings, that’s okay. The output is still
going to look weird. In some compilers, you will see warnings that indicate trouble.

The compiler believes that a second placeholder is desired. It does not understand the placeholder as
presented. Plus, it can’t find a matching argument. If you don’t see the warning, try to run the code and
see what happens.

The solution is to edit line five and stick in another percent sign. It looks odd, and it is cryptic. It is the
cryptic side of the C language, in fact, that enthralls so many of the nerds. However, it is going to work.

1 #include <stdio.h>
2
3 int main()
4 {
5 printf(“I got %d%% on my C exam!\n”, 98);
6
7 return(0);
8 }
9
10

Save the changes, build and run. Now, the output looks more sensible.

Chapter 4: The C Language Variables

Programs work fine with immediate values. But oftentimes, you don’t know what the value is. Say the
value comes from input, the user types it. It is read from a file or the Internet. To store such values,
you need a specific cubby-hole or container. In programming, that container is known as a variable. In
this chapter, we introduce you to the concept of the variable. It is a container into which you can store
values—values that are unknown or values that can change.

You’ll see how to declare a variable in the C language, and how a variable is used in the code. A variable
is a container for a value. Because C deals with different types of values, a variable must be declared as a
specific type. It is given a name—a name that’s used in the code.

In C, the variable type matches the variable’s content—the type of value being stored. Integer variables
can hold only integer values or whole numbers. Float variables hold floating-point values, which are very
large numbers, very small numbers, or numbers with a fractional part.

Character variables hold single values such as the letter ‘x.’ The C language lacks a string variable type.
Instead, a character array is used. We’ll discuss how that works in a later chapter.

The int, float, and char are all C language keywords. Additional keywords are also used to declare
variables. These include double, long, short, signed, and unsigned. These are all C language keywords
that are used to declare different types of variables. Take a look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 int age;
6
7 age = 30;
8 printf(“The C language is over %d years old!\n”, age);
9
10 return(0);
11 }
12

This code declares an integer variable at line five. First comes the keyword int, which is used to declare
an integer variable. Next come the variable name: age. As this is a statement, it ends with a semi-colon.
Variable names can include numbers, letters, and some symbols. They must begin with a letter, or an
underline. The name must be unique, with no two variables having the same name, nor should variables
have the same name as functions or C language keywords.

At line seven, the variable age is assigned the value 30. In C, values or equations go on the right side
of the assignment operator, the equal sign. The value or results of the equation is then assigned to the
variable on the left. Because 30 is an integer value, it fits nicely into the integer variable age.

The statement at line nine displays the variable’s value by using the printf function. The %d placeholder
is used, and the variable age is specified as the second argument. Now go ahead and build and run the
code. The whole idea behind the variable is that its value can change. Edit the source code so that the
value of the age variable is changed to 34. Make this modification at line seven.

1 #include <stdio.h>
2
3 int main()
4 {
5 int age;
6
7 age = 34;
8 printf(“The C language is over %d years old!\n”, age);
9
10 return(0);
11 }
12

Save the modified code, then build and run it. As you will see, the program’s output reflects the new
value.

Now, assign a new value to the variable in the code by adding two lines after line eight. First, assign the
value 50 to the age variable:

1 #include <stdio.h>
2
3 int main()
4 {
5 int age;
6
7 age = 34;
8 printf(“The C language is over %d years old!\n”, age);
9 age = 50;
10
11
12
13 return(0);
14 }
15

Second, type another printf function:

1 #include <stdio.h>
2

3 int main()
4 {
5 int age;
6
7 age = 34;
8 printf(“The C language is over %d years old!\n”, age);
9 age = 50;
10 printf(“The programmer is over %d years old\n”, age);
11
12 return(0);
13 }
14

Save the above changes, then build and run the code. See how the age variable is used twice, but hold
two different integer values. On your own, you can change this code once more. This time you can assign
your own age to the age variable and simply add a printf statement to say how old you are.

Math can also be performed using variables. Take a look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 int age;
6
7 age = 32;
8 printf(“%s is %d years old!\n”, “James”, age);
9 printf(“That’s %d months!\n”, age*12);
10
11 return(0);
12 }
13

In line seven, the value 32 is assigned to the variable integer age. Edit the value to reflect your own age
in years. The printf function in line eight uses two statements: a string and an integer variable. The string
is an immediate value. Change the name “James” to your own name, unless your name is also James.

You don’t need to guess how many months you have because that value is calculated as the argument in
the printf function at line nine. Save the code, build and run. Of course, the month’s value displayed is an
approximation, unless today is your birthday. In that case, Happy Birthday!

The int is really one variable type. Another common type is the char or character variable. Take a look at
the code below:

1 #include <stdio.h>
2
3 int main()

4 {
5 char x, y, z;
6
7 x = ‘A’;
8 y = ‘B’;
9 z = ‘C’;
10
11 printf(“It’s as easy as %c%c%c\n”, x,y,z);
12
13 return(0);
14 }
15

Here, three character variables are declared: x, y, and z. You can declare multiple variables of the same
type on a single line, as long as each variable name is separated by a comma. Lines 7-9 assign the
variables characters—single quotes are used. Then the values are displayed by the printf function at line
11. Save, build, and run the code.

Just as you can change integer variables, you can also change character variables. You can even do math.
Edit line eight to read:

1 #include <stdio.h>
2
3 int main()
4 {
5 char x, y, z;
6
7 x = ‘A’;
8 y = x+1;
9 z = ‘C’;
10
11 printf(“It’s as easy as %c%c%c\n”, x,y,z);
12
13 return(0);
14 }
15

Then, edit line nine to read:

1 #include <stdio.h>
2
3 int main()
4 {
5 char x, y, z;
6
7 x = ‘A’;

8 y = x+1;
9 z = y+1;
10
11 printf(“It’s as easy as %c%c%c\n”, x,y,z);
12
13 return(0);
14 }
15

Save, build and run the code. The output is the same. Instead of assigning immediate values to variables
y and z, you did a little character math. Adding 1 to the value of character A gives you a B, and adding 1
to the value of B gives you a C.

The final variable type that we would like to introduce is the float. It holds very large values, very small
values, or any values with a fractional part. Take a look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 float pi;
6
7 pi = 22.00 / 7.0;
8 printf(“The ancients calculated PI as %f.\n”, pi);
9
10 return(0);
11 }
12
13

The float variable pi is declared at line five. At line seven, a calculation is made and the result is assigned
to the variable pi. The calculation uses floating point values. By adding a .00 to 22 and 7, the compiler
assumes that you need floating point values and treats them as such. Otherwise, integers would be used,
and the result would be wrong.

When you use a floating point whole number, remember to add the .00. Line eight sends the result to
standard output. The %f placeholder is used to represent floating point values in a printf statement. Build
and run the code.

The value generated for pi is accurate down to the hundreds place, which is okay for quite a few things in
antiquity, but not acceptable for modern calculations.

Chapter 5: Character I/O Functions in C

Programs are both known for input and output. Output goes to the standard output device, which is
usually the screen or terminal window. Input comes from the standard input device, which is normally
the keyboard. In this chapter, we’ll explore input and output concepts in C. These involve character I/O,
which is the reading of single characters, as well as the output of a single character. We’ll also touch upon
the concept of stream input and output.

The two most common C language character I/O functions are getchar() and putchar(). Getchar() fetches
the standard input. Putchar() sends a character to standard output. Both of these functions require the
inclusion of the stdio.h header file for their prototypes and such.

Although they are character functions, they work with integer values. Yes, that’s weird, but so are many
things in the C language. In fact, you may find yourself frequently using char variables with these
functions. When you do, the compiler may gently warn you about the mistake. Finally, these functions
are stream oriented, which is something we’ll discuss in the later chapters.

Take a look at the code below:

1 #include <stdio.h>
2
3 int main();
4 {
5 int c;
6
7 printf(“Type a letter: “);
8 c = getchar();
9 printf(“You typed ‘%c’.\n”, c);
10
11 return(0);
12 }
13

Integer variable C is declared at line 5. It is used with the getchar() function at line eight, storing a single
character from the input stream. In this example, that would be a character typed at the keyboard. The
character is displayed at line nine. The int variable C is used, but the character placeholder %c is specified.
This ensures that the character is displayed, not its code value. Build and run the code.

Note that the prompt in the output keeps the cursor at the same line, and we’ve added a space to make it
more readable. Type a letter, such as a big letter ‘Z,’ and press the Enter key. As you can see in the output,
it will immediately specify the letter that you typed.

Now, modify the code so that the putchar() function outputs the character you typed. To do that, you need
to split the printf function in two, like so:

1 #include <stdio.h>
2
3 int main();
4 {
5 int c;
6
7 printf(“Type a letter: “);
8 c = getchar();
9 printf(“You typed '”);
10 putchar(c);
11 printf(“’.\n”);
12
13 return(0);
14 }
15

Edit it to where it says, “You typed” and notice how we kept that single quote after that string. Close the
string in parenthesis and end the statement with a semi-colon. Then add putchar() on line ten, and then
display the rest of the string by using printf. The argument C is no longer needed. Instead, it appears in
line ten with the putchar() function where it is output directly. Save, build and run the source code file.

The solution provides for the putchar() function to generate output. But it also makes the code longer and
less readable. That is actually okay in C, and you’ll discover that the output is unchanged. Save, build and
run the code.

You can also use the putchar() function with immediate values. At this point in the code, the statement at
line 11 really just outputs three characters: the single quote, period, and the new line. We could change
line 11 to read:

1 #include <stdio.h>
2
3 int main();
4 {
5 int c;
6
7 printf(“Type a letter: “);
8 c = getchar();
9 printf(“You typed '”);
10 putchar(c);
11 putchar(‘\’’)
12 printf(“’.\n”);
13
14 return(0);

15 }
16

At line 11, type a single quote, a backslash, a single quote, and then another single quote. That looks
odd, but you have to escape the single quote character. Otherwise, the compiler becomes confused. A
second putchar() function would display the period. The final putchar() function would display the escape
sequence, which is specified in the original printf function as a new line.

1 #include <stdio.h>
2
3 int main();
4 {
5 int c;
6
7 printf(“Type a letter: ”);
8 c = getchar();
9 printf(“You typed '”);
10 putchar(c);
11 putchar(‘\’’)
12 putchar(‘.’)
13 putchar(‘\n’);
14
15 return(0);
16 }
17

We have three putchar() functions instead of a single printf function that displays a three character string.
Save the changes, build and run. As you will see, the output is the same. Now take a look at the code
below:

1 #include <stdio.h>
2
3 int main()
4 {
5 int a, b;
6
7 printf(“Type two letters: ”);
8 a = getchar();
9 b = getchar();
10 printf(“You typed ‘”);
11 putchar(a);
12 printf(“’ and ‘”);
13 putchar(b);
14 printf(“’.\n”);
15
16 return(0);
17 }

18

Here, two getchar() functions fetch two characters. These characters are then displayed using a series
of printf and putchar() functions. Build and run the code. Type any two letters that you like. The two
characters you type are stored in variables a and b, and the displayed.

Note that the getchar() function do not pause and wait for input. They simply look for all input coming
from the standard input device like a stream of characters flowing out of a hose. To demonstrate this
phenomenon, run the previous code again. But this time, just type the letter ‘z’ and press the Enter key.

The weird output that you will see is the code displaying the new-line character, which was stored in
variable b. Run the code again. But this time, type several letters and then press the Enter key. For the
sake of an example, let’s say you typed the letters a, b, c, d, and e respectively.

The entire stream of characters—a through e—that you will see on your screen are fed into the program
via the standard input. The getchar() function read only the first two. But our input persisted until we
pressed the Enter key. The stream input could also be demonstrated by examining the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 int a, b, c;
6
7 printf(“Type three letters: ”);
8 a = getchar();
9 putchar(a);
10 b = getchar();
11 putchar(b);
12 c = getchar();
13 putchar(c);
14
15 return(0);
16 }
17

Here, it looks like one character is fetched by getchar() and then immediately gets displayed by putchar().
That’s logical because C programs run top down, and they do. That’s exactly what happens in this
program, but it’s not what you see when the code runs. Build and run the code. Type a, b, c, or any other
three letters and press the Enter key.

The output happens all at once because of the stream. The characters you typed are actually sent to output
as you type them, which is how the code runs. However, stream output is buffered. That means that the
computer waits until the buffer is full or flushed before sending out the characters. In this case, the buffer
is flushed once the program is finished. We’ll explore stream input and output further in the later chapters.
But for now, remember that the standard C I\O library functions are stream oriented.

The String

A character is a single letter or symbol. Put two characters together and you have a string. But strings
are funky things in the C programming language. They are not a variable type, just a clutch or array of
characters all marching together in a line.

In this section, we’ll introduce you to the string. You’ll see how strings are created in C—how they can
be filled by using string input functions. You’ll also meet the scanf() function, which is used to pull in all
sorts of input. Take a look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 char password[] = “spatula”;
6
7 printf(“The password is \”%s\”\n”, password);
8
9 return(0);
10 }
11
12

Line 5 probably looks a little odd to you. It is a variable declaration. A char variable named password
is created, then the string “spatula” is assigned to the password variable. This is known as an immediate
assignment, which is possible with other variables as well. When declaring a string, immediate
assignments are an absolute necessity.

By the way, line 5 of the code is an array declaration, which is a topic for a later chapter. The square
brackets indicate that more than one char variable is present. How many? The compiler figures that out
based on the size of the string. Otherwise, the value would appear between the brackets.

In line 7, a printf function displays the string’s value. The %s placeholder is used—it is difficult to see
because of the escaped double quotes and the new line. Build and run this code. The output properly
shows the contents of the string. Change the word “spatula” in your editor to the words, “fuzzy wuzzy”.

1 #include <stdio.h>
2
3 int main()
4 {
5 char password[] = “fuzzy wuzzy”;
6
7 printf(“The password is \”%s\”\n”, password);
8
9 return(0);
10 }
11
12

Make sure to put a space between each word, as spaces are valid characters on some systems. Save the
changes and then build and run the code to see the changes displayed.

Remember that some characters must be escaped in a string. These include double quotes, new line, tab,
and so on.

The scanf() Function

To fetch a string from standard input, use the scanf() function. As an input function, scanf() is declared in
the stdio.h header file, which you must include in your code, lest the compiler becomes confused.

Scanf() uses printf()’s placeholder to read a specific value into a variable, and that variable is often
prefixed with the ampersand symbol. Here’s the format for the scanf() function:

scanf(“forat”, &variable);

It includes two arguments: a formatted string and a variable. The formatted string directs scanf() to look
for a specific type of value. To accomplish this, you specify the same placeholder used with the printf
function inside the formatting string. %d for an integer, %c for a character, and so on. The formatting
string is almost always composed of these placeholders and nothing else.

To assign a value, specify the variable that’s already been declared in the code. The variable type must
match the placeholder. You need to prefix an ampersand symbol to the variable name, which is something
you must remember to do. You do not need to prefix the ampersand to a string or array, which is
something you’ll forget to do. The ampersand used here is the memory location operator, which is covered
in a later chapter.

The code below demonstrates how to read an integer value from standard input:

1 #include <stdio.h>

2
3 int main()
4 {
5 int x;
6
7 printf(“Type an integer: “);
8 scanf(“%d”, &x);
9 printf(“Integer %d\n”, x);
10
11 return(0);
12 }
13

The scanf() function at line 8 uses the %d placeholder to fetch the integer value. It is assigned to variable
x. See the ampersand; don’t forget it. Build and run this code. Type an integer, which is any whole number.
The program assigns that value to variable x and then displays the result.

Now, if you were to modify our sample code to read in a floating point value, you would have to make
some changes. First, of course, would be to change the variable type at line 5 to a floating point value.
Simply change int to float. Suddenly, the variable x becomes a floating point value.

In line 7, obviously, we need to change the name integer. At line 8, change %d to %f for a floating point
value. Finally at line 9, change the word integer, as well as the placeholder.

1 #include <stdio.h>
2
3 int main()
4 {
5 float x;
6
7 printf(“Type a floating point value: “);
8 scanf(“%f”, &x);
9 printf(“Floating point value %f\n”, x);
10
11 return(0);
12 }
13

Save, build and run the code. Type a real number, such as 45.6. As you can see, the value is read
and displayed. Don’t freak out if you see a value that’s not exactly 45.6. If you see something like
45.599998, know that this is what’s called a precision error. Computers approximate real numbers, which
is acceptable. In a later chapter, we’ll show you how to fix the output to make it look more agreeable.

You could also modify the code so that it reads in a single character value. The changes are the same.
First, you change the variable type from float to a single character variable at line 5. At line 7, change the
prompt so that is says “Type a character.” At line 8, change the percent placeholder in the scanf() function

to a ‘c’ from an ‘f,’ to read in a single character value. Don’t forget to change the prompt and placeholder
at line 9.

With the variable x being a character variable, you need the %c placeholders to read in the proper values.

1 #include <stdio.h>
2
3 int main()
4 {
5 char x;
6
7 printf(“Type a character: “);
8 scanf(“%c”, &x);
9 printf(“Character %c\n”, x);
10
11 return(0);
12 }
13

Save the changes, and then build and run the code. You could also use the scanf() function to read in
strings, but you’ll find peculiarities in this operation. Take a look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 char name[15];
6
7 printf(“Your name? “);
8 scanf(“%s”, name);
9 printf(“You are %s.\n”, name);
10
11 return(0);
12 {
13

On line 5, the name variable is created. It has room to store 14 characters, plus one additional character
for the null at the end of the string. The scanf() function at line 8 uses the %s placeholder to read in a
string. The variable name is used without the ampersand. That’s because name is a character array, and
arrays do not require the ampersand operator. Build and run this code.

In the terminal window that appears, type your name and press the Enter key. As you can see, the string
is read and displayed.

Now, for the peculiarities. Run the program again. This time, assume that your name is Jerry Bob, which
are two words. The scanf() function stops reading characters at the first white space character—a space,
tab, or new line. There’s no way you can force scanf() to read in those characters. It is just the way it
works. Basically, scanf() is really a string input function where the strings are just one world long.

A better function to use for reading strings is fgets. Fgets is a file input function that can also be used to
read standard input. Take a look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 char input[64];
6
7 printf(“Instructions: “);
8 fgets(input,64,stdin);
9 puts(“Thank you! Here are your instructions:”);
10 puts(input);
11
12 return(0);
13 }
14

The variable input is created at line 5. It has room for 63 characters, plus one for the null character at the
end of the string. The fgets function at line 8 reads standard input. The first argument is the variable into
which the input is stored. This location is also called a buffer, which is just nerd jargon for storage.

The second argument indicates the size of the buffer. Again, 64 is used. That’s 63 characters plus the null
character at the end. The final argument is stdin, which is standard input. The puts function at line 10
reads the stored text and sends it to standard output. Build and run this code.

At the terminal window that appears, type your instructions. Press Enter, and then you will see your string,
spaces, and everything.

Chapter 6: Math Operators

The important thing to remember when it comes to math and programming is that the computer does
the work. You just have to copy the equation down properly. To do so, you need to know a few math
operators, plus some other C language rules and procedures. In this chapter, we will review the basic
Math operators and how they are used. Also explored are the increment and decrement operators, plus a
few notes on the order of precedence, which determines which part of an equation is evaluated first.

The C language uses four basic symbols for the four basic math operators: addition, subtraction,
multiplication, and division. These should be familiar to you, especially if you’ve used spreadsheets. The
asterisk is used for multiplication, and that’s because symbol is not available on the keyboard; please
don’t use the letter x.

Similarly, the division symbol is not found on the standard computer keyboard, so a slash is used instead.
Two additional operators are increment and decrement. These are single operators despite using two
characters. These operators serve a useful purpose when dealing with loops, which is a topic covered in a
later chapter.

Math Operators:

• + Addition
• - Subtraction
• * Multiplication
• / Division

Additional math operators:

• ++ Increment, to add one to a variable
• - - Decrement, to subtract one to a variable

Remember:

• Use * instead of x
• Use / instead of ÷

In C, the calculation goes on the right. The result is then assigned to a variable on the left. Or the result
could be used immediately, as in the printf function show below:

• var = 888 + 111;
• printf(“That’s %d months!\n”, age * 12);

Take a look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 int a;
6 int b = 5;
7
8 printf(“Input an integer: “);
9 scanf(“%d”, &a);
10 printf(“%d + %d = %d\n”, a,b,a+b);
11
12 return(0);
13 }
14
15

Two variables are declared: a and b. In line 6, we’ve preset the value of variable b to 5. The scanf function
at line 9 reads an integer value and stores it in variable a. Then, the printf function at line 10 displays
both value—a and b—as well as their sum. The math equation is the third argument in the printf function.
Now, build and run this code.

Type in a value to see the sum of that value and 5. To change addition to subtraction, you need to make
only one modification. Look at the code above for a second and see if you can spot the place where that
modification could take place.

To change addition to subtraction, simply change the math operator between a and b at line 10. Also,
change the operator between the display strings—between the two %ds--so that it matches the output
when you run the code. Now, build and run the code.

You’ll notice that negative values are calculated as well. If you wanted to try multiplication, again you
need to change the math operators. Look at the code example below to see where the changes took place:

1 #include <stdio.h>
2
3 int main()
4 {
5 int a;
6 int b = 5;
7
8 printf(“Input an integer: “);
9 scanf(“%d”, &a);
10 printf(“%d * %d = %d\n”,a,b,a*b);
11
12 return(0);
13 }
14
15

As you can see, it took place between the two %ds and between the variables a and b at line 10. Now save
the code, build, and then run.

The final modification, as you’ve probably guessed, is division. Division can be a little bit tricky,
especially with integer values. Let’s take a look. Go ahead and change the math operators in the printf
statement at line 10. That’s the only change that we’re going to make:

1 #include <stdio.h>
2
3 int main()
4 {
5 int a;
6 int b = 5;
7
8 printf(“Input an integer: “);
9 scanf(“%d”, &a);
10 printf(“%d / %d = %d\n”,a,b,a/b);
11
12 return(0);
13 }
14
15

Save, build, and run the code. Type in an integer value, such as 9. The result that will be displayed is 1,
which is dubious. To do division properly, you need to use floating point values. Take a look at the code
below:

1 #include <stdio.h>
2
3 int main()
4 {
5 float a;
6 float b = 5.0;
7
8 printf(“Input an integer: “);
9 scanf(“%f”, &a);
10 printf(“%f / %d = %f\n”,a,b,a/b);
11
12 return(0);
13 }
14
15

This is basically a modification of existing code, switching values from int to float, as well as the
associated placeholders. The value 5.0 is assigned to variable b at line 6. Remember, floating points have

a decimal part. When you’re writing a whole number, you need to specify a “.0” after the value. Now
build and run the code.

Try the value 9 again. The result is more palatable, but ugly. In a later chapter, we’ll discuss how to clean
up the output of floating point values. Now take a look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 int x = 10;
6
7 printf(“%d\n”,x);
8 x = x + 1;
9 printf(“%d\n”,x);
10
11 return(0);
12 }
13

Math is present at line 8. It adds one to the value of variable x. This equation may look funky to you, but
it’s how it works. The compiler calculates the right side of the equation first. 1 is added to the value of
variable x. That result is then stored back to the value of variable x. To prove how it works, build and run
the code.

The original value is 10, and the modified value is 11. You can manipulate every single variable in this
manner. Common manipulation is to add or subtract 1 in the variable’s value. For example, if you want to
increment the value of variable x by 1, you use the increment operator, which is two plus signs “++” in a
row. Change line 8 in the code to read:

8 x++

The code above is a statement by itself; it is a mathematical operation. Save and run the code. The
decrement operator is two minus signs “- -”. Edit the code again to replace the increment operator with
the decrement operator. Now save, build and run. As you can see from the output, it’ll show the original
value, which is 10, and the modified decremented value, which is 9.

The final math goodie that we would like to show you deals with what’s called as the order of precedence.
It involves math equations that have multiple operators. Take a look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 int a;
6

7 a = 25 / 5 * 2 + 3;
8 printf(“The answer is %d\n”,a);
9
10 return(0);
11 }
12

Can you guess the value of variable a just by looking at line 7? Run the code to see what the computer
thinks. The computer thinks the answer is 13. The reason behind this is that division and multiplication
are prioritized over subtraction and addition. Also, the equation is executed starting from the left going to
the right. So 25 divided by 5, is 5. 5 multiplied by 2 is 10, and 10 plus 3 is 13.

You can change the order of precedence using parenthesis. For example, let’s enclose 2 + 3 in a
parenthesis. This means that that part of the equation is evaluated first.

1 #include <stdio.h>
2
3 int main()
4 {
5 int a;
6
7 a = 25 / 5 * (2 + 3);
8 printf(“The answer is %d\n”,a);
9
10 return(0);
11 }
12

Save, build, and run the code. Now the answer is 25—2 plus 3 is 5, 25 divided by 5 is 5, and 5 multiplied
by 5 is 25. Now, let’s add more parentheses. Remember to match them up.

1 #include <stdio.h>
2
3 int main()
4 {
5 int a;
6
7 a = 25 / (5 * (2 + 3));
8 printf(“The answer is %d\n”,a);
9
10 return(0);
11 }
12

Now, the answer is 1. That’s because 2 plus 3 is 5, 5 multiplied by 5 is 25, and 25 divided by 25 is 1.
Remember that in C, multiplication and division are evaluated first, then addition and subtraction. This is
how equations are evaluated, unless you use parenthesis to modify the order of precedence.

Math Library functions

When you can’t find an operator to do your math, you need to turn to the C library. There you’ll find fun
and friendly functions to sate your mathematical whims. In this section, we cover two of the typical C
language math library functions: the square root function and the power function. We’ll also discuss the
random number generating function, which isn’t really a math function, but it’s something you may find
quite handy.

To generate the square root of a value, you use the sqrt function. It reads like “sqrt,” but it’s really “square
root.” The square root function is shown at line 8 in the code below:

1 #include <stdio.h>
2 #include <math.h>
3
4 int main()
5 {
6 float r;
7
8 r = sqrt(2.0);
9
10 printf(“The square root of 2 is %f\n”,r);
11
12 return(0);
13 }
14

As you can see in line 2, it requires the math.h header file. The function swallows a floating point value
specified as 2.0. It returns the square root as a floating point value, which is saved in the float variable r.
The printf function at line 10 displays the result. Build and run this code.

Now, you know the square root of 2, or any other value that you specify in the code. Another math
function worthy of note is the pow function, which is short for “power.” The C language lacks a power
operator, which is common in other programming languages, but the pow function is far more versatile.
Take a look at the code below:

1 #include <stdio.h>
2 #include <math.h>
3
4 int main()
5 {
6 float p;
7
8 p = pow(2.0,8.0);
9

10 printf(“2 to the 8th power is %f\n”,p);
11
12 return(0);
13 }
14

The pow function appears at line 8. It also required the math.h header file, which is shown in line 2. The
pow function uses two arguments, both of which are floating point values. The first value is the base, the

second is the exponent. So here, 2.0 is being raised to the 8th power. The result is saved in floating point
variable p, and then it is printed in line 10. Build and run the code.

2 to the 8th power is 256. Generally speaking, all C language math functions require the inclusion of the
math.h header file. They all work with real numbers. We used floating point numbers in our previous
example, but officially they should be double-type variables. The double carries twice the precisions of a
float. That means, it is more accurate. But it should really be used only when a greater degree of precision
is required.

Another popular math function, although it is not a true math function, is rand. It generates pseudo-
random numbers. It is called “pseudo” because they can be predicted. However, they’re still good enough
to be random in a general sense. The rand function requires the stdlib.h, or standard library header file,
for its definition. This is the most common header file after stdio.h. Take a look at the code below:

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main()
5 {
6 int r;
7
8 r = rand();
9
10 printf(“%d is a random number.\n”,r);
11
12 return(0);
13 }
14

The function itself requires no arguments. It simply generates a random integer value. That value is stored
in variable r at line 8 of the above code. The printf function at line 10 displays the result. Build and run
the code.

For the rand function to work best, you must ‘seed’ the randomizer. That’s a software machine that
generates random numbers. The random seeding function is called srand, which is also defined in the
stdlib.h header file. In the code, insert the srand function in the line above rand like so:

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main()
5 {
6 int r;
7
8 srand(66);
9 r = rand();
10
11 printf(“%d is a random number.\n”,r);
12
13 return(0);
14 }
15

The srand function requires a positive integer argument to seed the randomizer. In our example, we’re
using the number 66. Save the changes, and then build and run the code. This time, a new random number
appears. But will the same value appear when you run the code for the second time? Go ahead and see.

Mostly likely, you will see the same number. Now don’t be alarmed, there’s nothing wrong with your
code. You have several tools available to reseed the randomizer. One is that you could ask the user to
input a positive integer value when the program starts. What most programmers do is borrow the current
tick-tock value from the computer’s internal time clock. We’ll cover time functions in a later chapter. For
now, we need to change line 8 of the code to replace the value 66 with a time function.

We need to type—in parenthesis—the word ‘unsigned,’ and then the time function, and then in its
parenthesis you need to put the word ‘NULL’ in all caps like so:

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main()
5 {
6 int r;
7
8 srand((unsigned)time(NULL));
9 r = rand();
10
11 printf(“%d is a random number.\n”,r);
12
13 return(0);
14 }
15

Make sure that all parenthesis matches up. Yes, this looks odd. But it is important that the parenthesis
match—one set around ‘unsigned’ and one set around ‘NULL,’ and then one set around the whole thing,
which is the srand function.

What this function does, is to fetch the current tick-tock value from the computer’s clock. It is a number
that’s constantly changing. Save the code and run it. Now you’ll see a new value. Run the code again.
This time you’ll see a new value. Don’t be surprised if the resulting values are close to each other. Keep
in mind that it is based on the ‘seconds’ value of the computer clock, which is incrementing throughout
the day.

Why are random numbers so important? Because random numbers are the key to making all computer
games interesting.

Chapter 7: C Language Comparisons

Generally speaking, a program executes statements as they appear in the source code, one line after the
other. To change that order is to alter that program’s flow. One of the most common flow control words
in the C language is if, which is similar to its human language counterpart also called if. In this chapter,
we introduce you to the if keyword. You’ll also discover how comparisons are made in the C language, as
well as how to handle multiple decisions.

If Statements

Before you can use the if keyword, you must understand how comparisons work in C. Two values
or expressions are evaluated. To make that evaluation, you use one of the C language’s comparison
operators. Here are the most common comparison operators:

•
• == “Is equal to”
• > “Greater than”
• < “Lesser than”
• <= “Less than or equal to”
• >= “Greater than or equal to”
• != “Does not equal”

Take a look at the code below:

1 #include <stdio.h>
2
3 int main();
4 {
5 int a;
6
7 printf(“Type an integer: “);
8 scanf(“%d”,&a);
9 printf(“You typed %d.\n”,a);
10 if(a > 10)
11 printf(“%d is greater than 10.\n”,a);
12
13 return(0);
14 }
15

The user is prompted to type an integer value. The value is displayed at line 9. At line 10, an if statement
evaluates that value. If the value is greater than 10, line 11 is executed. Otherwise, line 11 is skipped.
Now build and run this code.

Type in any integer value. For the sake of this example, we’ll type in the number 50. As you can see, it
worked. The output displays the printf statement indicated at line 11. Now try typing a value that is lesser
than 10. As you can see, the program terminates and line 11 is ignored.

An if statement is traditionally formatted differently from other statements. It is split between two or more
lines. The first line sets the if condition in parenthesis. If that condition is evaluated as true, the next line
is executed. Actually, it is just one statement split between two lines. See how the semi-colon is at the end
of line 11 and not at line 10.

You could also write it as a single line, but that’s uncommon. More common is to enclose the statements
belonging to if in curly brackets like this:

1 #include <stdio.h>
2
3 int main();
4 {
5 int a;
6
7 printf(“Type an integer: “);
8 scanf(“%d”,&a);
9 printf(“You typed %d.\n”,a);
10 if(a > 10)
11 {
12 printf(“%d is greater than 10.\n”,a);
13 }
14
15 return(0);
16 }
17

This format is actually required when more than one statement is executed based on the if condition. For
example, let’s move line 9 of the code down to line 12. Save, build, and run the code.

1 #include <stdio.h>
2
3 int main();
4 {
5 int a;
6
7 printf(“Type an integer: “);
8 scanf(“%d”,&a);
9 if(a > 10)

10 {
11 printf(“You typed %d.\n”,a);
12 printf(“%d is greater than 10.\n”,a);
13 }
14
15 return(0);
16 }
17

Type in the number 25, for example. Now since the number is greater than 10, both lines are now
displayed. Take a look at the code below:

1 #include <stdio.h>
2
3 int main();
4 {
5 int a;
6
7 printf(“Type an integer: “);
8 scanf(“%d”,&a);
9 printf(“You typed %d.\n”,a);
10 if(a > 10)
11 {
12 printf(“%d is greater than 10.\n”,a);
13 }
14 if(a < 10)
15 {
16 printf(“%d is lesser than 10.\n”,a);
17 }
18
19 return(0);
20 }

This code shows two if comparisons in a row. Each of which has its own set of curly brackets. Two
conditions are evaluated: greater than at line 10 and less than at line 14. Build and run the code.

As you can see after running the code, the appropriate output is displayed for values lesser or greater than
10 that you typed in. However, notice that you won’t see the appropriate output when you type 10 itself.

Edit line 14 so that “Less than or equal to” is used as the operator. Edit line 16 to reflect the same results
like so:

1 #include <stdio.h>
2
3 int main();
4 {

5 int a;
6
7 printf(“Type an integer: “);
8 scanf(“%d”,&a);
9 printf(“You typed %d.\n”,a);
10 if(a > 10)
11 {
12 printf(“%d is greater than 10.\n”,a);
13 }
14 if(a <= 10)
15 {
16 printf(“%d is lesser than or equal to 10.\n”,a);
17 }
18
19 return(0);
20 }

Save, build, and run the code.

Else Statements

Another way to handle an either or decision, is to use the keyword else. Take a look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 int a;
6
7 printf(“Type an integer: “);
8 scanf(“%d”, &a);
9 printf(“You otyped %d.\n”,a);
10 if(a > 10)
11 {
12 printf(“%d is greater than 10.\n”,a);
13 }
14 else
15 {
16 printf(“%d is less than or equal to 10.\n”,a);
17 }
18
19 return(0);
20 }
21

This code is a rewrite of our previous code, but it uses the else keyword. The if condition at line 10
makes an evaluation. Its statements are executed when that condition is true. If the condition is false, the
statements belonging to else are executed instead. Build and run this code.

Note that else doesn’t have a semi-colon. Instead, it has curly brackets. All could be written without
brackets because it’s only followed by one statement.

Else if Statements

When three or more conditions are present, you can evaluate them using an else if structure. Take a look
at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 int a;
6
7 printf(“Type an integer: “);
8 scanf(“%d”, &a);
9 printf(“You otyped %d.\n”,a);
10 if(a > 10)
11 {
12 printf(“%d is greater than 10.\n”,a);
13 }
14 else if(a < 10)
15 {
16 printf(“%d is less than or equal to 10.\n”,a);
17 }
18 else
19 {
20 printf(“%d is 10.\n”,a);
21 }
22 return(0);
23 }
24

This structure starts with an if statement at line 10. When that condition is true, those statements belonging
to that condition are executed, and the rest are skipped over. Otherwise, a second condition—else if—is
examined at line 14. If that condition is true, its statements are executed and the rest are skipped over. At

the end of the structure is an else all by itself. Its statements are executed when the preceding conditions
aren’t met. Build and run this code.

The result is similar to the previous examples. Except this time, when a value of 10 is typed, the printf
statement under else statement is executed. You can have as many else if statements stacked up as you
like, which helps evaluate complex situations.

A reminder: the if, else if, and else keywords are generally not immediately followed by a semi-colon. In
the C language, a semi-colon by itself is a statement. When one lingers after an if evaluation, the compiler
believes that the semi-colon is the statement, and that not anything follows it. This is a common mistake
by novice programmers. Take a look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 int a = -5;
6
7 if(a > 0);
8 printf(“%d is a positive number.\n”,a);
9
10 return(0);
11 }
12
13

Build and run. Obviously, negative 5 is not positive number. Now if you’re using the Clong compiler,
you can click on the Build log tab and review a specific error message. Other compilers are not as smart.
To fix the problem, simply remove the semi-colon dangling at the end of line 7. Save, build, and run the
code.

1 #include <stdio.h>
2
3 int main()
4 {
5 int a = -5;
6
7 if(a > 0)
8 printf(“%d is a positive number.\n”,a);
9
10 return(0);
11 }
12
13

No output means that negative 5 fails the condition. Remember, the semi-colon goes after the statement,
not after the parenthesis that holds if ’s condition.

Switch/Else Statements

The C language lets you handle complex decisions by stacking a bunch of if/else conditions. Sometimes,
that structure can get a bit ugly. As an alternative, you can employ the switch/case structure, which is yet
another decision making tool in the C language.

In this section, we’ll talk about the switch/case structure. You’ll see how it is constructed, how it can
handle multiple decisions, plus we’ll talk about a few tricks. Take a look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 char a;
6
7 printf(“Your choice (1,2,3): “);
8 scanf(“%c”, &a);
9
10 switch(a)
11 {
12 case ‘1’:
13 puts(“Excellent choice!”);
14 break;
15 case ‘2’:
16 puts(“This is the most common choice: “);
17 break;
18 case ‘3’:
19 puts(“I questions your judgement.”);
20 break;
21 default:
22 puts(“That’s not a valid choice.”);
23 }
24
25 return(0);
26 }
27
28

The bulk of this code is a switch/case structure. It starts with a switch at line 10. This is followed by
a series of case statements, each of which has its own statements. The final piece is the default. It is
followed by its own statements as well, and then a closing curly bracket. These are the elements of the
switch/case structure.

The switch/case structure also makes use of the break keyword. So all in all, this structure contains four
C language keywords: switch, case, default, and break. Build and run the code above to see what it does.
Run it a few times to try out various options. The code accepts character input, although it could have
easily accepted integers.

Here’s how it works: Switch handles a single value, not a comparison. It can be a mathematical equation,
but the result must be a single value. That value, specified by switch, is then compared to the values of
each case statement. If the comparison is true, then the statements belonging to the case statement that is
flagged as true is executed. If not, they’re skipped.

At line 12, if the character 1 is typed, then the puts statement at line 13 is executed. The break at line
14 ends the switch case evaluation, returning control to the line after the switch structure’s final curly
bracket, which is at line 23. Otherwise, if a match isn’t made, execution falls to the next case statement,
and then the next, and so forth.

Finally, the default condition is executed when none of the case conditions match. It doesn’t need a break
statement as it is the end of the structure. Modify the code by commenting out all the break statements.
Insert double slashes at line 14, 17, and line 20.

1 #include <stdio.h>
2
3 int main()
4 {
5 char a;
6
7 printf(“Your choice (1,2,3): “);
8 scanf(“%c”, &a);
9
10 switch(a)
11 {
12 case ‘1’:
13 puts(“Excellent choice!”);
14// break;
15 case ‘2’:
16 puts(“This is the most common choice: “);
17// break;
18 case ‘3’:
19 puts(“I questions your judgement.”);
20// break;
21 default:
22 puts(“That’s not a valid choice.”);

23 }
24
25 return(0);
26 }
27
28

Save the changes, and then build and run the code. If you type a character other than 1, 2, or 3, you see the
invalid choice message displayed. But type a ‘1,’ you’ll see all the messages displayed. That is because
execution falls through to each case statement. Take a look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 char a;
6
7 puts(“Vacation options: “);
8 puts(“A – Airfare”);
9 puts(“B – Hotel”);
10 puts(“C – Rental Car”);
11 scanf(“%c”, &a);
12
13 switch(a)
14 {
15 case ‘A’:
16 puts(“You have selected the airfare”);
17 break;
18 case ‘B’:
19 puts(“You have selected Hotel”);
20 break;
21 case ‘C’:
22 puts(“You have selected Rental Car”);
23 break;
24 default:
25 puts(“That is an invalid choice”);
26 }
27
28 return(0);
29
30 }
31
32

Here’s another switch/case structure, one that evaluates input as a menu system. Build and run the code.
The problem with these options is that you may have typed a small ‘a’ instead of a big ‘A.’ In that

case, the program doesn’t seem to behave properly. Address the issue by adjusting the case statements to
account for both upper and lowercase input.

Edit the source code to add duplicate case statements for the lower case letters like so:

1 #include <stdio.h>
2
3 int main()
4 {
5 char a;
6
7 puts(“Vacation options: “);
8 puts(“A – Airfare”);
9 puts(“B – Hotel”);
10 puts(“C – Rental Car”);
11 scanf(“%c”, &a);
12
13 switch(a)
14 {
15 case ‘A’:
16 puts(“You have selected the airfare”);
17 break;
18 case ‘a’:
19 puts(“You have selected the airfare”);
20 break;
21 case ‘B’:
22 puts(“You have selected Hotel”);
23 break;
24 case ‘b’:
25 puts(“You have selected Hotel”);
26 break;
27 case ‘C’:
28 puts(“You have selected Rental Car”);
29 break;
30 case ‘c’:
31 puts(“You have selected Rental Car”);
32 break;
33 default:
34 puts(“That is an invalid choice”)
35 }
36
37 return(0);
38 }
39
40

Save the changes and then build and run the code. Now the evaluation should work for both upper and
lower case letters. As you can see, the number of lines of code is significantly increased. Here’s another
way to write the code so that it’ll accept both upper and lower case letters, and lessen the number of lines
of code a little bit.

1 #include <stdio.h>
2
3 int main()
4 {
5 char a;
6
7 puts(“Vacation options: “);
8 puts(“A – Airfare”);
9 puts(“B – Hotel”);
10 puts(“C – Rental Car”);
11 scanf(“%c”, &a);
12
13 switch(a)
14 {
15 case ‘A’:
16 case ‘a’:
17 puts(“You have selected the airfare”);
18 break;
19 case ‘B’:
20 case ‘b’:
21 puts(“You have selected Hotel”);
22 break;
23 case ‘C’:
24 case ‘c’:
25 puts(“You have selected Rental Car”);
26 break;
27 default:
28 puts(“That is an invalid choice”);
29 }
30
31 return(0);
32 }
33
34

You can also address this problem by using C language functions that modify character case. That topic is
covered in another chapter. Another way that program flow can be altered is when one or more statements
are repeated over and over. This process is referred to as a loop.

The While Loop

The C language offers several ways of looping. In this section we will discuss the while type of loop.
You’ll learn how to setup the loop, determine when to stop looping, and how to break out of a loop before
it is done.

A loop is a repetitive way to control program execution. You must specify a condition that makes the loop
repeat, a set of statements that repeat, and a way for the loop to stop. In the code below, a while loop
counts from 1 to 10.

1 #include <stdio.h>
2
3 int main()
4 {
5 int x;
6
7 x = 1;
8 while(x <= 10)
9 {
10 printf(“%d\n”,x);
11 x++;
12 }
13
14 return(o);
15 }
16
17

The looping condition is specified at line 8. It reads that while the value of variable x is less than or equal
to 10—as long as that condition is true—the statements in the loop between the curly brackets at line 9
and 12 will repeat. The value of x is initialized at line 7.

At line 11, the value of variable x is incremented. So as long as x is inching up, the loop repeats until x is
greater than 10. Build and run the code, and you’ll see the values from 1 through 10 displayed.

Now, let’s say you wanted to count to 20. Can you imagine where in the source code you will have to
make that change? It is simple: Change the condition in the while loop to 20, instead of 10. Save that
change, and then build and run the code.

1 #include <stdio.h>
2
3 int main()
4 {
5 int x;
6

7 x = 1;
8 while(x <= 20)
9 {
10 printf(“%d\n”,x);
11 x++;
12 }
13
14 return(o);
15 }
16
17

Now, values 1 through 20 are displayed. Suppose instead of going by 1, you wanted to display only the
even numbers from 2 to 20. This requires a little bit more thought because it changes two things: the
initialization and how the value of variable x increases.

The first change is to initialize the variable x to 2 at line 7. If you’re going to be counting by 2s, so start
at 2. Then, modify line 11 so that the value of x is incremented by 2, which is not really an increment; it’s
a mathematical function. x equals the value of x plus 2.

1 #include <stdio.h>
2
3 int main()
4 {
5 int x;
6
7 x = 2;
8 while(x <= 20)
9 {
10 printf(“%d\n”,x);
11 x = x + 2;
12 }
13
14 return(o);
15 }
16
17

Save, build and run the code. There you will see the even numbers between 2 and 20. It is also possible
for loops to count backwards. If you were to count backwards, say from 10 to 1, can you think of how you
would modify the code so that that would happen? Obviously, there are a few changes that would need to
be made.

If you are going to start at 10, you need to change the initial value to 10. Then, the condition needs to
change as well, because already, the loop wouldn’t repeat. The condition should be: while x is greater than

zero. Then the statement at line 11 needs to be changed as well. The value of x should be decremented
each time the loop spins.

1 #include <stdio.h>
2
3 int main()
4 {
5 int x;
6
7 x = 10;
8 while(x > 0)
9 {
10 printf(“%d\n”,x);
11 x --;
12 }
13
14 return(o);
15 }
16
17

Save, build and run the code. There, the loop counts from 10 to 1. Take a look at the code below:

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <time.h>
4
5 int main()
6 {
7 int x, r;
8
9 srand((unsigned)time(NULL)); /*Seed randomizer */
10
11 x = 10;
12 while(x > 0)
13 {
14 r = rand();
15 printf(“%d\n”, r);
16 x--;
17 }
18
19 return(0);
20
21 }
22
23

This code uses the srand and rand functions introduced in the previous chapter. These functions generate
random numbers. In this case, a while loop displays ten random numbers. Build and run the code. Let us
now discuss a couple of tricks to clean up the numbers.

The first is the modulus operator, which is a percent ‘%’ sign. Modulus calculates the remainder of a
value like leftovers. In fact, take a look at the code below to see a demonstration:

1 #include <stdio.h>
2
3 int main()
4 {
5 int a, b;
6
7 a = 7;
8 while(a < 30)
9 {
10 b = a % 7; /* b equals a mode 7 */
11 printf(“%d %% 7 = %d\n”,a,b);
12 a++;
13 }
14 return(0);
15 }
16
17

Here, we’re making use of a C program to teach you C. The while loop marches through the values 7
through 30. It shows you how the modulus operator affects each of those values. Build and run the code.

The modulus operator gives you a remainder. So for example, 10 % 7 yields 3. That’s because 7 goes into
10 once, but with 3 remainders. You can see how the value is always going to be between 0 and 6 for mod
7, no matter what the initial value is used.

Now in the code below, edit the value of line 15 so that the printf function displays the value of r % 100.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <time.h>
4
5 int main()
6 {
7 int x, r;
8
9 srand((unsigned)time(NULL)); /*Seed randomizer */
10

11 x = 10;
12 while(x > 0)
13 {
14 r = rand();
15 printf(“%d\n”, r % 100);
16 x--;
17 }
18
19 return(0);
20
21 }
22
23

This change limits the output to values between 0 and 99. Save, build, and run the code. You may see
some single digits in there. The single digits don’t really look properly formatted. To line up the numbers,
you can edit the printf statement again. This time, insert a ‘2’ in the %d placeholder.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <time.h>
4
5 int main()
6 {
7 int x, r;
8
9 srand((unsigned)time(NULL)); /*Seed randomizer */
10
11 x = 10;
12 while(x > 0)
13 {
14 r = rand();
15 printf(“%2d\n”, r % 100);
16 x--;
17 }
18
19 return(0);
20
21 }
22
23

The ‘2’ sets the width of integer output to two characters wide, right justified. Save, build and run the
code. Now you’ll see a single digit, but it is lined up on the right, which actually looks more pleasing.

Do/While Loop

Another type of loop is the Do/While loop. It is a kind of an upside down while loop, but it guarantees
that the loop always executes at least once. Take a look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 char ch;
6
7 ch = ‘A’;
8
9 do
10 {
11 putchar(ch);
12 ch++;
13 }
14 while (ch != ‘z’);
15
16 putchar(‘\n’);
17
18 return(0);
19 }
20

The Do/While loop starts at line 9 with a Do statement. It has no condition. Instead, the statements are
executed one after the other. The while condition appears at line 14. The loop relies on variable ch as its
condition. That variable is initialized at line 7, and then manipulated in line 12. Build and run the code.

The ‘z’ isn’t printed because it’s an exit condition. If you want to see the ‘z,’ you need to save the exit
condition to ‘z + 1’ like so:

1 #include <stdio.h>
2
3 int main()
4 {
5 char ch;
6
7 ch = ‘A’;
8

9 do
10 {
11 putchar(ch);
12 ch++;
13 }
14 while (ch != ‘z’+1);
15
16 putchar(‘\n’);
17
18 return(0);
19 }
20

Save and run the code. This code below demonstrates an endless loop. There is no exit condition because
the while loop’s evaluation is always one.

1 #include <stdio.h>
2
3 int main()
4 {
5 while(1)
6 {
7 printf(“I’m endlessly looping! “);
8 }
9
10 return(0);
11 }
12

Build and run the code. Press Ctrl + C to cancel the program and stop the madness. Now, endless loops
do have their place, but most of them are unintentional. You can, however, fix the loop by using the break
statement. Insert a break statement at line 8 of the code above like so:

1 #include <stdio.h>
2
3 int main()
4 {
5 while(1)
6 {
7 printf(“I’m endlessly looping! “);
8 break;
9 }
10
11 return(0);
12 }
13

Don’t forget the semi-colon at the end of the break statement. Save, build and run the code. The loop
spins only once because the break statement busts out of it. You can even use a break to bust out of a loop
prematurely. Take a look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 int a = 0;
6
7 while(1)
8 {
9 puts(“Here I go…!”);
10 a++;
11 if(a > 10)
12 break;
13 }
14
15 return(0);
16 }
17
18

The while loop’s condition is infinite, and it cannot change. The variable a is used to monitor the loops
iterations. Once a is greater than 10, the loop is busted. Build and run the code. Of course, a better solution
would be to evaluate variable a at the while loop’s parenthesis. That’s something you can try on your own.

The For keyword

The for keyword is used for creating loops in your C code. Unlike the while loop, the for loop is setup
on a single line, which makes it more cryptic. But it remains a more popular, or perhaps more traditional
type of loop.

1 #include <stdio.h>
2
3 int main()
4 {
5 int x;
6
7 for(x=0;x<10;x++)
8 printf(“%d\n”,x);
9

10 return(0);
11 }
12
13

In this section, we discuss the for loop. We will see how to setup the loop, and understand its parts. A for
loop is presented at line 7. The loop’s statement contains three parts, each separated by a semi-colon.

First is the initialization. The statement is ‘x=0,’ which is an assignment that is made at the start of the
loop. Second is the looping condition. The loop repeats as long as this condition is true: x<10. Finally,
is the iteration statement. Each time the loop repeats, this statement is executed. Here, the value of x is
incremented.

The semi-colon doesn’t follow the for statement’s parenthesis. Instead, the semi-colon follows a single
looping statement, which is shown at line 8, or a series of statements are enclosed in curly brackets.
Build and run the code. The values 0 through 9 are output. This is actually typical for a C loop. In C
programming, you start counting at 0, not 1.

Humans start counting at 1. To fix the loop for the human’s eyes, change the printf statement at line 8 to
read like so:

1 #include <stdio.h>
2
3 int main()
4 {
5 int x;
6
7 for(x=0;x<10;x++)
8 printf(“%d\n”,x+1);
9
10 return(0);
11 }
12
13

This modification doesn’t change the value of x, only the output. Save, build and run the code.

The Nested Loop

The one thing that's great with a for loop is that you can make use of the concept of a nested loop. This is
easier than using a while loop in C language. In this section, we'll talk about how to make a nested loop,
as well as how to avoid the common looping pitfalls that programmers encounter in the C language. Take
a look at the code below:

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <time.h>
4
5 int main()
6 {
7 int column, r;
8
9 srand((unsigned)time(NULL)); /* Seed Randomizer */
10
11 for(column=0;column<10;column++)
12 {
13 r = rand();
14 printf(“%2d\t”,r % 100);
15 }
16 putchar(‘\n’);
17
18 return(0);
19 }
20
21

The sample code that we have outputs ten randomly selected numbers. Build and run this code. As you
can see from the output, there's now a row of ten randomly selected values. The spacing that's present in
between each value is attained by making use of the tab character '\t,' which is at line 14 of the code.

Now, let's go ahead and try to make a 100 value grid. In addition to the single row of ten values that
we already have, we need to create nine more rows of ten values. To accomplish this task, most C
programmers use the nested loop, or a secondary for loop that repeats the output ten more times. Take a
look at the code below:

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <time.h>
4
5 int main()
6 {
7 int row, column, r;
8
9 srand((unsigned)time(NULL)); /* Seed Randomizer */
10
11 for(row=0;row<10;row++)
12 {

13 for(column=0;column<10;column++)
14 {
15 r = rand();
16 printf(“%2d\t”,r % 100);
17 }
18 }
19 putchar(‘\n’);
20
21 return(0);
22 }
23
24

The code above is a modified version of the code that we used earlier. It now has an extra loop.
The column loop, which was the old loop, is now nested within a new loop called the row loop. The
indentation that you see in the code is for readability--it helps match up the curly brackets of each
statement. Build and run this code. As you can see, you now have a grid of 100 randomly selected values.
Take a look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 int alpha, numeric;
6
7
8 for(alpha=’A’;alpha<’K’;alpha++)
9 {
10 for(numeric=0;numeric<10;numeric++)
11 printf(“%c%d\t”,alpha,numeric);
12 putchar(‘\n’);
13 }
14
15 return(0);
16 }
17
18

The nested loop that you see above might be a little bit easier to read. The outer alpha loop sweeps through
letters A through J; K is the limit. The inner loop loops from 0 to 9. You'll also notice that this inner loop
does not make use of any curly brackets since it only contains one statement. At line 11, the loop variables
are displayed. Build and run this code.

You can better observe how the nested loops execute in the output. First, loop A--the outer loop--executes.
Then, the inner loop outputs the values 0 through 9. It is then follow by loop B, which also outputs 0
through 9, and so forth. Take a look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 char ch, t;
6
7 printf(“Type a letter ‘a’ to ‘z’: “);
8 scanf(“%c”,$ch);
9
10 for(t=’a’;t<=’z’;t++)
11 {
12 putchar(t);
13 }
14 putchar(‘\n’);
15
16 return(0);
17 }
18
19

Input is prompted and then the alphabet is displayed. What we’d like you to think about doing is how to
stop the loop when the letter input is equal to variable t in the loop. You don’t need to change the four
statements to make that happen. Instead, you need to put statements within the loop that would bust out
of the loop when the character is input.

The key is to use an if test and follow that with a break statement. Take a look at the solution below:

1 #include <stdio.h>
2
3 int main()
4 {
5 char ch, t;
6
7 printf(“Type a letter ‘a’ to ‘z’: “);
8 scanf(“%c”,$ch);
9
10 for(t=’a’;t<=’z’;t++)
11 {
12 putchar(t);
13 if(t == ch)
14 break;
15 }
16 putchar(‘\n’);

17
18 return(0);
19 }
20
21

At line 13, add if(t == ch) and then break. If you don’t put the two equal signs in there, what you get is
an assignment. In C, assignments always evaluate true. Don’t forget about the semi-colon after the break
statement. Save, build and run the code.

Remember to check these two items in a for statement: the looping condition and the iteration. If either
is off, the loop would go on forever. The compiler doesn’t check for flaws in logic. That’s your job. A
good tip is to read the for statement. Set t equal to character a. While t is less than or equal to character z,
increment t.

If you change the condition to just t=z for example, it would evaluate true and the loop would run forever.
So watch your conditions and your iterations.

Chapter 8: Anatomy of a Function

The C library is brimming with functions. These functions do a lot of things, but perhaps not everything
you need for your programs. Therefore, when necessary, you can concoct your own C language functions.
In fact, most programmers have dozens, if not hundreds of their own functions.

In this chapter, we introduce you to the function. You’ll see how to setup and prototype a function, how
to call or access the function, and how to bail out of a function early. Like everything in the C language,
a function has a certain style, and various etiquettes must be followed to add a function to your code.

A function has a type, a name, and arguments in parenthesis. A type is a value returned by the
function—its output. The name is a unique name that identifies the function. The arguments are zero, one,
or more values passed to the function—its input. Below, the alpha function has no input or output, which
is valid in the C language. Therefore, it is a void function.

void alpha(void)

Void is a variable type, which means “I have no variable type.” Function count is an integer function. It
generates or returns integer values. It requires more input, and therefore has no arguments.

int count(void)

Function hangUp returns no values, so it’s a void function. It does, however, accept a single character as
input. The character is an argument. It is reference by variable ch. Before you can use a function, it must
be introduced to the compiler. That way the compiler can check its arguments to ensure that it is being
used properly.

Functions are called by their name, and then a parenthesis. When a function is called, control passes to
the function’s statements. Then, when the function is over, flow continues with the statement after the
function call. The code below contains two functions:

1 #include <stdio.h>
2
3 void blorf(void);
4
5 int main ()
6 {
7 puts(“The main () function always runs first”);
8 blorf();
9 puts(“Thanks, blorf()”);
10
11 return(0);
12 }
13

The main function is required in every C program. You also see the blorf function. Line 3 prototypes the
blorf function. This informs the compiler of the function type and arguments. The compiler can confirm
that the function is being used properly by checking the prototype. Also, the prototype is a statement. It
ends in a semi-colon.

Line 8 calls the function. It has no arguments, so the parenthesis is empty. The function itself is found at
line 14. This is effectively a repeat of the prototype minus the semi-colon. The statements belonging to
the function are enclosed in curly brackets. Now build and run the code.

To call the function again, you simply specify it again. Duplicate line 8 to line 9.

1 #include <stdio.h>
2
3 void blorf(void);
4
5 int main ()
6 {
7 puts(“The main () function always runs first”);
8 blorf();
9 blorf();
10 puts(“Thanks, blorf()”);
11
12 return(0);
13 }
14

Save, build and run the code. As you can see, the output appears twice. The prototype works like a
definition for the function, describing how to use it before it appears in the code. You can avoid specifying
a prototype, but only when you write the function before it is used. To see an example, take a look at the
code below:

1 #include <stdio.h>
2
3 void soup(void);
4 {
5 puts(“Pea green soup!”);
6 }
7
8 int main()
9 {
10 printf(“For breakfast I had “);
11 soup();
12 printf(“For lunch I had “);

13 soup();
14
15 return(0);
16 }
17
18

The sup function appears above the main function. That’s okay because the compiler still sees them in a
function, and it is always the first function that is executed in the program. What is missing here is the
prototype for the sup function. Build and run the code.

As you can see, the code outputs text as expected. But try this: move the sup function after the main
function like so:

1 #include <stdio.h>
2
3
4 {
5 puts(“Pea green soup!”);
6 }
7
8 int main()
9 void soup(void);
10 {
11 printf(“For breakfast I had “);
12 soup();
13 printf(“For lunch I had “);
14 soup();
15
16 return(0);
17 }
18
19

Save and build the code. On most computers, you’ll see one warning. Your compiler may report the
misdeeds in a different manner. Either way, it is not good. You have to add the prototype. Go ahead and
move void soup(void) above the main function.

1 #include <stdio.h>
2
3
4 {
5 puts(“Pea green soup!”);
6 }
7
8 void soup(void);

9 int main()
10
11 {
12 printf(“For breakfast I had “);
13 soup();
14 printf(“For lunch I had “);
15 soup();
16
17 return(0);
18 }
19
20

Now, there are no errors, and the output is the same as it originally was. Take a look at the code below:

1 #include <stdio.h>
2
3 void cheers(void);
4
5 int main()
6 {
7 puts(“Everyone gets free dinner!”);
8 cheers();
9 puts(“Everyone gets free dessert!”);
10 cheers();
11 puts(“Everyone pays higher taxes!”);
12
13 return(0);
14 }
15
16 void cheers(void);
17 {
18 int x;
19
20 for(x=0;x<3;x++)
21 printf(“Huzzah! “);
22 putcher(‘\n’);
23 }
24
25

In this code, the cheers function contains its own variable—x at line 18. This variable is used only in the
function here, to repeat the string three times. Build and run the code. You cannot reference variable x
outside of its function. To prove it, insert a line above line 11 that displays its value.

1 #include <stdio.h>
2
3 void cheers(void);
4
5 int main()
6 {
7 puts(“Everyone gets free dinner!”);
8 cheers();
9 puts(“Everyone gets free dessert!”);
10 cheers();
11 printf(“%d\n”, x);
12 puts(“Everyone pays higher taxes!”);
13
14 return(0);
15 }
16
17 void cheers(void);
18 {
19 int x;
20
21 for(x=0;x<3;x++)
22 printf(“Huzzah! “);
23 putcher(‘\n’);
24 }
25
26

Save the change and build. Don’t even bother trying to run it because you won’t be able to. The compiler
is basically saying, “What the heck is x?” Now, try to define x and set its value inside the main function.

1 #include <stdio.h>
2
3 void cheers(void);
4
5 int main()
6 {
7 int x;
8
9 x=21;
10 puts(“Everyone gets free dinner!”);
11 cheers();
12 puts(“Everyone gets free dessert!”);
13 cheers();
14 printf(“%d\n”, x);
15 puts(“Everyone pays higher taxes!”);
16
17 return(0);

18 }
19
20 void cheers(void);
21 {
22 int x;
23
24 for(x=0;x<3;x++)
25 printf(“Huzzah! “);
26 putchar(‘\n’);
27 }
28
29

Now save, build and run the code. The value of x in the main function is unaffected by the x variable in
the cheers function. They are considered as two different variables. Here’s another thing to remember: A
function ends its run when its last statement is executed. In the cheers function, that’s a putchar at line
26.

You can bail out of a function early by using the return keyword. Type return; at line 26.

1 #include <stdio.h>
2
3 void cheers(void);
4
5 int main()
6 {
7 int x;
8
9 x=21;
10 puts(“Everyone gets free dinner!”);
11 cheers();
12 puts(“Everyone gets free dessert!”);
13 cheers();
14 printf(“%d\n”, x);
15 puts(“Everyone pays higher taxes!”);
16
17 return(0);
18 }
19
20 void cheers(void);
21 {
22 int x;
23
24 for(x=0;x<3;x++)
25 printf(“Huzzah! “);
26 return;

27 putchar(‘\n’);
28 }
29
30

You don’t need to specify a value here because the cheers function is a void function—it doesn’t return
anything. In the main function, return must specify a value as it does at line 17, because main is an int
function. Save the changes, and then build and run the code.

The output is messy because the putchar statement is skipped. That code is never executed because of the
return statement right above it. More often you’ll see a function return early based on a condition, which
usually involves an if statement or a loop. Otherwise, anywhere the return is found marks the spot where
the function bails out, and control returns to the calling function. Or, in the case of the main function,
control is returned back to the operating system.

A function has got to funct; it is that I/O thing again. Sure, a void function is necessary and obviously
valid, but most functions chew an input, and do something based on that input.

In this section, we’ll talk about how functions can deal with arguments or values passed to the function.
You’ll see how to declare such a function, how it deals with values, and how to pass more than a
single value to a function. The code below contains the repeat function, which accepts one argument—an
integer.

1 #include <stdio.h>
2
3 void repeat(int count);
4
5 int main()
6 {
7 puts(“At first the raven was like:”);
8 repeat(1);
9 puts(“But then he was all:”);
10 repeat(5);
11
12 return(0);
13 }
14
15 void repeat(int count)
16 {
17 int x;
18
19 for(x=0;x<count;x++)
20 puts(“Nevermore!”);
21 }
22
23

Within the function, the integer variable is named count. The function is called at lines 8 and 10, each
time with a different argument. Inside the function, a local variable x is declared. It is used in the for
statement, along with the count variable. Build and run the code.

The function can also accept integer variables as arguments. Make these modifications to the code:

• In the main function, declare integer variables a and b.
• Assign the value 1 to a, and 5 to b.
• Use a and b in the two repeat functions.

1 #include <stdio.h>
2
3 void repeat(int count);
4
5 int main()
6 {
7 int a, b;
8
9 a = 1;
10 b = 5;
11
12 puts(“At first the raven was like:”);
13 repeat(a);
14 puts(“But then he was all:”);
15 repeat(b);
16
17 return(0);
18 }
19
20 void repeat(int count)
21 {
22 int x;
23
24 for(x=0;x<count;x++)
25 puts(“Nevermore!”);
26 }
27
28

Save the changes, and then build and run the code. As you can see, the output is the same. Take a look at
the code below:

1 #include <stdio.h>
2

3 void product(float a, float b, float c);
4
5 int main()
6 {
7 float x,y,z;
8
9 printf(“Type three numbers, separated by spaces: “);
10 scanf(“%f %f %f”,&x,&y,&z);
11 product(x,y,z);
12
13 return(0);
14 }
15
16 void product(float a, float b, float c)
17 {
18 float p;
19
20 p = a * b * c;
21 printf(“%f * %f *%f = %f\n”,a,b,c,p);
22 }
23

In this code, you see a function that accepts three arguments. In this case, three floating-point values. The
scanf function at line 10 reads in the three values. This is possible providing you format the input to match
the format string. In the product function, the product of the three values is calculated and displayed.
Build and run the code.

There is no limit to the number of arguments a function can accept. Although the more arguments, the
more likely it will be to mess up the format. Functions don’t necessarily need to eat all the same argument
type either. Take a look at the code below:

1 #include <stdio.h>
2
3 void bar(char c, int count);
4
5 int main()
6 {
7 int x;
8
9 for(x=1;x<11;x++)
10 bar(‘*’,x*2);
11
12 return(0);
13 }

14
15 void bar(char c, int count)
16 {
17 int x;
18
19 for(x=0;x<count;x++)
20 putchar(c);
21 putchar(‘\n’);
22 }
23
24

The bar function accepts two arguments: a character and an integer value. Build and run the code. The
bar function uses both of its arguments to output a bar of a certain character across the display.

Most functions in the C library return a value. Even when that value isn’t used, it’s available. Returning
a value allows functions to generate output. Most of the time, that output is based on the input or
arguments passed to the function. In this section, we’ll explain how functions return values. They can
simply generate the information, or they can manipulate arguments to produce specific output.

We’ll also cover a few rules and regulations regarding functions in the C language. The code below
contains a function called ‘gimmeAnA.’ It’s a character function returning a char value. The function has
no input according to its prototype at line 3.

1 #include <stdio.h>
2
3 char gimmeAnA(void);
4
5 int main()
6 {
7 char grade;
8
9 grade = gimmeAnA();
10 printf(“On this test your received an %c.\n”,grade);
11
12 return(0);
13 }
14
15 char gimmeAnA(void)
16 {
17 return(‘A’);
18 }
19
20

The function is called at line 9, where its return value is assigned to the grade variable. The function itself
at line 15 merely returns the single character ‘A.’ Build and run this code.

When a function returns a value, the value can be used immediately. You can edit the code so that
the grade variable is removed. First, delete the assignment, then replace the variable in printf with the
gimmeAnA function.

1 #include <stdio.h>
2
3 char gimmeAnA(void);
4
5 int main()
6 {
7 printf(“On this test your received an %c.\n”,gimmeAnA());
8
9 return(0);
10 }
11
12
13 char gimmeAnA(void)
14 {
15 return(‘A’);
16 }
17
18

Save the changes, and then build and run the code. As you can see, you still get an ‘A’ output. Take a look
at the code below:

1 #include <stdio.h>
2
3 float product(float a, float b, float c);
4
5 int main()
6 {
7 float a,x,y,z;
8
9 printf(“Type three numbers, separated by spaces: “);
10 scanf(“%f %f %f”,&x,&y,&z);
11 a = product(x,y,z);
12 printf(“%f * %f * %f = %f\n”,x,y,z,a);
13
14 return(0);
15 }
16
17 float product(float a, float b, float c)

18 {
19 float p;
20
21 p = a * b * c;
22 return(p);
23 }
24
25

In this code, the product function has been upgraded so that it returns the product of the values passed,
which makes more sense. Build and run the code. Type three values then press Enter to view their product.

The code can be cleaned up a bit. For example, variable p in the product function is not really needed.
You can eliminate it to merely have the product returned.

1 #include <stdio.h>
2
3 float product(float a, float b, float c);
4
5 int main()
6 {
7 float a,x,y,z;
8
9 printf(“Type three numbers, separated by spaces: “);
10 scanf(“%f %f %f”,&x,&y,&z);
11 a = product(x,y,z);
12 printf(“%f * %f * %f = %f\n”,x,y,z,a);
13
14 return(0);
15 }
16
17 float product(float a, float b, float c)
18 {
19 return(a * b * c);
20 }
21
22

Save these changes, and then build and run the code. As you can see, the result is the same. A more
realistic example is shown in the code below:

1 #include <stdio.h>
2
3 int max(int x, int y);
4 void isLarger(int big);
5

6 int main()
7 {
8 int a,b,larger;
9
10 printf(“Type two integers separated by a space: “);
11 scanf(“%d %d”,&a,&b);
12 larger = max(a,b);
13 if(a == larger)
14 isLarger(a);
15 else
16 isLarger(b);
17
18 return(0);
19 }
20
21 int max(int x, int y)
22 {
23 if(x > y)
24 return(x);
25 return(y);
26 }
27
28 void isLarger(int big)
29 {
30 printf(“Value %d is larger.\n”,big);
31 }
32
33

Max is kind of the stalwart of learning C. It is passed two values, and returns the larger of the two. We’ve
also added the isLarger function, which doesn’t return anything, but we wanted to show how multiple
function can be declared within the code. Build and run the code.

Type two different values separated by a space. As you can see, the code displays the larger of the two
values. Now, let’s talk about the limitations.

In the C language, a function can return only one value. You cannot return multiple values, nor can we
think of a reason why you would want to. You can return an array or a structure variable from a function.
These variable types are covered in a later chapter. But yet they remain single variables. We would like to
explain the main function.

As you can see here in the previous source code, main is an integer function. The return statement is
required, and an integer value must be specified. The parenthesis for the main function is empty. This is a
shortcut—a cheat.

The compiler knows the arguments for the main function. Two of them exist, but you don’t need to specify
them if they don’t get used. The parenthesis remains empty in the main function. This is not something,
however, you can get away with other functions you declare and use.

Character Manipulation Functions

So much goes on with characters that the C library offers a host of character manipulation functions. In
this section, we introduce a few of those functions and show you how to use them in your code. As a
bonus, we offer an introduction to logical expressions, which can also come into play when working with
characters.

In your C code, characters appear either individually, or marching along in an array called a string. You
can manipulate characters one at a time or, more commonly, in the string. The code below includes a
ctype.h header file, which prototypes the character testing and manipulation functions:

1 #include <stdio.h>
2 #include <ctype.h>
3
4 int main()
5 {
6 int ch = ‘a’;
7
8 printf(“Big %c\n”,toupper(ch));
9 printf(“Little %c\n”,tolower(ch));
10 printf(“What begins with %c?\n”,ch);
11
12 return(0);
13 }
14
15

At lines 8 and 9, you see the toupper and tolower functions. The toupper function generates the uppercase
version of a letter. The tolower function generates the lowercase version of a letter. The results are used
immediately in the printf functions. Note that these functions require integer values, not characters. You
can display the result by using %c in the printf function, even though they are integer variables. Build and
run the code.

As you can see by the output of the final printf statement at line 10, the toupper and tolower functions
did not affect the variable ch. They merely generate an upper or lowercase equivalent. You can use these
functions on a string as well. To do that, you must dissect the string in a loop. Take a look at the code
below:

1 #include <stdio.h>
2 #include <ctype.h>

3
4 int main()
5 {
6 int c;
7
8 do
9 {
10 c = getchar();
11 c = toupper(c);
12 putchar(c);
13 }
14 while(c != ‘\n’);
15

Again, an integer variable is used in the toupper function. Input is processed and converted to upper case
at line 11, then output. You won’t see the output until you press the Enter key because the C language is
stream-oriented. Build and run the code.

Go ahead and type some text. Press the Enter key. The output is all caps, but note how the punctuation
symbols and spaces are unaffected by the toupper function. Most of the functions defined in the ctype.h
header file are testing functions. They are used to evaluate the type of character, such as whether it is a
letter, number, space, or upper or lower case. These functions return true and false values, which you can
use in your code to see what’s been typed.

As an example, the code below uses the isalpha function to determine whether a character is a letter of
the alphabet, or some other character.

1 #include <stdio.h>
2 #include <ctype.h>
3
4 int main()
5 {
6 int acter;
7
8 do
9 {
10 acter = getchar();
11 if(isalpha(acter))
12 putchar(acter);
13 }
14 while(acter != ‘\n’);
15

The function returns ‘true’ if it is or ‘false’ otherwise. In the do/while loop, input is received and checked.
The if statement at line 11 returns true if the character is a letter of the alphabet. If so, it is displayed. Build
and run the code. Type a bunch of text including symbols and numbers. Press the Enter key, and only the
alphabet characters—both upper and lowercase—are displayed.

You can modify the source code to try out many of the character manipulation functions. For example,
change isalpha in line 11 to isupper. Now, only the upper case letters are displayed. Save, build and run
to test the change.

Other functions defined in the ctype.h header file include:

• islower – detects only lowercase letters
• isnumber – returns true for any number character 0 through 9
• isblank – detects whitespace characters—space tab or new line

You can also craft your own character manipulation functions, but it helps to know about C logical
operators.

Logical Operators

The C language’s logical operators are used to compare two or more expressions. The operators determine
whether the result is true or false. Three operators are available to use:

• && logical AND
• || logical OR
• ! logical NOT

These are often written in all caps, so that they are not confused with the regular words. For an AND
operation to be true, both conditions must be true—this AND that. For an OR operator, either of the
conditions must be true—this OR that. And for the NOT operator, the condition must be false, which is
backwards, but that’s how NOT works—NOT this.

As an example, the AND operator evaluates two conditions below:

a = 7;
if(a > 0 && a , 10)

TRUE && TRUE == TRUE

Here, both conditions are true. Therefore, the if statement is executed. In the example below, one of the
conditions is false. Therefore, the if statements are skipped.

a = 7;
if(a > 0 && a < 5)

TRUE && FALSE == FALSE

In the logical OR operator, only one of the conditions need to be true. Below, the if statement would be
executed.

a = 50;
if(a < 10 || a > 25)

FALSE || TRUE == TRUE

When both conditions are false, the if statement won’t be executed.

a = 50;
if(a < 10 || a > 75)

FALSE || FALSE == FALSE

And in the case of NOT, it negates the condition. Here, both the conditions are false:

a = 50:
if(!(a!=50))

TRUE

Variable a is equal to 50. However, the NOT operator turns that around and makes it true. Finally, in the
C language, all values are considered true, except for zero, which is false. Typically, the value 1 is used
for true. But it could also be negative 1 or any non-zero value. As an example of constructing your own
character test, take a look at the code below:

1 #include <stdio.h>
2
3 int iscaps(int ch);
4
5 int main()
6 {
7 int c;
8
9 do
10 {
11 c = getchar();
12 if(iscaps(c));
13 putchar(c);
14 }
15 while(c != ‘\n’);
16

17 return(0);
18 }
19
20 int iscaps(int ch)
21 {
22 if(ch < ‘A’ || ch > ‘Z’)
23 return(0);
24 else
25 return(1);
26 }
27
28

A logical comparison is made at line 22. To understand how it works, read the condition: If the value of
variable ch is less than A or the value of variable ch is greater than Z. When either of those conditions is
false, meaning the character is not uppercase, the function returns false. Otherwise, the function returns
true.

Suppose you wanted to change the iscaps function to isLowerCase, and have it return true or false based
on that condition. How would you go about doing it? Well, the first thing to do is to change the name of
the function to something more accurate.

1 #include <stdio.h>
2
3 int isLowerCase(int ch);
4
5 int main()
6 {
7 int c;
8
9 do
10 {
11 c = getchar();
12 if(isLowerCase(c));
13 putchar(c);
14 }
15 while(c != ‘\n’);
16
17 return(0);
18 }
19
20 int isLowerCase(int ch)
21 {
22 if(ch < ‘a’ || ch > ‘z’)
23 return(0);

24 else
25 return(1);
26 }
27
28

After changing the function calls appropriately, also change the ‘A’ to ‘a’, and ‘Z’ to ‘z.’ Save, build and
run the code. As you can see in the output, only lowercase letters appear. You can create just about any
character test by using logical operators. You’ll see additional examples of using logical operators in the
succeeding chapters of this book.

Chapter 9: Working with Strings

A string is a funny thing. It is not really a C language variable, but it is used that way. When it comes to
manipulating strings in your code, you have to be really careful due to their unusual nature. This section
discusses working with strings.

We’ll show you how to gather information about a string, stick strings together, compare strings, and find
one string inside another. These tasks represent the more popular string manipulation functions in the C
language. Take a look at the code below:

1 #include <stdio.h>
2 #include <string.h>
3
4 int main()
5 {
6 char string[] = “Just how long am I?”;
7 int len;
8
9 len = strlen(string);
10 printf(“The following string:\n”);
11 puts(string);
12 printf(“is %d characters long.\n”,len);
13
14 return(0);
15 }
16
17

Strlen

A string is declared at line 6. It is a character array, so the char variable type is specified. The variable
name is string, followed by empty brackets. The string length function strlen appears at line 9. It returns
the number of characters in a string, which is stored in the len variable. Build and run the code.

The string is 19 characters long. You can also count the characters in the source code, but you won’t
always have the luxury of knowing the exact amount. For example, what if the user types in a string. Take
a look at the code below:

1 #include <stdio.h>
2 #include <stdio.h>

3
4 int main()
5 {
6 char input[64]; /* 63 characters plus null */
7 int len;
8
9 printf(“Instructions: “);
10 fgets(input,64,stdin);
11 len = strlen(input);
12 printf(“You typed %d characters of instructions.\n”,len);
13
14 return(0);
15 }

Input is fetched by using the fgets function, and then it is stored in an input buffer. Afterwards, the strlen
function fetches the length of the string. The next statement displays the result. Build and run the code.

Keep in mind that strings in C end with a null character. Storage must be allocated for that extra character.
The program generates the character, but you must provide room for it in the input buffer. The strlen
function does not count that null character when it measures the string’s length. Now take a look at the
code example below:

1 #include <stdio.h>
2
3 int main()
4 {
5 char first[] = “I would like to go “;
6 char second[] = “from here to there\n”;
7
8 return(0);
9 }
10

Strcat / Concatenation

This is only partial code. We’re going to figure out how to stick these two strings—first and
second—together to make another new string. In many programming languages, the addition operator
does the trick. For example, some programming languages might write the code this way to connect the
two strings together to make a new string:

1 #include <stdio.h>

2
3 int main()
4 {
5 char first[] = “I would like to go “;
6 char second[] = “from here to there\n”;
7
8 printf(“%s\n”, first+second);
9
10 return(0);
11 }
12

However, in the C programming language, this would not work. You could display both strings back to
back, but that’s not the solution we’re after. What you need to do is to stick the strings together. Now,
rather than say, “stick the strings together,” C programmers say, “concatenate,” which comes from the
Latin word for sticking two strings together.

But before that, fix up the code. First, create a storage location, or a buffer, for the resulting two strings.

1 #include <stdio.h>
2
3 int main()
4 {
5 char first[] = “I would like to go “;
6 char second[] = “from here to there\n”;
7 char storage[64];
7
8 printf(“%s\n”, first+second);
9
10 return(0);
11 }
12

As you can see at line 7, we’ve created a storage location—buffer—for the resulting two strings. You
can set the storage buffer to accommodate any number of characters—including the null character. In our
example here, we’re just setting it to 64.

Next, we’re going to copy the first string into that storage location. The strcpy, or stringcopy function
copies one string into another. At line 9, the string ‘first’ is duplicated into the storage buffer.

1 #include <stdio.h>
2
3 int main()
4 {
5 char first[] = “I would like to go “;
6 char second[] = “from here to there\n”;
7 char storage[64];

7
8 strcpy(storage,first);
9
10 return(0);
11 }
12

Also, you need to prototype that strcpy function. All string functions are declared in the string.h header
file.

1 #include <stdio.h>
2 #include <string.h>
3
4 int main()
5 {
6 char first[] = “I would like to go “;
7 char second[] = “from here to there\n”;
8 char storage[64];
9
10 strcpy(storage,first);
11
12 return(0);
13 }
14

Next, you need to stick the string ‘second’ into the end of the storage buffer. The strcat, or string
concatenation statement tacks the string ‘second’ onto the end of whatever is inside the storage
buffer—concatenation. Then finally, display the results.

1 #include <stdio.h>
2 #include <string.h>
3
4 int main()
5 {
6 char first[] = “I would like to go “;
7 char second[] = “from here to there\n”;
8 char storage[64];
9
10 strcpy(storage,first);
11 strcat(storage,second);
12 printf(“Here is your string:\n%s”,storage);
12
13 return(0);
14 }
15

Save, build and run the code. As you can see in the output, it worked.

Strcmp / String compare

Another popular string function compares two strings. The code below uses the strcmp, or string compare
function to compare two strings:

1 #include <stdio.h>
2 #include <string.h>
3
4 int main()
5 {
6 char password[9];
7 int compare;
8
9 printf(“Enter your password: “);
10 scanf(“%8s”,password);
11 compare = strcmp(password,”secret”);
12 if(compare == 0)
13 puts(“You have been granted access!”);
14 else
15 puts(“Intruder alert!”);
16
17 return(0);
18 }
19
20

The value returned is zero when both strings are the same. This is one of those weird times when zero
actually means true. Values less than or greater than zero indicate incorrect matches. You’ll also notice
that the scanf function limits input only up to eight characters. The input matches the eight character
limitation on the buffer. The buffer is nine characters to account for the null character at the end of the
string. Build and run the code.

Now, try a few passwords before you try the real one, which is “secret.” Also, this code doesn’t need the
compare variable. You can remove it. Delete it twice from the code and replace it with a function directly.
Place the strcmp function inside of the if statement like so:

1 #include <stdio.h>
2 #include <string.h>
3
4 int main()
5 {

6 char password[9];
7
8 printf(“Enter your password: “);
9 scanf(“%8s”,password);
10 if(strcmp(password,”secret”) == 0)
11 puts(“You have been granted access!”);
12 else
13 puts(“Intruder alert!”);
14
15 return(0);
16 }

Strstr/ String String

The final string function we’d like to show is called strstr, or string string. It is used to find one string
inside of another. Take a look at the code below:

1 #include <stdio.h>
2 #include <string.h>
3
4 int main()
5 {
6 char source_string[] = “I am a stranger in a strange land”;
7 char find_me[] = “strange”;
8
9 if(strstr(source_string,find_me) == NULL)
10 puts(“String not found!”);
11 else
12 printf(“Founc ‘%s’ in ‘%s’\n”,find_me,source_string);
13
14 return(0);
15 }
16
17

This code uses the strstr function. It is a little weird because you really need to know a little more about
pointers to effectively use this function. That knowledge is gleaned in a later chapter. But for now, the
strstr function is included as part of the if statement at line 9.

It returns a pointer, or the location of the string find_me in the string source_string. If no match is made,
then the value NULL is returned. Again, NULL is a pointer thing. Build and run the code. As you can see
from the output, the string is found.

You can alter the text for the string find_me to prove that the function actually works. Until you’ve
reached the rocky shoals of pointer land, that’s about the best that can be done with the strstr function.

Chapter 10: C Language Constants

Occasionally, when learning something new, you need to pause and reflect. That’s the topic of this
section: pausing and reflecting specifically, with regards to variables and values. We’ll also introduce a
few new concepts—things we feel it’s about time you knew, especially if you’re new to learning the C
programming language. In this section we cover creating and using constants. Plus, we’ll also discuss
some of the printf function’s placeholders.

A constant in the C language is different from an immediate value and a variable. It is more like
a universal value that doesn’t change throughout the code. Constants are values used consistently
throughout your source code.

There are things that do not change. They are created by the preprocessor #define directive. Normally the
constant is written in all caps, one word, or with underlines only. Now when the compiler encounters a
constant, it expands it out to its assigned value.

In the example below, the constant version is created and it is assigned to the value 3. The compiler
converts the word version into the immediate value 3 throughout the code.

#define VERSION 3
• Constant is named VERSION
• Has a value of 3
• Does not end with a semi-colon

Remember, preprocessor directives are not C language statements. Do not put a semi-colon after the
assignment, unless you need the semi-colon to be a part of whatever is being defined, which hardly ever
happens. Just don’t add a semi-colon.

Below is a string constant defined as AUTHOR. The string must be enclosed in double quotes. This is an
example of one constant that uses two other constants to calculate its value.

#define AUTHOR “Adolf Hitler”
• The constant is named AUTHOR
• The value is the string “Adolf Hitler.”
• No semi-colon is used.

Below, the constant GAME_GRID would equal 120, unless either the ROWS or COLUMNS constants are
changed. They wouldn’t be changed in the code. They would be changed in the define statement that you
see below:

#define ROWS 20
#define COLUMNS 60
#define GAME_GRID ROWS*COLUMNS

• Three constants are created: ROWS, COLUMNS, and GAME_GRID
• The value of GAME_GRID is based on the product of constants ROWS and COLUMNS.

Take a look at the code below:

This code is based on the previous example that we’ve used in an earlier chapter. We’ve cleaned it up a
bit and we’ve set up some constants in the code, specifically two #define directives to set the numbers of
rows and columns in a grid.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <time.h>
4
5 #define ROWS 10
6 #define COLUMNS 10
7
8 int main()
9 {
10 int row, column;
11
12 srand((unsigned)time(NULL));
13
14 for(row=0;row<10;row++)
15 {
16 for(column=0;column<10;column++)
17 printf(“%2d\t”,rand() % 100);
18 putchar(‘\n’);
19 }
20
21 return(0);
22 }
23
24

Now, let’s change the value 10—used as an immediate value in the loops—to reflect the constants.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <time.h>
4
5 #define ROWS 10
6 #define COLUMNS 10
7
8 int main()
9 {
10 int row, column;
11
12 srand((unsigned)time(NULL));
13

14 for(row=0;row<ROWS;row++)
15 {
16 for(column=0;column<COLUMNS;column++)
17 printf(“%2d\t”,rand() % 100);
18 putchar(‘\n’);
19 }
20
21 return(0);
22 }
23
24

Save the changes, and then build and run the code. The program still outputs 100 random numbers in ten
rows and ten columns. But now you can easily change that to say twenty rows of seven columns. All you
need to do to make that change is to change the constants.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <time.h>
4
5 #define ROWS 20
6 #define COLUMNS 7
7
8 int main()
9 {
10 int row, column;
11
12 srand((unsigned)time(NULL));
13
14 for(row=0;row<ROWS;row++)
15 {
16 for(column=0;column<COLUMNS;column++)
17 printf(“%2d\t”,rand() % 100);
18 putchar(‘\n’);
19 }
20
21 return(0);
22 }
23
24

You do not have to hunt through the code to find those proper values. That is how constants can save
you time. Save, build and run the code. As you can see from the output, you now have seven columns of
twenty rows. Another example of using constants can be seen in the sample code below:

1 #include <stdio.h>

2
3 #define INPUT_MAX 64
4
5 int main()
6 {
7 char input[INPUT_MAX];
8
9 printf(“Instructions: “);
10 fgets(input,INPUT_MAX,stdin);
11 puts(“Thank you! Here are your instructions:”);
12 puts(input);
13
14 return(0);
15 }
16
17

This code is an update to an example from an earlier chapter. The number of characters to be input is set
by the INPUT_MAX constant defined at line 3. The constant is then used to set the buffer size at line 7,
and again with the fgets function at line 10.

The advantage here is that you can change both values at once simply by modifying the INPUT_MAX
constant. You do not have to hunt through the code. Now take a look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 float a;
6 float b = 5.0;
7
8 printf(“Input a number: “);
9 scanf(“%f”,&a);
10 printf(“%f / %f = %f\n”,a,b,a/b);
11
12 return(0);
13 }
14
15

This is also a modification to an earlier example used in an earlier chapter. Build and run the code to help
you remember what the problem was. You can fix this problem by adjusting the placeholders in the printf
statement. Modify each %f placeholder at line 10 by inserting .1 inside each one so that they read:

1 #include <stdio.h>
2

3 int main()
4 {
5 float a;
6 float b = 5.0;
7
8 printf(“Input a number: “);
9 scanf(“%f”,&a);
10 printf(“%.1f / %.1f = %.1f\n”,a,b,a/b);
11
12 return(0);
13 }
14
15

Save the changes, and then build and run the code. The .1 format limits floating point output to only one
digit after the decimal point. Edit it again and type .3 for the format in the printf statement.

1 #include <stdio.h>
2
3 int main()
4 {
5 float a;
6 float b = 5.0;
7
8 printf(“Input a number: “);
9 scanf(“%f”,&a);
10 printf(“%.3f / %.3f = %.3f\n”,a,b,a/b);
11
12 return(0);
13 }
14
15

Save, build and run the code. Now, three digits appear after the decimal point. Now let’s return again to
our previous CONSTANT example:

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <time.h>
4
5 #define ROWS 20
6 #define COLUMNS 7
7
8 int main()
9 {
10 int row, column;

11
12 srand((unsigned)time(NULL));
13
14 for(row=0;row<ROWS;row++)
15 {
16 for(column=0;column<COLUMNS;column++)
17 printf(“%2d\t”,rand() % 100);
18 putchar(‘\n’);
19 }
20
21 return(0);
22 }
23
24

At line 17, you see at 2 between the percent and letter ‘d.’ What the 2 does is set an output width to two
characters minimum. When a single digit appears in the output, they’ll write a line. Build and run the
code. See how singular digits are lined up in the output.

Now edit the code again and remove the 2. Save, build and run the code. Now, the single digits do not look
right. No one expects them to line up in the tens column. The placeholders have lots of options. These
can be sandwiched between the percent sign and their letter. We could dedicate thousands of chapters to
write them all, but another one to look at is %s found in the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 char right[] = “right”;
6 char left[] = “left”;
7
8 printf(“%20s\n”,right);
9 printf(“%-20s\n”,left);
10
11 return(0);
12 }
13
14

The two strings, RIGHT and LEFT, are displayed by using %s placeholders. But there are extra characters
between the percent and the s. The 20 specifies an output width, just like the 2 in between %d in the
previous example.

In line 8, the %20s right justifies the output—adjusting the string’s location based on its length inside that
width. In line 9, the negative sign before the 20 left justifies the string, which is how text is normally
displayed. Build and run this code to see how it works.

The width argument in the %s placeholder, sets the width to twenty characters. This placeholder is ideal
for displaying lists and tables. Many more placeholder width, precision, padding, and other options are
available. The documentation for the printf function lists the variety, plus a few examples.

Chapter 11: C language Arrays

An array is simply a collection of more than one of the same type of variable. For example, a list of high
scores is a type of array, as would be how many miles you run per day, even if that list contains lots of
zeros. Of course, strings in the C language are an array of single character variables.

In this section, we introduce the concept of an array. You’ll see how to create an array, how to fill it with
data, how to access that data, and we’ll also divulge some secrets about character arrays also known as
strings. Below, you see the way NOT to do multiple values in your code—four separate float variables
are created and filled with data:

1 #include <stdio.h>
2
3 int main()
4 {
5
6
7 temp1 = 84.9;
8 temp2 = 83.7;
9 temp3 = 85.8;
10 temp4 = 88.2;
11
12 printf(”Local temperatures:\n”);
13 printf(“Station 1: %.1f\n”,temp1);
14 printf(“Station 2: %.1f\n”,temp2);
15 printf(“Station 3: %.1f\n”,temp3);
16 printf(“Station 4: %.1f\n”,temp4);
17
18 return(0);
19
20 }
21
22

They are then displayed using four separate printf statements. Each variable requires its own repetitive
statement. You can build and run this code, but why bother. Instead, we’ll show you a better way to deal
with multiple variables of the same type. That way is the array. Take a look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 float temps[4] = { 84.9, 83.7, 85.8, 88.2 };
6 int x;

7
8 printf(“Local temperatures:\n”);
9 for(x=0;x<4;x++)
10 printf(“Station %d: %.1f\n”,x,temps[x]);
11
12 return(0);
13 }
14
15

This is the array version of the previous example. The array temps is created at line 5. It contains four
elements, and each element is assigned in the brackets that follow. The loop at line 9 displays all
four element’s values by using a single printf function.

Anatomy of an Array

An array is simply a collection of multiple variables—all of the same type. It has a declaration similar
to any other variable, but with square brackets after the variable name. The brackets hold the number of
elements in the array. They can be blank if the elements are specified when the array is declared. Below,
the integer array DELIVERIES has room for fifteen elements.

int deliveries[15];

Integer array TOTALS has three elements, which are assigned in curly brackets.

int totals[] = { 5, 13, 6 };

The final element does not have a comma. If you put a comma there, the compiler believes that you
have forgotten something. You can also list array elements on a line by themselves. Except for the final
element, don’t forget to put the commas. Remember to close the curly bracket and add a semi-colon.

Each element in the array is its own variable. You specify the element between the square brackets. The
first element is element zero. You can also use an integer variable to specify array elements. Below,
variable n represents a specific element in the totals array:

printf(“%d\n”,totals[n]);

The element is used like any other variable. It can find itself inside a printf function, or it can be used with
an assignment operator as shown below:

totals[n] = 14;

You cannot change the number of elements in an array after the array has been declared. Some tricks exist
to work around this limitation. But for now, just accept it as a rule. Also, don’t forget that the first element
in an array is zero, not 1.

Humans start counting at 1, the C language starts counting at 0. An integer array CALORIES is declared
at line 7 in the code below:

1 #include <stdio.h>
2
3 #define MEALS 3
4
5 int main()
6 {
7 int calories[MEALS];
8 int x,total;
9
10 total = 0;
11 puts(“Calorie Counter”);
12 for(x=0;x<MEALS;x++)
13 {
14 printf(“Calories at meal %d: “,x+1);
15 scanf(“%d”,&calories[x]);
16 total = total +calories[x];
17 }
18 printf(“You had a total of %d calories.\n”,total);
19
20 return(0);
21 }
22
23

It has the MEALS element and the MEALS constant is set to 3 at line 3. A for loop at line 12 reads in
three values. See how the for loop starts at zero. That comes in handy when working with arrays as the
first element is zero.

In line 14, however, 1 is added to the looping variable x, which makes the numbers more accommodating
to humans running the program. The scanf statement at line 15 reads the values into each array element.
An array element is an individual variable, so the ampersand is required.

At line 16, the value input is added to the total variable. Now build and run the code. Type in some easy
numbers to confirm the computer’s math. You’ll see the variable total is initialized at line 10. That is
required. Otherwise, the variable may contain garbage. In C, variables are not initialized until they are
assigned a value.

Comment out line 10 to prove this. Save, build and run the code to see if it has any effect. Of course, the
number is off because the total variable is not properly initialized. There’s an off chance that it may be
correct because a random number could be zero, in which case 600 would show up.

Strings are character arrays. Normally, they are declared by using double quotes. Take a look at the code
below:

1 #include <stdio.h>
2
3 int main()
4 {
5 char text[] = “I am a string!”;
6
7 puts(text);
8
9 return(0);
10 }
11
12

The character array TEXT is declared at line 5. This is really simple, and is one of the best ways to declare
a string or a character array. Now take a look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 char text[] = {
6 ‘I’, ‘ ‘, ‘a’, ‘m’, ‘ ‘, ‘a’, ‘ ‘,
7 ‘s’, ‘t’, ‘r’, ‘i’, ‘n’, ‘g’, ‘!’, ‘\0’
8 };
9
10 puts(text);
11
12 return(0);
13 }
14
15

This code works the same as the previous exercise, but the character array is declared character-by-
character, which is a phenomenal waste of time. Build and run the code. It works, but it is just too much
effort.

The code does, however, point out the final character in all C language strings that must be specified: the
null character. It is shown in the previous code as the escape sequence ‘\0.’ When you use double quotes

to declare a string, the compiler automatically adds the null for you. But when you specify one character
at a time, you must remember to add the null.

The null comes in handy when you display a string one character at a time. Take a look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 char hello[] = “Greetings, human!\n”;
6 int n;
7
8 n = 0;
9 while(hello[n] != ‘\0’)
10 {
11 putchar(hello[n]);
12 n++;
13 }
14
15 return(0);
16 }
17
18

This code displays the string in the hello array one character at a time. The while loop marches through
the string until the null character is encountered. It spits out single characters by incrementing variable n
as it progresses. Build and run the code.

Because the null character evaluates to the false condition in the C language, you can shorten the while
decision to this:

1 #include <stdio.h>
2
3 int main()
4 {
5 char hello[] = “Greetings, human!\n”;
6 int n;
7
8 n = 0;
9 while(hello[n])
10 {
11 putchar(hello[n]);
12 n++;
13 }
14
15 return(0);

16 }
17
18

Make that change to your code, and then save, build and run it. As you can see, the same output is
generated, although the source code is a tad less readable to a beginning programmer. The typical array in
the C language is simply a series of variables—all of the same type marching off together. But not every
type of data is a single line. Sometimes you have to deal with a grid. In that case, you enter into the realm
of the multi-dimensional array.

Multi-dimensional Arrays

This section uncovers the mystery of the multi-dimensional array. You’ll learn how to configure such an
array and access its values. You’ll also see how multi-dimensional arrays apply to strings. To visualize a
multi-dimensional array, think of a grid—you have rows and columns. Take a look at the code below:

1 #include <stdio.h>
2
3 #define ROWS 4
4 #define COLUMNS 4
5
6 int main()
7 {
8 int grid[ROWS] [COLUMNS];
9 int x,y;
10
11 /* initialize the array */
12 f0r(x=0;x<ROWS;x++)
13 for(y=0;y<COLUMNS;y++)
14 grid[x] [y] = 0;
15
16 /* display the grid */
17 for(x=0;x<ROWS;x++)
18 {
19 for(y=0;y<COLUMNS;y++)
20 printf(“%d.%d: %d\t”,x,y,grid[x] [y]);
21 putchar(‘\n’);
22 }
23
24 return(0);

The array is declared at line 8. Two sets of square brackets are used—one for each dimension in the array.
So grid is an integer array. It is effectively a 2 dimensional array. Lines 12 through 14 use a nested loop
to fill each array element, with the value zero initializing the array.

In line 14, you see that individual array elements require two square brackets as reference. Again, think of
each as rows and columns. Then, the nested loops starting at line 17 print the array in rows and columns.
Build and run the code.

The output shows each array element as it would be referenced. The first one is element ‘0.0.’ That is the
first element in both directions. As a thought experiment, how would you modify the code to set the value
of the third element in both dimensions to the value 1.

We hope you remember that arrays start with element zero. The third element is actually referenced as
grid ‘2.2.’ We’re going to add a line that reads ‘grid 2.2 = 1.’

1 #include <stdio.h>
2
3 #define ROWS 4
4 #define COLUMNS 4
5
6 int main()
7 {
8 int grid[ROWS] [COLUMNS];
9 int x,y;
10
11 /* initialize the array */
12 f0r(x=0;x<ROWS;x++)
13 for(y=0;y<COLUMNS;y++)
14 grid[x] [y] = 0;
15
16 grid[2] [2] = 1;
17 /* display the grid */
18 for(x=0;x<ROWS;x++)
19 {
20 for(y=0;y<COLUMNS;y++)
21 printf(“%d.%d: %d\t”,x,y,grid[x] [y]);
22 putchar(‘\n’);
23 }
24
25 return(0);

Save that change, and then build and run the code. This is how the value looks with the value 1 at grid
2.2. You can also conjure up a two-dimensional character array, as is shown in the code below:

1 #include <stdio.h>

2
3 int main()
4 {
5 char names[4] [7] = {
6 “Mickey”,
7 “Minnie”,
8 “Goofy”,
9 “Pluto”,
10 };
11 int x;
12
13 for(x=0;x<4;x++)
14 printf(“%s\n”,names[x]);
15
16 return(0);
17 }
18
19

A two-dimensional character array is simply a collection of strings, but with one important caveat: The
array must be dimensioned to handle the largest string. Remember, a two-dimensional array is a grid.
Here, the longest string is six letters long, plus one element for the null character. That makes seven
elements for each string.

When printing strings from a two-dimensional character array, you need only specify the first dimension,
which is done on line 14. Build and run the code. The C language also offers three-dimensional arrays,
and even more dimensions than that. When you create such an array, you need one set of brackets for
each dimension. Things can get pretty complex in a hurry. For now, concentrate on playing with two-
dimensional arrays.

As a thought, whether you believe it or not, if you’ve been reading this book from the beginning, you
have everything you need to know to program a rudimentary Tick-Tack-Toe computer game. Give it a try.

Chapter 12: C Language Structures

Another variable type in the C language is the structure. It is actually a combination of existing variable
types all tied together into a single unit. A structure variable simply has many parts like a record in a
database. This chapter presents the concept of the structure. You’ll see how to set up a structure, create
structure variables, and how to access structure members.

We’ll discuss how to fill data into a structure, as well as the interesting idea of placing one structure inside
another. The code below is not a complete code, of course, but shows you how a structure can be created
in the C language.

1 #include <stdio.h>
2
3 int main()
4 {
5 struct record {
6 int account;
7 float balance;
8 };
9
10 return(0);
11 }
12
13

The keyword struct is followed by the name of the structure. In this case, the name is ‘record’. The
structure members are contained in curly brackets; each ending with a semi-colon because the whole deal
is a statement. The structure members are variable declarations. Inside this structure, you’ll find an int
and a float member. The int member is named ‘account’. The float member is named ‘balance’.

By itself, the structured declaration merely creates a type of structure, like a new type of variable in the
code. To use the structure, you need to declare a variable of the structure type. On line 9 we’re going to
type the following:

1 #include <stdio.h>
2
3 int main()
4 {
5 struct record {
6 int account;
7 float balance;
8 };
9 struct record my_bank;
10

11 return(0);
12 }
13
14

This statement creates a variable named my_bank of the record structure type. To access the structure’s
members, you need to reference both the variable name, as well as the member name. Let’s add two new
lines. The structure variable name comes first, then a dot, then the member name. They must be assigned
values equal to the variable type. In this case, an integer and a floating point value.

1 #include <stdio.h>
2
3 int main()
4 {
5 struct record {
6 int account;
7 float balance;
8 };
9 struct record my_bank;
10
11 my_bank.account = 123456;
12 my_bank.balance = 6543.21;
13
14 return(0);
15 }
16
17

Save these changes, and then build and run the code. To create another record structure variable called
your_bank, you simply have to echo the existing statements. You can also fill the members in that
structure simply by copying the previous statements and replacing ‘my_bank’ with ‘your_bank.’

1 #include <stdio.h>
2
3 int main()
4 {
5 struct record {
6 int account;
7 float balance;
8 };
9 struct record my_bank;
10 struct record your_bank;
11
12 my_bank.account = 123456;
13 my_bank.balance = 6543.21;
14 print(“In account %d I have %.2f\n”,my_bank.account,my_bank.balance)

15
16 return(0);
17 }
18
19

You could also preset the information inside the structure. Take a look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 struct person {
6 char name[32];
7 int age;
8 };
9 struct person president = {
10 “George Washington”,
11 67
12 };
13
14 printf(“%s was %d years old\n”,president.name,president.age);
15
16 return(0);
17 }
18
19

In this code, a structure named person is declared. A variable of the person type is declared at line 9. It
is named ‘president’. The president structure variable is immediately assigned with values. The values
match the structure member types and are enclosed in curly brackets. Run this code to ensure that it
works.

One thing to note in the structure is how you assign a string to a structure member. Take a look at the code
below:

1 #include <stdio.h>
2
3 int main()
4 {
5 struct person {
6 char name[32];
7 int age;
8 };
9 struct person president;
10

11 president.name = “George Washington”;
12 president.age = 67;
13
14 printf(“%s was %d years old\n”,president.name,president.age);
15
16 return(0);
17 }
18
19

If you can see what’s wrong, great. Otherwise, build the code and then check the build log to see the
specific error. As you can see, it is incompatible. You cannot use the assignment operator with a string.
That is because strings are not variables. They are arrays. Here’s how to solve it:

1 #include <stdio.h>
2 #include <string.h>
3
4 int main()
5 {
6 struct person {
7 char name[32];
8 int age;
9 };
10 struct person president;
11
12 strcpy(president.name,”George Washington”);
13 president.age = 67;
14
15 printf(“%s was %d years old\n”,president.name,president.age);
16
17 return(0);
18 }
19
20

Now, it works. You can insert any variable type into a C language structure—even another structure. Take
a look at the code below:

1 #include <stdio.h>
2 #include <string.h>
3
4 int main()
5 {
6 struct date {
7 int year;
8 int month;
9 int day;

10 };
11 struct person {
12 char name[32];
13 struct date birthday;
14 };
15 struct person friend;
16
17 strcpy(friend.name,”Anita Mann”);
18 friend.birthday.year = 1975;
19 friend.birthday.month = 6;
20 friend.birthday.day = 1;
21
22 printf(“My friend %s was born on %d/%d/%d\n”,
23 friend.name,
24 friend.birthday.month,
25 friend.birthday.day,
26 friend.birthday.year);
27
28 return(0);
29 }
30

In this code, you see definitions for two structures. The first, date, is defined at line 6. It holds members
year, month, and day. The second structure, person, is declared at line 11. It contains a name array, but
also the date structure in the form of a birthday variable.

A person variable structure friend is declared at line 15. Lines 17 through 20 build a friend variable and
strcpy is used to assign the string. For the structure member birthday, note how two dots are used to fill
in the substructure members in lines 18, 19, and 20. That’s how it works. That is how structures within
structures are referenced. Build and run this code.

By the way, most programmers will declare a structure and then create a structure variable in the same
statement. You can do that here at line 14. Specify the variable name friend at the end of line 14, then
remove line 15.

1 #include <stdio.h>
2 #include <string.h>
3
4 int main()
5 {
6 struct date {
7 int year;
8 int month;
9 int day;
10 };
11 struct person {
12 char name[32];

13 struct date birthday;
14 } friend;
15
16 strcpy(friend.name,”Anita Mann”);
17 friend.birthday.year = 1975;
18 friend.birthday.month = 6;
19 friend.birthday.day = 1;
20
21 printf(“My friend %s was born on %d/%d/%d\n”,
22 friend.name,
23 friend.birthday.month,
24 friend.birthday.day,
25 friend.birthday.year);
26
27 return(0);
28 }
29
30

Save the changes, and then build and run the code. The output is the same. It is preferred not to use this
shortcut when coding in C because it makes the code less readable. But you’re free to use it, and you’ll
see it quite frequently in other C codes.

Chapter 13: C Language Time Functions

We’ve yet to encounter a programmable device that didn’t have some sort of internal clock. The computer
has a clock, and thanks to the Internet, modern computers keep accurate track of the time. When your
code needs to access that information, you dip into the C language library’s assortment of time functions.

In this chapter, you’ll see how time functions work in the C language. You’ll learn how to check the time,
read time values, and how to gather information about the current date. The code below uses the direct
value generated by the time function, as shown by the second argument in the printf function at line 6:

1 #include <stdio.h>
2 #include <time.h>
3
4 int main()
5 {
6 printf(“The current time is %ld\n”,time(NULL));
7
8 return(0);
9 }
10
11

You’ll see that the placeholder is ‘%ld,” which is a long integer value, or a very large integer. That’s
the type of value returned from the time function. The time function itself requires an argument. In our
example, we’re using the NULL pointer constant to keep the function happy. Also keeping the compiler
happy is the inclusion of the time.h header file at line 2. Build and run this code.

It is actually what’s referred to as the Unix Epoch time, or the number of seconds that have elapsed since

January 1st 1970. To be relevant to a human being, the number is going to need some work. Normally, the
value returned from the time function is saved. It is a long integer value, but the variable type is known
as ‘time_t.’

Insert a new line in the code to declare variable now as a time_t type. To assign a value to the now variable,
you must specify it as an argument in the time function. Yes, that’s backwards. But several functions
operate that way, including scanf. Like scanf, you must prefix the variable with an ampersand. Change
the printf statement, so that the variable now appears as the second argument.

1 #include <stdio.h>
2 #include <time.h>
3
4 int main()
5 {
6 time_t (&now);
7

8 time(&now);
6 printf(“The current time is %ld\n”,now);
7
8 return(0);
9 }
10
11

Save these changes, and then build and run the code. The time is still shown as a big number, but it also
shows that you have time left to complete this chapter. Moving along, the C library comes with a function
that translates time_t values into strings. It is called the ctime function.

Edit the printf function in the previous code so that the second argument is now &ctime. Change the %ld
placeholder to %s. This needs to be done because the ctime function generates a string.

1 #include <stdio.h>
2 #include <time.h>
3
4 int main()
5 {
6 time_t now;
7
8 time(&now);
6 printf(“The current time is %s\n”,ctime(&now));
7
8 return(0);
9 }
10
11

Save, build and run the code. What you see is the current date and time. Unless you’re reading this chapter
right now, you’ll see a different time. If you want to fetch specific time values, then you need to use the
local time function. This function returns the address of a structure that holds individual time values such
as the day, month, week, hour, and so forth. Take a look at the code below:

1 #include <stdio.h>
2 #include <time.h>
3
4 int main()
5 {
6 time_t now;
7 struct tm *right_now;
8
9 time(&now);
10 right_now = localtime(&now);
11 printf(“Today is %d/%d at %d:%d\n”,

12 right_now->tm_mon,
13 right_now->tm_mday,
14 right_now->tm_hour,
15 right_now->tm_min);
16
17 return(0);
18 }
19
20

The local time function at line 10 fills a structure with interesting information about the current time. The
structure is declared at line 7. It is a pointer variable, which you’ll learn about in a later chapter. The local
function uses the current time value obtained at line 9. This fills the structure ‘right_now.’

Some of that information available in the structure is displayed in the printf statement starting at line
11. We’ve split up the arguments on separate lines to make them more readable. But lines 12 to 15 are
really a single statement. The C language does not let any extra spaces in there bother it. Four values are
accessed from the right_now structure: the month, the day of the month, the hour, and minutes. These are
all members of the right_now structure.

You see that the period structure member operator isn’t used here. The ’ -> ‘ is the member operator used
for structure pointer variables. Build and run the code. Now you may notice that the month value is off.
That is because C starts counting at zero, and the first month of the year—January—is month zero.

You can fix this code by adding 1 to the value return from the right_now structure. Other adjustments can
be made as well. For example, if the current time is less than 10 minutes after the hour, then it appears as
a single digit. Fix that by adding ‘02’ to the %d placeholder. This argument increases the output width of
the integer to two places. Plus it’ll prefix a zero when the output is only one digit long.

1 #include <stdio.h>
2 #include <time.h>
3
4 int main()
5 {
6 time_t now;
7 struct tm *right_now;
8
9 time(&now);
10 right_now = localtime(&now);
11 printf(“Today is %d/%d at %d:%02d\n”,
12 right_now->tm_mon+1,
13 right_now->tm_mday,
14 right_now->tm_hour,
15 right_now->tm_min);
16
17 return(0);
18 }

19
20

Save the changes, and then build and run the code.

Chapter 14: C Language Variables

A variable is a container for some type of data. In the C language, that container holds an integer, floating
point character or other value. But philosophically speaking, what actually is a variable? In this chapter,
we help you explore the concept of the variable. You’ll see various ways a variable is described, how to
determine its size, and its storage location.

In the typical C language variable declaration, you learned two tidbits about the variable: its type and its
name. Below, you see an integer variable declared:

1 #include <stdio.h>
2
3 int main()
4 {
5 int a;
6
7 printf(“The value of a is %d\n”,a);
8
9 return(0);
10 }
11
12

It is an integer variable int, and its name is a. The variable is uninitialized, or never assigned a value.
Even so, you can use it in the code, as is shown in line 7. Build and run this program. On your end, you
might see any random value. Unlike other programming languages, C does not initialize variables as they
are declared. Internally, the program allocates a chunk of memory to store the variable’s information.

That chunk isn’t initialized, and is not set to zero. It is just some location in the memory. Whatever value
that’s already there, is immediately absorbed by your variable as shown in whatever your output would
be. The moral of the story is to always initialize variables before you use them. You can fix the previous
code by adding a line like so:

1 #include <stdio.h>
2
3 int main()
4 {
5 int a;
6
7 a = 65;
8 printf(“The value of a is %d\n”,a);
9
10 return(0);
11 }
12

13

Save the changes, and then build and run the program. Now, the output is predictable. You also know
something else about the variable: its value. Two additional tidbits about the variable can be obtained by
using special C language operators. The first is the sizeof operator.

Sizeof is a keyword, but it is considered an operator. What it does is to return how many bytes of storage
are used by a specific variable. That information may seem trivial, but it does come into play often in the
C language. Take a look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 int a;
6
7 printf(“An int variable occupies %lu bytes of storage\n”,sizeof(a));
8
9 return(0);
10 }
11
12

Variable a is not initialized here. But that’s not an issue because it is not used. The sizeof operator is used
in the printf statement. The sizeof operator simply evaluates variable a as an int variable to return the
storage space it occupies. The sizeof operator returns a long, unassigned integer value. The placeholder
required for that value is %lu. Build and run the code.

On this system, an integer occupies 4 bytes of storage. That’s typical today. But 20 years ago, an integer
only used 2 bytes of storage. Change int to char in the code at line 5, and at line 7 in the printf function.
Save, build and run the code.

1 #include <stdio.h>
2
3 int main()
4 {
5 char a;
6
7 printf(“A char variable occupies %lu bytes of storage\n”,sizeof(a));
8
9 return(0);
10 }
11
12

A character occupies only 1 byte of storage. Now, change to float and see how big that variable type is.

1 #include <stdio.h>
2
3 int main()
4 {
5 float a;
6
7 printf(“A float variable occupies %lu bytes of storage\n”,sizeof(a));
8
9 return(0);
10 }
11
12

Save, build and run the code. On this system, a floating point variable occupies 4 bytes of storage. A long
integer, or long int value, is designed to store really huge integers. To see how big it is, change float to
long in the code.

1 #include <stdio.h>
2
3 int main()
4 {
5 long a;
6
7 printf(“A long variable occupies %lu bytes of storage\n”,sizeof(a));
8
9 return(0);
10 }
11
12

Save, build and run the code. On this system, a long integer occupies 4 bytes of storage, which is the same
for a regular integer. But on some systems, you may actually see 8 bytes of storage used for a long integer
value. Likewise, a double value has twice the precision of a float. Change long to double in the code.

1 #include <stdio.h>
2
3 int main()
4 {
5 double a;
6
7 printf(“A double variable occupies %lu bytes of storage\n”,sizeof(a));
8
9 return(0);
10 }
11
12

Save, build and run the code. Here, you actually see the double integer occupies 8 bytes of storage. By the
way, you don’t need to change the placeholder for any of these re-declarations. That’s because the sizeof
operator is what returns the long, unsigned integer value, not the variable itself.

Other information you can gather about a variable, includes its memory location. That tells you
specifically where the variable’s data—that 1, 4, or 8 bytes of storage—is located. To fetch a variable’s
memory location, use the ampersand operator.

You’ve already seen this operator used in the scanf and timef functions in the previous chapters. Take a
look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 int a;
6 char b;
7 float c;
8
9 puts(“Memory location:”);
10 printf(“A is at %p\n”,&a);
11 printf(“B is at %p\n”,&b);
12 printf(“C is at %p\n”,&c);
13
14 return(0);
15 }
16
17

Three variables are declared in this code: an integer, a character, and a floating point value. These
variables are not initialized because they are not used. But the program does allocate space for them at
various locations in memory. To access those locations, the ampersand is prefixed to the variable name.
To display the address, use the %p placeholder in the printf statement as show at lines 10, 11, and 12.
Build and run this code.

The address output values will differ from machine to machine. Even their format will appear differently
on different computers and different operating systems. At this point, the information may seem trivial.
But it does play a major role when it comes to pointers, which are perhaps the scariest and most dreaded
thing in all of the C language.

There are many C programmers who spend their careers artfully avoiding pointers, which are possible,
but not smart.

Chapter 15: C Language Pointers

Pointers are puzzling. Yet, we hope this section clears the air for you. We’ll discuss what a pointer is and
how it is used. We promise to move nice and slow because this topic is a very important part of learning
the C language.

The worst thing about pointers is their name. Pointers. It is descriptive, but a poor choice because you end
up explaining a pointer by saying, “A pointer, points.” That’s pointless. But we can’t change the name,
so allow us to explain a pointer by giving you this definition: A pointer is a variable that holds a memory
location—an address.

It is not just any address. You can’t say, for example, “Let’s see what’s at memory location 96.” Pointers
do not work that way. The address must be the location of another variable. Pointer variables are declared
similarly to other variables, although the variable name is prefixed by the pointer operator asterisk ‘ * ’.

The pointer variable type matches the type of variable it references. For example, an int variable requires
an int pointer. Pointer variables must be initialized before they are used. This is true of all the variables in
the C language, but especially so for pointers. Lots of weird errors happen when a pointer isn’t initialized.

We can’t repeat it enough: Pointers must be initialized before they are used. The code below is similar to
an example from an earlier chapter:

1 #include <stdio.h>
2
3 int main()
4 {
5 int pokey;
6
7 printf(“The address of ‘pokey’ is %p\n”,&pokey);
8
9 return(0);
10 }
11
12

The ampersand operator fetches the address of the variable ‘pokey.’ The %p placeholder displays that
address. Add an integer pointer variable p. Remember, a pointer is a variable that holds a memory address.
To get that address, you use the ampersand operator. That’s already being used in this code, so you could
figure this out on your own. But just in case, we’ll initialize the variable p for you at line 8.

1 #include <stdio.h>
2
3 int main()
4 {

5 int pokey;
6 int *p;
7
8 p = &pokey;
9 printf(“The address of ‘pokey’ is %p\n”,&pokey);
10
11 return(0);
12 }
13
14

The statement at line 8 assigns the address of variable ‘pokey’ to the p pointer variable. At this point, you
might be puzzled. You might say, “Where’s the asterisk in front of the p?” We’ll answer that question in
a moment. But for now, remember that a pointer is a variable that holds a memory location. Here, that
memory location is of the ‘pokey’ variable.

Now, duplicate the printf statement. This time, replace &pokey with pointer variable p.

1 #include <stdio.h>
2
3 int main()
4 {
5 int pokey;
6 int *p;
7
8 p = &pokey;
9 printf(“The address of ‘pokey’ is %p\n”,&pokey);
10 printf(“The address of ‘pokey’ is %p\n”,p);
11
12 return(0);
13 }
14
15

Save these changes and then build and run the code. As you can see, both lines output the same address.
One is the address of variable pokey obtained with the ampersand. The other is the value saved in pointer
variable p, which is that address.

Dual Nature of Pointers

While the pointer variable is declared by using an asterisk, it is not always used that way. Without the
asterisk, the pointer variable represents a memory location. With the asterisk, the pointer represents the
value at that location. This is the dual nature of the pointer variable. It is something that can be endlessly
confusing. The code below is similar to the previous example, but we’ve initialized the ‘pokey’ variable
to the value 987:

1 #include <stdio.h>
2
3 int main()
4 {
5 int pokey;
6 int *p;
7
8 pokey = 987;
9 p = &pokey;
10
11 printf(“The address of ‘pokey’ is %p\n”,&pokey);
12 printf(“The contents of ‘pokey’ are %d\n”,pokey);
13
14 printf(“The address of ‘pokey’ is %p\n”,p);
15 printf(“The contents of ‘pokey’ are %d\n”,*p);
16
17 return(0);
18 }
19
20

Two sets of printf statements display the address and value of the ‘pokey’ variable. The first set uses
‘pokey’ directly. The second set uses pointer variable p. In line 14, p is used without the asterisk, so it
is a memory location. In line 15, p is used with the asterisk, so it peeks at the contents of that memory
location. Build and run this code.

As you can see, the pointer variable p dutifully reports the correct values: the address and the contents. A
logical question to ask at this point is, “Why bother?” At this level, using a pointer is pretty “pointless.”
You can do many things in C without bothering with pointers, but they do have their purpose. Many
functions expect you to understand and know how pointers work.

Array Manipulation Using Pointers

Dealing with arrays is where pointers really come into play. After all, there is no such thing as an array
in the C language. All arrays are simply shorthand for pointers. To prove it, in this section we dissect
the common C language array. We’ll show you how pointers can be used to manipulate an array, so as to
provide flexibility and power other programming languages can only dream about.

1 #include <sdtio.h>
2
3 int main()
4 {
5 int array[] = { 11, 13, 17, 19 };

6 int x;
7
8 for(x=0;x<4;x++)
9 {
10 printf(“Element %d: %d\n”,x+1,array[x]);
11 }
12
13 return(0);
14 }
15
16

The code above is pretty basic. An array is declared, and its values assigned. A for loop marches through
each element, displaying that element’s value. Now take a look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 int array[] = { 11, 13, 17, 19 };
6 int x;
7 int *aptr;
8
9 aptr = array; /*no & needed for an array */
10
11 for(x=0;x<4;x++)
12 {
13 printf(“Element %d: %d\n”,x+1,*aptr);
14 aptr++;
15 }
16
17 return(0);
18 }
19
20

This is pretty much the same code, but a pointer is used to display the array’s values. The aptr variable
is declared at line 7. It is initialized at line 9. An ampersand isn’t needed here because arrays are all
shorthand for pointers. The array name is really a memory location.

In the for loop, the aptr variable is used with the asterisk so that the value at the memory location is

fetched. During the loop’s first iteration, the value is the same as the 0th element in the array. Now, look
at line 14. The aptr pointer variable is incremented.

In this format, the pointer variable is a memory location. The memory location is incremented. But by
how much? Because aptr is an integer pointer, the memory address it holds is incremented by the size of

an integer variable—the storage space that variable uses in memory. Conveniently, that happens to be the
location of the next element in the array. Build and run the code.

As you can see, it works. The pointer variable is used to march through the array. The advantage here is
that pointers can be used to manipulate array data. Pointers are variables. Take a look at the code below:

1 #include <sdtio.h>
2
3 int main()
4 {
5 int array[] = { 11, 13, 17, 19 };
6 int x;
7
8 for(x=0;x<4;x++)
9 {
10 printf(“Element %d: %d\n”,x+1,array[x]);
11 }
12
13 return(0);
14 }
15
16

Add a new line below line 6 to create a pointer variable, and then initialize the variable.

1 #include <sdtio.h>
2
3 int main()
4 {
5 int array[] = { 11, 13, 17, 19 };
6 int x;
7 int *aptr;
8
9 aptr = array;
10 for(x=0;x<4;x++)
11 {
12 printf(“Element %d: %d\n”,x+1,array[x]);
13 }
14
15 return(0);
16 }
17
18

Set the value for the 3rd element to zero by using the pointer variable. The pointer variable is already

referencing the first element in line 9. To reference the 3rd element, you need to add 2 to its value. To
assign that memory location—the value zero—you use the asterisk operator.

1 #include <sdtio.h>
2
3 int main()
4 {
5 int array[] = { 11, 13, 17, 19 };
6 int x;
7 int *aptr;
8
9 aptr = array;
10 aptr = aptr + 2;
11 *aptr = 0;
12 for(x=0;x<4;x++)
13 {
14 printf(“Element %d: %d\n”,x+1,array[x]);
15 }
16
17 return(0);
18 }
19
20

The rest of the code can remain the same. Save, build, and run the code. As you can see, the 3rd element
is now zero. It has been manipulated by using a pointer.

Most C language programmers will combine the statements at line 10 and 11 into a single line. It looks
like this:

1 #include <sdtio.h>
2
3 int main()
4 {
5 int array[] = { 11, 13, 17, 19 };
6 int x;
7 int *aptr;
8
9 aptr = array;
10 *(aptr+2) = 0;
11
12 for(x=0;x<4;x++)
13 {
14 printf(“Element %d: %d\n”,x+1,array[x]);

15 }
16
17 return(0);
18 }
19
20

You need to use parenthesis because the pointer location must happen before the asterisk references the
value. Save the changes, and then build and run the code. As you can see, the output is the same. You’ll
see this type of shorthand notation is used a lot. The main reason is that it doesn’t affect the value of the
aptr pointer variable, which still references the base address of the array.

Perhaps the best way to demonstrate pointer and array manipulation is to use strings, instead of numeric
arrays. Take a look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 char *string = “I’m just a normal string.\n”;
6
7 puts(string);
8
9 return(0);
10 }
11
12

In addition to declaring a string as a character array, you can also declare a string as a char pointer
variable. The compiler makes the assignment, but the variable created is a pointer. In the code above, the
variable pointer is used just like an array name here in the puts function. Build and run to confirm that
this approach is not crazy.

Now, this begs the question that if you’re afraid of pointers, how would you display this string one
character at a time? Take a look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 char *string = “I’m just a normal string.\n”;
6 int x = 0;
7
8 while(string[x])
9 {

10 putchar(string[x]);
11 x++;
12 }
13
14 return(0);
15 }
16
17

Yes, this is the “chicken” way to do it. It works because array notation is simply shorthand for pointers. In
fact, many C programmers would do exactly as you see above, which is to use array notation to display
the string. Build and run the code.

It works, but this approach is not why you’re reading this book. We’re going to replace the array notation
with pointers. All you need is only one pointer, which we’ll call ‘ptr,’ and we don’t need an x.

1 #include <stdio.h>
2
3 int main()
4 {
5 char *string = “I’m just a normal string.\n”;
6 char *ptr;
7
8 ptr = string;
9 while(string[x])
10 {
11 putchar(string[x]);
12 x++;
13 }
14
15 return(0);
16 }
17
18

No ampersand is needed here because string is already a pointer—it holds a memory location. To examine
a character at a memory location, the asterisk operator is used. The while loop’s condition becomes ditto
for the putchar function.

1 #include <stdio.h>
2
3 int main()
4 {
5 char *string = “I’m just a normal string.\n”;
6 char *ptr;
7

8 ptr = string;
9 while(*ptr)
10 {
11 putchar(*ptr);
12 ptr++;
13 }
14
15 return(0);
16 }
17
18

Then you increment the memory location. Save the changes, and then build and run the code. As you can
see, the output is still the same. Now you could go one step further if you like and not even use the ‘ptr’
variable. Let’s make the necessary modifications in the code.

1 #include <stdio.h>
2
3 int main()
4 {
5 char *string = “I’m just a normal string.\n”;
6
7
8
9 while(*string)
10 {
11 putchar(*string);
12 string++;
13 }
14
15 return(0);
16 }
17
18

Save, build and run the code. The issue here is that once you change the string variable, you lose its base
location in memory. For this code, that is not an issue. But for other situations, it could present a problem.

Pointer Functions

During your C programming lifetime, you'll often see pointers used whenever functions need or gives
back pointer values. You'll be surprised how frequent this occurs in C programming. In this section, we
will talk about how to address pointer functions, and even customize one. We will also discuss the many

ways pointers are utilized in a function, how to transfer pointers to functions, and finally, how to give
back pointers from functions.

There have been countless instances where we utilized functions in this book. You just probably did not
recognize that it was happening. Take a look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 char x;
6
7 printf(“Type a character: “);
8 scanf(“%c”,&x);
9 printf(“Character %c\n”,x);
10
11 return(0);
12 }
13
14

As you can see from the code above, the scanf function makes use of pointer values, particularly the
variable it scans and their corresponding memory locations. At line 8 of the code, the ampersand symbol
scans the memory location of variable x and passes it back to the function--scanf.

As you may have already noticed, the value that was returned to scanf--the return value--is not utilized
in the function itself. What happens instead, is that the function makes use of a pointer to designate the
value directly to variable x. Smart, isn't it?

In the code below, the ampersand symbol isn't needed for the variable name. Why? Well, the reason is
because the variable name is basically an array.

1 #include <stdio.h>
2
3 int main()
4 {
5 char name[15]; /* room for 14 characters */
6
7 printf(“Your name? “);
8 scanf(“%s”,name);
9 printf(“You are %s.\n”,name);
10
11 return(0);
12 }
13
14

You can think of arrays as disguised pointers; the ampersand symbol is not required. You can customize
your own C language function that uses a pointer. All you need to do is indicate a particular pointer as a
return value, or as an argument. Note the code below:

1 #include <stdio.h>
2
3 void minus10(int *v);
4
5 int main()
6 {
7 int value = 100;
8
9 printf(“Value is %d\n”,value);
10 minus10(&value);
11 printf(“Value is %d\n”,value);
12
13 return(0);
14 }
15
16 void minus10(int *v)
17 {
18 *v = *v – 10;
19 }
20
21

As you can see in line 3 of the code above, the minus 10 function is prototyped. It also takes in
an argument: a pointer variable. The pointer variable is basically a memory address, so the function
basically accepts a memory address as an argument. The variable value's memory location/address is then
transferred to the function, which you can see at line 10. As usual, the ampersand symbol fetches that
address.

Within the function, the value of the transferred variable is changed using the asterisk. Since the variable's
values are straightaway scanned in memory, no returned value is required. Build and run this code.

As you can see, the function has a direct impact on the value of the variable. This is true even though the
only thing that was transferred to the function was the memory address and there was no return value.
Now look at the code below:

1 #include <stdio.h>
2 #include <string.h>
3
4 char *longer(char *s1, char *s2);
5
6 int main()

7 {
8 char *string1 = “A long time ago”;
9 char *string2 = “In a galaxy far, far away”;
10 char *result;
11
12 result = longer(string1,string2);
13 printf(“String ‘%s’ is longer.\n”,result);
14
15 return(0);
16 }
17
18 char *longer(char *s1, char *s2)
19 {
20 int len1,len2;
21
22 len1 = strlen(s1);
23 len2 = strlen(s2);
24
25 if(len 1 > len 2)
26 return(s1);
27 else
28 return(s2);
29 }
30
31

In the code above, you can see that a pointer function is declared. Longer basically gives back the memory
address of the beginning of a string stored in memory—the character pointer. The function that starts
from line 18 onwards makes a comparison of the two strings. Specifically, it uses the string's length for
comparison. What's returned is the memory address of the string that has the longest length.

Note that the string itself is not the one that makes its way back to the function. The one that makes it
back is the string’s memory location/address. That address is then stored within the pointer result, which
is then displayed at line 13. Build and run this code. As you can see, what's displayed is the longest string.

You also may be able to manipulate strings within functions. As what we've stated before, you are not
passing any string per se. You are basically only passing its starting memory location/address in memory.
Look at the code below:

1 #include <stdio.h>
2 #include <ctype.h>
3
4 void shouting(char *input);
5
6 int main()
7 {
8 char string[64];

9
10 printf(“Type some text: “);
11 fgets(string,64,stdin);
12 printf(“You typed:\n%s\n”,string);
13 shouting(string);
14 printf(“If you were shouting, you’d typed:\n%s\n”,string);
15
16 return(0);
17 }
18
19 void shouting(char *input)
20 {
21 while(*input)
22 {
23 *input = toupper(*input);
24 input++;
25 }
26 }
27
28

The code above is one example of making use of pointers to manipulate a string in a function, where the
function is not required to give any value back. At line 19, the function ‘shouting’ receives a string and
chews through it one character after another. Each and every character scanned is then sent to the toupper
function.

The toupper function, if you still remember from our discussions in the previous chapters, converts any
lowercase letter to uppercase, hence the name 'toupper.' Build and run this code. As you can see, the
program works like a charm. It works all without the need to return any value from the function. Now
look at the code below:

1 #include <stdio.h>
2 #include <ctype.h>
3
4 char *encrypt(char *input);
5
6 int main()
7 {
8 char *instructions = “Deliver the package to Berlin”;
9
10 printf(“Here are your secret instructions:\n%s\n”,encrypt(instructions));
11
12 return(0);
13 }
14
15 char *encrypt(char *input)
16 {

17 char output[64];
18 int x = 0;
19
20 while(*input)
21 {
22 if(isalpha(*input))
23 output[x] = *input + 1;
24 else
25 output[x] = *input;
26 x++;
27 input++;
28 }
29 }
30
31

In the sample code shown above, the encrypt function returns a string. An array of characters--a string--is
received by the function, manipulated, then a new string is given back, all the while keeping the original
string unchanged. Will this work? Let’s take a look. Build and run this code.

It is likely that you'll see a compiler warning after running the code. It is a serious warning that gives an
explanation as to why the output of the code is dubious. Contrary to what you might be thinking, pointers
are not the culprit here. What's happening is basically an old instance we discussed in a previous chapter
about functions, which is all variables are considered 'local' when used within functions.

Once the execution of the function is over, all the variables utilized are discarded. This is the same for the
function ‘encrypt’ with the array ‘output.’

To remedy this problem, what you need to do is make use of the keyword static. In line 17 of the code,
insert the static keyword at the beginning of the variable declaration.

1 #include <stdio.h>
2 #include <ctype.h>
3
4 char *encrypt(char *input);
5
6 int main()
7 {
8 char *instructions = “Deliver the package to Berlin”;
9
10 printf(“Here are your secret instructions:\n%s\n”,encrypt(instructions));
11
12 return(0);
13 }
14
15 char *encrypt(char *input)
16 {

17 static char output[64];
18 int x = 0;
19
20 while(*input)
21 {
22 if(isalpha(*input))
23 output[x] = *input + 1;
24 else
25 output[x] = *input;
26 x++;
27 input++;
28 }
29 }
30
31

With the static keyword in place, the program is now able to retain the array's content when the function
finishes its execution. The function remains static. In other words, it remains unchanged. Save, build and
run this code. The encrypt function only returns the memory address/location of the string. The other
characters still reside in memory and are referenced by the printf function. Remember that all of this will
only work if you ensure that the returned string is static.

Do note, however, that this particular rule isn't applicable to single values. C language functions are
designed to give back single values, which also includes pointers. For other arrays, strings, or any kind of
variable within a function, you have to make sure that they are static. Or else the value isn't retained as
soon as the function finishes executing.

Pointer Arrays

Just like what we mentioned previously, pointers are variables. It is a specific type of variable that stores
a particular memory location. Being a variable, it is also possible to set pointers inside arrays--a thought
that's very frightening to some. This section’s main topic is how and why to put pointers inside an array.
Here, we'll discuss how to setup a pointer array in the C language.

For the sake of simplicity, we'll utilize strings for our example. You'll learn how to retrieve strings,
transform them from one notation to another, and how to evaluate strings. Pointer arrays are basically
a stockpile of memory locations. When and why would you require an array—a stockpile—of memory
locations? Well, one exemplary example is to make use of a string array.

Take a look at the code below:

1 #include <stdio.h>
2
3 int main()

4 {
5 char *gang[5] = {
6 “Spanky”,
7 “Buckwheat”,
8 “Alfalfa”,
9 “Darla”,
10 “Pete the Pup”
11 };
12 int x;
13
14 for(x=0;x<5;x++)
15 printf(“%s\n”,gang[x]);
16
17 return(0);
18 }
19
20

The code creates room for exactly five memory addresses/locations. These addresses are predefined to
the listed strings. As a matter of fact, a string array is declared, although technically it is not correct. The
strings are then sent to standard output with the use of a for loop, which you can see at line 14 of the code.
Build and run the code.

As you can clearly see from the output, each of the five strings is displayed. To prove that the array is a
clutch of memory locations, modify the code. In line 15, change the %s placeholder to %p. Remember
that %p is the memory location or address placeholder.

1 #include <stdio.h>
2
3 int main()
4 {
5 char *gang[5] = {
6 “Spanky”,
7 “Buckwheat”,
8 “Alfalfa”,
9 “Darla”,
10 “Pete the Pup”
11 };
12 int x;
13
14 for(x=0;x<5;x++)
15 printf(“%p\n”,gang[x]);
16
17 return(0);
18 }
19

20

Save the change, and then build and run the code. Now you see a series of memory locations. Because the
compiler allocated space for the strings and stuck null characters at the end, each memory location does
reference a string. By the way, this method of storing multiple strings is far more efficient than declaring
a two-dimensional array.

In that case, you must declare the array so that each string occupies as many characters of storage as the
longest string. At our code’s pointer array declaration, that’s not an issue. Take a look at the code below:

1 #include <stdio.h>
2
3 int main()
4 {
5 char *gang[5] = {
6 “Spanky”,
7 “Buckwheat”,
8 “Alfalfa”,
9 “Darla”,
10 “Pete the Pup”
11 };
12 int x;
13 char *cptr;
14
15 for(x=0;x<5;x++)
16 {
17 cptr = gang[x];
18 while(*cptr)
19 {
20 putchar(*cptr);
21 cptr++;
22 }
23 putchar(‘\n’);
24 }
25
26 return(0);
27 }
28
29

This code is another version of the previous example. Here, the for loop moves through each pointer in
the array. For each iteration, the pointer variable cptr is assigned to the base address of each string. A
while loop then churns through the strings one character at a time. Build and run this code.

The output is the same, although the method of printing each string was different. Pointer variable cptr is
used to display each character by walking through the memory locations where the characters are stored.
Now something might bother you about this code. That’s line 17, if you haven’t picked it up already. It
uses array notation.

A better solution would be to convert this heinous notation into pointer notation. To do so, make this
change to the code:

1 #include <stdio.h>
2
3 int main()
4 {
5 char *gang[5] = {
6 “Spanky”,
7 “Buckwheat”,
8 “Alfalfa”,
9 “Darla”,
10 “Pete the Pup”
11 };
12 int x;
13 char *cptr;
14
15 for(x=0;x<5;x++)
16 {
17 cptr = *(gang+x);
18 while(*cptr)
19 {
20 putchar(*cptr);
21 cptr++;
22 }
23 putchar(‘\n’);
24 }
25
26 return(0);
27 }
28
29

This notation uses the memory addresses stored in the gang variable. The memory locations are used, not
the string. Then the value x is added to each, and each time the loop references the next array element,
which is the base address of a string. It has to be enclosed in parenthesis because the memory location is
manipulated first. Then the contents of that location—the asterisk fetches the string—is referenced later.
Save the changes, and then build and run the code.

As you can see, the output is the same. More can be done with pointers here, and we could broach upon
the topic of pointers to pointers and all double asterisk notation. But that’s more of a topic for an advanced

level. In fact, here’s a tip: When you see the dreaded double asterisk pointer notation, it is almost always
a sign that you’re dealing with an array of strings, or specifically, an array of memory locations for each
of those strings.

Conclusion

There you have it. That is all there is to the basics of C programming. The only reason all of this is
scary, and the only reason anybody is nervous about programming in C, is because they do not have a
firm foundation of the basics of the C programming language. Once you understand the basic syntax and
various elements of C, it all gets exceptionally easy.

The topics covered in this book, though they might seem complicated to you at this point, is just pretty
basic. We are confident that everything that we’ve covered in this book will help you get a firm grasp
of the basics of C. In addition, this book will help you fully understand the more advanced levels of C
language, such as object oriented C programming.

We would like to thank you for buying this book. We hope that you learned a lot about the C programming
language. Feel free to make this book your beginner's quick guide as you explore the intricacies of this
fantastic programming language.

At this point, we would like to encourage you to tinker and play around with the C programming
language. Try making programs of your own and see where it leads you.

The C language is truly an amazing programming language. We hope that this book becomes your
stepping stone into being a well-rounded programmer.

	Introduction
	Chapter 1: Introduction to C Programming Language
	History of C Programming Language
	What is Programming?
	What is a Source code?
	What is an IDE?
	Running Code Blocks

	Chapter 2: Staring Your First C Project
	Keywords
	Functions
	
	Operators
	Structure

	Chapter 3: The Old I/O
	Puts Function
	Printf Function
	Escape Characters

	Chapter 4: The C Language Variables
	Chapter 5: Character I/O Functions in C
	
	The String
	
	
	The scanf() Function

	Chapter 6: Math Operators
	Math Library functions

	Chapter 7: C Language Comparisons
	If Statements
	Else Statements
	Else if Statements
	Switch/Else Statements
	The While Loop
	Do/While Loop
	The For keyword
	The Nested Loop

	Chapter 8: Anatomy of a Function
	Character Manipulation Functions
	Logical Operators

	Chapter 9: Working with Strings
	Strlen
	Strcat / Concatenation
	Strcmp / String compare
	Strstr/ String String

	Chapter 10: C Language Constants
	Chapter 11: C language Arrays
	Anatomy of an Array
	Multi-dimensional Arrays

	Chapter 12: C Language Structures
	Chapter 13: C Language Time Functions
	Chapter 14: C Language Variables
	Chapter 15: C Language Pointers
	Dual Nature of Pointers
	Array Manipulation Using Pointers
	Pointer Functions
	Pointer Arrays

	Conclusion

