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PREFACE

The revision to this book had become necessary on account of the rapid
advancements that have taken place in software engineering
techniques and practices since the last edition was written. In this book,
almost all the chapters have been enhanced. Also, many objective type

questions have been included in almost every chapter. This book has
taken shape over the two decades decades while teaching the
Software Engineering subject to the undergraduate and
postgraduate students at IIT, Kharagpur.

While teaching to the students, I had acutely felt the necessity of a book
that treats all the important topics in software engineering, including
the important recent advancements in a coherent framework and at the
same time deals the topics from the perspective of the practising
engineer. A large portion of the text is based on my own practical
experience which I gained while working on software development
projects in several organizations.

This book is designed to serve as a text book for one semester course on
software engineering for undergraduate students by excluding the star
marked sections in different chapters. The topics on Halsteads software
science, Software reuse, and Formal specification can be omitted for a
basic study of the subject, if so desired by the teacher. However, these
topics should be included in a post-graduate level course. For
postgraduate students, this text book may be supplemented with some
additional topics.

The students intending to go through this book must be familiar with at
least one high level programming and one low level programming
language. They are also expected to possess basic ideas about
operating systems, systems programming, compiler writing, and
computer architecture issues. Experience in writing large-sized
programs would be very helpful in grasping some of the important
concepts discussed in this book. The emphasis of this book is to
illustrate the important concepts through small examples rather than
through a single large running example. I have intentionally selected
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the former approach as I believe that this would make it easier to
illustrate several subtle and important concepts through appropriate
small examples. It would have been very difficult to illustrate all these
concepts through a single running example.

The layout of the chapters has been guided by the sequence of activities
undertaken during the life of a software product. However, since the
project management activity is spread over all phases, I thought that it
is necessary to discuss these as early in the book

book as possible. Software project management has been discussed in
Chapter 3. However,

while teaching from this book, I prefer to teach the project management
topic after the Chapter 11, since that way I am able to give the design
assignments to the students early and they get sufficient time to
complete them.

In the text, I have taken the liberty to use he/his to actually mean both
the genders.

This has been done only to increase the readability of the writing rather
than with intent of

any bias.

The power-point slides to teach the book as well as the solution manual
can be obtained

either from the publisher or by sending me an e-mail.

Typographical and other errors and comments should be reported to me
at:

rajib@cse.iitkgp.ernet.in
or at my following postal address.
RAJIB MALL
Professor
Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur
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PREFACE TO THE FIRST EDITION

This book is designed as a textbook on software engineering for undergraduate students
in computer science. Software engineering is a fast developing field. While teaching the
subject at the Indian Institute of Technology Kharagpur, I felt the need for organizing a
textbook that gives a coherent account of all the state-of-the-art topics and at the same
time presents these topics from the viewpoint of practising engineers. A portion of the
text 1s, therefore, based on my own practical experience, gained while working on
software development projects in several industries.

The book starts with a comprehensive introduction to software engineering, including
some important life cycle models. Chapter 2 presents and discusses techniques and
concepts of software project management. This chapter encompasses all phases of
software development that are considered crucial to the success of software projects.
Chapter 3 focuses on requirements analysis and specification. In this chapter, different
approaches to formal requirements specification and essential features of algebraic
specifications as a formal specification technique are explored. Chapter 4 highlights
some important facets of software design. In Chapter 5, the methodology of Structured
Analysis/Structured Design (SA/SD) in relation to traditional function-oriented design.
Chapter 7 brings out some basic aspects, techniques and methods pertaining to user
interface design. Significant progress has been made in this field and it is important for
students to know the various issues involved in a good user interface design. Chapter 8
discusses coding and unit testing techniques. Integration and system testing techniques
are elaborately described in Chapter 9. These are the main quality control activities.
Chapter 10 is, therefore, exclusively devoted to software quality assurance aspects, ISO
9000 and software reliability models, as these are considered necessary to expose
students to basic quality concepts as part of a software engineering course. Finally, in
Chapter 11, the student has been introduced to general concepts to CASE tools, without
going into specifics of any particular CASE tool.

The students using this textbook should be proficient at least in one high level and
low level programming language each. They should also possess basic knowledge of
operating systems, systems programming, compiler writing, and computer architecture.

The emphasis in this book is to illustrate the important concepts through several
small examples rather than a single large running example. The book also contains many
exercises at the end of each chapter aimed at reinforcing the knowledge of principles
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and techniques of software engineering.
I do hope fervently that the students will find this text both stimulating and useful.
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Chapter
1

INTRODUCTION

Commercial usage of computers now spans the last sixty years.
Computers were very slow in the initial years and lacked sophistication.
Since then, their computational power and sophistication increased
rapidly, while their prices dropped dramatically. To get an idea of the
kind of improvements that have occurred to computers, consider the
following analogy. If similar improvements could have occurred to
aircrafts, now personal mini-airplanes should have become available,
costing as much as a bicycle, and flying at over 1000 times the speed of
the supersonic jets. To say it inother words, the rapid strides in
computing technologies are unparalleled in any other field of human
endeavour.

Let us now reflect the impact of the astounding progress made to the
hardware technologies on the software. The more powerful a computer is,
the more sophisticated programs can it run. Therefore, with every increase in
the raw computing capabilities of computers, software engineers have been
called upon to solve increasingly larger and complex problems, and that too
in cost-effective and efficient ways. Software engineers have coped up with
this challenge by innovating and building upon their past programming
experiences.

The innovations and past experiences towards writing good quality programs cost-
effectively, have contributed to the emergence of the software engineering discipline.

Let us now examine the scope of the software engineering discipline more
closely.

What is software engineering?

A popular definition of software engineering is: “A systematic collection of
good program development practices and techniques”. Good program
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development techniques have resulted from research innovations as well as
from the lessons learnt by programmers through years of programming
experiences. An alternative definition of software engineering is: “An
engineering approach to develop software”. Based on these two point of views,
we can define software engineering as follows:

Software engineering discusses systematic and cost-effective techniques for software
development. These techniques help develop software using an engineering
approach.

Let us now try tofigure out what exactly is meant by an engineering
approach to develop software. We explain this using an analogy. Suppose you
have asked a petty contractor to build a small house for you. Petty
contractors are not really experts in house building.

They normally carry out minor repair works and at most undertake very
small building works such as the construction of boundary walls. Now faced
with the task of building a complete house, your petty contractor would draw
upon all his knowledge regarding house building. Yet, he may often be
clueless regarding what to do. For example, he might not know the optimal
proportion in which cement and sand should be mixed to realise sufficient
strength for supporting the roof. In such situations, he would have to fall back
upon his intuitions. He would normally succeed in his work, if the house you
asked him to construct is sufficiently small. Of course, the house constructed
by him may not look as good as one constructed by a professional, may lack
proper planning, and display several defects and imperfections. It may even
cost more and take longer to build.

Now, suppose you entrust your petty contractor to build a large 50-storeyed
commercial complex for you. He might exercise prudence, and politely refuse
to undertake your request. On the other hand, he might be ambitious and
agree to undertake the task. In the later case, he is sure to fail. The failure
might come in several forms—the building might collapse during the
construction stage itself due to his ignorance of the basic theories concerning
the strengths of materials; the construction might get unduly delayed, since
he may not prepare proper estimates and detailed plans regarding the types
and quantities of raw materials required, the times at which these are
required, etc. In short, to be successful in constructing a building of large
magnitude, one needs a good understanding of various civil and architectural
engineering techniques such as analysis, estimation, prototyping, planning,
designing, and testing. Similar is the case with the software development
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projects. For sufficiently small-sized problems, one might proceed according
to one’s intuition and succeed; though the solution may have several
imperfections, cost more, take longer to complete, etc. But, failure is almost
certain, if one without a sound understanding of the software engineering
principles undertakes a large-scale software development work.

Is software engineering a science or an art?

Several people hold the opinion that writing good quality programs is an
art. In this context, let us examine whether software engineering is
really a form of art or is it akin to other engineering disciplines. There
exist several fundamental issues that set engineering disciplines such as
software engineering and civil engineering apart from both science and
arts disciplines. Let us now examine where software engineering stands
based on an investigation into these issues:

e Just as any other engineering discipline, software engineering makes
heavy use of the knowledge that has accrued from the experiences of a
larges number o f practitioners. These past experiences have been
systematically organised and wherever possible theoretical basis to the
empirical observations have been provided. Whenever no reasonable
theoretical justification could be provided, the past experiences have
been adopted as rule of thumb. In contrast, all scientific solutions are
constructed through rigorous application of provable principles.

e As is usual in all engineering disciplines, in software engineering
several conflicting goals are encountered while solving a problem. In
such situations, several alternate solutions are first proposed. An
appropriate solution is chosen out of the candidate solutions based on
various trade-offs that need to be made on account of issues of cost,
maintainability, and usability. Therefore, while arriving at the final
solution, several iterations and are possible.

e Engineering disciplines such as software engineering make use of only
well-understood and well-documented principles. Art, on the other
hand, is often based on making subjective judgement based on
qualitative attributes and using ill-understood principles.

From the above, we can easily infer that software engineering is in many
ways similar to other engineering disciplines such as civil engineering or
electronics engineering.
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1.1 EVOLUTION—FROM AN ART FORM TO A N ENGINEERING
DISCIPLINE

I n this section, we review how starting from an esoteric art form, the
software engineering discipline has evolved over the years.

1.1.1 Evolution of an Art into an Engineering Discipline

Software engineering principles have evolved over the last sixty years
with  contributions from numerous researchers and software
professionals. Over the years, it has emerged from a pure art to a craft,
and finally to an engineering discipline.

The early programmers used an ad hoc programming style. This style of
program development is now variously being referred to as exploratory, build
and fix, and code and fix styles.

In a build and fix style, a program is quickly developed without making any
specification, plan, or design. The different imperfections that are
subsequently noticed are fixed.

The exploratory programming style is an informal style in the sense that
there are no set rules or recommendations that a programmer has to adhere
to—every programmer himself evolves his own software development
techniques solely guided by his own intuition, experience, whims, and fancies.
The exploratory style comes naturally to all first time programmers. Later in
this chapter we point out that except for trivial problems, the exploratory
style usually yields poor quality and unmaintainable code and also makes
program development very expensive as well as time-consuming.

As we have already pointed out, the build and fix style was widely adopted
by the programmers in the early years of computing history. We can consider
the exploratory program development style as an art—since this style, as is
the case with any art, is mostly guided by intuition. There are many stories
about programmers in the past who were like proficient artists and could
write good programs using an essentially build and fix model and some
esoteric knowledge. The bad programmers were left to wonder how could
some programmers effortlessly write elegant and correct programs each time.
In contrast, the programmers working in modern software industry rarely
make use of any esoteric knowledge and develop software by applying some
well-understood principles.

1.1.2 Evolution Pattern for Engineering Disciplines
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If we analyse the evolution of the software development styles over the last
sixty years, we can easily notice that it has evolved from an esoteric art form
to a craft form, and then has slowly emerged as an engineering discipline. As
a matter of fact, this pattern of evolution is not very different from that seen
in other engineering disciplines. Irrespective of whether it is iron making,
paper making, software development, or building construction; evolution of
technology has followed strikingly similar patterns. This pattern of technology
development has schematically been shown in Figure 1.1. It can be seen from
Figure 1.1 that every technology in the initial years starts as a form of art.
Over time, it graduates to a craft and finally emerges as an engineering
discipline. Let us illustrate this fact using an example. Consider the evolution
of the iron making technology. In ancient times, only a few people knew how
to make iron. Those who knew iron making, kept it a closely-guarded secret.
This esoteric knowledge got transferred from generation to generation as a
family secret. Slowly, over time technology graduated from an art to a craft
form where tradesmen shared their knowledge with their apprentices and the
knowledge pool continued to grow. Much later, through a systematic
organisation and documentation of knowledge, and incorporation of scientific
basis, modern steel making technology emerged. The story of the evolution
of the software engineering discipline is not much different. As we have
already pointed out, in the early days of programming, there were good
programmers and bad programmers. The good programmers knew certain
principles (or tricks) that helped them write good programs, which they
seldom shared with the bad programmers. Program writing in later years was
akin to a craft. Over the next several years, all good principles (or tricks) that
were organised into a body of knowledge that forms the discipline of software
engineering.
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Figure 1.1: Evolution of technology with time.

Software engineering principles are now being widely used in industry, and
new principles are still continuing to emerge at a very rapid rate—making this
discipline highly dynamic. In spite of its wide acceptance, critics point out that
many of the methodologies and guidelines provided by the software
engineering discipline lack scientific basis, are subjective, and often
inadequate. Yet, there is no denying the fact that adopting software
engineering techniques facilitates development of high quality software in a
cost-effective and timely manner. Software engineering practices have proven
to be indispensable to the development of large software products—though
exploratory styles are often used successfully to develop small programs such
as those written by students as classroom assignments.

1.1.3 A Solution to the Software Crisis

At present, software engineering appears to be among the few options
that are available to tackle the present software crisis. But, what
exactly is the present software crisis? What are its symptoms, causes,
and possible solutions? To understand the present software crisis,
consider the following facts. The expenses that organisations all over
the world are incurring on software purchases as compared t o the
expenses incurred on hardware purchases have been showing an
worrying trend over the years (see Figure 1.2). As can be seen in the
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figure, organisations are spending increasingly larger portions o f their
budget on software as compared to that on hardware. Among all the
symptoms of the present software crisis, the trend of increasing
software costs is probably the most vexing.

[

Hardware cost/Software cost

1960 Year 2008

Figure 1.2: Relative changes of hardware and software costs over time.

Not only are the software products becoming progressively more expensive than
hardware, but they also present a host of other problems to the customers—software
products are difficult to alter debug, and enhance; use resources non-optimally;
often fail to meet the user requirements; are far from being reliable; frequently crash;
and are often delivered late.

At present, many organisations are actually spending much more on
software than on hardware. If this trend continues, we might soon have a
rather amusing scenario. Notlong ago, when you bought any hardware
product, the essential software that ran on it came free with it. But, unless
some sort of revolution happens, in not very distant future, hardware prices
would become insignificant compared to software prices—when you buy any
software product the hardware on which the software runs would come free
with the software!!!

The symptoms of software crisis are not hard to observe. But, what are the
factors that have contributed to the present software crisis? Apparently, there
are many factors, the important ones being—rapidly increasing problem size,
lack of adequate training in software engineering techniques, increasing skill
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shortage, and low productivity improvements. What is the remedy? It is
believed that a satisfactory solution to the present software crisis can
possibly come from a spread of software engineering practices among the
developers, coupled with further advancements to the software engineering
discipline itself.

With this brief discussion on the evolution and impact of the discipline of
software engineering, we now examine some basic concepts pertaining to the
different types of software development projects that are undertaken by
software companies.

1.2 SOFTWARE DEVELOPMENT PROJECTS

Before discussing about the various types of development projects that

are being undertaken by software development companies, let us first
understand the important ways in which professional software differs
from toy software such as those written by a student in his first
programming assignment.

Programs versus Products

Many toy software are being developed by individuals such as students

for their classroom assignments and hobbyists for their personal use.
These are usually small in size and support limited functionalities.
Further, the author of a program is usually the sole user of the software
and himself maintains the code. These toy software therefore usually
lack good user-interface and proper documentation. Besides these may
have poor maintainability, efficiency, and reliability. Since these toy
software do not have any supporting documents such as users’ manual,
maintenance manual, design document, test documents, etc., we call
these toy software as programs.

In contrast, professional software usually have multiple users and,
therefore, have good user-interface, proper users’ manuals, and good
documentation support. Since, a software product has a large number of
users, it is systematically designed, carefully implemented, and thoroughly
tested. In addition, a professionally written software usually consists not only
of the program code but also of all associated documents such as
requirements specification document, design document, test document, users’
manuals, etc. A further difference is that professional software are often too
large and complex to be developed by any single individual. It is usually
developed by a group of developers working in a team.
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A professional software is developed by a group of software developers
working together in a team. It is therefore necessary for them to use some
systematic development methodology. Otherwise, they would find it very
difficult to interface and understand each other's work, and produce a
coherent set of documents.

Even though software engineering principles are primarily intended for use
in development of professional software, many results of software
engineering can effectively be used for development of small programs as
well. However, when developing small programs for personal use, rigid
adherence to software engineering principles is often not worthwhile. An ant
can be killed using a gun, but it would be ridiculously inefficient and
inappropriate. CAR Hoare [1994] observed that rigorously using software
engineering principles to develop toy programs is very much like employing
civil and architectural engineering principles to build sand castles for children
to play.

1.2.1 Types of Software Development Projects

A software development company is typically structured into a large
number of teams that handle various types of software development
projects. These software development projects concern the
development of either software product or some software service. In
the following subsections, we distinguish between these two types of
software development projects.

Software products

We all know of a variety of software such as Microsoft’s Windows and the
Office suite, Oracle DBMS, software accompanying a camcorder or a
laser printer, etc. These software are available off-the-shelf for
purchase and are used by a diverse range of customers. These are
called generic software products since many users essentially use the
same software. These can be purchased off-the-shelf by the customers.
When a software development company wishes to develop a generic
product, it first determines the features or functionalities that would be
useful to a large cross section of users. Based on these, the
development team draws up the product specification on its own. Of
course, it may base its design discretion on feedbacks collected from a
large number of users. Typically, each software product is targetted to
some market segment (set of users). Many companies fin dit
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advantageous to develop product lines that target slightly different
market segments based on variations of essentially the same software.
For example, Microsoft targets desktops and laptops through its
Windows 8 operating system, while it targets high-end mobile handsets
through its Windows mobile operating system, and targets servers
through its Windows server operating system.

Software services

A software service usually involves either development of a customised
software or development of some specific part of a software in an
outsourced mode. A customised software is developed according to the
specification drawn up by one or at most a few customers. These need
to be developed in a short time frame (typically a couple of months),
and at the same time the development cost must be low. Usually, a
developing company develops customised software by tailoring some of
its existing software. For example, when an academic institution wishes
to have a software that would automate its important activities such as
student registration, grading, and fee collection; companies would
normally develop such a software as a customised product. This means
that for developing a customised software, the developing company
would normally tailor one of its existing software products that it might
have developed in the past for some other academic institution.

In a customised software development project, a large part of the software
is reused from the code of related software that the company might have
already developed. Usually, only a small part of the software that is specific
to some client is developed. For example, suppose a software development
organisation  has developed an academic automation software that
automates the student registration, grading, Establishment, hostel and other
aspects of an academic institution. When a new educational institution
requests for developing a software for automation of its activities, a large
part of the existing software would be reused. However, a small part of the
existing code may be modified to take into account small variations in the
required features. For example, a software might have been developed for an
academic institute that offers only regular residential programs, the
educational institute that has now requested for a software to automate its
activities also offers a distance mode post graduate program where the
teaching and sessional evaluations are done by the local centres.

Another type of software service is outsourced software. Sometimes, it can
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make good commercial sense for a company developing a large project to
outsource some parts of its development work to other companies. The
reasons behind such a decision may be many. For example, a company might
consider the outsourcing option, if it feels that it does not have sufficient
expertise to develop some specific parts of the software; or if it determines
that some parts can be developed cost-effectively by another company. Since
an outsourced project isa small part of some larger project, outsourced
projects are usually small in size and need to be completed within a few
months or a few weeks of time.

The types of development projects that are being undertaken by a
company can have an impact on its profitability. For example, a company that
has developed a generic software product usually gets an uninterrupted
stream of revenue that is spread over several years. However, this entails
substantial upfront investment in developing the software and any return on
this investment is subject to the risk of customer acceptance. On the other
hand, outsourced projects are usually less risky, but fetch only one time
revenue to the developing company.

1.2.2 Software Projects Being Undertaken by Indian Companies

Indian software companies have excelled in executing software services
projects and have made a name for themselves all over the world. Of
late, the Indian companies have slowly started to focus on product
development as well. Can you recall the names of a few software
products developed by Indian software companies? Let us try to
hypothesise the reason for this situation. Generic product development
entails certain amount of business risk. A company needs t o invest
upfront and there is substantial risks concerning whether the
investments would turn profitable. Possibly, the Indian companies were
risk averse.

Till recently, the world-wide sales revenue o fsoftware products and
services were evenly matched. But, of late the services segment has been
growing at a faster pace due to the advent of application service provisioning
and cloud computing. We discuss these issues in Chapter 15.

1.3 EXPLORATORY STYLE OF SOFTWARE DEVELOPMENT

We have already discussed that the exploratory program development style

refers to an informal development style where the programmer makes
use of his own intuition to develop a program rather than making use of
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the systematic body of knowledge categorized under the software
engineering discipline. The exploratory development style gives
complete freedom to the programmer to choose the activities using
which to develop software. Though the exploratory style imposes no
rules a typical development starts after an initial briefing from the
customer. Based on this briefing, the developers start coding to develop
a working program. The software is tested and the bugs found are
fixed. This cycle of testing and bug fixing continues till the software
works satisfactorily for the customer. A schematic of this work sequence
in a build and fix style has been shown graphically in Figure 1.3.
Observe that coding starts after an initial customer briefing about what
is required. After the program development is complete, a test and fix
cycle continues till the program becomes acceptable to the customer.

Initial briefing — -
g | Initial coding ‘
by customer
=t Works satisfactorily
| lest
j .
Failure
| Modify code ‘ Development
complete

Figure 1.3: Exploratory program development.

An exploratory development style can be successful when used for
developing very small programs, and not for professional software. We had
examined this issue with the help of the petty contractor analogy. Now let us
examine this issue more carefully.

What is wrong with the exploratory style of software development?

Though the exploratory software development style is intuitively obvious, no
software team can remain competitive if it uses this style of software
development. Let us investigate the reasons behind this. In an exploratory
development scenario, let us examine how do the effort and time required to
develop a professional software increases with the increase in program size.
Let wus first consider that exploratory style is being used to develop a
professional software. The increase in development effort and time with
problem size has been indicated in Figure 1.4. Observe the thick line plot that
represents the case in which the exploratory style isused to develop a
program. It can be seen that as the program size increases, the required
effort and time increases almost exponentially. For large problems, it would
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take too long and cost too much to be practically meaningful to develop the
program using the exploratory style of development. The exploratory
development approach is said to break down after the size of the program to
be developed increases beyond certain value. For example, using the
exploratory style, you may easily solve a problem that requires writing only
1000 or 2000 lines of source code. But, if you are asked to solve a problem
that would require writing one million lines of source code, you may never be
able to complete it using the exploratory style; irrespective of the amount
time or effort you might invest to solve it. Now observe the thin solid line plot
in Figure 1.4 which represents the case when development is carried out
using software engineering principles. In this case, it becomes possible to
solve a problem with effort and time that is almost linear in program size. On
the other hand, if programs could be written automatically by machines, then
the increase in effort and time with size would be even closer to a linear
(dotted line plot) increase with size.

Development
i Development using software
4| using exploratory engineering -
Development||  development style principles ~ .-
time -

2~~~ Automatic software
development
by machine

]Jheveluptnemfl
effort

Perceived 4
complexity /

Pt

Program size (LOC)

Figure 1.4: Increase in development time and effort with problem size.

Now let us try to understand why does the effort required to develop a
program grow exponentially with program size when the exploratory style is
used and then this approach to develop a program completely breaks down
when the program size becomes large? To get an insight into the answer to
this question, we need to have some knowledge of the human cognitive
limitations (see the discussion on human psychology in subsection 1.3.1). As
we shall see, the perceived (or psychological) complexity of a problem grows
exponentially with its size. Please note that the perceived complexity of a
problem is not related to the time or space complexity issues with which you
are likely to be familiar with from a basic course on algorithms.

The psychological or perceived complexity of a problem concerns the difficulty level
kaxE**ebook converter DEMO - www.ebook-converter.com™ * *# ***
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experienced by a programmer while solving the problem using the exploratory
development style.

Even if the exploratory style causes the perceived difficulty of a problem to
grow exponentially due to human cognitive limitations, how do the software
engineering principles help to contain this exponential rise in complexity with
problem size and hold it down to almost a linear increase? We will discuss in
subsection 1.3.2 that software engineering principle help achieve this by
profusely making use of the abstraction and decomposition techniques to
overcome the human cognitive limitations. You may still wonder that when
software engineering principles are used, why does the curve not become
completely linear? The answer is that itis very difficult to apply the
decomposition and abstraction principles to completely overcome the
problem complexity.

Summary of the shortcomings of the exploratory style of software
development:

We briefly summarise the important shortcomings of using the
exploratory development style to develop a professional software:

e The foremost difficulty is the exponential growth of development time
and effort with problem size and large-sized software becomes almost
impossible using this style of development.

e The exploratory style usually results in unmaintainable code. The
reason for this is that any code developed without proper design would
result in highly unstructured and poor quality code.

e It becomes very difficult to use the exploratory style in a team
development environment. In the exploratory style, the development
work is undertaken without any proper design and documentation.
Therefore it becomes very difficult to meaningfully partition the work
among a set of developers who can work concurrently. On the other
hand, team development is indispensable for developing modern
software—most software mandate huge development efforts,
necessitating team effort for developing these. Besides poor quality
code, lack of proper documentation makes any later maintenance of
the code very difficult.

1.3.1 Perceived Problem Complexity: An Interpretation Based on
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Human Cognition Mechanism

The rapid increase of the perceived complexity of a problem with
increase in problem size can be explained from an interpretation of the
human cognition mechanism. A simple understanding of the human
cognitive mechanism would also give us an insight into why the
exploratory style of development leads to an undue increase in the time
and effort required to develop a programming solution. It can also
explain why it becomes practically infeasible to solve problems larger
than a certain size while using an exploratory style; whereas using
software engineering principles, the required effort grows almost
linearly with size (as indicated by the thin solid line in Figure 1.4).
Psychologists say that the human memory can be thought to consist of two
distinct parts[Miller 56]: short-term and long-term memories. A schematic
representation of these two types of memories and their roles in human
cognition mechanism has been shown in Figure 1.5. In Figure 1.5, the block
labelled sensory organs represents the five human senses sight, hearing,
touch, smell, and taste. The block labelled actuator represents neuromotor
organs such as hand, finger, feet, etc. We now elaborate this human
cognition model in the following subsection.
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Figure 1.5: Human cognition mechanism model.

Short-term memory: The short-term memory, as the name itself suggests, can

store information for a short while—usually up to a few seconds, and at most
for a few minutes. The short-term memory is also sometimes referred to as
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the working memory. The information stored in the short-term memory is
immediately accessible for processing by the brain. The short-term memory
of an average person can store up to seven items; but in extreme cases it can
vary anywhere from five to nine items (7 + 2). As shown in Figure 1.5, the
short-term memory participates in all interactions of the human mind with its
environment.

It should be clear that the short-term memory plays a very crucial part in
the human cognition mechanism. All information collected through the
sensory organs are first stored in the short-term memory. The short-term
memory is also used by the brain to drive the neuromotor organs. The mental
manipulation unit also gets its inputs from the short-term memory and stores
back any output it produces. Further, information retrieved from the long-
term memory first gets stored in the short-term memory. For example, if you
are asked the question: “If it is 10AM now, how many hours are remaining
today?” First, 10AM would be stored in the short-term memory. Next, the
information that a day is 24 hours long would be fetched from the long-term
memory into the short-term memory. The mental manipulation unit would
compute the difference (24-10), and 14 hours would get stored in the short-
term memory. As you can notice, this model is very similar to the
organisation of a computer in terms of cache, main memory, and processor.

An item stored in the short-term memory can get lost either due to decay
with time or displacement by newer information. This restricts the duration
for which an item is stored in the short-term memory to few tens of seconds.
However, a nitem can be retained longer in the short-term memory by
recycling. That is, when we repeat or refresh an item consciously, we can
remember it for a much longer duration. Certain information stored in the
short-term memory, under certain circumstances gets stored in the long-term
memory.

Long-term memory: Unlike the short-term memory, the size of the long-term
memory is not known to have a definite upper bound. The size of the long-
term memory can vary from several million items to several billion items,
largely depending on how actively a person exercises his mental faculty. An
item once stored in the long-term memory, is usually retained for several
years. But, how do items get stored in the long-term memory? Items present
in the short-term memory can get stored in the long-term memory either
through large number of refreshments (repetitions) or by forming links with
already existing items in the long-term memory. For example, you possibly
remember your own telephone number because you might have repeated
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(refreshed) it for a large number of times in your short-term memory. Let us
now take an example of a situation where you may form links to existing
items in the long- term memory to remember certain information. Suppose
youwant to remember the 10 digit mobile number 9433795369. To
remember it by rote may be intimidating. But, suppose you consider the
number as split into 9433 7953 69 and notice that 94 is the code for BSNL, 33
is the code for Kolkata, suppose 79 is your year of birth, and 53 is your roll
number, and the rest of the two numbers are each one less than the
corresponding digits of the previous number; you have effectively established
links with already stored items, making it easier to remember the number.

Item: We have so far only mentioned the number of items that the long-term
and the short-term memories can store. But, what exactly is an item? An item
is any set of related information. According to this definition, a character such
asa or a digit such as ‘5’ can each be considered as an item. A word, a
sentence, a story, or even a picture can each be a single item. Each item
normally occupies one place in memory. The definition of an item as any set
of related information implies that when you are able to establish some
simple relationship between several different items, the information that
should normally occupy several places can be stored using only one place in
the memory. This phenomenon of forming one item from several items is
referred to as chunking by psychologists. For example, if you are given the
binary number 110010101001—it may prove very hard for you to understand
and remember. But, the octal form of the number 6251 (i.e, the
representation (110)(010)(101)(001)) may be much easier to understand and
remember since we have managed to create chunks of three items each.

Evidence of short-term memory: Evidences of short-term memory manifest
themselves in many of our day-to-day experiences. As an example of the
short-term memory, consider the following situation. Suppose, you look up a
number from the telephone directory and start dialling it. If you find the
number to be busy, you would dial the humber again after a few seconds—in
this case, you would be able to do so almost effortlessly without having to
look up the directory. But, after several hours or days since you dialled the
number last, you may not remember the number at all, and would need to
consult the directory again.

The magical number 7: Miller called the number seven as the magical number

[Miller 56] since if a person deals with seven or less number of unrelated
information at a time these would be easily accommodated in the short-term
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memory. So, he can easily understand it. As the number of items that one
has to deal with increases beyond seven, it becomes exceedingly difficult to
understand it. This observation can easily be extended to writing programs.

When the number of details (or variables) that one has to track to solve a problem
increases beyond seven, it exceeds the capacity of the short-term memory and it
becomes exceedingly more difficult for a human mind to grasp the problem.

A small program having just a few variables is within the easy grasp of an
individual. As the number of independent variables in the program increases,
it quickly exceeds the grasping power of an individual and would require an
unduly large effort to master the problem. This outlines a possible reason
behind the exponential nature of the effort-size plot (thick line) shown in
Figure 1.4. Please note that the situation depicted in Figure 1.4 arises mostly
due to the human cognitive limitations. Instead of a human, if a machine
could be writing (generating) a program, the slope of the curve would be
linear, as the cache size (short-term memory) of a computer is quite large.
But, why does the effort-size curve become almost linear when software
engineering principles are deployed? This is because software engineering
principles extensively use the techniques that are designed specifically to
overcome the human cognitive limitations. We discuss this issue in the next
subsection.

1.3.2 Principles Deployed by Software Engineering to Overcome

Human Cognitive Limitations

We shall see throughout this book that a central theme of most of software
engineering principles is the use of techniques to effectively tackle the
problems that arise due to human cognitive limitations.

Two important principles that are deployed by software engineering to overcome the
problems arising due to human cognitive limitations are—abstraction and
decomposition.

In the following subsections, with the help of Figure 1.6(a) and (b), we
explain the essence of these two important principles and how they help to
overcome the human cognitive limitations. In the rest of this book, we shall
time and again encounter the use of these two fundamental principles in
various forms and flavours in the different software development activities. A
thorough understanding of these two principles is therefore needed.
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Figure 1.6: Schematic representation.

Abstraction

Abstraction refers to construction of a simpler version of a problem by
ignoring the details. The principle of constructing an abstraction is popularly
known as modelling (Or model construction ).

Abstraction is the simplification of a problem by focusing on only one aspect of the
problem while omitting all other aspects.

When using the principle of abstraction to understand a complex problem,
we focus our attention on only one or two specific aspects of the problem and
ignore the rest. Whenever we omit some details of a problem to construct an
abstraction, we construct a model of the problem. In every day life, we use
the principle of abstraction frequently to understand a problem or to assess a
situation. Consider the following two examples.

e Suppose you are asked to develop an overall understanding of some
country. No one in his right mind would start this task by meeting all
the citizens of the country, visiting every house, and examining every
tree of the country, etc. You would probably take the help of several
types of abstractions to do this. You would possibly start by referring to
and understanding various types of maps for that country. A map, in
fact, is an abstract representation of a country. It ignores detailed
information such as the specific persons who inhabit it, houses,
schools, play grounds, trees, etc. Again, there are two important types
of maps—physical and political maps. A physical map shows the physical

features of an area; such as mountains, lakes, rivers, coastlines, and so
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on. On the other hand, the political map shows states, capitals, and
national boundaries, etc. The physical map is an abstract model of the
country and ignores the state and district boundaries. The political
map, on the other hand, is another abstraction of the country that
ignores the physical characteristics such as elevation of lands,
vegetation, etc. It can be seen that, for the same object (e.g. country),
several abstractions are possible. In each abstraction, some aspects of
the object is ignored. We understand a problem by abstracting out
different aspects of a problem (constructing different types of models)
and understanding them. It is not very difficult to realise that proper
use of the principle of abstraction can be a very effective help to
master even intimidating problems.

e Consider the following situation. Suppose you are asked to develop an
understanding of all the living beings inhabiting the earth. If you use
the naive approach, you would start taking up one living being after
another who inhabit the earth and start understanding them. Even
after putting in tremendous effort, you would make little progress and
left confused since there are billions of living things on earth and the
information would be just too much for any one to handle. Instead,
what can be done is to build and understand an abstraction hierarchy
of all living beings as shown in Figure 1.7. At the top level, we
understand that there are essentially three fundamentally different
types of living beings—plants, animals, and fungi. Slowly more details
are added about each type at each successive level, until we reach the
level of the different species at the leaf level of the abstraction tree.

Life
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Figure 1.7: An abstraction hierarchy classifying living organisms.
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A single level of abstraction can be sufficient for rather simple problems.
However, more complex problems would need to be modelled as a hierarchy
of abstractions. A schematic representation of an abstraction hierarchy has
been shown in Figure 1.6(a). The most abstract representation would have
only a few items and would be the easiest to understand. After one
understands the simplest representation, one would try to understand the
next level of abstraction where at most five or seven new information are
added and so on until the lowest level is understood. By the time, one
reaches the lowest level, he would have mastered the entire problem.

Decomposition

Decomposition is another important principle that is available in the
repertoire of a software engineer to handle problem complexity. This principle
is profusely made use by several software engineering techniques to contain
the exponential growth of the perceived problem complexity. The
decomposition principle is popularly known as the divide and conquer principle.

The decomposition principle advocates decomposing the problem into many small
independent parts. The small parts are then taken up one by one and solved
separately. The idea is that each small part would be easy to grasp and understand
and can be easily solved. The full problem is solved when all the parts are solved.

A popular way to demonstrate the decomposition principle is by trying to
break a large bunch of sticks tied together and then breaking them
individually. Figure 1.6(b) shows the decomposition of a large problem into
many small parts. However, it is very important to understand that any
arbitrary decomposition of a problem into small parts would not help. The
different parts after decomposition should be more or less independent of
each other. That is, to solve one part you should not have to refer and
understand other parts. If to solve one part you would have to understand
other parts, then this would boil down to understanding all the parts
together. This would effectively reduce the problem to the original problem
before decomposition (the case when all the sticks tied together). Therefore,
it is not sufficient to just decompose the problem in any way, but the
decomposition should be such that the different decomposed parts must be
more or less independent of each other.

As an example ofa use of the principle of decomposition, consider the
following. You would understand a book better when the contents are
decomposed (organised) into more or less independent chapters. That is,
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each chapter focuses on a separate topic, rather than when the book mixes
up all topics together throughout all the pages. Similarly, each chapter should
be decomposed into sections such that each section discusses a different
issue. Each section should be decomposed into subsections and so on. If
various subsections are nearly independent of each other, the subsections
can be understood one by one rather than keeping on cross referencing to
various subsections across the book to understand one.

Why study software engineering?

Let us examine the skills that you could acquire from a study of the
software engineering principles. The following two are possibly the
most important skill you could be acquiring after completing a study of
software engineering:

e The skill to participate in development of large software. You can
meaningfully participate in a team effort to develop a large software
only after learning the systematic techniques that are being used in the
industry.

e You would learn how to effectively handle complexity in a software
development problem. In particular, you would learn how to apply the
principles of abstraction and decomposition to handle complexity
during various stages in software development such as specification,
design, construction, and testing.

Besides the above two important skills, you would also be learning the
techniques of software requirements specification user interface
development, quality assurance, testing, project management, maintenance,
etc.

As we had already mentioned, small programs can also be written without
using software engineering principles. However even if you intend to write
small programs, the software engineering principles could help you to achieve
higher productivity and at the same time enable you to produce better quality
programs.

1.4 EMERGENCE OF SOFTWARE ENGINEERING

We have already pointed out that software engineering techniques have
evolved over many years in the past. This evolution is the result of a
series of innovations and accumulation of experience about writing
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good quality programs. Since these innovations and programming
experiences are too numerous, let us briefly examine only a few of
these innovations and programming experiences which have
contributed to the development of the software engineering discipline.

1.4.1 Early Computer Programming

Early commercial computers were very slow and too elementary as
compared to today’s standards. Even simple processing tasks took
considerable computation time on those computers. No wonder that
programs at that time were very small in size and lacked sophistication.
Those programs were usually written in assembly languages. Program
lengths were typically limited to about a few hundreds of lines of
monolithic assembly code. Every programmer developed his own
individualistic style of writing programs according to his intuition and
used this style ad hoc while writing different programs. In simple words,
programmers wrote programs without formulating any proper solution
strategy, plan, or design a jump to the terminal and start coding
immediately on hearing out the problem. They then went on fixing any
problems that they observed until they had a program that worked
reasonably well. We have already designated this style of programming
as the build and fix (or the exploratory programming ) style.

1.4.2 High-level Language Programming

Computers became faster with the introduction of the semiconductor
technology in the early 1960s. Faster semiconductor transistors
replaced the prevalent vacuum tube-based circuits in a computer. With
the availability of more powerful computers, it became possible to solve
larger and more complex problems. At this time, high-level languages
such as FORTRAN, ALGOL, and COBOL were introduced. This
considerably reduced the effort required to develop software and helped
programmers to write larger programs (why?). Writing each high-level
programming construct in effect enables the programmer to write
several machine instructions. Also, the machine details (registers, flags,
etc.) are abstracted from the programmer. However, programmers
were still using the exploratory style of software development. Typical
programs were limited to sizes of around a few thousands of lines of
source code.
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1.4.3 Control Flow-based Design

A sthe size and complexity of programs kept on increasing, the
exploratory programming style proved to be insufficient. Programmers
found it increasingly difficult not only to write cost-effective and correct
programs, but also to understand and maintain programs written by
others. To cope up with this problem, experienced programmers
advised other programmers to pay particular attention to the design of
a program’s control flow structure.

A program’s control flow structure indicates the sequence in which the
program’s instructions are executed.

In order to help develop programs having good control flow structures, the
flow charting techniqgue Was developed. Eventoday, the flow charting
technique is being used to represent and design algorithms; though the
popularity of flow charting represent and design programs has want to a
great extent due to the emergence of more advanced techniques.

Figure 1.8 illustrates two alternate ways of writing program code for the
same problem. The flow chart representations for the two program segments
of Figure 1.8 are drawn in Figure 1.9. Observe that the control flow structure
of the program segment in Figure 1.9(b) is much more simpler than that of
Figure 1.9(a). By examining the code, it can be seen that Figure 1.9(a) is
much harder to understand as compared to Figure 1.9(b). This example
corroborates the fact that if the flow chart representation is simple, then the
corresponding code should be simple. You can draw the flow chart
representations of several other problems to convince yourself that a program
with complex flow chart representation is indeed more difficult to understand
and maintain.
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Figure 1.8: An example of (a) Unstructured program (b) Corresponding structured program.
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Figure 1.9: Control flow graphs of the programs of Figures 1.8(a) and (b).

Let us now try to understand why a program having good control flow
structure would be easier to develop and understand. In other words, let us
understand why a program with a complex flow chart representation is
difficult to understand? The main reason behind this situation is that normally
one understands a program by mentally tracing its execution sequence (i.e.
statement sequences) to understand how the output is produced from the
input values. That is, we can start from a statement producing an output, and
trace back the statements in the program and understand how they produce
the output by transforming the input data. Alternatively, we may start with
the input data and check by running through the program how each
statement processes (transforms) the input data until the output is produced.
For example, for the program of Fig 1.9(a) you would have to understand the
execution of the program along the paths 1-2-3-7-8-10, 1-4-5-6-9-10, and 1-
4-5-2-3-7-8-10. A program having a messy control flo w (i.e. flow chart)
structure, would have a large number of execution paths (see Figure 1.10).
Consequently, it would become extremely difficult to determine all the
execution paths, and tracing the execution sequence along all the paths
trying to understand them can be nightmarish. It is therefore evident that a
program having a messy flow chart representation would indeed be difficult
to understand and debug.
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Figure 1.10: CFG of a program having too many GO TO statements.

Are GO TO statements the culprits?

In a landmark paper, Dijkstra [1968] published his (now famous) article
"GO TO Statements Considered Harmful”. He pointed out that unbridled
use of GO TO statements is the main culprit in making the control
structure of a program messy. To understand his argument, examine
Figure 1.10 which shows the flow chart representation of a program in
which the programmer has used rather too many GO TO statements.
GO TO statements alter the flow of control arbitrarily, resulting in too
many paths. But, then why does use of too many GO TO statements
makes a program hard to understand?

A programmer trying to understand a program would have to mentally
trace and understand the processing that take place along all the paths of the
program making program understanding and debugging extremely
complicated.

Soon it became widely accepted that good programs should have very
simple control structures. It is possible to distinguish good programs from bad
programs by just visually examining their flow chart representations. The use
of flow charts to design good control flow structures of programs became
wide spread.
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Structured programming—a logical extension

The need to restrict the use of GO TO statements was recognised by
everybody. However, many programmers were still using assembly
languages. JUMP instructions are frequently used for program branching in
assembly languages. Therefore, programmers with assembly language
programming background considered the use of GO TO statements in
programs inevitable. However, it was conclusively proved by Bohm and
Jacopini that only three programming constructs—sequence, selection, and
iteration—were sufficient to express any programming logic. This was an
important result—it is considered important even today. An example of a
sequence statement is an assignment statement of the form a=b;. Examples
of selection and iteration statements are the if-then-else and the do-while
statements respectively. Gradually, everyone accepted that it is indeed
possible to solve any programming problem without using GO TO statements
and that indiscriminate use of GO TO statements should be avoided. This
formed the basis of the structured programming methodology.

A program is called structured when it uses only the sequence, selection, and iteration
types of constructs and is modular.

Structured programs avoid unstructured control flows by restricting the use
of GO TO statements. Structured programming is facilitated, if the
programming language being used supports single-entry, single-exit program
constructs such as if-then-else, do-while, etc. Thus, an important feature of
structured programs is the design of good control structures. An example
illustrating this key difference between structured and unstructured programs
is shown in Figure 1.8. The program in Figure 1.8(a) makes use of too many
GO TO statements, whereas the program in Figure 1.8(b) makes use of none.
The flow chart of the program making use of GO TO statements is obviously
much more complex as can be seen in Figure 1.9.

Besides the control structure aspects, the term structured program is being
used to denote a couple of other program features as well. A structured
program should be modular. A modular program is one which is decomposed
into a set of modules! such that the modules should have low
interdependency among each other. We discuss the concept of modular
programs in Chapter 5.

But, what are the main advantages of writing structured programs
compared to the unstructured ones? Research experiences have shown that
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programmers commit less number of errors while using structured if-then-else
and do-while statements than when using test-and-branch code constructs.
Besides being less error-prone, structured programs are normally more
readable, easier to maintain, and require less effort to develop compared to
unstructured programs. The virtues of structured programming became
widely accepted and the structured programming concepts are being used
even today. However, violations to the structured programming feature is
usually permitted in certain specific programming situations, such as
exception handling, etc.

Very soon several languages such as PASCAL, MODULA, C, etc., became
available which were specifically designed to support structured
programming. These programming languages facilitated writing modular
programs and programs having good control structures. Therefore, messy
control structure was no longer a big problem. So, the focus shifted from
designing good control structures to designing good data structures for
programs.

1.4.4 Data Structure-oriented Design

Computers became even more powerful with the advent o f integrated
circuits (ICs) in the early seventies. These could now be used to solve
more complex problems. Software developers were tasked to develop
larger and more complicated software. which often required writing in
excess of several tens of thousands of lines of source code. The control
flow-based program development techniques could not be used
satisfactorily any more to write those programs, and more effective
program development techniques were needed.

It was soon discovered that while developing a program, it is much more
important to pay attention to the design of the important data structures of
the program than to the design of its control structure. Design techniques
based on this principle are called data structure- oriented design techniques.

Using data structure-oriented design techniques, first a program’s data structures are
designed. The code structure is designed based on the data structure.

In the next step, the program design is derived from the data structure. An
example of a data structure-oriented design technique is the Jackson’s
Structured Programming (JSP) technique developed by Michael Jackson
[1975]. In JSP methodology, a program’s data structure is first designed using
the notations for sequence, selection, and iteration. The JSP methodology
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provides an interesting technique to derive the program structure from its
data structure representation. Several other data structure-based design
techniques were also developed. Some of these techniques became very
popular and were extensively used. Another technique that needs special
mention is the Warnier-Orr Methodology [1977, 1981]. However, we will not
discuss these techniques in this text because now-a-days these techniques
are rarely used in the industry and have been replaced by the data flow-
based and the object-oriented techniques.

1.4.5 Data Flow-oriented Design

As computers became still faster and more powerful with the introduction of
very large scale integrated (VLSI) Circuits and some new architectural concepts,
more complex and sophisticated software were needed to solve further
challenging problems. Therefore, software developers looked out for more
effective techniques for designing software and soon data flow-oriented
techniques Were proposed.

The data flow-oriented techniques advocate that the major data items handled by a
system must be identified and the processing required on these data items to
produce the desired outputs should be determined.

The functions (also called as processes ) and the data items that are
exchanged between the different functions are represented in a diagram
known as a data flow diagram (DFD). The program structure can be designed
from the DFD representation of the problem.

DFDs: A crucial program representation for procedural program design

DFD has proven to be a generic technique which is being used to model all
types of systems, and not just software systems. For example, Figure 1.11
shows the data-flow representation of an automated car assembly plant. If
you have never visited an automated car assembly plant, a brief description
of an automated car assembly plant would be necessary. In an automated car
assembly plant, there are several processing stations (also called workstations
) which are located along side of a conveyor belt (also called an assembly line
). Each workstation is specialised to do jobs such as fitting of wheels, fitting
the engine, spray painting the car, etc. As the partially assembled program
moves along the assembly line, different workstations perform their
respective jobs on the partially assembled software. Each circle in the DFD
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model of Figure 1.11 represents a workstation (called a process or bubble ).

Each workstation consumes certain input items and produces certain output
items. As a car under assembly arrives at a workstation, it fetches the
necessary items to be fitted from the corresponding stores (represented by
two parallel horizontal lines), and as soon as the fitting work is complete
passes on to the next workstation. It is easy to understand the DFD model of
the car assembly plant shown in Figure 1.11 even without knowing anything
regarding DFDs. In this regard, we can say that a major advantage of the
DFDs is their simplicity. In Chapter 6, we shall study how to construct the
DFD model of a software system. Once you develop the DFD model of a
problem, data flow-oriented design techniques provide a rather straight
forward methodology to transform the DFD representation of a problem into
an appropriate software design. We shall study the data flow-based design
techniques in Chapter 6.
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Figure 1.11: Data flow model of a car assembly plant.

1.4.6 Object-oriented Design

Data flow-oriented techniques evolved into object-oriented design (OOD)

techniques in the late seventies. Object-oriented design technique is an
intuitively appealing approach, where the natural objects (such as
employees, pay-roll-register, etc.) relevant to a problem are first
identified and then the relationships among the objects such as
composition, reference, and inheritance are determined. Each object
essentially acts as a data hiding (also known as data abstraction ) entity.
Object-oriented techniques have gained wide spread acceptance
because of their simplicity, the scope for code and design reuse,
promise of lower development time, lower development cost, more
robust code, and easier maintenance. OOD techniques are discussed in
Chapters 7 and 8.
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1.4.7 What Next?

In this section, we have so far discussed how software design techniques
have evolved since the early days of programming. We pictorially
summarise this evolution of the software design techniques in Figure
1.12. It can be observed that in almost every passing decade,
revolutionary ideas were put forward to design larger and more
sophisticated programs, and at the same time the quality of the design
solutions improved. But, what would the next improvement to the
design techniques be? It is very difficult to speculate about the
developments that may occur in the future. However, we have already
seen that in the past, the design techniques have evolved each time to
meet the challenges faced in developing contemporary software.
Therefore, the next development would most probably occur to help
meet the challenges being faced by the modern software designers. To
get an indication of the techniques that are likely to emerge, let us first
examine what are the current challenges in designing software. First,
program sizes are further increasing as compared to what was being
developed a decade back. Second, many of the present day software
are required to work in a client-server environment through a web
browser-based access (called web-based software ). At the same time,
embedded devices are experiencing an unprecedented growth and rapid
customer acceptance in the last decade. It is there for necessary for
developing applications for small hand held devices and embedded
processors. We examine later in this text how aspect-oriented
programming, client- server based design, and embedded software
design techniques have emerged rapidly. In the current decade, service-
orientation has emerged as a recent direction of software engineering
due to the popularity of web-based applications and public clouds.
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Figure 1.12: Evolution of software design techniques.

1.4.8 Other Developments

It can be seen that remarkable improvements to the prevalent software
design technique occurred almost every passing decade. The
improvements to the software design methodologies over the last five
decades have indeed been remarkable. In addition to the
advancements made to the software design techniques, several other
new concepts and techniques for effective software development were
also introduced. These new techniques include life cycle models,
specification techniques, project management techniques, testing
techniques, debugging techniques, quality assurance techniques,
software measurement techniques, computer aided software engineering
(CASE) tools, etc. The development of these techniques accelerated the
growth of software engineering as a discipline. We shall discuss these
techniques in the later chapters.
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1.5 NOTABLE CHANGES IN SOFTWARE DEVELOPMENT PRACTICES

Before we discuss the details of various software engineering principles, it
is worthwhile to examine the glaring differences that you would notice when
you observe an exploratory style of software development and another
development effort based on modern software engineering practices. The
following noteworthy differences between these two software development
approaches would be immediately observable.

e An important difference is that the exploratory software development
style is based on error correction (build and fix)while the software
engineering techniques are based on the principles of error prevention.
Inherent in the software engineering principles is the realisation that it
is much more cost-effective to prevent errors from occurring than to
correct them as and when they are detected. Even when mistakes are
committed  during development, software engineering principles
emphasize detection of errors as detected only during the final product
testing. In contrast, the modern practice of software development is to
develop the software through several well-defined stages such as
requirements specification, design, coding, testing, etc.,, and attempts
are made to detect and fix as many errors as possible in the same
phase in which they are made.

e I nthe exploratory style, coding wa s considered synonymous with
software development. For instance, this naive way of developing a
software believed in developing a working system as quickly as
possible and then successively modifying it untili t performed
satisfactorily. Exploratory programmers literally dive at the computer to
get started with their programs even before they fully learn about the
problem!!! It was recognised that exploratory programming not only
turns out to be prohibitively costly for non-trivial problems, but also
produces hard-to-maintain programs. Even minor modifications to such
programs later can become nightmarish. In the modern software
development style, coding is regarded as only a small part of the
overall  software  development activities. There are several
development activities such as design and testing which may demand
much more effort than coding.

e A lot of attention is now being paid to requirements specification.
Significant effort is being devoted to develop a clear and correct
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specification of the problem before any development activity starts.
Unless the requirements specification is able to correctly capture the
exact customer requirements, large number of rework would be
necessary at a later stage. Such rework would result in higher cost of
development and customer dissatisfaction.

e Now there is a distinct design phase where standard design techniques
are employed to yield coherent and complete design models.

e Periodic reviews are being carried out during all stages of the
development process. The main objective of carrying out reviews is
phase containment of errors, i.e. detect and correct errors as soon as
possible. Phase containment of errors is an important software
engineering principle. We will discuss this technique in Chapter 2.

e Today, software testing has become very systematic and standard
testing techniques are available. Testing activity has also become all
encompassing, as test cases are being developed right from the
requirements specification stage.

e There is better visibility of the software through various developmental
activities.

By visibiity we mean production of good qualty, consistent and peer reviewed documents at
the end of every software development activity.

e In the past, very little attention was being paid to producing good
quality and consistent documents. In the exploratory style, the design
and test activities, even if carried out (in whatever way), were not
documented satisfactorily. Today, consciously good quality documents
are being developed during software development. This has made fault
diagnosis and maintenance far more smoother. We will see in Chapter
3 that i naddition to facilitating product maintenance, increased
visibility makes management of a software project easier.

e Now, projects are being thoroughly planned. The primary objective of
project planning is to ensure that the various development activities
take place at the correct time and no activity is halted due to the want
of some resource. Project planning normally includes preparation of
various types of estimates, resource scheduling, and development of
project tracking plans. Several techniques and automation tools for
tasks such as configuration management, cost estimation, scheduling,
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etc., are being used for effective software project management.

e Several metrics (quantitative measurements) of the products and the
product development activities are being collected to help in software
project management and software quality assurance.

1.6 COMPUTER SYSTEMS ENGINEERING

In all the discussions so far, we assumed that the software being
developed would run on some general-purpose hardware platform such
as a desktop computer or a server. But, in several situations it may be
necessary to develop special hardware on which the software would
run. Examples of such systems are numerous, and include a robot, a
factory automation system, and a cell phone. In a cell phone, there is a
special processor and other specialised devices such as a speaker and a
microphone. It can run only the programs written specifically for it.
Development of such systems entails development of both software and
specific hardware that would run the software. Computer systems
engineering addresses development of such systems requiring
development of both software and specific hardware to run the
software. Thus, systems engineering encompasses software
engineering.

The general model of systems engineering is shown schematically in Figure
1.13. One of the important stages in systems engineering is the stage in
which decision is made regarding the parts of the problems that are to be
implemented in hardware and the ones that would be implemented in
software. This has been represented by the box captioned hardware-software
partitioning in Figure 1.13. While partitioning the functions between hardware
and software, several trade-offs such as flexibility, cost, speed of operation,
etc., need to be considered. The functionality implemented in hardware run
faster. On the other had, functionalities implemented in software is easier to
extend. Further, it is difficult to implement complex functions in hardware.
Also, functions implemented in hardware incur extra space, weight,
manufacturing cost, and power overhead.

After the hardware-software partitioning stage, development of hardware
and software are carried out concurrently (shown as concurrent branches in
Figure 1.13). In system engineering, testing the software during development
becomes a tricky issue, the hardware on which the software would run and
tested would still be under development—remember that the hardware and
the software are being developed at the same time. To test the software
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during development, it usually becomes necessary to develop simulators that
mimic the features of the hardware being developed. The software is tested
using these simulators. Once both hardware and software development are
complete, these are integrated and tested. The project management activity
is required through out the duration of system development as shown in
Figure 1.13. In this text, we have confined our attention to software
engineering only.
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Figure 1.13: Computer systems engineering.

SUMMARY

e We first defined the scope of software engineering. We came up with
two alternate but equivalent definitions:

— The systematic collection of decades of programming experience
together with the innovatio