Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

Fundamentals of

Software
Engineering

Fourth Edition

RAJIB MALL

Professor

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

PHI Learning [:iverie Wnfec

Delhi-110 092
2014

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

FUNDAMENTALS OF SOFTWARE ENGINEERING, Fourth Edition
Raijib Mall

© 2014 by PHI Learning Private Limited, Delhi. All rights reserved. No part of this book may be reproduced in
any form, by mimeograph or any other means, without permission in writing from the publisher.
ISBN-978-81-203-4898-1

The export rights of this book are vested solely with the publisher.

Thirty-first Printing (Fourth Edition) cas cas April, 2014
Published by Asoke K. Ghosh, PHI Learning Private Limited, Rimjhim House, 111, Patparganj Industrial

Estate, Delhi-110092 and Printed by Rajkamal Electric Press, Plot No. 2, Phase IV, HSIDC, Kundli-131028,
Sonepat, Haryana.

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

ke Created by ebook converter - www.ebook-converter.com™ ™ *##*

To
Bapa, Maa,
and
my beloved wife Prabina

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

CONTENTS

List of Figures xv
Preface xix

Preface to the First Edition xxi
1. INTRODUCTION 1-32

1.1 Evolution—From an Art Form to an Engineering Discipline 3
1.1.1 Evolution of an Art into an Engineering Discipline 3
1.1.2 Evolution Pattern for Engineering Disciplines 4
1.1.3 A Solution to the Software Crisis 5

1.2 Software Development Projects 6
1.2.1 Types of Software Development Projects 7
1.2.2 Software Projects Being Undertaken by Indian Companies 8

1.3 Exploratory Style of Software Development 9
1.3.1 Perceived Problem Complexity: An Interpretation Based on
Human Cognition Mechanism 11
1.3.2 Principles Deployed by Software Engineering to Overcome
Human Cognitive Limitations 14

1.4 Emergence of Software Engineering 17
1.4.1 Early Computer Programming 17
1.4.2 High-level Language Programming 18
1.4.3 Control Flow-based Design 18
1.4.4 Data Structure-oriented Design 22
1.4.5 Data Flow-oriented Design 22
1.4.6 Object-oriented Design 23
1.4.7 What Next? 24
1.4.8 Other Developments 25

1.5 Notable Changes in Software Development Practices 25

1.6 Computer Systems Engineering 27

Summary 28

Exercises 29

2. Software Life Cycle Models 33-84
2.1 A Few Basic Concepts 34
*EF***ehook converter DEMO - www.ebook-converter.com™ * *** % *

ke Created by ebook converter - www.ebook-converter.com™ ™ *##*

2.2 Waterfall Model and its Extensions 38
2.2.1 Classical Waterfall Model 38
2.2.2 Iterative Waterfall Model 46
2.2.3 V-Model 50
2.2.4 Prototyping Model 52
2.2.5 Incremental Development Model 55
2.2.6 Evolutionary Model 57
2.3 Rapid Application Development (RAD) 59
2.3.1 Working of RAD 60
2.3.2 Applicability of RAD Model 60
2.3.3 Comparison of RAD with Other Models 62
2.4 Agile Development Models 62
2.4.1 Essential Idea behind Agile Models 64
2.4.2 Agile versus Other Models 65
2.4.3 Extreme Programming Model 66
2.4.4 Scrum Model 69
2.5 Spiral Model 69
2.5.1 Phases of the Spiral Model 71
2.6 A Comparison of Different Life Cycle Models 72
2.6.1 Selecting an Appropriate Life cycle Model for a Project 73

Summary 74

Exercises 75
3. SOFTWARE PROJECT MANAGEMENT 85-153

3.1 Software Project Management Complexities 86
3.2 Responsibilities of a Software Project Manager 87
3.2.1 Job Responsibilities for Managing Software Projects 87
3.2.2 Skills Necessary for Managing Software Projects 88
3.3 Project Planning 89
3.3.1 Sliding Window Planning 90
3.3.2 The SPMP Document of Project Planning 90
3.4 Metrics for Project Size Estimation 92
3.4.1 Lines of Code (LOC) 92
3.4.2 Function Point (FP) Metric 94
3.5 Project Estimation Techniques 99
3.5.1 Empirical Estimation Techniques 99
3.5.2 Heuristic Techniques 99
3.5.3 Analytical Estimation Techniques 100

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

3.6 Empirical Estimation Techniques 100
3.6.1 Expert Judgement 100
3.6.2 Delphi Cost Estimation 101
3.7 COCOMO—A Heuristic Estimation Technique 101
3.7.1 Basic COCOMO Model 102
3.7.2 Intermediate COCOMO 107
3.7.3 Complete COCOMO 108
3.7.4 COCOMO2 109
3.8 Halstead’s Software Science—An Analytical Technique 112
3.8.1 Length and Vocabulary 113
3.8.2 Program Volume 113
3.8.3 Potential Minimum Volume 113
3.8.4 Effortand Time 114
3.8.5 Length Estimation 114
3.9 Staffing Level Estimation 116
3.9.1 Norden’s Work 116
3.9.2 Putnam’s Work 117
3.9.3 Jensen’s Model 119
3.10 Scheduling 119
3.10.1 Work Breakdown Structure 121
3.10.2 Activity Networks 122
3.10.3 Critical Path Method (CPM) 124
3.10.4 PERT Charts 126
3.10.5 Gantt Charts 128
3.11 Organisation and Team Structures 129
3.11.1 Organisation Structure 129
3.11.2 Team Structure 132
3.12 Staffing 135
3.13 Risk Management 136
3.13.1 Risk Identification 137
3.13.2 Risk Assessment 138
3.13.3 Risk Mitigation 138
3.14 Software Configuration Management 140
3.14.1 Necessity of Software Configuration Management 140
3.14.2 Configuration Management Activities 142
3.15 Miscellaneous Plans 144

Summary 144

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

Exercises 145

4. REQUIREMENTS ANALYSIS AND SPECIFICATION 154-200

4.1 Requirements Gathering and Analysis 155
4.1.1 Requirements Gathering 156
4.1.2 Requirements Analysis 159
4.2 Software Requirements Specification (SRS) 161
4.2.1 Users of SRS Document 161
4.2.2 Why Spend Time and Resource to Develop an SRS
Document? 162
4.2.3 Characteristics of a Good SRS Document 163
4.2.4 Attributes of Bad SRS Documents 164
4.2.5 Important Categories of Customer Requirements 165
4.2.6 Functional Requirements 167
4.2.7 How to Identify the Functional Requirements? 170
4.2.8 How to Document the Functional Requirements? 170
4.2.9 Traceability 173
4.2.10 Organisation of the SRS Document 173
4.2.11 Techniques for Representing Complex Logic 180
4.3 Formal System Specification 182
4.3.1 What is a Formal Technique? 183
4.3.2 Operational Semantics 184
4.4 Axiomatic Specification 186
4.5 Algebraic Specification 188
4.5.1 Auxiliary Functions 191
4.5.2 Structured Specification 192
4.6 Executable Specification and 4GL 193

Summary 193

Exercises 193

5. SOFTWARE DESIGN 201-222

5.1 Overview of the Design Process 201

5.1.1 Outcome of the Design Process 201

5.1.2 Classification of Design Activities 202

5.1.3 Classification of Design Methodologies 203
5.2 How to Characterise a Good Software Design? 204

5.2.1 Understandability of a Design: A Major Concern 205
5.3 Cohesion and Coupling 208

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

5.3.1 C(lassification of Cohesiveness 209
5.3.2 C(lassification of Coupling 211
5.4 Layered Arrangement of Modules 212
5.5 Approaches to Software Design 214
5.5.1 Function-oriented Design 214
5.5.2 Object-oriented Design 215

Summary 219

Exercises 219

6. FUNCTION-ORIENTED SOFTWARE DESIGN 223-275

6.1 Overview of SA/SD Methodology 224
6.2 Structured Analysis 225
6.2.1 Data Flow Diagrams (DFDs) 225
6.3 Developing the DFD Model of a System 229
6.3.1 Context Diagram 229
6.3.2 Level1 DFD 231
6.3.3 Extending DFD Technique to Make it Applicable to Real-Time
Systems 246
6.4 Structured Design 247
6.4.1 Transformation of a DFD Model into Structure Chart 248
6.5 Detailed Design 253
6.6 Design Review 253

Summary 254

Exercises 254

7. Object Modelling Using UML 276-334

7.1 Basic Object-Orientation Concepts 277
7.1.1 Basic Concepts 277
7.1.2 Class Relationships 281
7.1.3 How to Identify Class Relationships? 288
7.1.4 Other Key Concepts 289
7.1.5 Related Technical Terms 294
7.1.6 Advantages and Disadvantages of OOD 295
7.2 Unified Modelling Language (UML) 296
7.2.1 Origin of UML 296
7.2.2 Evolution of UML 298
7.3 UML Diagrams 300

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

ke Created by ebook converter - www.ebook-converter.com™ ™ *##*

7.4 Use Case Model 302
7.4.1 Representation of Use Cases 303
7.4.2 Why Develop the Use Case Diagram? 307
7.4.3 How to Identify the Use Cases of a System? 307
7.4.4 Essential Use Case versus Real Use Case 307
7.4.5 Factoring of Commonality among Use Cases 308
7.4.6 Use Case Packaging 310

7.5 Class Diagrams 311

7.6 Interaction Diagrams 318

7.7 Activity Diagram 320

7.8 State Chart Diagram 322

7.9 Postscript 323
7.9.1 Package, Component, and Deployment Diagrams 323
7.9.2 UML2.0 325

Summary 327
Exercises 328

8. Object-Oriented Software Development 335-372

8.1 Patterns 337
8.1.1 Basic Pattern Concepts 337
8.1.2 Types of Patterns 338
8.1.3 More Pattern Concepts 340
8.2 Some Common Design Patterns 341
8.3 An Object-Oriented Analysis and Design (OOAD) Methodology 349
8.3.1 Unified Process 349
8.3.2 Overview of The OOAD Methodology 350
8.3.3 Use Case Model Development 351
8.3.4 Domain Modelling 353
8.3.5 Identification of Entity Objects 357
8.3.6 Booch’s Object Identification Method 357
8.3.7 Interaction Modelling 360
8.3.8 Class-Responsibility-Collaborator (CRC) Cards 360
8.4 Applications of the Analysis and Design Process 361
8.5 00D Goodness Criteria 364

Summary 369

Exercises 369

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

ke Created by ebook converter - www.ebook-converter.com™ ™ *##*

9. USER INTERFACE DESIGN 373-396

9.1 Characteristics of a Good User Interface 374
9.2 Basic Concepts 376
9.2.1 User Guidance and On-line Help 376
9.2.2 Mode-based versus Modeless Interface 377
9.2.3 Graphical User Interface (GUI) versus Text-based User
Interface 377
9.3 Types of User Interfaces 378
9.3.1 Command Language-based Interface 378
9.3.2 Menu-based Interface 379
9.3.3 Direct Manipulation Interfaces 381
9.4 Fundamentals of Component-based GUI Development 381
9.4.1 Window System 382
9.4.2 Types of Widgets 385
9.4.3 An Overview of X-Window/MOTIF 386
9.4.4 X Architecture 387
9.4.5 Size Measurement of a Component-based GUI 388
9.5 A User Interface Design Methodology 388
9.5.1 Implications of Human Cognition Capabilities on User Interface
Design 389
9.5.2 A GUI Design Methodology 389

Summary 393

Exercises 394

10. Coding and Testing 397-456

10.1 Coding 398

10.1.1 Coding Standards and Guidelines 399
10.2 Code Review 400

10.2.1 Code Walkthrough 401

10.2.2 Code Inspection 402

10.2.3 Clean Room Testing 403

10.3 Software Documentation 403

10.3.1 Internal Documentation 404

10.3.2 External Documentation 404

10.4 Testing 405

10.4.1 Basic Concepts and Terminologies 406
10.4.2 Testing Activities 410

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

ke Created by ebook converter - www.ebook-converter.com™ ™ *##*

10.4.3 Why Design Test Cases? 411
10.4.4 Testing in the Large versus Testing in the Small 412
10.5 Unit Testing 413
10.6 Black-box Testing 413
10.6.1 Equivalence Class Partitioning 414
10.6.2 Boundary Value Analysis 415
10.6.3 Summary of the Black-box Test Suite Design Approach 417
10.7 White-Box Testing 417
10.7.1 Basic Concepts 417
10.7.2 Statement Coverage 419
10.7.3 Branch Coverage 419
10.7.4 Multiple Condition Coverage 420
10.7.5 Path Coverage 421
10.7.6 McCabe’s Cyclomatic Complexity Metric 423
10.7.7 Data Flow-based Testing 425
10.7.8 Mutation Testing 426
10.8 Debugging 427
10.8.1 Debugging Approaches 427
10.8.2 Debugging Guidelines 428
10.9 Program Analysis Tools 428
10.9.1 Static Analysis Tools 428
10.9.2 Dynamic Analysis Tools 429
10.10 Integration Testing 430
10.10.1 Phased versus Incremental Integration Testing 431
10.11 Testing Object-Oriented Programs 432
10.11.1 What is a Suitable Unit for Testing Object-Oriented
Programs? 432
10.11.2 Do Various Object-Orientation Features Make Testing
Easy? 433
10.11.3 Why are Traditional Techniques Considered Not Satisfactory
for Testing Object-Oriented Programs? 434
10.11.4 Grey-Box Testing of Object-Oriented Programs 434
10.11.5 Integration Testing of Object-oriented Programs 435
10.12 System Testing 435
10.12.1 Smoke Testing 436
10.12.2 Performance Testing 436
10.12.3 Error Seeding 438
10.13 Some General Issues Associated with Testing 439

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

Summary 440
Exercises 440

11. Software Reliability and Quality Management 457-484

11.1 Software Reliability 458
11.1.1 Hardware versus Software Reliability 459
11.1.2 Reliability Metrics of Software Products 460
11.1.3 Reliability Growth Modelling 462
11.2 Statistical Testing 463
11.2.1 Steps in Statistical Testing 463
11.3 Software Quality 464
11.4 Software Quality Management System 465
11.4.1 Evolution of Quality Systems 466
11.4.2 Product Metrics versus Process Metrics 467
11.5 ISO 9000 467
11.5.1 What is ISO 9000 Certification? 467
11.5.2 ISO 9000 for Software Industry 468
11.5.3 Why Get ISO 9000 Certification? 469
11.5.4 How to Get ISO 9000 Certification? 469
11.5.5 Summary of ISO 9001 Requirements 470
11.5.6 Salient Features of ISO 9001 Requirements 472
11.5.7 ISO 9000-2000 472
11.5.8 Shortcomings of ISO 9000 Certification 472
11.6 SEI Capability Maturity Model 473
11.6.1 Comparison between ISO 9000 Certification and SEI/CMM
476
11.6.2 Is SEI CMM Applicable to Small Organisations? 476
11.6.3 Capability Maturity Model Integration (CMMI) 477
11.7 Few Other Important Quality Standards 477
11.7.1 Software Process Improvement and Capability
Determination (SPICE) 477
11.7.2 Personal Software Process (PSP) 477
11.8 Six Sigma 479

Summary 480

Exercises 481

12. Computer Aided Software Engineering 485—-493

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

ke Created by ebook converter - www.ebook-converter.com™ ™ *##*

12.1 Case and its Scope 485
12.2 Case Environment 485
12.2.1 Benefits of CASE 487
12.3 CASE Support in Software Life Cycle 487
12.3.1 Prototyping Support 487
12.3.2 Structured Analysis and Design 488
12.3.3 Code Generation 488
12.3.4 Test Case Generator 489
12.4 Other Characteristics of Case Tools 489
12.4.1 Hardware and Environmental Requirements 489
12.4.2 Documentation Support 489
12.4.3 Project Management 490
12.4.4 External Interface 490
12.4.5 Reverse Engineering Support 490
12.4.6 Data Dictionary Interface 490
12.4.7 Tutorial and Help 490
12.5 Towards Second Generation CASE Tool 490
12.6 Architecture of a Case Environment 491
Summary 492
Exercises 492

13. Software Maintenance 494-502

13.1 Characteristics of Software Maintenance 494
13.1.1 Characteristics of Software Evolution 495
13.1.2 Special Problems Associated with Software Maintenance 496
13.2 Software Reverse Engineering 496
13.3 Software Maintenance Process Models 497
13.4 Estimation of Maintenance Cost 500
Summary 501
Exercises 501

14. SOFTWARE REUSE 503-512

14.1 What can be Reused? 503
14.2 Why Almost No Reuse So Far? 504
14.3 Basic Issues in any Reuse Program 504
14.4 A Reuse Approach 505
14.4.1 Domain Analysis 505
14.4.2 Component Classification 506
14.4.3 Searching 507

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

ke Created by ebook converter - www.ebook-converter.com™ ™ *##*

14.4.4 Repository Maintenance 507
14.4.5 Reuse without Modifications 508
14.5 Reuse at Organisation Level 508
14.5.1 Current State of Reuse 510
Summary 510
Exercises 511

15. EMERGING TRENDS 513-525

15.1 Client-Server Software 514

15.2 Client-server Architectures 516

15.3 CORBA 518

15.3.1 CORBA Reference Model 518
15.3.2 CORBA ORB Architecture 519
15.3.3 CORBA Implementations 521
15.3.4 Software Development in CORBA 521
154 COM/DCOM 522

154.1 COM 522

15.4.2 DCOM 522

15.5 Service-Oriented Architecture (SOA) 522
15.5.1 Service-oriented Architecture (SOA): Mitty Gritty 523
15.6 Software as a Service (SaaS) 524
Summary 524

Exercises 525

ReferenWces 527-530
Index 531-534

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

LIST OF FIGURES

1.1 Evolution of technology with time 4

1.2 Relative changes of hardware and software costs over time 5

1.3 Exploratory program development 9

1.4 Increase in development time and effort with problem size 10

1.5 Human cognition mechanism model 12

1.6 Schematic representation 14

1.7 An abstraction hierarchy classifying living organisms 16

1.8 An example of (a) Unstructured program (b) Corresponding structured
program 19

1.9 Control flow graphs of the programs in Figures 1.8(a) and (b) 19

1.10 CFG of a program having too many GO TO statements 20

1.11 Data flow model of a car assembly plant 23

1.12 Evolution of software design techniques 24

1.13 Computer systems engineering 28

2.1 Classical waterfall model 39

2.2 Relative effort distribution among different phases of a typical
product 40

2.3 Iterative waterfall model 46

2.4 Distribution of effort for various phases in the iterative waterfall
model 48

2.5 V-model 51

2.6 Prototyping model of software development 54

2.7 Incremental software development 55

2.8 Incremental model of software development 56

2.9 Evolutionary model of software development 58

2.10 Spiral model of software development 70

3.1 Precedence ordering among planning activities 90
3.2 System function as a mapping of input data to output data 95
3.3 Person-month curve 104
3.4 Effort versus product size 105
3.5 Development time versus size 106
3.6 Rayleigh curve 116

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

3.7 Work breakdown structure of an MIS problem 121

3.8 Activity network representation of the MIS problem 123

3.9 AoN for MIS problem with (ES,EF) 125

3.10 AoN of MIS problem with (LS,LF) 126

3.11 PERT chart representation of the MIS problem 127

3.12 Gantt chart representation of the MIS problem 128

3.13 Schematic representation of the functional and project
organisation 130

3.14 Matrix organisation 132

3.15 Chief programmer team structure 133

3.16 Democratic team structure 134

3.17 Mixed team structure 135

3.18 Reserve and restore operation in configuration control 143

4.1 The black-box view of a system as performing a set of functions 164
4.2 User and system interactions in high-level functional requirement.
169
4.3 Decision Tree for LMS 181

5.1 The design process 201
5.2 Two design solutions to the same problem 207
5.3 Classification of cohesion 209
5.4 Examples of cohesion 210
5.5 Classification of coupling 212
5.6 Examples of good and poor control abstraction 214

6.1 Structured analysis and structured design methodology 224
6.2 Symbols used for designing DFDs 226
6.3 Synchronous and asynchronous data flow 227
6.4 DFD model of a system consists of a hierarchy of DFDs and a single
data dictionary 230
6.5 An example showing balanced decomposition 233
6.6 It is incorrect to show control information ona DFD 234
6.7 Illustration of how to avoid data cluttering 235
6.8 Context diagram, level 1, and level 2 DFDs for Example 6.1 236
6.9 Context diagram and level 1 DFDs for Example 6.2 238
6.10 Context diagram for Example 6.3 239
6.11 Level 1 diagram for Example 6.3 240
6.12 Level 2 diagram for Example 6.3 240
6.13 Context diagram for Example 6.4 242
6.14 Level 1 DFD for Example 6.4 242
adEkxtebook converter DEMO - www.ebook-converter.com ™ # % #*

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

6.15 Context diagram for Example 6.5 244

6.16 Level 1 DFD for Example 6.5 245

6.17 Level 2 DFD for Example 6.5 245

6.18 Examples of properly and poorly layered designs 248
6.19 Structure chart for Example 6.6 250

6.20 Structure chart for Example 6.7 251

6.21 Structure chart for Example 6.8 252

6.22 Structure chart for Example 6.9 252

6.23 Structure chart for Example 6.10 253

7.1 Important concepts used in the object-oriented approach 277

7.2 A model of an object 279

7.3 Library information system example 282

7.4 An example of multiple inheritance 284

7.5 Example of (a) binary (b) ternary (c) unary association 285

7.6 Example of aggregation relationship 287

7.7 An example of an abstract class 288

7.8 Schematic representation of the concept of encapsulation 290

7.9 Circle class with overloaded create method 292

7.10 Class hierarchy of geometric objects 293

7.11 Traditional code versus object-oriented code incorporating the
dynamic

binding feature 293
7.12 Schematic representation of the impact of different object modelling
techniques on UML 297

7.13 Evolution of UML 298

7.14 Different types of diagrams and views supported in UML 301

7.15 Use case model for Example 7.2 305

7.16 Use case model for Example 7.3 306

7.17 Representation of use case generalisation 308

7.18 Representation of use case inclusion 309

7.19 Example of use case inclusion 309

7.20 Example of use case extension 310

7.21 Hierarchical organisation of use cases 311

7.22 Use case packaging 312

7.23 Different representations of the LibraryMember class 313

7.24 Association between two classes 314

7.25 Representation of aggregation 315

7.26 Representation of composition 315

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

7.27 Representation of the inheritance relationship 316

7.28 Representation of dependence between classes 317

7.29 Different representations of a LibraryMember object 317

7.30 Sequence diagram for the renew book use case 319

7.31 Collaboration diagram for the renew book use case 320

7.32 Activity diagram for student admission procedure at IIT 321

7.33 State chart diagram for an order object 323

7.34 An example package diagram 324

7.35 Anatomy of a combined fragment in UML 2.0 326

7.36 An example sequence diagram showing a combined fragment in UML
2.0 327

8.1 Expert pattern: (a) Class diagram (b) Collaboration diagram 342

8.2 Service invocation with and without using a facade class 344

8.3 Interaction diagram for the observer pattern 345

8.4 Class structure for the MVC pattern 346

8.5 Interaction model for the MVC pattern 346

8.6 Interaction model of the publish-subscribe pattern 347

8.7 A schematic representation of the publish-subscribe pattern 348

8.8 Unified process model 350

8.9 An object-oriented analysis and design process 351

8.10 A typical realisation of a use case through the collaboration of

boundary, controller, and entity objects 355

8.11 CRC card for the BookRegister class 361

8.12 Use case model for Example 8.2 362

8.13 (a) Initial domain model (b) Refined domain model for Example
8.2 362

8.14 Sequence diagram for the play move use case of Example 8.2 363

8.15 Class diagram for Example 8.2 364

8.16 Use case model for Example 8.3 364

8.17 (@) Initial domain model (b) Refined domain model for Example
8.3 365

8.18 Sequence diagram for the select winner list use case of Example
8.3 366

8.19 Sequence diagram for the register customer use case of Example
8.3 366

8.20 Sequence diagram for the register sales use case of Example
8.3 367

8.21 Refined sequence diagram for the register sales use case of Example

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

8.3 367
8.22 C(lass diagram for Example 8.3 368

9.1 Font size selection using scrolling menu 380
9.2 Example of walking menu 380
9.3 Window with client and user areas marked 382
9.4 Window management system 384
9.5 Network-independent GUI 386
9.6 Architecture of the X system 387
9.7 Decomposition of a task into subtasks 391
9.8 State chart diagram for an order object 391

10.1 A simplified view of program testing 406

10.2 Testing process 411

10.3 Unit testing with the help of driver and stub modules 413

10.4 Equivalence classes for Example 10.6 415

10.5 CFG for (a) sequence, (b) selection, and (c) iteration type of
constructs 416

10.6 Illustration of stronger, weaker, and complementary testing
strategies 418

10.7 Control flow diagram of an example program 422

10.8 Module C Sequentially Integrates Modules Aand B 455

11.1 Change in failure rate of a product 460

11.2 Step function model of reliability growth 462

11.3 Evolution of quality system and corresponding shift in the quality
paradigm 466

11.4 A schematic representation of PSP 478

11.5 Levelsof PSP 479

12.1 A CASE environment 486
12.2 Architecture of a modern CASE environment 491

13.1 A process model for reverse engineering 497

13.2 Cosmetic changes carried out before reverse engineering 497

13.3 Maintenance process model 1 499

13.4 Maintenance process model 2 499

13.5 Empirical estimation of maintenance cost versus percentage
rework 500

14.1 Improving reusability of a component by using a portability
interface 510

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

ke Created by ebook converter - www.ebook-converter.com™ ™ *##*

15.1 Two-tier and three-tier client-server architectures 517
15.2 CORBA reference model 518
15.3 CORBA ORB architecture 520

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

PREFACE

The revision to this book had become necessary on account of the rapid
advancements that have taken place in software engineering
techniques and practices since the last edition was written. In this book,
almost all the chapters have been enhanced. Also, many objective type

questions have been included in almost every chapter. This book has
taken shape over the two decades decades while teaching the
Software Engineering subject to the undergraduate and
postgraduate students at IIT, Kharagpur.

While teaching to the students, I had acutely felt the necessity of a book
that treats all the important topics in software engineering, including
the important recent advancements in a coherent framework and at the
same time deals the topics from the perspective of the practising
engineer. A large portion of the text is based on my own practical
experience which I gained while working on software development
projects in several organizations.

This book is designed to serve as a text book for one semester course on
software engineering for undergraduate students by excluding the star
marked sections in different chapters. The topics on Halsteads software
science, Software reuse, and Formal specification can be omitted for a
basic study of the subject, if so desired by the teacher. However, these
topics should be included in a post-graduate level course. For
postgraduate students, this text book may be supplemented with some
additional topics.

The students intending to go through this book must be familiar with at
least one high level programming and one low level programming
language. They are also expected to possess basic ideas about
operating systems, systems programming, compiler writing, and
computer architecture issues. Experience in writing large-sized
programs would be very helpful in grasping some of the important
concepts discussed in this book. The emphasis of this book is to
illustrate the important concepts through small examples rather than
through a single large running example. I have intentionally selected

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

the former approach as I believe that this would make it easier to
illustrate several subtle and important concepts through appropriate
small examples. It would have been very difficult to illustrate all these
concepts through a single running example.

The layout of the chapters has been guided by the sequence of activities
undertaken during the life of a software product. However, since the
project management activity is spread over all phases, I thought that it
is necessary to discuss these as early in the book

book as possible. Software project management has been discussed in
Chapter 3. However,

while teaching from this book, I prefer to teach the project management
topic after the Chapter 11, since that way I am able to give the design
assignments to the students early and they get sufficient time to
complete them.

In the text, I have taken the liberty to use he/his to actually mean both
the genders.

This has been done only to increase the readability of the writing rather
than with intent of

any bias.

The power-point slides to teach the book as well as the solution manual
can be obtained

either from the publisher or by sending me an e-mail.

Typographical and other errors and comments should be reported to me
at:

rajib@cse.iitkgp.ernet.in
or at my following postal address.
RAJIB MALL
Professor
Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

PREFACE TO THE FIRST EDITION

This book is designed as a textbook on software engineering for undergraduate students
in computer science. Software engineering is a fast developing field. While teaching the
subject at the Indian Institute of Technology Kharagpur, I felt the need for organizing a
textbook that gives a coherent account of all the state-of-the-art topics and at the same
time presents these topics from the viewpoint of practising engineers. A portion of the
text 1s, therefore, based on my own practical experience, gained while working on
software development projects in several industries.

The book starts with a comprehensive introduction to software engineering, including
some important life cycle models. Chapter 2 presents and discusses techniques and
concepts of software project management. This chapter encompasses all phases of
software development that are considered crucial to the success of software projects.
Chapter 3 focuses on requirements analysis and specification. In this chapter, different
approaches to formal requirements specification and essential features of algebraic
specifications as a formal specification technique are explored. Chapter 4 highlights
some important facets of software design. In Chapter 5, the methodology of Structured
Analysis/Structured Design (SA/SD) in relation to traditional function-oriented design.
Chapter 7 brings out some basic aspects, techniques and methods pertaining to user
interface design. Significant progress has been made in this field and it is important for
students to know the various issues involved in a good user interface design. Chapter 8
discusses coding and unit testing techniques. Integration and system testing techniques
are elaborately described in Chapter 9. These are the main quality control activities.
Chapter 10 is, therefore, exclusively devoted to software quality assurance aspects, ISO
9000 and software reliability models, as these are considered necessary to expose
students to basic quality concepts as part of a software engineering course. Finally, in
Chapter 11, the student has been introduced to general concepts to CASE tools, without
going into specifics of any particular CASE tool.

The students using this textbook should be proficient at least in one high level and
low level programming language each. They should also possess basic knowledge of
operating systems, systems programming, compiler writing, and computer architecture.

The emphasis in this book is to illustrate the important concepts through several
small examples rather than a single large running example. The book also contains many
exercises at the end of each chapter aimed at reinforcing the knowledge of principles

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

and techniques of software engineering.
I do hope fervently that the students will find this text both stimulating and useful.

ACKNOWLEDGEMENTS

Many persons have contributed to make this book a reality. I would especially like to
express my appreciation to Prof. L.M. Patnaik for his unstinted support and
encouragement. I would also like to thank Prof. Sunil Sarangi, Dean (CEP) for his
guidance throughout the preparation of the manuscript. Thanks are also due to Prof. Ajit
Pal, the present Head of the Department, and all my colleagues at the Computer Science
and Engineering Department of IIT Kharagpur for their helpful comments and
suggestions. I express my special thanks to Prof. P.K.J. Mahapatra of IEM Department
for his help during the final preparation of the manuscript.

I acknowledge the help and cooperation received from all the staff members of the
Computer Science and Engineering Department of IIT Kharagpur.

I would like to acknowledge the financial assistance provided by IIT Kharagpur for
the preparation of the manuscript and I wish to thank the numerous B.Tech and M.Tech
students whose enthusiastic participation in classroom discussions helped me to present
many ideas and concepts, as discussed in this book, with greater clarity.

Finally, I wish to express my sincere thanks to all my family members for their moral
support. In particular, I thank my parents, Sanjib, Kanika Bhabhi, Sudip, Shivani, Sonali
and Amitabha, my parents-in-law and GUGLOO. I am grateful to my wife Prabina for
her constant encouragement.

RAJIB MALL

Preface to the First Edition

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

Chapter
1

INTRODUCTION

Commercial usage of computers now spans the last sixty years.
Computers were very slow in the initial years and lacked sophistication.
Since then, their computational power and sophistication increased
rapidly, while their prices dropped dramatically. To get an idea of the
kind of improvements that have occurred to computers, consider the
following analogy. If similar improvements could have occurred to
aircrafts, now personal mini-airplanes should have become available,
costing as much as a bicycle, and flying at over 1000 times the speed of
the supersonic jets. To say it inother words, the rapid strides in
computing technologies are unparalleled in any other field of human
endeavour.

Let us now reflect the impact of the astounding progress made to the
hardware technologies on the software. The more powerful a computer is,
the more sophisticated programs can it run. Therefore, with every increase in
the raw computing capabilities of computers, software engineers have been
called upon to solve increasingly larger and complex problems, and that too
in cost-effective and efficient ways. Software engineers have coped up with
this challenge by innovating and building upon their past programming
experiences.

The innovations and past experiences towards writing good quality programs cost-
effectively, have contributed to the emergence of the software engineering discipline.

Let us now examine the scope of the software engineering discipline more
closely.

What is software engineering?

A popular definition of software engineering is: “A systematic collection of
good program development practices and techniques”. Good program

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

development techniques have resulted from research innovations as well as
from the lessons learnt by programmers through years of programming
experiences. An alternative definition of software engineering is: “An
engineering approach to develop software”. Based on these two point of views,
we can define software engineering as follows:

Software engineering discusses systematic and cost-effective techniques for software
development. These techniques help develop software using an engineering
approach.

Let us now try tofigure out what exactly is meant by an engineering
approach to develop software. We explain this using an analogy. Suppose you
have asked a petty contractor to build a small house for you. Petty
contractors are not really experts in house building.

They normally carry out minor repair works and at most undertake very
small building works such as the construction of boundary walls. Now faced
with the task of building a complete house, your petty contractor would draw
upon all his knowledge regarding house building. Yet, he may often be
clueless regarding what to do. For example, he might not know the optimal
proportion in which cement and sand should be mixed to realise sufficient
strength for supporting the roof. In such situations, he would have to fall back
upon his intuitions. He would normally succeed in his work, if the house you
asked him to construct is sufficiently small. Of course, the house constructed
by him may not look as good as one constructed by a professional, may lack
proper planning, and display several defects and imperfections. It may even
cost more and take longer to build.

Now, suppose you entrust your petty contractor to build a large 50-storeyed
commercial complex for you. He might exercise prudence, and politely refuse
to undertake your request. On the other hand, he might be ambitious and
agree to undertake the task. In the later case, he is sure to fail. The failure
might come in several forms—the building might collapse during the
construction stage itself due to his ignorance of the basic theories concerning
the strengths of materials; the construction might get unduly delayed, since
he may not prepare proper estimates and detailed plans regarding the types
and quantities of raw materials required, the times at which these are
required, etc. In short, to be successful in constructing a building of large
magnitude, one needs a good understanding of various civil and architectural
engineering techniques such as analysis, estimation, prototyping, planning,
designing, and testing. Similar is the case with the software development

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

projects. For sufficiently small-sized problems, one might proceed according
to one’s intuition and succeed; though the solution may have several
imperfections, cost more, take longer to complete, etc. But, failure is almost
certain, if one without a sound understanding of the software engineering
principles undertakes a large-scale software development work.

Is software engineering a science or an art?

Several people hold the opinion that writing good quality programs is an
art. In this context, let us examine whether software engineering is
really a form of art or is it akin to other engineering disciplines. There
exist several fundamental issues that set engineering disciplines such as
software engineering and civil engineering apart from both science and
arts disciplines. Let us now examine where software engineering stands
based on an investigation into these issues:

e Just as any other engineering discipline, software engineering makes
heavy use of the knowledge that has accrued from the experiences of a
larges number o f practitioners. These past experiences have been
systematically organised and wherever possible theoretical basis to the
empirical observations have been provided. Whenever no reasonable
theoretical justification could be provided, the past experiences have
been adopted as rule of thumb. In contrast, all scientific solutions are
constructed through rigorous application of provable principles.

e As is usual in all engineering disciplines, in software engineering
several conflicting goals are encountered while solving a problem. In
such situations, several alternate solutions are first proposed. An
appropriate solution is chosen out of the candidate solutions based on
various trade-offs that need to be made on account of issues of cost,
maintainability, and usability. Therefore, while arriving at the final
solution, several iterations and are possible.

e Engineering disciplines such as software engineering make use of only
well-understood and well-documented principles. Art, on the other
hand, is often based on making subjective judgement based on
qualitative attributes and using ill-understood principles.

From the above, we can easily infer that software engineering is in many
ways similar to other engineering disciplines such as civil engineering or
electronics engineering.

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

1.1 EVOLUTION—FROM AN ART FORM TO A N ENGINEERING
DISCIPLINE

I n this section, we review how starting from an esoteric art form, the
software engineering discipline has evolved over the years.

1.1.1 Evolution of an Art into an Engineering Discipline

Software engineering principles have evolved over the last sixty years
with contributions from numerous researchers and software
professionals. Over the years, it has emerged from a pure art to a craft,
and finally to an engineering discipline.

The early programmers used an ad hoc programming style. This style of
program development is now variously being referred to as exploratory, build
and fix, and code and fix styles.

In a build and fix style, a program is quickly developed without making any
specification, plan, or design. The different imperfections that are
subsequently noticed are fixed.

The exploratory programming style is an informal style in the sense that
there are no set rules or recommendations that a programmer has to adhere
to—every programmer himself evolves his own software development
techniques solely guided by his own intuition, experience, whims, and fancies.
The exploratory style comes naturally to all first time programmers. Later in
this chapter we point out that except for trivial problems, the exploratory
style usually yields poor quality and unmaintainable code and also makes
program development very expensive as well as time-consuming.

As we have already pointed out, the build and fix style was widely adopted
by the programmers in the early years of computing history. We can consider
the exploratory program development style as an art—since this style, as is
the case with any art, is mostly guided by intuition. There are many stories
about programmers in the past who were like proficient artists and could
write good programs using an essentially build and fix model and some
esoteric knowledge. The bad programmers were left to wonder how could
some programmers effortlessly write elegant and correct programs each time.
In contrast, the programmers working in modern software industry rarely
make use of any esoteric knowledge and develop software by applying some
well-understood principles.

1.1.2 Evolution Pattern for Engineering Disciplines

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

If we analyse the evolution of the software development styles over the last
sixty years, we can easily notice that it has evolved from an esoteric art form
to a craft form, and then has slowly emerged as an engineering discipline. As
a matter of fact, this pattern of evolution is not very different from that seen
in other engineering disciplines. Irrespective of whether it is iron making,
paper making, software development, or building construction; evolution of
technology has followed strikingly similar patterns. This pattern of technology
development has schematically been shown in Figure 1.1. It can be seen from
Figure 1.1 that every technology in the initial years starts as a form of art.
Over time, it graduates to a craft and finally emerges as an engineering
discipline. Let us illustrate this fact using an example. Consider the evolution
of the iron making technology. In ancient times, only a few people knew how
to make iron. Those who knew iron making, kept it a closely-guarded secret.
This esoteric knowledge got transferred from generation to generation as a
family secret. Slowly, over time technology graduated from an art to a craft
form where tradesmen shared their knowledge with their apprentices and the
knowledge pool continued to grow. Much later, through a systematic
organisation and documentation of knowledge, and incorporation of scientific
basis, modern steel making technology emerged. The story of the evolution
of the software engineering discipline is not much different. As we have
already pointed out, in the early days of programming, there were good
programmers and bad programmers. The good programmers knew certain
principles (or tricks) that helped them write good programs, which they
seldom shared with the bad programmers. Program writing in later years was
akin to a craft. Over the next several years, all good principles (or tricks) that
were organised into a body of knowledge that forms the discipline of software
engineering.

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

Enginecering

\

Systematic use of past
experience and formulation
of scientific basis

Unorganised use of
past experience

Technology

Esoteric use of past experience

Time

Figure 1.1: Evolution of technology with time.

Software engineering principles are now being widely used in industry, and
new principles are still continuing to emerge at a very rapid rate—making this
discipline highly dynamic. In spite of its wide acceptance, critics point out that
many of the methodologies and guidelines provided by the software
engineering discipline lack scientific basis, are subjective, and often
inadequate. Yet, there is no denying the fact that adopting software
engineering techniques facilitates development of high quality software in a
cost-effective and timely manner. Software engineering practices have proven
to be indispensable to the development of large software products—though
exploratory styles are often used successfully to develop small programs such
as those written by students as classroom assignments.

1.1.3 A Solution to the Software Crisis

At present, software engineering appears to be among the few options
that are available to tackle the present software crisis. But, what
exactly is the present software crisis? What are its symptoms, causes,
and possible solutions? To understand the present software crisis,
consider the following facts. The expenses that organisations all over
the world are incurring on software purchases as compared t o the
expenses incurred on hardware purchases have been showing an
worrying trend over the years (see Figure 1.2). As can be seen in the

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

figure, organisations are spending increasingly larger portions o f their
budget on software as compared to that on hardware. Among all the
symptoms of the present software crisis, the trend of increasing
software costs is probably the most vexing.

[

Hardware cost/Software cost

1960 Year 2008

Figure 1.2: Relative changes of hardware and software costs over time.

Not only are the software products becoming progressively more expensive than
hardware, but they also present a host of other problems to the customers—software
products are difficult to alter debug, and enhance; use resources non-optimally;
often fail to meet the user requirements; are far from being reliable; frequently crash;
and are often delivered late.

At present, many organisations are actually spending much more on
software than on hardware. If this trend continues, we might soon have a
rather amusing scenario. Notlong ago, when you bought any hardware
product, the essential software that ran on it came free with it. But, unless
some sort of revolution happens, in not very distant future, hardware prices
would become insignificant compared to software prices—when you buy any
software product the hardware on which the software runs would come free
with the software!!!

The symptoms of software crisis are not hard to observe. But, what are the
factors that have contributed to the present software crisis? Apparently, there
are many factors, the important ones being—rapidly increasing problem size,
lack of adequate training in software engineering techniques, increasing skill
adEkxtebook converter DEMO - www.ebook-converter.com ™ # % #*

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

shortage, and low productivity improvements. What is the remedy? It is
believed that a satisfactory solution to the present software crisis can
possibly come from a spread of software engineering practices among the
developers, coupled with further advancements to the software engineering
discipline itself.

With this brief discussion on the evolution and impact of the discipline of
software engineering, we now examine some basic concepts pertaining to the
different types of software development projects that are undertaken by
software companies.

1.2 SOFTWARE DEVELOPMENT PROJECTS

Before discussing about the various types of development projects that

are being undertaken by software development companies, let us first
understand the important ways in which professional software differs
from toy software such as those written by a student in his first
programming assignment.

Programs versus Products

Many toy software are being developed by individuals such as students

for their classroom assignments and hobbyists for their personal use.
These are usually small in size and support limited functionalities.
Further, the author of a program is usually the sole user of the software
and himself maintains the code. These toy software therefore usually
lack good user-interface and proper documentation. Besides these may
have poor maintainability, efficiency, and reliability. Since these toy
software do not have any supporting documents such as users’ manual,
maintenance manual, design document, test documents, etc., we call
these toy software as programs.

In contrast, professional software usually have multiple users and,
therefore, have good user-interface, proper users’ manuals, and good
documentation support. Since, a software product has a large number of
users, it is systematically designed, carefully implemented, and thoroughly
tested. In addition, a professionally written software usually consists not only
of the program code but also of all associated documents such as
requirements specification document, design document, test document, users’
manuals, etc. A further difference is that professional software are often too
large and complex to be developed by any single individual. It is usually
developed by a group of developers working in a team.

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

A professional software is developed by a group of software developers
working together in a team. It is therefore necessary for them to use some
systematic development methodology. Otherwise, they would find it very
difficult to interface and understand each other's work, and produce a
coherent set of documents.

Even though software engineering principles are primarily intended for use
in development of professional software, many results of software
engineering can effectively be used for development of small programs as
well. However, when developing small programs for personal use, rigid
adherence to software engineering principles is often not worthwhile. An ant
can be killed using a gun, but it would be ridiculously inefficient and
inappropriate. CAR Hoare [1994] observed that rigorously using software
engineering principles to develop toy programs is very much like employing
civil and architectural engineering principles to build sand castles for children
to play.

1.2.1 Types of Software Development Projects

A software development company is typically structured into a large
number of teams that handle various types of software development
projects. These software development projects concern the
development of either software product or some software service. In
the following subsections, we distinguish between these two types of
software development projects.

Software products

We all know of a variety of software such as Microsoft’s Windows and the
Office suite, Oracle DBMS, software accompanying a camcorder or a
laser printer, etc. These software are available off-the-shelf for
purchase and are used by a diverse range of customers. These are
called generic software products since many users essentially use the
same software. These can be purchased off-the-shelf by the customers.
When a software development company wishes to develop a generic
product, it first determines the features or functionalities that would be
useful to a large cross section of users. Based on these, the
development team draws up the product specification on its own. Of
course, it may base its design discretion on feedbacks collected from a
large number of users. Typically, each software product is targetted to
some market segment (set of users). Many companies fin dit

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

advantageous to develop product lines that target slightly different
market segments based on variations of essentially the same software.
For example, Microsoft targets desktops and laptops through its
Windows 8 operating system, while it targets high-end mobile handsets
through its Windows mobile operating system, and targets servers
through its Windows server operating system.

Software services

A software service usually involves either development of a customised
software or development of some specific part of a software in an
outsourced mode. A customised software is developed according to the
specification drawn up by one or at most a few customers. These need
to be developed in a short time frame (typically a couple of months),
and at the same time the development cost must be low. Usually, a
developing company develops customised software by tailoring some of
its existing software. For example, when an academic institution wishes
to have a software that would automate its important activities such as
student registration, grading, and fee collection; companies would
normally develop such a software as a customised product. This means
that for developing a customised software, the developing company
would normally tailor one of its existing software products that it might
have developed in the past for some other academic institution.

In a customised software development project, a large part of the software
is reused from the code of related software that the company might have
already developed. Usually, only a small part of the software that is specific
to some client is developed. For example, suppose a software development
organisation has developed an academic automation software that
automates the student registration, grading, Establishment, hostel and other
aspects of an academic institution. When a new educational institution
requests for developing a software for automation of its activities, a large
part of the existing software would be reused. However, a small part of the
existing code may be modified to take into account small variations in the
required features. For example, a software might have been developed for an
academic institute that offers only regular residential programs, the
educational institute that has now requested for a software to automate its
activities also offers a distance mode post graduate program where the
teaching and sessional evaluations are done by the local centres.

Another type of software service is outsourced software. Sometimes, it can
adEkxtebook converter DEMO - www.ebook-converter.com ™ # % #*

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

make good commercial sense for a company developing a large project to
outsource some parts of its development work to other companies. The
reasons behind such a decision may be many. For example, a company might
consider the outsourcing option, if it feels that it does not have sufficient
expertise to develop some specific parts of the software; or if it determines
that some parts can be developed cost-effectively by another company. Since
an outsourced project isa small part of some larger project, outsourced
projects are usually small in size and need to be completed within a few
months or a few weeks of time.

The types of development projects that are being undertaken by a
company can have an impact on its profitability. For example, a company that
has developed a generic software product usually gets an uninterrupted
stream of revenue that is spread over several years. However, this entails
substantial upfront investment in developing the software and any return on
this investment is subject to the risk of customer acceptance. On the other
hand, outsourced projects are usually less risky, but fetch only one time
revenue to the developing company.

1.2.2 Software Projects Being Undertaken by Indian Companies

Indian software companies have excelled in executing software services
projects and have made a name for themselves all over the world. Of
late, the Indian companies have slowly started to focus on product
development as well. Can you recall the names of a few software
products developed by Indian software companies? Let us try to
hypothesise the reason for this situation. Generic product development
entails certain amount of business risk. A company needs t o invest
upfront and there is substantial risks concerning whether the
investments would turn profitable. Possibly, the Indian companies were
risk averse.

Till recently, the world-wide sales revenue o fsoftware products and
services were evenly matched. But, of late the services segment has been
growing at a faster pace due to the advent of application service provisioning
and cloud computing. We discuss these issues in Chapter 15.

1.3 EXPLORATORY STYLE OF SOFTWARE DEVELOPMENT

We have already discussed that the exploratory program development style

refers to an informal development style where the programmer makes
use of his own intuition to develop a program rather than making use of

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

the systematic body of knowledge categorized under the software
engineering discipline. The exploratory development style gives
complete freedom to the programmer to choose the activities using
which to develop software. Though the exploratory style imposes no
rules a typical development starts after an initial briefing from the
customer. Based on this briefing, the developers start coding to develop
a working program. The software is tested and the bugs found are
fixed. This cycle of testing and bug fixing continues till the software
works satisfactorily for the customer. A schematic of this work sequence
in a build and fix style has been shown graphically in Figure 1.3.
Observe that coding starts after an initial customer briefing about what
is required. After the program development is complete, a test and fix
cycle continues till the program becomes acceptable to the customer.

Initial briefing — -
g | Initial coding ‘
by customer
=t Works satisfactorily
| lest
j .
Failure
| Modify code ‘ Development
complete

Figure 1.3: Exploratory program development.

An exploratory development style can be successful when used for
developing very small programs, and not for professional software. We had
examined this issue with the help of the petty contractor analogy. Now let us
examine this issue more carefully.

What is wrong with the exploratory style of software development?

Though the exploratory software development style is intuitively obvious, no
software team can remain competitive if it uses this style of software
development. Let us investigate the reasons behind this. In an exploratory
development scenario, let us examine how do the effort and time required to
develop a professional software increases with the increase in program size.
Let wus first consider that exploratory style is being used to develop a
professional software. The increase in development effort and time with
problem size has been indicated in Figure 1.4. Observe the thick line plot that
represents the case in which the exploratory style isused to develop a
program. It can be seen that as the program size increases, the required
effort and time increases almost exponentially. For large problems, it would

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

take too long and cost too much to be practically meaningful to develop the
program using the exploratory style of development. The exploratory
development approach is said to break down after the size of the program to
be developed increases beyond certain value. For example, using the
exploratory style, you may easily solve a problem that requires writing only
1000 or 2000 lines of source code. But, if you are asked to solve a problem
that would require writing one million lines of source code, you may never be
able to complete it using the exploratory style; irrespective of the amount
time or effort you might invest to solve it. Now observe the thin solid line plot
in Figure 1.4 which represents the case when development is carried out
using software engineering principles. In this case, it becomes possible to
solve a problem with effort and time that is almost linear in program size. On
the other hand, if programs could be written automatically by machines, then
the increase in effort and time with size would be even closer to a linear
(dotted line plot) increase with size.

Development
i Development using software
4| using exploratory engineering -
Development|| development style principles ~ .-
time -

2~~~ Automatic software
development
by machine

]Jheveluptnemfl
effort

Perceived 4
complexity /

Pt

Program size (LOC)

Figure 1.4: Increase in development time and effort with problem size.

Now let us try to understand why does the effort required to develop a
program grow exponentially with program size when the exploratory style is
used and then this approach to develop a program completely breaks down
when the program size becomes large? To get an insight into the answer to
this question, we need to have some knowledge of the human cognitive
limitations (see the discussion on human psychology in subsection 1.3.1). As
we shall see, the perceived (or psychological) complexity of a problem grows
exponentially with its size. Please note that the perceived complexity of a
problem is not related to the time or space complexity issues with which you
are likely to be familiar with from a basic course on algorithms.

The psychological or perceived complexity of a problem concerns the difficulty level
kaxE**ebook converter DEMO - www.ebook-converter.com™ * *# ***

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

experienced by a programmer while solving the problem using the exploratory
development style.

Even if the exploratory style causes the perceived difficulty of a problem to
grow exponentially due to human cognitive limitations, how do the software
engineering principles help to contain this exponential rise in complexity with
problem size and hold it down to almost a linear increase? We will discuss in
subsection 1.3.2 that software engineering principle help achieve this by
profusely making use of the abstraction and decomposition techniques to
overcome the human cognitive limitations. You may still wonder that when
software engineering principles are used, why does the curve not become
completely linear? The answer is that itis very difficult to apply the
decomposition and abstraction principles to completely overcome the
problem complexity.

Summary of the shortcomings of the exploratory style of software
development:

We briefly summarise the important shortcomings of using the
exploratory development style to develop a professional software:

e The foremost difficulty is the exponential growth of development time
and effort with problem size and large-sized software becomes almost
impossible using this style of development.

e The exploratory style usually results in unmaintainable code. The
reason for this is that any code developed without proper design would
result in highly unstructured and poor quality code.

e It becomes very difficult to use the exploratory style in a team
development environment. In the exploratory style, the development
work is undertaken without any proper design and documentation.
Therefore it becomes very difficult to meaningfully partition the work
among a set of developers who can work concurrently. On the other
hand, team development is indispensable for developing modern
software—most software mandate huge development efforts,
necessitating team effort for developing these. Besides poor quality
code, lack of proper documentation makes any later maintenance of
the code very difficult.

1.3.1 Perceived Problem Complexity: An Interpretation Based on

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

Human Cognition Mechanism

The rapid increase of the perceived complexity of a problem with
increase in problem size can be explained from an interpretation of the
human cognition mechanism. A simple understanding of the human
cognitive mechanism would also give us an insight into why the
exploratory style of development leads to an undue increase in the time
and effort required to develop a programming solution. It can also
explain why it becomes practically infeasible to solve problems larger
than a certain size while using an exploratory style; whereas using
software engineering principles, the required effort grows almost
linearly with size (as indicated by the thin solid line in Figure 1.4).
Psychologists say that the human memory can be thought to consist of two
distinct parts[Miller 56]: short-term and long-term memories. A schematic
representation of these two types of memories and their roles in human
cognition mechanism has been shown in Figure 1.5. In Figure 1.5, the block
labelled sensory organs represents the five human senses sight, hearing,
touch, smell, and taste. The block labelled actuator represents neuromotor
organs such as hand, finger, feet, etc. We now elaborate this human
cognition model in the following subsection.

e Brain "
Environmental]
input Tl
Sensory S ‘.@___. 't A
organs _-.--\:;Qurt-turm memory S b 2
— 7 (i
r coocoo } 4 s
/‘-u._) e g -
P X ——7 Chded
Neuromotor dy e p
S
organs T Qutput to Mental _
“ environment manipulations :

S NN NN N

Long-term memory

e e e

Figure 1.5: Human cognition mechanism model.

Short-term memory: The short-term memory, as the name itself suggests, can

store information for a short while—usually up to a few seconds, and at most
for a few minutes. The short-term memory is also sometimes referred to as

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

the working memory. The information stored in the short-term memory is
immediately accessible for processing by the brain. The short-term memory
of an average person can store up to seven items; but in extreme cases it can
vary anywhere from five to nine items (7 + 2). As shown in Figure 1.5, the
short-term memory participates in all interactions of the human mind with its
environment.

It should be clear that the short-term memory plays a very crucial part in
the human cognition mechanism. All information collected through the
sensory organs are first stored in the short-term memory. The short-term
memory is also used by the brain to drive the neuromotor organs. The mental
manipulation unit also gets its inputs from the short-term memory and stores
back any output it produces. Further, information retrieved from the long-
term memory first gets stored in the short-term memory. For example, if you
are asked the question: “If it is 10AM now, how many hours are remaining
today?” First, 10AM would be stored in the short-term memory. Next, the
information that a day is 24 hours long would be fetched from the long-term
memory into the short-term memory. The mental manipulation unit would
compute the difference (24-10), and 14 hours would get stored in the short-
term memory. As you can notice, this model is very similar to the
organisation of a computer in terms of cache, main memory, and processor.

An item stored in the short-term memory can get lost either due to decay
with time or displacement by newer information. This restricts the duration
for which an item is stored in the short-term memory to few tens of seconds.
However, a nitem can be retained longer in the short-term memory by
recycling. That is, when we repeat or refresh an item consciously, we can
remember it for a much longer duration. Certain information stored in the
short-term memory, under certain circumstances gets stored in the long-term
memory.

Long-term memory: Unlike the short-term memory, the size of the long-term
memory is not known to have a definite upper bound. The size of the long-
term memory can vary from several million items to several billion items,
largely depending on how actively a person exercises his mental faculty. An
item once stored in the long-term memory, is usually retained for several
years. But, how do items get stored in the long-term memory? Items present
in the short-term memory can get stored in the long-term memory either
through large number of refreshments (repetitions) or by forming links with
already existing items in the long-term memory. For example, you possibly
remember your own telephone number because you might have repeated

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

(refreshed) it for a large number of times in your short-term memory. Let us
now take an example of a situation where you may form links to existing
items in the long- term memory to remember certain information. Suppose
youwant to remember the 10 digit mobile number 9433795369. To
remember it by rote may be intimidating. But, suppose you consider the
number as split into 9433 7953 69 and notice that 94 is the code for BSNL, 33
is the code for Kolkata, suppose 79 is your year of birth, and 53 is your roll
number, and the rest of the two numbers are each one less than the
corresponding digits of the previous number; you have effectively established
links with already stored items, making it easier to remember the number.

Item: We have so far only mentioned the number of items that the long-term
and the short-term memories can store. But, what exactly is an item? An item
is any set of related information. According to this definition, a character such
asa or a digit such as ‘5’ can each be considered as an item. A word, a
sentence, a story, or even a picture can each be a single item. Each item
normally occupies one place in memory. The definition of an item as any set
of related information implies that when you are able to establish some
simple relationship between several different items, the information that
should normally occupy several places can be stored using only one place in
the memory. This phenomenon of forming one item from several items is
referred to as chunking by psychologists. For example, if you are given the
binary number 110010101001—it may prove very hard for you to understand
and remember. But, the octal form of the number 6251 (i.e, the
representation (110)(010)(101)(001)) may be much easier to understand and
remember since we have managed to create chunks of three items each.

Evidence of short-term memory: Evidences of short-term memory manifest
themselves in many of our day-to-day experiences. As an example of the
short-term memory, consider the following situation. Suppose, you look up a
number from the telephone directory and start dialling it. If you find the
number to be busy, you would dial the humber again after a few seconds—in
this case, you would be able to do so almost effortlessly without having to
look up the directory. But, after several hours or days since you dialled the
number last, you may not remember the number at all, and would need to
consult the directory again.

The magical number 7: Miller called the number seven as the magical number

[Miller 56] since if a person deals with seven or less number of unrelated
information at a time these would be easily accommodated in the short-term

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

memory. So, he can easily understand it. As the number of items that one
has to deal with increases beyond seven, it becomes exceedingly difficult to
understand it. This observation can easily be extended to writing programs.

When the number of details (or variables) that one has to track to solve a problem
increases beyond seven, it exceeds the capacity of the short-term memory and it
becomes exceedingly more difficult for a human mind to grasp the problem.

A small program having just a few variables is within the easy grasp of an
individual. As the number of independent variables in the program increases,
it quickly exceeds the grasping power of an individual and would require an
unduly large effort to master the problem. This outlines a possible reason
behind the exponential nature of the effort-size plot (thick line) shown in
Figure 1.4. Please note that the situation depicted in Figure 1.4 arises mostly
due to the human cognitive limitations. Instead of a human, if a machine
could be writing (generating) a program, the slope of the curve would be
linear, as the cache size (short-term memory) of a computer is quite large.
But, why does the effort-size curve become almost linear when software
engineering principles are deployed? This is because software engineering
principles extensively use the techniques that are designed specifically to
overcome the human cognitive limitations. We discuss this issue in the next
subsection.

1.3.2 Principles Deployed by Software Engineering to Overcome

Human Cognitive Limitations

We shall see throughout this book that a central theme of most of software
engineering principles is the use of techniques to effectively tackle the
problems that arise due to human cognitive limitations.

Two important principles that are deployed by software engineering to overcome the
problems arising due to human cognitive limitations are—abstraction and
decomposition.

In the following subsections, with the help of Figure 1.6(a) and (b), we
explain the essence of these two important principles and how they help to
overcome the human cognitive limitations. In the rest of this book, we shall
time and again encounter the use of these two fundamental principles in
various forms and flavours in the different software development activities. A
thorough understanding of these two principles is therefore needed.

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

= Most abstract

Least abstract {actual problem)

{a) Abstraction hierarchy {b) Decomposition

Figure 1.6: Schematic representation.

Abstraction

Abstraction refers to construction of a simpler version of a problem by
ignoring the details. The principle of constructing an abstraction is popularly
known as modelling (Or model construction).

Abstraction is the simplification of a problem by focusing on only one aspect of the
problem while omitting all other aspects.

When using the principle of abstraction to understand a complex problem,
we focus our attention on only one or two specific aspects of the problem and
ignore the rest. Whenever we omit some details of a problem to construct an
abstraction, we construct a model of the problem. In every day life, we use
the principle of abstraction frequently to understand a problem or to assess a
situation. Consider the following two examples.

e Suppose you are asked to develop an overall understanding of some
country. No one in his right mind would start this task by meeting all
the citizens of the country, visiting every house, and examining every
tree of the country, etc. You would probably take the help of several
types of abstractions to do this. You would possibly start by referring to
and understanding various types of maps for that country. A map, in
fact, is an abstract representation of a country. It ignores detailed
information such as the specific persons who inhabit it, houses,
schools, play grounds, trees, etc. Again, there are two important types
of maps—physical and political maps. A physical map shows the physical

features of an area; such as mountains, lakes, rivers, coastlines, and so

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

on. On the other hand, the political map shows states, capitals, and
national boundaries, etc. The physical map is an abstract model of the
country and ignores the state and district boundaries. The political
map, on the other hand, is another abstraction of the country that
ignores the physical characteristics such as elevation of lands,
vegetation, etc. It can be seen that, for the same object (e.g. country),
several abstractions are possible. In each abstraction, some aspects of
the object is ignored. We understand a problem by abstracting out
different aspects of a problem (constructing different types of models)
and understanding them. It is not very difficult to realise that proper
use of the principle of abstraction can be a very effective help to
master even intimidating problems.

e Consider the following situation. Suppose you are asked to develop an
understanding of all the living beings inhabiting the earth. If you use
the naive approach, you would start taking up one living being after
another who inhabit the earth and start understanding them. Even
after putting in tremendous effort, you would make little progress and
left confused since there are billions of living things on earth and the
information would be just too much for any one to handle. Instead,
what can be done is to build and understand an abstraction hierarchy
of all living beings as shown in Figure 1.7. At the top level, we
understand that there are essentially three fundamentally different
types of living beings—plants, animals, and fungi. Slowly more details
are added about each type at each successive level, until we reach the
level of the different species at the leaf level of the abstraction tree.

Life

.-|--\.__

- gy
.-'-""-FFF L

.
- s

- Tl
| Animalia Plantae | Fungi Kingdom

//’ \ | . j’\

Mollusca = s o |Chordata| = « °|fl..lu::-::m:.'n:-t:1‘u P E}'gnm}'mﬂuj Phylum
LI] a B a & & & a a L] e a

. Ulass
e = o Drdor
» Family
= = = (Janus

. A .o e
. o8 @ L L)
Hamo o Solanum |+ e = e o o |Coprinug| = = o Spocies
Sapen trberosim comatius

Figure 1.7: An abstraction hierarchy classifying living organisms.

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

A single level of abstraction can be sufficient for rather simple problems.
However, more complex problems would need to be modelled as a hierarchy
of abstractions. A schematic representation of an abstraction hierarchy has
been shown in Figure 1.6(a). The most abstract representation would have
only a few items and would be the easiest to understand. After one
understands the simplest representation, one would try to understand the
next level of abstraction where at most five or seven new information are
added and so on until the lowest level is understood. By the time, one
reaches the lowest level, he would have mastered the entire problem.

Decomposition

Decomposition is another important principle that is available in the
repertoire of a software engineer to handle problem complexity. This principle
is profusely made use by several software engineering techniques to contain
the exponential growth of the perceived problem complexity. The
decomposition principle is popularly known as the divide and conquer principle.

The decomposition principle advocates decomposing the problem into many small
independent parts. The small parts are then taken up one by one and solved
separately. The idea is that each small part would be easy to grasp and understand
and can be easily solved. The full problem is solved when all the parts are solved.

A popular way to demonstrate the decomposition principle is by trying to
break a large bunch of sticks tied together and then breaking them
individually. Figure 1.6(b) shows the decomposition of a large problem into
many small parts. However, it is very important to understand that any
arbitrary decomposition of a problem into small parts would not help. The
different parts after decomposition should be more or less independent of
each other. That is, to solve one part you should not have to refer and
understand other parts. If to solve one part you would have to understand
other parts, then this would boil down to understanding all the parts
together. This would effectively reduce the problem to the original problem
before decomposition (the case when all the sticks tied together). Therefore,
it is not sufficient to just decompose the problem in any way, but the
decomposition should be such that the different decomposed parts must be
more or less independent of each other.

As an example ofa use of the principle of decomposition, consider the
following. You would understand a book better when the contents are
decomposed (organised) into more or less independent chapters. That is,

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

each chapter focuses on a separate topic, rather than when the book mixes
up all topics together throughout all the pages. Similarly, each chapter should
be decomposed into sections such that each section discusses a different
issue. Each section should be decomposed into subsections and so on. If
various subsections are nearly independent of each other, the subsections
can be understood one by one rather than keeping on cross referencing to
various subsections across the book to understand one.

Why study software engineering?

Let us examine the skills that you could acquire from a study of the
software engineering principles. The following two are possibly the
most important skill you could be acquiring after completing a study of
software engineering:

e The skill to participate in development of large software. You can
meaningfully participate in a team effort to develop a large software
only after learning the systematic techniques that are being used in the
industry.

e You would learn how to effectively handle complexity in a software
development problem. In particular, you would learn how to apply the
principles of abstraction and decomposition to handle complexity
during various stages in software development such as specification,
design, construction, and testing.

Besides the above two important skills, you would also be learning the
techniques of software requirements specification user interface
development, quality assurance, testing, project management, maintenance,
etc.

As we had already mentioned, small programs can also be written without
using software engineering principles. However even if you intend to write
small programs, the software engineering principles could help you to achieve
higher productivity and at the same time enable you to produce better quality
programs.

1.4 EMERGENCE OF SOFTWARE ENGINEERING

We have already pointed out that software engineering techniques have
evolved over many years in the past. This evolution is the result of a
series of innovations and accumulation of experience about writing

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

good quality programs. Since these innovations and programming
experiences are too numerous, let us briefly examine only a few of
these innovations and programming experiences which have
contributed to the development of the software engineering discipline.

1.4.1 Early Computer Programming

Early commercial computers were very slow and too elementary as
compared to today’s standards. Even simple processing tasks took
considerable computation time on those computers. No wonder that
programs at that time were very small in size and lacked sophistication.
Those programs were usually written in assembly languages. Program
lengths were typically limited to about a few hundreds of lines of
monolithic assembly code. Every programmer developed his own
individualistic style of writing programs according to his intuition and
used this style ad hoc while writing different programs. In simple words,
programmers wrote programs without formulating any proper solution
strategy, plan, or design a jump to the terminal and start coding
immediately on hearing out the problem. They then went on fixing any
problems that they observed until they had a program that worked
reasonably well. We have already designated this style of programming
as the build and fix (or the exploratory programming) style.

1.4.2 High-level Language Programming

Computers became faster with the introduction of the semiconductor
technology in the early 1960s. Faster semiconductor transistors
replaced the prevalent vacuum tube-based circuits in a computer. With
the availability of more powerful computers, it became possible to solve
larger and more complex problems. At this time, high-level languages
such as FORTRAN, ALGOL, and COBOL were introduced. This
considerably reduced the effort required to develop software and helped
programmers to write larger programs (why?). Writing each high-level
programming construct in effect enables the programmer to write
several machine instructions. Also, the machine details (registers, flags,
etc.) are abstracted from the programmer. However, programmers
were still using the exploratory style of software development. Typical
programs were limited to sizes of around a few thousands of lines of
source code.

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

1.4.3 Control Flow-based Design

A sthe size and complexity of programs kept on increasing, the
exploratory programming style proved to be insufficient. Programmers
found it increasingly difficult not only to write cost-effective and correct
programs, but also to understand and maintain programs written by
others. To cope up with this problem, experienced programmers
advised other programmers to pay particular attention to the design of
a program’s control flow structure.

A program’s control flow structure indicates the sequence in which the
program’s instructions are executed.

In order to help develop programs having good control flow structures, the
flow charting techniqgue Was developed. Eventoday, the flow charting
technique is being used to represent and design algorithms; though the
popularity of flow charting represent and design programs has want to a
great extent due to the emergence of more advanced techniques.

Figure 1.8 illustrates two alternate ways of writing program code for the
same problem. The flow chart representations for the two program segments
of Figure 1.8 are drawn in Figure 1.9. Observe that the control flow structure
of the program segment in Figure 1.9(b) is much more simpler than that of
Figure 1.9(a). By examining the code, it can be seen that Figure 1.9(a) is
much harder to understand as compared to Figure 1.9(b). This example
corroborates the fact that if the flow chart representation is simple, then the
corresponding code should be simple. You can draw the flow chart
representations of several other problems to convince yourself that a program
with complex flow chart representation is indeed more difficult to understand
and maintain.

iicustamer_savings balanceswithdrawal_request) |
10 Issue_money=TRUE:
GOTO 110,

if(privileged customer]|{cusiomer_savings balanceswithdrawal request)j[
actvate_cazh_dispenserwithdrawal _request);
|

1 1
2 2
3
' 3 alsa prinlleror);
4 else i privieged_customer-=TRLE| 4 end-transaction();
5 GOTO 100;
G else GOTO 120;
7 110 activate_cash_dipensenwithdrawal_request);
;] GOTO 130;
9 120: pontermor);

10 130 emd-transaction();
(@) An example unstructured program (b) Correspanding structured program

Figure 1.8: An example of (a) Unstructured program (b) Corresponding structured program.

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

D) ©

& ,r_\‘/ I\N
{/\ gﬁj L2/ 3)
o o \/_
=g & E_/'I

ONENO
/ N
v o 4
N/
\8 @/’
{‘@ "
(a) (b)

Figure 1.9: Control flow graphs of the programs of Figures 1.8(a) and (b).

Let us now try to understand why a program having good control flow
structure would be easier to develop and understand. In other words, let us
understand why a program with a complex flow chart representation is
difficult to understand? The main reason behind this situation is that normally
one understands a program by mentally tracing its execution sequence (i.e.
statement sequences) to understand how the output is produced from the
input values. That is, we can start from a statement producing an output, and
trace back the statements in the program and understand how they produce
the output by transforming the input data. Alternatively, we may start with
the input data and check by running through the program how each
statement processes (transforms) the input data until the output is produced.
For example, for the program of Fig 1.9(a) you would have to understand the
execution of the program along the paths 1-2-3-7-8-10, 1-4-5-6-9-10, and 1-
4-5-2-3-7-8-10. A program having a messy control flo w (i.e. flow chart)
structure, would have a large number of execution paths (see Figure 1.10).
Consequently, it would become extremely difficult to determine all the
execution paths, and tracing the execution sequence along all the paths
trying to understand them can be nightmarish. It is therefore evident that a
program having a messy flow chart representation would indeed be difficult
to understand and debug.

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

ke Created by ebook converter - www.ebook-converter.com™ ™ *##*

Figure 1.10: CFG of a program having too many GO TO statements.

Are GO TO statements the culprits?

In a landmark paper, Dijkstra [1968] published his (now famous) article
"GO TO Statements Considered Harmful”. He pointed out that unbridled
use of GO TO statements is the main culprit in making the control
structure of a program messy. To understand his argument, examine
Figure 1.10 which shows the flow chart representation of a program in
which the programmer has used rather too many GO TO statements.
GO TO statements alter the flow of control arbitrarily, resulting in too
many paths. But, then why does use of too many GO TO statements
makes a program hard to understand?

A programmer trying to understand a program would have to mentally
trace and understand the processing that take place along all the paths of the
program making program understanding and debugging extremely
complicated.

Soon it became widely accepted that good programs should have very
simple control structures. It is possible to distinguish good programs from bad
programs by just visually examining their flow chart representations. The use
of flow charts to design good control flow structures of programs became
wide spread.

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

Structured programming—a logical extension

The need to restrict the use of GO TO statements was recognised by
everybody. However, many programmers were still using assembly
languages. JUMP instructions are frequently used for program branching in
assembly languages. Therefore, programmers with assembly language
programming background considered the use of GO TO statements in
programs inevitable. However, it was conclusively proved by Bohm and
Jacopini that only three programming constructs—sequence, selection, and
iteration—were sufficient to express any programming logic. This was an
important result—it is considered important even today. An example of a
sequence statement is an assignment statement of the form a=b;. Examples
of selection and iteration statements are the if-then-else and the do-while
statements respectively. Gradually, everyone accepted that it is indeed
possible to solve any programming problem without using GO TO statements
and that indiscriminate use of GO TO statements should be avoided. This
formed the basis of the structured programming methodology.

A program is called structured when it uses only the sequence, selection, and iteration
types of constructs and is modular.

Structured programs avoid unstructured control flows by restricting the use
of GO TO statements. Structured programming is facilitated, if the
programming language being used supports single-entry, single-exit program
constructs such as if-then-else, do-while, etc. Thus, an important feature of
structured programs is the design of good control structures. An example
illustrating this key difference between structured and unstructured programs
is shown in Figure 1.8. The program in Figure 1.8(a) makes use of too many
GO TO statements, whereas the program in Figure 1.8(b) makes use of none.
The flow chart of the program making use of GO TO statements is obviously
much more complex as can be seen in Figure 1.9.

Besides the control structure aspects, the term structured program is being
used to denote a couple of other program features as well. A structured
program should be modular. A modular program is one which is decomposed
into a set of modules! such that the modules should have low
interdependency among each other. We discuss the concept of modular
programs in Chapter 5.

But, what are the main advantages of writing structured programs
compared to the unstructured ones? Research experiences have shown that

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

programmers commit less number of errors while using structured if-then-else
and do-while statements than when using test-and-branch code constructs.
Besides being less error-prone, structured programs are normally more
readable, easier to maintain, and require less effort to develop compared to
unstructured programs. The virtues of structured programming became
widely accepted and the structured programming concepts are being used
even today. However, violations to the structured programming feature is
usually permitted in certain specific programming situations, such as
exception handling, etc.

Very soon several languages such as PASCAL, MODULA, C, etc., became
available which were specifically designed to support structured
programming. These programming languages facilitated writing modular
programs and programs having good control structures. Therefore, messy
control structure was no longer a big problem. So, the focus shifted from
designing good control structures to designing good data structures for
programs.

1.4.4 Data Structure-oriented Design

Computers became even more powerful with the advent o f integrated
circuits (ICs) in the early seventies. These could now be used to solve
more complex problems. Software developers were tasked to develop
larger and more complicated software. which often required writing in
excess of several tens of thousands of lines of source code. The control
flow-based program development techniques could not be used
satisfactorily any more to write those programs, and more effective
program development techniques were needed.

It was soon discovered that while developing a program, it is much more
important to pay attention to the design of the important data structures of
the program than to the design of its control structure. Design techniques
based on this principle are called data structure- oriented design techniques.

Using data structure-oriented design techniques, first a program’s data structures are
designed. The code structure is designed based on the data structure.

In the next step, the program design is derived from the data structure. An
example of a data structure-oriented design technique is the Jackson’s
Structured Programming (JSP) technique developed by Michael Jackson
[1975]. In JSP methodology, a program’s data structure is first designed using
the notations for sequence, selection, and iteration. The JSP methodology

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

provides an interesting technique to derive the program structure from its
data structure representation. Several other data structure-based design
techniques were also developed. Some of these techniques became very
popular and were extensively used. Another technique that needs special
mention is the Warnier-Orr Methodology [1977, 1981]. However, we will not
discuss these techniques in this text because now-a-days these techniques
are rarely used in the industry and have been replaced by the data flow-
based and the object-oriented techniques.

1.4.5 Data Flow-oriented Design

As computers became still faster and more powerful with the introduction of
very large scale integrated (VLSI) Circuits and some new architectural concepts,
more complex and sophisticated software were needed to solve further
challenging problems. Therefore, software developers looked out for more
effective techniques for designing software and soon data flow-oriented
techniques Were proposed.

The data flow-oriented techniques advocate that the major data items handled by a
system must be identified and the processing required on these data items to
produce the desired outputs should be determined.

The functions (also called as processes) and the data items that are
exchanged between the different functions are represented in a diagram
known as a data flow diagram (DFD). The program structure can be designed
from the DFD representation of the problem.

DFDs: A crucial program representation for procedural program design

DFD has proven to be a generic technique which is being used to model all
types of systems, and not just software systems. For example, Figure 1.11
shows the data-flow representation of an automated car assembly plant. If
you have never visited an automated car assembly plant, a brief description
of an automated car assembly plant would be necessary. In an automated car
assembly plant, there are several processing stations (also called workstations
) which are located along side of a conveyor belt (also called an assembly line
). Each workstation is specialised to do jobs such as fitting of wheels, fitting
the engine, spray painting the car, etc. As the partially assembled program
moves along the assembly line, different workstations perform their
respective jobs on the partially assembled software. Each circle in the DFD

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

model of Figure 1.11 represents a workstation (called a process or bubble).

Each workstation consumes certain input items and produces certain output
items. As a car under assembly arrives at a workstation, it fetches the
necessary items to be fitted from the corresponding stores (represented by
two parallel horizontal lines), and as soon as the fitting work is complete
passes on to the next workstation. It is easy to understand the DFD model of
the car assembly plant shown in Figure 1.11 even without knowing anything
regarding DFDs. In this regard, we can say that a major advantage of the
DFDs is their simplicity. In Chapter 6, we shall study how to construct the
DFD model of a software system. Once you develop the DFD model of a
problem, data flow-oriented design techniques provide a rather straight
forward methodology to transform the DFD representation of a problem into
an appropriate software design. We shall study the data flow-based design
techniques in Chapter 6.

Engine store Door store
! T
| /
-
'

_r = b i
e ~ A,
Git\n Chassis / Fit % Partly .-'/fFiL \ Assembled ¢ Ii*’“ﬁt \Car

E engine /with engine\, d0ors /assembled car | wheels / Eargae. 2P

P ' p ol . e test /

S A \est /
Chaasis store Wheel store

Figure 1.11: Data flow model of a car assembly plant.

1.4.6 Object-oriented Design

Data flow-oriented techniques evolved into object-oriented design (OOD)

techniques in the late seventies. Object-oriented design technique is an
intuitively appealing approach, where the natural objects (such as
employees, pay-roll-register, etc.) relevant to a problem are first
identified and then the relationships among the objects such as
composition, reference, and inheritance are determined. Each object
essentially acts as a data hiding (also known as data abstraction) entity.
Object-oriented techniques have gained wide spread acceptance
because of their simplicity, the scope for code and design reuse,
promise of lower development time, lower development cost, more
robust code, and easier maintenance. OOD techniques are discussed in
Chapters 7 and 8.

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

1.4.7 What Next?

In this section, we have so far discussed how software design techniques
have evolved since the early days of programming. We pictorially
summarise this evolution of the software design techniques in Figure
1.12. It can be observed that in almost every passing decade,
revolutionary ideas were put forward to design larger and more
sophisticated programs, and at the same time the quality of the design
solutions improved. But, what would the next improvement to the
design techniques be? It is very difficult to speculate about the
developments that may occur in the future. However, we have already
seen that in the past, the design techniques have evolved each time to
meet the challenges faced in developing contemporary software.
Therefore, the next development would most probably occur to help
meet the challenges being faced by the modern software designers. To
get an indication of the techniques that are likely to emerge, let us first
examine what are the current challenges in designing software. First,
program sizes are further increasing as compared to what was being
developed a decade back. Second, many of the present day software
are required to work in a client-server environment through a web
browser-based access (called web-based software). At the same time,
embedded devices are experiencing an unprecedented growth and rapid
customer acceptance in the last decade. It is there for necessary for
developing applications for small hand held devices and embedded
processors. We examine later in this text how aspect-oriented
programming, client- server based design, and embedded software
design techniques have emerged rapidly. In the current decade, service-
orientation has emerged as a recent direction of software engineering
due to the popularity of web-based applications and public clouds.

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

Aspect-orientation |
client-server design
embedded software

design
i

stvle
Y

‘ Data flow-oriented _/

‘ Object-oriented I__,//

stvle

Data structure- /

oriented stvle

Control flow- } /

oriented style

}
!

Exploratory /

style =

1950 1960 1970 1980 2000
Year

Figure 1.12: Evolution of software design techniques.

1.4.8 Other Developments

It can be seen that remarkable improvements to the prevalent software
design technique occurred almost every passing decade. The
improvements to the software design methodologies over the last five
decades have indeed been remarkable. In addition to the
advancements made to the software design techniques, several other
new concepts and techniques for effective software development were
also introduced. These new techniques include life cycle models,
specification techniques, project management techniques, testing
techniques, debugging techniques, quality assurance techniques,
software measurement techniques, computer aided software engineering
(CASE) tools, etc. The development of these techniques accelerated the
growth of software engineering as a discipline. We shall discuss these
techniques in the later chapters.

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

1.5 NOTABLE CHANGES IN SOFTWARE DEVELOPMENT PRACTICES

Before we discuss the details of various software engineering principles, it
is worthwhile to examine the glaring differences that you would notice when
you observe an exploratory style of software development and another
development effort based on modern software engineering practices. The
following noteworthy differences between these two software development
approaches would be immediately observable.

e An important difference is that the exploratory software development
style is based on error correction (build and fix)while the software
engineering techniques are based on the principles of error prevention.
Inherent in the software engineering principles is the realisation that it
is much more cost-effective to prevent errors from occurring than to
correct them as and when they are detected. Even when mistakes are
committed during development, software engineering principles
emphasize detection of errors as detected only during the final product
testing. In contrast, the modern practice of software development is to
develop the software through several well-defined stages such as
requirements specification, design, coding, testing, etc.,, and attempts
are made to detect and fix as many errors as possible in the same
phase in which they are made.

e I nthe exploratory style, coding wa s considered synonymous with
software development. For instance, this naive way of developing a
software believed in developing a working system as quickly as
possible and then successively modifying it untili t performed
satisfactorily. Exploratory programmers literally dive at the computer to
get started with their programs even before they fully learn about the
problem!!! It was recognised that exploratory programming not only
turns out to be prohibitively costly for non-trivial problems, but also
produces hard-to-maintain programs. Even minor modifications to such
programs later can become nightmarish. In the modern software
development style, coding is regarded as only a small part of the
overall software development activities. There are several
development activities such as design and testing which may demand
much more effort than coding.

e A lot of attention is now being paid to requirements specification.
Significant effort is being devoted to develop a clear and correct

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

specification of the problem before any development activity starts.
Unless the requirements specification is able to correctly capture the
exact customer requirements, large number of rework would be
necessary at a later stage. Such rework would result in higher cost of
development and customer dissatisfaction.

e Now there is a distinct design phase where standard design techniques
are employed to yield coherent and complete design models.

e Periodic reviews are being carried out during all stages of the
development process. The main objective of carrying out reviews is
phase containment of errors, i.e. detect and correct errors as soon as
possible. Phase containment of errors is an important software
engineering principle. We will discuss this technique in Chapter 2.

e Today, software testing has become very systematic and standard
testing techniques are available. Testing activity has also become all
encompassing, as test cases are being developed right from the
requirements specification stage.

e There is better visibility of the software through various developmental
activities.

By visibiity we mean production of good qualty, consistent and peer reviewed documents at
the end of every software development activity.

e In the past, very little attention was being paid to producing good
quality and consistent documents. In the exploratory style, the design
and test activities, even if carried out (in whatever way), were not
documented satisfactorily. Today, consciously good quality documents
are being developed during software development. This has made fault
diagnosis and maintenance far more smoother. We will see in Chapter
3 that i naddition to facilitating product maintenance, increased
visibility makes management of a software project easier.

e Now, projects are being thoroughly planned. The primary objective of
project planning is to ensure that the various development activities
take place at the correct time and no activity is halted due to the want
of some resource. Project planning normally includes preparation of
various types of estimates, resource scheduling, and development of
project tracking plans. Several techniques and automation tools for
tasks such as configuration management, cost estimation, scheduling,

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

etc., are being used for effective software project management.

e Several metrics (quantitative measurements) of the products and the
product development activities are being collected to help in software
project management and software quality assurance.

1.6 COMPUTER SYSTEMS ENGINEERING

In all the discussions so far, we assumed that the software being
developed would run on some general-purpose hardware platform such
as a desktop computer or a server. But, in several situations it may be
necessary to develop special hardware on which the software would
run. Examples of such systems are numerous, and include a robot, a
factory automation system, and a cell phone. In a cell phone, there is a
special processor and other specialised devices such as a speaker and a
microphone. It can run only the programs written specifically for it.
Development of such systems entails development of both software and
specific hardware that would run the software. Computer systems
engineering addresses development of such systems requiring
development of both software and specific hardware to run the
software. Thus, systems engineering encompasses software
engineering.

The general model of systems engineering is shown schematically in Figure
1.13. One of the important stages in systems engineering is the stage in
which decision is made regarding the parts of the problems that are to be
implemented in hardware and the ones that would be implemented in
software. This has been represented by the box captioned hardware-software
partitioning in Figure 1.13. While partitioning the functions between hardware
and software, several trade-offs such as flexibility, cost, speed of operation,
etc., need to be considered. The functionality implemented in hardware run
faster. On the other had, functionalities implemented in software is easier to
extend. Further, it is difficult to implement complex functions in hardware.
Also, functions implemented in hardware incur extra space, weight,
manufacturing cost, and power overhead.

After the hardware-software partitioning stage, development of hardware
and software are carried out concurrently (shown as concurrent branches in
Figure 1.13). In system engineering, testing the software during development
becomes a tricky issue, the hardware on which the software would run and
tested would still be under development—remember that the hardware and
the software are being developed at the same time. To test the software

*x**%*eobook converter DEMO - www.ebook-converter.com™ ™ * % * % *

Fakexk*Created by ebook converter - www.ebook-converter.com ™ %% %

during development, it usually becomes necessary to develop simulators that
mimic the features of the hardware being developed. The software is tested
using these simulators. Once both hardware and software development are
complete, these are integrated and tested. The project management activity
is required through out the duration of system development as shown in
Figure 1.13. In this text, we have confined our attention to software
engineering only.

Feazibilitv

study

Requirements
analvsis
and specification

Hardware
development |

Hardware-

software | Integration o Mai
partitioning | and testing Maintenance

Software

*| development |

Project management

Figure 1.13: Computer systems engineering.

SUMMARY

e We first defined the scope of software engineering. We came up with
two alternate but equivalent definitions:

— The systematic collection of decades of programming experience
together with the innovatio